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Abstract. In this work, we show how to garble arithmetic circuits with
full active security in the general multiparty setting, secure in the full-
threshold setting (that is, when only one party is assumed honest). Our
solution allows interfacing Boolean garbled circuits with arithmetic gar-
bled circuits. Previous works in the arithmetic circuit domain focused on
the two-party setting, or on semi-honest security and assuming an honest
majority – notably, the work of Ben-Efraim (Asiacrypt 2018) in the semi-
honest, honest majority security model, which we adapt and extend. As
an additional contribution, we improve on Ben-Efraim’s selector gate. A
selector gate is a gate that given two arithmetic inputs and one binary
input, outputs one of the arithmetic inputs, based on the value of the
selection bit input. Our new construction for the selector gate reduces
the communication cost to almost half of that of Ben-Efraim’s gate. This
result applies both to the semi-honest and to the active security model.

1 Introduction

Garbled circuits have been an indispensable cryptographic tool in the field of
secure computation since the seminal work of Yao [Yao82]. From a theoretical
point of view, garbled circuits are important as they provide the means by which
we can construct constant-round secure computation protocols, originally only
in the two-party setting, but later generalised to the multiparty setting, follow-
ing the paradigm of Beaver et al. [BMR90]. In the two-party setting, garbled
circuits are typically Boolean circuits executed between two asymmetric parties
– a garbler and an evaluator. However, many secure computation problems re-
quire arithmetic operations to emulate integer arithmetic, which are inefficient
to realise with a Boolean circuit (e.g., requiring 1000 AND gates for an addition
mod p and 100000 AND gates for a multiplication mod p, for p ≈ 2128). Towards
the goal of efficient constant-round computation of arithmetic circuits, one the-
oretical approach was given by Applebaum et al. [AIK11] and more recently a
practical solution was proposed by Ball et al. [BMR16], in the two-party setting.

In this work we focus on multiparty arithmetic garbling. The work of Ben-
Efraim [Ben18] was the first to explore multiparty garbling in the context of
arithmetic circuits, and gave protocols secure in the presence of a passive adver-
sary in the honest-majority setting. The goal of multiparty arithmetic garbling



protocols is the functionality FAC for computing an arithmetic circuit, given in
Figure 1. This functionality is essentially the goal of all MPC computations, but
offers only security with abort instead of full robustness, in which honest parties
can always obtain the correct output after the initial inputs are provided, or
fairness, in which honest parties always receive the output if the corrupt parties
receive it.

Functionality FAC

Let S denote the ideal-world adversary and A ( [n] the indexing set of corrupt
parties.

Evaluate On input (Evaluate, C,xi) from each party Pi, or S if i ∈ A, if C is
an arithmetic circuit over Fp and xi ∈ Ftip for all i such that

∑n
i=1 ti is the

arity of C, send y := C(x1, . . . ,xn) to S and await a message Abort or OK
from S. If the message is OK, then send y to all honest parties and halt;
otherwise, send the message Abort to all honest parties and halt.

Fig. 1: Functionality FAC for evaluating an arithmetic circuit, secure with abort.

In our approach, we allow a (limited) combination of arithmetic and Boolean
circuits, as this appears to be desirable for many real-world applications. From
the simplest motivating example that one can consider, such as the one of con-
ditional summation that Ben-Efraim [Ben18] suggests, to the most complicated
computations, such as evaluation of Machine Learning (ML) algorithms, a com-
bination of arithmetic with Boolean gates is required to yield an efficient solu-
tion. Machine Learning as a Service is becoming increasingly popular, and when
privacy concerns arise, secure computation solutions should be deployed. The
most commonly used ML algorithms (e.g., Support Vector Machines (SVMs)
and Neural Networks) contain one or more components that require linear oper-
ations – for which arithmetic operations are more appropriate – and one or more
components that require non-linear operations, such as argmax or sign computa-
tion – where Boolean computation is best. Thus it seems sensible to attempt to
support both types of gates to achieve efficient solutions to realistic applications.

1.1 Related Work

Our work combines the work of Ben-Efraim [Ben18], and Ball et al. [BMR16],
and extends them in such a way as to achieve full-threshold active security by
using recent actively-secure secret-sharing-based MPC to construct the circuit,
a technique initiated by Lindell et al. [LPSY15]. In the work of Ball et al.,
which is based on some of the techniques discussed also in the work of Malkin et
al. [MPs16], the authors propose a two-party arithmetic garbling scheme, secure
in the presence of a semi-honest adversary, where the arithmetic takes place in
a ring isomorphic to a cyclic group of primorial modulus. They show how to
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use a CRT representation of the inputs (and intermediate values) of the cir-
cuit to achieve great performance gains over the straightforward conversion of
ring elements to binary. In this approach, garbling of linear gates (e.g., addi-
tion and scalar multiplication) requires no communication and can be viewed
as an arithmetic analogue of the FreeXOR technique due to Kolesnikov and
Schneider [KS08] for Boolean circuits; multiplication, exponentiation by (pub-
lic) constant, and high fan-in gates are also significantly improved beyond the
näıve implementations. However, operations such as comparison of two numbers
remain challenging, and prohibitively costly in the CRT representation. To over-
come this issue, Ball et al. suggested a method to convert CRT numbers to a
positional number system other than the binary system, namely the primorial
mixed radix (PMR) system. Although highly improved over the straightforward
(convert to binary) approach, the solution is still costly.

The work of Ben-Efraim [Ben18] is secure in the presence of a passive adver-
sary and assumes an honest majority, and involves a circuit construction com-
prising a mixture of arithmetic and Boolean gates. Ben-Efraim’s construction
also allows linear operations to be performed for free, while for multiