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Abstract—In permissioned blockchain systems, participants
are admitted to the network by receiving a credential from
a certification authority. Each transaction processed by the
network is required to be authorized by a valid participant
who authenticates via their credential. Use case settings where
privacy is a concern thus require proper privacy-preserving
authentication and authorization mechanisms.

Anonymous credential schemes are cryptographic mecha-
nisms that allow a user to authenticate while showing only
those attributes necessary in a given setting, which makes these
schemes a great tool for authorizing transactions in permissioned
blockchain systems based on the user’s attributes. As in most
setups of such systems there is one distinct certification authority
for each organization in the network, the use of plain anonymous
credential schemes still leaks the association of a user to their
issuing organization. Camenisch, Drijvers, and Dubovitskaya
(CCS 2017) therefore suggest the use of delegatable anonymous
credential schemes, which allows to hide even that remaining
piece of information.

We implement private transaction authorization in Hyper-
ledger Fabric based on delegatable anonymous credentials. To this
end, we provide a production-grade open-source implementation
of the Camenisch et al. scheme with several optimizations. We
then extend Fabric to support the scheme as an additional
mechanism for authorizing transactions. Our solution supports
revocation and auditing, making it ready for real-world deploy-
ment. Our performance measurements show that the scheme,
while incurring an overhead in comparison to the less privacy-
preserving ones, is practical for settings with enhanced privacy
requirements.

I. INTRODUCTION

Blockchain systems allow two or more mutually distrustful
parties to perform transactions by appending them to a shared
ledger, without the need to rely on a trusted third party. The
first and still most prominent use of blockchains is in the area
of cryptocurrencies, where each transaction transfers fungible
tokens between two or more parties. Blockchain systems used
for cryptocurrencies are usually permissionless, meaning that
joining the system does not require the parties to register their
identity; everyone can participate.

† Work done while working at IBM Research, Zürich

Many other application scenarios for blockchains, however,
require the participants to be registered, and access to the
blockchain system to be permissioned. For instance, use cases
in the financial domain are restricted by know-your-customer
(KYC) or anti-money-laundering (AML) regulations. Elections
require the set of eligible voters to be known in order to
prevent illegitimate voters from submitting votes, or any voter
from double-voting. Enterprise blockchain systems accelerate
processing of transactions in business networks with known
participants. All above use cases require the transactions to be
properly authorized by some member of the network. Note
that permissioned does not mean centralized: the trust is
still distributed among the participants of the network, the
difference with permissionless networks is that joining the
network becomes an explicit operation. For instance, instead of
a centralized certification authority for all participants, a per-
missioned blockchain network uses multiple such authorities,
one per organization, resulting in a federated model.

Use cases that require the submission of transactions to be
authorized often still require the identity of the submitter to be
hidden. The most salient example is elections, where re-voting
(as a measure against coercion [1]) inherently requires the sub-
mitter of a vote to be anonymous. Financial use cases, where
the transaction history of a user can leak sensitive personal
information through usage patterns, are another good example.
In such cases, the use of anonymous credential systems such as
Identity Mixer [13] allow participants to authorize transactions
by only revealing the attributes necessary for that particular
transaction (such as being a registered voter or having passed
KYC checks), while keeping all other attributes (such as name,
address, or age) hidden.

Unfortunately, even the use of anonymous credentials can
be insufficient. The reason is that each organization has its own
certificate authority, and anonymity is only guaranteed relative
to that authority. In other words, the particular certificate
authority that issued a user’s credential will still be obvious
from the use of the credential for authorizing the transaction;
in certain use cases, even this leakage may not be acceptable.
A naı̈ve approach to tackle this is to have one global certificate
authority issuing anonymous credentials. This, however, means
that all credentials are issued by the same central entity,
essentially eliminating the federated management model that
permissioned blockchains are supposed to bring.

As first observed by Camenisch, Drijvers, and Dubovit-
skaya [11], this is where delegatable credentials come in
handy: in a delegatable credential scheme, a root authority
delegates issuance of credentials to intermediate authorities in
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such a way that using the credentials only reveals the root
authority. In particular, the issuance of credentials for each
organization can be delegated to a different certification author-
ity. This allows to keep the management largely decentralized,
while at the same time hiding the particular authority that
issued a given credential.

In this paper, we use the work of Camenisch, Drijvers,
and Dubovitskaya [11] as a stepping stone and provide an
implementation of the delegatable credentials developed there
for the widely-used permissioned blockchain platform Hyper-
ledger Fabric [2]. Our contributions are three-fold:

• We provide a production-grade implementation of dele-
gatable anonymous credentials in Go with several opti-
mizations over [11]. For the submission, we made the
library available in an anonymized repository [4]. It is
also publicly available as open source.

• We extend the scheme of [11] by adding mechanisms for
revocation of credentials and auditing of authorizations.
The protocols are efficient, as they are based solely on
ElGamal encryption [18] and Schnorr proofs [31].

• We enable private transactions via delegatable anonymous
credentials in Hyperledger Fabric. This includes both the
design of the relevant protocol parts and their implemen-
tation, which we also plan to provide as open source,
based on the above library.

II. RELATED WORK

The most immediately related work is [11], which our
paper builds on. That paper presents the cryptographic anony-
mous credentials scheme, proves its security, and provides
initial performance numbers. It also discusses, but only on a
general and conceptual level, the use of anonymous credentials
in permissioned blockchains. Our paper extends [11] in three
main directions: (a) we provide a production-grade implemen-
tation as open source, which includes multiple performance
optimizations ([11] implemented just enough to run a simple
performance test), (b) we integrate anonymous credentials in
the Hyperledger Fabric protocols, which in fact requires a
different approach than described in [11], (c) we cover practi-
cally-relevant functionality such as revocation and auditing.

After the publication of [11], two further papers on de-
legatable credentials were published, namely by Blömer and
Bobolz [10] and by Crites and Lysyanskaya [16]. Both claim
stronger security properties compared with [11] by also sup-
porting an anonymous delegation phase; this feature is however
not required in our setting where the user and the intermediate
authority know each other. On the flip side, the scheme in [10]
supports only a fixed number of attributes that is determined
during setup, whereas we want to be able to dynamically add
attributes per intermediate authority. Furthermore, the paper
does not describe a full instantiation of the protocol and the
credential presentation, and when instantiated, appears less
efficient than the one for [11]. The scheme in [16] does
not support attributes, which makes it unsuitable for our
application.

Sovrin [34] also combines anonymous credentials with a
permissioned blockchain system. While we use anonymous
credentials to authorize transactions within a blockchain sys-
tems, the Sovrin platform for self-sovereign identity instead

uses the blockchain as a building block for the use of anony-
mous credentials, similarly to the anonymous decentralized
credentials work of Garman, Green, and Miers [19]. The two
approaches thus serve different use cases. In the context of
Sovrin, there is also an implementation of [11] in Rust [23],
which appears to be in its earlier stages.

A growing segment of the research literature on blockchain
systems aims to improve the confidentiality of transactions
using techniques such as zero-knowledge proofs (e.g. [8],
[20], [29], [36]), different types of state channels (e.g. [3],
[17]), or multi-party computation (e.g. [9]). While the under-
lying cryptographic machinery, particularly in the work on
zero-knowledge proofs, is similar to the protocols we use
here, achieving confidentiality of transactions is orthogonal
to achieving privacy of participants, and eventually privacy-
friendly permissioned blockchain systems will have to combine
both.

III. BACKGROUND

A. Blockchain systems

The purpose of a blockchain is to implement an immutable1

append-only ledger that is maintained by a network of mutually
distrustful parties. As a data structure, the ledger is a chain
of blocks such that each block refers to its predecessor by in-
cluding its hash, implementing a total order on the blocks. The
parties continuously extend the chain by running a consensus
mechanism (e.g., proof of work or PBFT) to decide on the
respective next block. Blocks contain transactions that have
been submitted by clients for inclusion in the ledger.

Blockchains are either permissionless or permissioned.
In a permissionless blockchain such as Bitcoin [27] or
Ethereum [35], anyone can run a peer that joins the net-
work, participates in consensus, and validates transactions.
Clients can submit their transactions anonymously (or rather:
pseudonymously). Trust in such networks is established via
consensus mechanisms that are based on proofs of work
(e.g., [27], [35]) or proofs of stake (e.g., [15], [25]), which
penalize misbehaving parties either by requiring them to ex-
pend a lot of computational power in the case of proof of work
or losing their money in the case of proof of stake.

Permissioned blockchains, on the other hand, leverage
identity management mechanisms to counter misbehavior,
foster trust, and facilitate governance. Most permissioned
blockchain systems build on variants (e.g., [21], [33]) of the
well-studied and performant PBFT [14] algorithm to reach
consensus. Permissioned blockchains are particularly well-
suited for applications where participant identities are required
either inherently or by regulation, or those with high perfor-
mance requirements. This includes enterprise applications in
logistics and supply-chain management, but also use cases in
the financial and governmental domains. Examples of promi-
nent permissioned blockchain platforms include Hyperledger
Fabric [2] and Quorum [24].

1 There has been work on implementing mutable ledgers, while preserving
other properties such as the requirement for consensus for modification (cf. [5],
[30]). All blockchain systems used in practice implement immutable ledgers.

2



B. Hyperledger Fabric

Fabric is a permissioned blockchain platform that is devel-
oped under the umbrella of the Hyperledger project within the
Linux Foundation. Fabric is widely known for its modular and
scalable architecture. We briefly describe the architecture of
Fabric, focusing on those components relevant to transaction
authorization and anonymous transactions through Identity
Mixer in particular. We refer to the original paper [2] for a
detailed description of the complete protocol and system.

A Fabric deployment involves multiple mutually distrust-
ful organizations. Each organization corresponds to one trust
domain and manages one complete stack of platform com-
ponents. The components that are online during transaction
processing are orderers, peers, and clients. Clients invoke
transactions and observe their results; they constitute the link
between the blockchain and the outside world. Peers execute
and validate transactions; they process the application data.
Orderers receive transactions, put them into blocks, run a
consensus algorithm to determine their order, and distribute the
blocks to the peers. Orderers ignore the transaction contents,
they merely put then in order. Each organization also runs
a membership service provider (MSP), which is responsible
for maintaining and managing identities of all participants
of that organization. This includes issuing credentials for
authentication and authorizations and their revocation when
the need arises.

Fabric has a unique three-phase transaction flow called
Execute-Order-Validate. Each chaincode (i.e., smart contract)
has associated endorsers, peers that execute this chaincode.
The endorsement policy associated with the chaincode spec-
ifies the minimum requirements for replicated execution. For
instance, a sample endorsement policy could specify that at
least one peer from each organization participating in the
network must endorse.

In the Execute phase, a client invokes a chaincode (i.e.,
smart contract) by sending a transaction proposal to the en-
dorsers of that chaincode. The endorsers execute the chaincode
and sign the chaincode’s read and write sets. After collecting
enough endorsements (i.e., signatures on consistent read/write
sets), the client constructs a transaction that contains the
proposal, the read/write sets and the endorsements and signs
it using its MSP identity (i.e., a credential obtained from an
MSP).

In the Order phase, the client sends the signed transaction
together with some metadata to the ordering service, which
includes the transaction in a block and broadcasts the ordered
transactions to the peers in the network.

In the Validate phase, the peers verify if each transaction
received from the ordering service satisfies the endorsement
policy of its chaincode. The peers also update their local state
according to the write sets specified in the transaction.

One main advantage of this architecture in comparison with
standard Order-Execute architectures is its scalability. First, the
different tasks have different resource requirements (compute,
memory, network) and can be run on specialized nodes.
Second, resource-heavy tasks such as executing chaincodes can
be scaled out by adding more nodes that process transactions

in parallel. Another advantage is that chaincode can be pro-
grammed in general-purpose programming languages, because
— in contrast to Order-Execute — non-determinism does not
violate the consistency of the overall system, but only affects
the liveness of that particular chaincode.

C. Authentication, authorization, and Identity Mixer in Fabric

The default Fabric MSP is based on X.509 certificates —
an identity is an X.509 certificate and its validation/revocation
follows the X.509 standard. This approach is efficient, flexible
and scalable — organizations may have hierarchical CAs
which translate to hierarchical MSPs. Each transaction (as a
data structure) has two specific fields related to transaction
authorization: the Creator (i.e., identity of the client invoking
the transaction) and Signature (i.e., authorization of the trans-
action) fields. As each transaction thus carries the identity of
its origin in the form of a certificate and a signature, the X.509
implementation compromises the anonymity and the privacy of
clients.

To remedy this issue, Fabric uses Identity Mixer (idemix
for short), an anonymous credentials scheme based on the
protocols in [12]. The idemix-based MSP protocol enables
clients to sign transactions anonymously. Instead of an X.509
certificate, an idemix MSP issues a special credential contain-
ing a set of attributes. To sign a transaction, the holder of
an idemix identity generates a non-interactive zero-knowledge
(NIZK) proof that she received a credential from idemix
that certifies her attributes. More specifically, if Alice is a
member of an organization Org whose members are authorized
to submit certain transactions, then Alice proves that she
possesses an idemix credential from her MSP that attests that
she is a member of Org.

As discussed in the introduction, even the use of anony-
mous credentials is sometimes not sufficient from a privacy
perspective. Namely, the current implementation of idemix
leaks the identity of the MSP that issued the anonymous
credential. To mitigate this leakage, we implement a stronger
mechanism based on the delegatable anonymous credentials
scheme from [11].

D. Notation

Here we present the notation used to describe the schemes.
Let Zq be a set of natural numbers from 0 to q−1. Let G1, G2

and GT be the groups of prime order q, such that there exists
an efficient bilinear pairing e : G1 × G2 → GT . Let FEXP
and t̂ be the final exponentiation and Miller’s loop operations
respectively, such that e = FEXP ◦ t̂. Let ←$ describe an
operation of random sampling, and let pk and sk describe
public and secret keys respectively. When the subscript is
omitted, the keys are implicitly considered as the user’s. Let
system parameters sp be a set of values shared among all
entities. sp is implicitly passed to all algorithms and implicitly
supplied to hash routines in zero-knowledge proofs. sp includes
group generators, pairing functions, authorities’ public keys
and some extra scheme-specific values.

E. Groth signatures

The delegatable anonymous credential scheme in [11] uses
Groth signatures introduced in [22], as they are structure
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preserving (and therefore allow for efficient NIZK proofs) and
have a particular algebraic structure that will allow for building
certificate chains by signing public keys without leaving the
algebraic representation. The following is a brief description
of GROTH algorithms.

• SETUP→$ sp
Let Λ? = (q,G1,G2,Gt, e) and yi←$G2 for i =
1, . . . , n, where n is the maximum size of the message.
Output system parameters sp = (Λ?, {yi}ni=1).

• GENERATE(sp)→$ (sk, pk)
Output secret and public keys sk←$Zq and pk = gsk1 .

• SIGN(sk; ~m)→$σ
Let ~m = (m1, . . . ,mn) ∈ Gn2 . Set the following

ρ←$Z?q r := gρ1 s := (y1 · gsk2 )
1
ρ ti := (yski ·mi)

1
ρ

Output the signature σ = (r, s, t1, . . . , tn).
• VERIFY(pk, σ, ~m)→ {0, 1}

Let ~m ∈ Gn2 and σ = (r, s, t1, . . . , tn) ∈ G1 × Gn+1
2 ,

output the result of

e(r, s) = e(g1, y1) · e(pk, g2)∧
n∧
i=1

e(r, ti) = e(pk, yi) · e(g1,mi)

• RANDOMIZE(σ)→$σ′

ρ′←$Zq r′ := rρ
′

s′ := s
1
ρ′ t′i := t

1
ρ′

i

Output randomized signature σ′ = (r′, s′, t′1, . . . , t
′
n).

Notice that the public keys are in G1 whereas the messages are
in G2. To be able to support chaining (and thereby delegation)
using GROTH we need to switch the key space and message
space. That is, we move from one delegation level to the next
by swapping G1 and G2.

We call these schemes in the following GROTHodd and
GROTHeven for respective levels of credentials.

F. Delegatable anonymous credentials scheme

In the scheme from [11], all parties (the root, intermediate
authorities and the users) generate pairs of secret and public
keys. A 1-Level delegatee (an intermediate authority or a user)
contacts the root to obtain a credential (i.e., signature) to bind
her public key to her attributes. Once a 1-Level delegatee gets
her credentials, she herself becomes a delegator and can issue
credentials for 2-Level delegates. This delegation process may
continue for an arbitrary number of levels increasing the length
of the credential chain.

The holder of a credential uses non-interactive zero-
knowledge (NIZK) proofs to sign messages anonymously.
Notably, signing a message m consists of proving in zero-
knowledge the following facts:

• the signer owns the credentials;
• the Schnorr-like generated signature is valid for message
m;

• inductively, all adjacent levels are legitimate (one was
delegated from the other); and

• at the end of the induction, the top-level public key is that
of the root authority.

During the proof generation, the signer can choose which
attributes to disclose and which to keep secret. It is possible,
although not very useful, to reveal or hide all attributes. Thanks
to the properties of zero-knowledge proofs, this signing process
is randomized and every time it is executed it yields new and
unlinkable signatures.

More formally, the scheme SCHEME consists of the fol-
lowing algorithms:

• KEYGEN→$ (sk, pk)
Generates a pair of secret and public keys as sk←$Zq
and pk = gsk.

• NEWCREDS(pkroot, skroot)→ cred
Produces an empty credentials data structure with the
root’s key pair in it.

• DELEGATE(cred, skdelegator, pkdelegatee,~a)→$ cred′

Produces the credentials of the next level that bind at-
tributes ~a to public key pkdelegatee.

• PROVE(cred, skprover, pkroot,~arevealed,m)→$Pcred

Generates a zero-knowledge proof that shows the valid-
ity of the credentials under the public key of the root
authority, proves the ownership of the credentials and
simultaneously signs the message.

• VERIFY(Pcred, pkroot,~arevealed,m)→ {0, 1}
Verifies the proof under the public key of the root author-
ity.

1) Delegation: Let us look at the delegation procedure in
more details.

• A root authority R generates a key pair (pkr, skr).
• An intermediate authority I generates a key pair (pki, ski)

and requests 1-Level credentials supplying her public key
pki and her attribute vector ~ai.

• R signs I’s public key and vector of attributes and returns
the resulting signature σi = SIGNskr (pki‖~ai).

• I now has 1-Level credential credi = (σi,~ai, pki, ski).
• To request a 2-Level credential, a delegatee (user U)

generates a keypair (pku, sku) and sends pku to the
delegator I.

• Delegator I computes σu = SIGNski(pku‖ ~au) and sends
both signatures, public keys and attribute vectors to the
delegatee U . Accordingly, 2-Level credentials of user U
are defined as credu = (σi, σu, ~ai, ~au, pki, pku, sku).

• This process can repeat, the resulting L-Level credential
is credL = (〈σi, ~ai, pki〉Li=1, skL).

Note that to be able to prove in ZK that a given delegatable
credential is valid, the underlying signature scheme needs to
be structure preserving; this is the reason for using Groth
signatures introduced in [22].
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Algorithm 1 Improved proof generation. Green code is refactored, red code corrects mistakes in the original code.

1: procedure CREDPROVE(〈ri, si, 〈ti,j〉ni+1
j=1 〉Li=1, csk, 〈cpki〉Li=1, 〈ai,j〉i=1,...,L;j=1...,ni , D, sknym,m)

2: for i = (1, . . . , L) do

3: ρσi ←$Zq , r′i := r
ρσi
i , s′i := s

1
ρσi
i

4: for j = 1, . . . , ni + 1 do

5: t′i,j := t
1
ρσi
i,j

6: 〈ρsi , 〈ρti,j 〉
ni+1
j=1 〉Li=1, 〈ρai,j 〉(i,j)/∈D, 〈ρcpki〉

L−1
i=1 , ρcsk, ρnym←$Zq

7: for i = (1, . . . , L) do
8: if i mod 2 = 1 then
9: g1 := sp.g1, g2 := sp.g2, y := sp.y1

10: else
11: g1 = sp.g2, g2 = sp.g1, y = sp.y2
12: comi,1 := e (g1, ri)

ρσi ·ρsi
[
·e
(
g−11 , g2

)ρcpki−1

]
i 6=1

13: comi,2 := e (g1, ri)
ρσi ·ρti,1 · e

(
g1, g

−1
2

)ρcpki [·e (y1, g2)
ρcpki−1 ]i6=1

14: for j = (1, . . . , ni ) do
15: if (i, j) ∈ D then
16: comi,j+2 := e (g1, ri)

ρσi ·ρti,j+1 [·e (yj+1, g2)
ρcpki−1 ]i 6=1

17: else
18: comi,j+2 := e (g1, ri)

ρσi ·ρti,j+1 · e
(
g1, g

−1
2

)ρai,j [·e (yj+1, g2)
ρcpki−1 ]i 6=1

19: comnym := g
ρcpkL
1 hρnym

20: c := HASH(ipk, 〈r′i, 〈comi,j〉ni+2
j=1 〉Li=1, comnym,〈ai,j〉(i,j)∈D,m)

21: for i = (1, . . . , L) do
22: if i mod 2 = 1 then g := g1
23: else g = g2
24: psi := gρsi s′

c
i ,
[
pcpki := gρcpki cpkci

]
i6=L,

[
pcsk := ρcpkL + c · csk

]
i=L

, [pnym := ρnym + c · sknym]i=L
25: for j = 1, . . . , ni + 1 do
26: pti,j := gρti,j t′

c
i,j

27: for j : (i, j) /∈ D do
28: pai,j := gρai,j aci,j
29: return c, 〈r′i, psi , 〈pti,j 〉

ni+1
j=1 〉Li=1, 〈pai,j 〉(i,j)/∈D, 〈pcpki〉

L−1
i=1 , pnym,pcsk

Algorithm 2 Improved proof verification. Green code is refactored, red code corrects mistakes in the original code.

1: procedure CREDVERIFY(c, 〈r′i, psi〈pti,j 〉
ni+1
j=1 〉Li=1, 〈pai,j 〉(i,j)/∈D, 〈pcpki〉

L−1
i=1 , pcsk, 〈ai,j〉(i,j)∈D, D, pknym,m)

2: for i = (1, . . . , L) do
3: if i mod 2 = 1 then
4: g1 := sp.g1, g2 := sp.g2, y := sp.y1
5: else
6: g1 = sp.g2, g2 = sp.g1, y = sp.y2
7: comi,1 := e (psi , r

′
i) · e (y1, g2)

−c [·e (g−11 , pcpki
)]
i6=1

[
·e (g1, ipk)

−c
]
i=1

8: comi,2 := e
(
pti,1 , r

′
i

) [
·e
(
y1, pcpki−1

)]
i 6=1

[
·e (y1, ipk)

−c
]
i=1

[
·e
(
pcpki , g

−1
2

)]
i 6=L

[
·e
(
g1, g

−1
2

)pcsk
]
i=L

9: for j = (1, . . . , ni ) do
10: if (i, j) ∈ D then
11: comi,j+2 := e

(
pti,j+1

, r′i
)
· e (ai,j , g2)

−c
[
·e
(
yj+1, pcpki−1

)]
i 6=1

[
·e (yj+1, ipk)

−c
]
i=1

12: else
13: comi,j+2 := e

(
pti,j+1 , r

′
i

)
· e
(
pai,j , g

−1
2

) [
·e
(
yj+1, pcpki−1

)]
i 6=1

[
·e (yj+1, ipk)

−c
]
i=1

14: comnym := gpcsk

1 hpnympk−cnym

15: c′ := HASH(ipk, 〈r′i, 〈comi,j〉ni+2
j=1 〉Li=1, comnym,〈ai,j〉(i,j)∈D,m)

16: return c = c′
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2) Proof generation: Proving the knowledge and validity
of credentials is equivalent to generating the following NIZK:

Pcred←$ NIZK{(σ1, . . . , σL, pk1, . . . , pkL, 〈a′〉hidden, σm) :
L∧

i=1,3,...

GROTHodd.VERIFY(pki−1;σi; pki, a
′
i,1, . . . , a

′
i,ni)

L∧
i=2,4,...

GROTHeven.VERIFY(pki−1;σi; pki, a
′
i,1, . . . , a

′
i,ni)

∧ SCHNORR.VERIFY(pkL;σm;m)}

Note that additionally to proving the validity of the credential
chain, proof generation signs an input message m using a
Schnorr-like procedure. This allows the prover to show that she
knows the secret key corresponding to the last level credential.

Proof generation algorithm [11, Figure 4] is a non-trivial
math-heavy routine. We only provide a quick overview and we
refer interested readers to the original paper [11].

All GROTH signatures are randomized every time a new
proof is generated. The code is split into halves — for odd
and even levels of credentials. The first part computes a
set of commitments — one per each s and t value from
GROTH. The commitments are then hashed along with the
public information and the message. The last part computes
p-values using the hash value, the verifier will use them to
reconstruct the commitments.

3) Proof verification: Verification is conceptually sim-
pler [11, Figure 5]. The code is again split in halves of odd and
even levels. p-values are used to reconstruct all commitments.
These commitments are then hashed the same way as in proof
generation. The hashes are then compared and verification
succeeds if they are equal. Given the collision resistance
of cryptographic hashes, any discrepancy in the hash input
(whether a commitment or any public parameter including
the message) will yield a different value that will fail the
verification.

IV. IMPROVEMENTS TO CREDENTIALS SCHEME

While implementing the delegatable anonymous credentials
scheme, we discovered several simplifications and optimiza-
tions that improved readability and performance of our code.
This section presents our improvements.

A. Refactored pseudocode

Following the pseudocode [11, Figures 4 and 5] precisely
we have found out that the verification always fails. We
were able to spot mistakes and provide a corrected version
in Algorithms 1 and 2. Additionally, we have refactored the
pseudocode by adjusting g1, g2 and y values on each loop
iteration, simplifying the code and reducing its size in half.

B. Parallelization

We have noticed that the most heavy operations in the
code are computations of commitments. We have also noticed
that these computations are independent, and therefore can
be easily parallelized. Instead of computing the commitments
eagerly, our algorithm schedules a computation and puts it in

a queue. Before computing a hash of the commitments, the
program waits for the last computation to finish, signaling that
the commitment set is computed. We find this task granularity
optimal in this scenario — the task takes long enough to
neglect a cost of spawning an extra thread and it is small
enough that the system can uniformly disperse the tasks among
available resources.

C. Miller’s loop and final exponentiation

Camenisch, Drijvers, and Dubovitskaya [11] mention that
when computing a product of pairings it makes sense to
compute Miller’s loop first on all pairs, multiply them, and only
then apply final exponentiation. However, the authors used this
tactic only on a fraction of computations. We have discovered
a way to extend this optimization and apply it globally.

The idea is to convert every pairing product to a set of
Miller’s loops and apply final exponentiation once per such
product. The trick is to use bilinearity of Miller’s loop to put
exponents inside the pairings. For example, the following are
equivalent:∏
i

e (ai, bi)
ci = FEXP

(∏
i

t̂(acii , bi)

)
= FEXP

(∏
i

t̂(ai, b
ci
i )

)
Since exponentiations are cheaper in G1 than in G2, we
decided to exponentiate elements in G1. See Algorithm 3.

Algorithm 3 e-product optimization
Require: ai ∈ G1, bi ∈ G2, ci ∈ Zq ∪ ⊥ for L = 1, . . . , n
Ensure: EPRODUCT(〈ai, bi, ci〉ni=1) =

∏n
i=1 e(ai, bi)

ci

1: procedure EPRODUCT(〈ai, bi, ci〉ni=1)
2: r := 1T ∈ GT . an identity element
3: for i = (1, . . . , n) do
4: if ci 6= ⊥ then
5: ai := acii
6: for i = (1, 3, . . . , n) do
7: if ai+1 6= ⊥ then
8: . t̂2 is a more efficient version of t̂ · t̂
9: r := r · t̂2 (ai, bi, ai+1, bi+1)

10: else
11: r := r · t̂ (ai, bi)

12: return FEXP (r)

D. Attempt to aggregate commitments

In an attempt to improve performance even further, we
considered reducing the number of FEXP calls in the commit-
ment phase by multiplying the commitments and supplying to
the hash the aggregate instead of the individual commitments.
In this manner, instead of calling FEXP to compute each
commitment, FEXP is only called once. However, when this
applied naı̈vely it brings about a security flaw: one could easily
find different tuples of commitments (which are essentially
Pedersen commitments [28] and thus malleable) that yield
the same aggregate, making the NIZK proof malleable. The
workaround is to aggregate only the commitments that do not
share any base. We have implemented the optimization and
discovered that it does not result in any tangible improvement
for small and medium input sizes (size as in number of levels
and attributes).
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Algorithm 4 Pseudonym and public key possession proof algorithms

1: procedure MAKENYM(sk)
2: sknym←$Zq
3: pknym := gskhsknym

4: return sknym, pknym
5: procedure SIGNNYM(pknym, sknym, sk,m)
6: ρ1, ρ2←$Zq
7: com := gρ1hρ2

8: c := HASH(com, pknym,m)
9: psk := ρ1 + c · sk

10: pskNym := ρ2 + c · sknym
11: return c, psk, pskNym
12: procedure VERIFYNYM(pknym,m, c, psk, pskNym)
13: com = gpskhpskNympk−cnym

14: return c = HASH(com, pknym,m)

15: procedure PROVEPK(sk, pk, nonce)
16: ρ←$Zq
17: com := gρ

18: c := HASH(com, pk, nonce)
19: p := ρ+ c · sk
20: return c, p

21: procedure VERIFYPK(c, p, pk, nonce)
22: com = gppk−c

23: return c = HASH(com, pk, nonce)

V. INTEGRATION WITH HYPERLEDGER FABRIC

In this section we explain how the building blocks defined
earlier work together within Fabric. We assume that all parties
have access to a set of system parameters sp including the root
authority public key (see Section III-D), and have generated
their pairs of keys. The keys are always generated as sk←$Zq
and pk := gsk in the group generated by g.

A. Including pseudonyms in proof

In Fabric, a transaction has two special fields that are used
in tandem to establish its authenticity. A Creator field that
contains the identity of the transaction author, and a Signature
field that holds a signature of the rest of the transaction by its
author. Fabric specifications require that Creator and Signature
be validated individually. Integrating Identity Mixer directly
introduces two security flaws: namely, if Creator is a NIZK
of the credential validity and Signature is a regular signature
with the author’s secret key, then (1) there is no guarantee
that the keys used to generate the NIZK and the signature are
the same, and (2) the regular signature itself would leak the
identity of the signer by going through all users’ public keys
and testing whether the signature verifies.

To solve the above problems, we generate a Pedersen
commitment (called pseudonym) to the secret key and place
it in both fields. This pseudonym ensures that the same
secret key is used to produce Creator and Signature fields.
Notably, Creator contains a modified NIZK proof that shows
that the prover knows the secret key used to construct the
pseudonym and that it is the same secret key underlying the
credentials. Signature, on the other hand, is a Schnorr-like
proof of knowledge of the secret committed in the pseudonym,
in which the content of the transaction is leveraged to compute
the challenge.

The verifier first checks whether Creator and Signature
include the same pseudonym. If so, then it verifies the validity
of the content of those fields independently; otherwise it
rejects. See Algorithm 4 for more details.

B. Submitting transactions

A user authorizes the execution of chaincode by providing
a NIZK proof and a linked signature on the proposal, as
described in Section V-A. During this process, the user can
decide to selectively disclose attributes, which are made avail-
able to the chaincode so access control can be implemented
as needed by the application.

The protocol has the following global stages (see Algo-
rithm 5).

At the setup stage (line 2), the parties generate their secret
and public keys.

The delegation stage starts by a credential request from the
delegatee to the delegator in which the former proves that she
knows the secret key corresponding to her public key, using a
classical non-interactive Schnorr proof (see Algorithm 4). To
ensure the freshness of the proof the delegator (i.e., verifier)
provides a nonce that would be used to compute the challenge
in the proof. If the provided proof is valid, then the delegator
signs, using GROTH, the public key and the attributes of the
delegatee. We note that it is up to the delegator to determine the
delegatee’s valid attributes. This process of credential issuance
can be repeated an arbitrary number of times increasing the
length of the credential chain. In more concrete terms, the first
level of the delegation corresponds to the root authority issuing
credentials to intermediate authorities that in turn delegate the
credentials further down the hierarchy (lines 2–5). On the
last level of the credential chain, we find users who submit
transactions to Fabric.

The transaction stage (lines 14–23) has the user generate
randomized proofs and signatures to authenticate the content
of her transactions anonymously. Namely, the user generates a
pseudonym (i.e. Pedersen commitment) to commit to her secret
key (see Section V-A). Then she generates a proof in which
she discloses her attributes as needed and shows the following:
(1) the user knows valid credentials, and (2) the pseudonym
commits to the secret key matching the credentials. Finally,
she signs the content of the transaction with the secret key in
the pseudonym (lines 14 and 18).
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Algorithm 5 Delegation, revocation, auditing and transaction submission protocols
1 : i-Level CA (i+ 1)-Level CA

. . . . . . . . . . . . . . . . . . . . Repeated for L rounds of delegation (from the Root CA to Intermediate CAs to the User) . . . . . . . . . . . . . . . . . . . .

2 : ski ←$Zq, pki := gski ski+1 ←$Zq, pki+1 := gski+1

3 : nonce←$ {0, 1}λ nonce Ppk ←$ PROVEPK(ski+1, pki+1, nonce)

4 : VERIFYPK(Ppk, pki+1, nonce)
Ppk, pki+1

5 : σi ←$ GROTH.SIGNski(pki+1‖~ai+1) σi+1 credi+1 := (σi+1,~ai+1, pki+1, ski+1)

6 : Revocation authority User

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On each epoch, user requests a non-revocation signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 : skrev ←$Zq, pkrev := gskrev sku ←$Zq, pku := gsku

8 : nonce←$ {0, 1}λ nonce

9 : VERIFYPK(Ppk, pku, nonce)
Ppk, pku Ppk ←$ PROVEPK(sku, pku, nonce)

10 : σrev ←$ NRSIGNskrev(pku, epoch)
σrev

11 : Verifier User
12 : (from the delegation stage) credu := (〈σj , ~aj , pkj〉

L
j=1, sku)

13 : (computed once) enc, ρ := AUDITENC(pkaud, pku)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User submits a transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 : sknym, pknym ←$ MAKENYM(sku)

15 : Prev ←$ NRPROVE(σrev, sk, sknym, epoch)

16 : Paudit ←$ AUDITPROVE(enc, ρ, pku, sku, pknym, sknym)

17 : Pcred ←$ CREDPROVE(credu, D,⊥)
18 : σnym ←$ SIGNNYM(pknym, sknym, sku, tx)

19 : (Pcred,Prev,Paudit, enc, tx, pknym) := m m,σnym m := (Pcred,Prev,Paudit, enc, tx, pknym)

20 : VERIFYNYM(pknym, tx, σnym)

21 : NRVERIFY(Prev, pknym, epoch)

22 : AUDITVERIFY(Paudit, enc, pknym)

23 : CREDVERIFY(Pcred, D, pknym,⊥)

Verifiers consequently validate the transaction by first
verifying the disclosed attributes and then checking that the
signature and the proof refer to the same pseudonym and
that they are valid under the public key of the root authority
(lines 20 and 23).

C. Revocation

Anonymous credentials pose the challenge of revocation.
Classical mechanisms of revocation lists inherently fail as they
require the credential holder to reveal her public key. One could
use primitives such as zero-knowledge sets [26] or accumu-
lators combined with zero-knowledge proofs [6] to simulate
revocation lists, but such methods can be computationally
prohibitive and negatively impact the transaction throughput
once they are integrated into Fabric. Yet real systems cannot
do without user revocation. While we can safely assume that
organizations in Fabric will not be revoked frequently, users

on the other hand may have their authorization to submit
transactions denied at any moment (e.g., a failure to pay a
monthly subscription, or an employee leaving her company).

To support user revocation in Hyperledger Fabric we com-
bine epoch-based whitelisting mechanisms and signatures in a
way that yields efficient proofs of membership. Namely, we
divide the timeline into epochs that define the validity periods
of user credentials. For each epoch, a non-revoked user will be
issued an epoch credential (a signature) that binds her public
key to the epoch. When a user submits a transaction, she
provides along with it a proof of non-revocation that consists
of proving in zero-knowledge that she knows a signature that
binds her public key to the current epoch. User credentials
that are valid for a certain epoch are automatically revoked
the moment the epoch expires. It should be noted that an
epoch expires either naturally (epoch elapses) or manually
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Algorithm 6 Non-revocation proof generation and verification algorithms

1: procedure NRPROVE(σ, sk, sknym, epoch)
2: (r′, s′, t′1, t

′
2)←$ GROTH.RANDOMIZE(σ)

3: 〈ρ〉1...4←$Zq
4: com1 := e (r′, gρ12 ) · e

(
g−11 , gρ22

)
5: com2 := e (r′, gρ32 )
6: com3 := gρ21 h

ρ4

7: c := HASH(r′, s′, com1, com2, com3, epoch)
8: p1 := gρ12 t

′
1
c

9: p2 := ρ2 + sk · c
10: p3 := gρ32 t

′
2
c

11: p4 := ρ4 + sknym · c
12: return c, 〈p〉1...4, r′, s′

13: procedure NRSIGN(skrev, pk, epoch)
14: return GROTH.SIGN(skrev; pk‖gepoch)
15: procedure NRVERIFY(c, 〈p〉1...4, r′, s′, pknym, epoch)
16: if e (r′, s′) 6= e (g1, y1) · e (pkrev, g2) then
17: return false
18: com1 := e (r′, p1) · e

(
g−11 , g2

)p2 · e (pkrev, y1)
−c

19: com2 := e (r′, p3) · e (pkrev, y2)
−c · e

(
g1, g

epoch
2

)−c
20: com3 := gp2

1 h
p4pk−cnym

21: c′ := HASH(r′, s′, com1, com2, com3, epoch)
22: return c = c′

(authorized parties advance the epoch by putting a special
message on the ledger).

In this section, we describe two alternative solutions that
differ in their generality. The first one straightforward but
requires that revocations are handled by the same entity that
issues credentials. The second is more complex but allows
revocations and credentials be handled by different entities.

Epoch as an attribute: For the simple solution, we imple-
ment revocation using delegatable credentials in such a way
that users in the last level of delegation have epoch identifiers
as attributes. A user thus needs to request new delegatable
credentials from her issuer every time an epoch expires to be
able to submit transactions. The proof of non-revocation in
this implementation leverages the proof generation depicted in
Algorithm 1 such that one of the disclosed attributes is the
identifier of the current epoch.

Explicit proof of non-revocation: Although the above so-
lution requires no additional cryptographic implementation,
it suffers from the limitation that the credential issuer must
always be the same as the revocation authority. Depending on
the setting, this may actually be a desirable feature. However,
to accommodate settings where credential issuers are different
from revocation authorities, we decouple the credentials for
user attributes from epoch credentials (i.e., credentials to
submit transactions in an epoch). To obtain authorization for
the current epoch, a user contacts the revocation authority
(proving the possession of her public key) and the latter
returns a GROTH signature of the user’s public key and
the epoch identifier (Algorithm 5, lines 8–10). When a user
wishes to submit a transaction, she generates a proof of non-
revocation that proves knowledge of an epoch credential and
the associated secret key (Algorithm 5, line 15). Verifiers in
the blockchain verify the proof of non-revocation (Algorithm 5,
line 21) and if it is valid, then they verify the user signature
on the transaction content. Algorithm 6 depicts the details of
the generation and the verification of non-revocation proof.
Note that in the proof of non-revocation the user leverages the
pseudonym to show that the secret key mapped to the epoch
credential is the one used to generate the signature.

D. Auditing

It is desirable to allow an authorized external entity — an
auditor — to examine the origin of transactions committed
to the ledger. The natural approach is for the transaction
author to embed her identifier (the public key) encrypted under
the auditor’s public key into the transaction. Following this
approach gives rise to two challenges: We must enforce (1) that
the user encrypts her own public key, and (2) that she uses the
public key of the authorized auditor. Schnorr zero-knowledge
proofs [31] coupled with ElGamal encryption [18] allow us to
address these challenges relatively efficiently.

Algorithm 7 depicts the details of how to integrate veri-
fiable encryption with delegatable credentials to support au-
ditability. When submitting a transaction, the user encrypts
her public key using ELGAMAL scheme under the public key
of the auditor (Algorithm 5, line 13), and generates a zero-
knowledge proof that this encryption is valid (Algorithm 5,
line 16). Finally, the verifier checks this proof as a part of
transaction validation (Algorithm 5, line 22). If the auditor
decides to learn the identity of the author of a given transaction,
all she needs to do is decrypt the ciphertext in the transaction.
This process is guaranteed to succeed and to correctly yield
the author’s public key.

It should be noted that our algorithms only cover settings
where there is one single auditor for all users in the system.

VI. IMPLEMENTATION AND EVALUATION

We have provided the first production-ready open-sourced
implementation of delegatable credentials. It is generic and
produces valid credentials and proofs for any number of levels
and attributes. The project is tested with over 400 tests and
they cover 100% of the code. We note that this is a significant
improvement over the original code which is only a prototype
computing a single hard-coded credential. We also note that
the original code is not open-sourced.

All benchmarks were run on macOS 10.14.6 using 2.5 GHz
Intel Core i7 8-cores CPU. We have used Apache Milagro
Cryptographic Library (AMCL) [32] with a 254-bit Barreto-
Naehrig curve [7] for low-level operations such as pairings,
exponentiations and PRG operations.
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Algorithm 7 Auditing proof generation and verification algorithms

1: procedure AUDITPROVE(enc, ρ, pk, sk, pknym, sknym)
2: 〈ρ〉1...3←$Zq
3: com1 := gρ1pkρ2aud
4: com2 := gρ2

5: com3 := gρ1hρ3

6: c := HASH(com1, com2, com3, enc, pknym)
7: p1 := ρ1 + c · sk
8: p2 := ρ2 + c · ρ
9: p3 := ρ3 + c · sknym

10: return c, 〈p〉1...3

11: procedure AUDITENC(pkaud, pk) . ELGAMAL
12: ρ←$Zq
13: enc := (enc1, enc2) := (pk · pkρaud, gρ)
14: return enc, ρ

15: procedure AUDITVERIFY(c, enc, 〈p〉1...3, pknym)
16: com1 := gp1pkp2

audenc
−c
1

17: com2 := gp2enc−c2

18: com3 := gp1hp3pk−cnym

19: c′ := HASH(com1, com2, com3, enc, pknym)
20: return c = c′

A. Delegatable credentials scheme

We have run extensive benchmarks of every operation
of the scheme on multiple parameter values. We stress that
our evaluation results differ from the ones in the original
paper [11]. First, the implementations are in different lan-
guages and run on different processors. These differences play
a big role when benchmarking cryptographic primitives, which
mostly involve bit manipulations. Second, we have obtained
the original code of [11] and we have noticed differences
in benchmark methodologies. The original code pre-computes
some values (pairings) during the signature phase, and there-
fore this time is not included in the proof generation and ver-
ification stages. Our benchmarks involve no pre-computations
to produce more fair results. Overall, given that our code
is production-ready, generic and open-sourced, we want our
benchmarks to be treated independently of the previous work.

In the following, L stands for the number of delegation
levels, n stands for the number of attributes per level, which
we set to be the same for every level for simplicity. Note that
the most sensitive overhead is due to verification, since it is
the operation that will be run by the Fabric network. In Fabric,
having L = 2 and n = 2 covers most use-cases.

1) Optimizations: First of all, we wanted to demonstrate
the improvement due to our optimizations. We have run the
benchmarks with all combinations of e-product and paralleliza-
tion optimizations (see Table I). Results show that for the most
commonly-used parameter values the improvement is almost
an order of magnitude.

e-product Parallelization CREDPROVE CREDVERIFY
Big Small Big Small

disabled disabled 3 007 896 4 836 2 026
enabled disabled 1 733 470 2 718 1 202
disabled enabled 1 495 391 2 117 584
enabled enabled 1 097 259 1 414 234

Improvement (≈ times) 2.7 3.5 3.4 8.7

TABLE I: Optimizations benchmark for L = 2 and n = 2
(small) and L = 5 and n = 3 (big). The values are in
milliseconds.

2) Different parameters: With optimizations enabled we
have run the operations for multiple combinations of levels

and attributes. In Table II we put the proof generation and
verification times along with the generated proof size for L ∈
{1, 2, 3, 5, 10} and n = (0, . . . , 4). In all cases all attributes
are hidden — the overhead difference when all attributes are
revealed is minimal. We can confirm that the overhead and
proof size grow linearly with L and n.

L
n

0 1 2 3 4

1
55ms 67ms 82ms 102ms 119ms
53ms 59ms 71ms 101ms 119ms
364B 500B 636B 772B 908B

2
119ms 176ms 257ms 384ms 423ms
79ms 126ms 228ms 369ms 529ms
767B 1.2kB 1.6kB 2.0kB 2.4kB

3
170ms 270ms 394ms 531ms 632ms
127ms 283ms 1 322ms 1 666ms 2 407ms
1.2kB 1.7kB 2.2kB 2.8kB 3.3kB

5
338ms 548ms 733ms 1 100ms 1 326ms
1 355ms 1 678ms 2 259ms 2 772ms 2 904ms
2.0kB 2.9kB 3.8kB 4.8kB 5.7kB

10
754ms 1 374ms 1 912ms 2 365ms 3 000ms
1 848ms 2 540ms 3 228ms 4 115ms 5 076ms
4.0kB 6.0kB 8.0kB 9.9kB 12kB

TABLE II: Parameters benchmark. In each cell the top value
is a proof generation overhead, the middle value is a proof
verification overhead and the bottom value is the proof size.

B. Integration

In this section we present the results of preliminary bench-
marks with the real Fabric code. First, we analyze the per-
formance of helper procedures (key and signature generation,
revocation and auditing), then we run real transactions on a
local deployment of Fabric using our new protocols.

1) Components: Table III depicts the performance results
for some of the helper methods. All routines have been run
100 times and the resulting time is averaged. Note that the
revocation routines are considerably slower due to use of
pairing in proofs. Moreover, a good part of computations is
done over G2 which is slower in AMCL than G1 — see the
difference between GROTH1 and GROTH2. Our future work is
to apply the optimizations we used with delegatable credentials
scheme to this procedure as well.
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Note that using pseudonyms, enabling auditing and proving
possession of the secret key are almost free operations relative
to credential proofs.

2) Transactions: To understand the relative overhead of
using our new idemix with Fabric, we have put together a
preliminary integration of the components into the main code.
We have changed all the old idemix calls to proof generation
and verification to the new routines. We are using two levels
of credentials with two attributes on each level. In the real
deployment, most of the attributes will be on the last level,
but since odd and even levels take different time to process,
we decided to uniformly disperse the attributes.

As an example application, we have crafted a simple
chaincode that puts a hashed message on the ledger along with
its timestamp. Such an application can be used to commit the
messages without revealing them, such as for timestamping
documents. In this application there are two organizations with
two peers each, and the endorsement policy mandates that at
least one endorser from each organization approves.

Procedure Time Procedure Time

GROTH1.SIGN 21 GROTH2.SIGN 48
GROTH1.VERIFY 60 GROTH2.VERIFY 67
GROTH1.RANDOMIZE 13 GROTH2.RANDOMIZE 31

AUDITENCRYPT 4 NRSIGN 36
AUDITPROVE 7.5 NRPROVE 107
AUDITVERIFY 12 NRVERIFY 154

MAKENYM 2.5 PROVEPK 11
SIGNNYM 2.5 VERIFYPK 11
VERIFYNYM 4 KEYGEN 6

TABLE III: Running time of helper procedures in milliseconds.

These experiments were run with a local deployment of
Fabric on a single machine as described earlier, with all Fabric
components (all instances of orderers, peers, and clients)
running as Docker containers on one machine. We stress that
this is a preliminary benchmark that should not be extrapolated
to a distributed setting. For instance, the most time-consuming
operations are the cryptographic computations, and during
transaction validation the single machine performs the tasks
of four machines running in parallel in a distributed scenario.
However, it helps to understand the performance impact of
using the old (i.e., without delegation) and new (i.e., with
delegation) idemix implementations. It also allowed us to
suggest some improvements to the way Fabric validates the
identities.

We have run 100 transactions (plus 10 for warmup) sequen-
tially. A transaction begins with a user generating a proposal,
and it ends when all peers have updated their local state. We
have averaged the transaction overhead for all runs for each
of the three cases — no idemix, old idemix and new idemix.
According to our results, without idemix a transaction takes
235 ms, with the old idemix it takes 860 ms and with the new
idemix the time is 2 252 ms.

We have dived into the Fabric code to track which entities
and at which stages perform the most heavy operations. We
have, therefore, defined a critical path of the transaction

flow — the lower bound of the overhead if all replicated
operations (such as endorsements) occur in parallel and, in a
practical deployment, take the same time to finish. To estimate
the total overhead we counted only proof generation and
verification, which is a part of identity validation, as these
are the most computation-heavy operations. As a part of a
transaction life cycle, the user prepares a transaction proposal
containing information about the chaincode to be executed and
the arguments to use. In addition, the users signs the proposal.
She sends it over to endorsers, who, in parallel, validate the
proposal’s creator and check the access policies, which also
requires validating the proposal’s creator. Checking an access
policy involves verifying that the creator of the proposal or
transaction has produced a valid signature and that her identity
indeed satisfies the given access policy. Endorsers send back
their endorsements, the user composes them into a transaction,
signs it and sends it to the ordering service. The ordering ser-
vice authenticates each transaction, assembles them in blocks,
and broadcasts the blocks to the network. Each peer in the
network validates the transaction, which includes validating
the transaction’s creator and checking policies, which again
requires validating the creator.

In this critical path there is one proof generation and
seven verification operations. To estimate the critical path cost
we add the overhead of a transaction not using idemix and
get 2 088 ms. We note that this value is close to the actual
measured time. The difference is attributed to the fact that the
critical path is a lower bound. In practice, the latency of a set
of parallel tasks is the latency of the slowest one.

Recall that the validation of transactions is the task that
has to be performed by each peer in the Fabric transaction
flow; this is the only operation that cannot be scaled out.
Based on our measurements, this operation clocks at 228 ms,
which means that we expect around 4 transactions per second
if all validators run on standard laptop computers. As our
algorithm parallelizes smoothly, running the system on fast
server processors with more cores is expected to improve
performance near proportional.

The default MSP in Fabric uses X.509 certificates for iden-
tities and the operations over these certificates are relatively
fast. With X.509 it may be reasonable to take a conservative
approach at verification and validate identities every time an
operation with this identity takes place. With idemix, however,
given the cost of such validation, there is a need to optimize
this part. For example, note that the access policy check
requires identity validation and therefore proof verification.
Peers should be configured to cache validation results if the
same identity is being validated. This optimization alone would
save four proof verifications, or almost a second of latency,
cutting the overhead in half.

We conclude that with optimization on Fabric, the through-
put of the new idemix will get closer to practical.

VII. CONCLUSION

The possibility to perform transactions privately and anony-
mously will be crucial for the use of blockchain technology
in many use cases in the financial and governmental do-
mains, as well as all use cases that involve personal data.
Anonymous transaction authorization, as achieved through
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delegatable anonymous credentials in Hyperledger Fabric, can
therefore be seen as one key enabler for blockchain technology
in privacy-sensitive use cases.

The enhanced privacy guarantees incur a price in terms
of computational complexity in the transaction generation and
achievable throughput. For this reason, we have identified
points for optimization to make the new idemix performance
closer to practical.

The code of the cryptographic library implementing the
anonymous credential scheme is already available as open
source under MIT license. The integration into Fabric is not
yet publicly available. Our goal is to make it a part of the
standard Fabric distribution, and we are working with the
Fabric community toward this goal.

Future work

Our near-term future work will include improving the
benchmarks of the Fabric integration by running them in a
fully distributed setting with industry-standard compute nodes.
We are also pursuing open-sourcing the integration code,
preferably as part of the Hyperledger Fabric codebase.

While our work is an important step toward improving
privacy in permissioned blockchains, both security and per-
formance of our current solution can be further improved.
In our current implementation, the root certificate authority
is still a central party. Although it does not play an active role
in the online protocols and does not issue any certificates to
users, our aim is to implement a threshold protocol in which
the organizations participating in the blockchain system jointly
produce the first-level signatures, further distributing the trust.

In Fabric, every transaction is executed (endorsed) only by
a subset of the peers, which allows for parallel execution and
addresses potential non-determinism. A flexible endorsement
policy specifies which peers, or how many of them, need to
vouch for the correct execution of a given smart contract.
Currently, the endorsement policy reveals the identity of the in-
volved peers. A possible way to remove this leakage is to equip
the peers with idemix credentials and replace the endorsement
policy by a commitment to it. Then, after collecting all the
required endorsements, the client can prove in zero-knowledge
the knowledge of valid signatures that satisfy the endorsement
policy.

Finally, another important direction is toward increasing
the throughput by speeding up the validation phase. There
are several possible routes in this direction: as discussed in
Section VI-B2, modifications to the Fabric software that help
to avoid unnecessary duplication of computation are the first
step. A further possibility is to modify the transaction signature
such that the expensive validation of the credential delegation
has to happen only in the endorsement phase, and not during
validation.
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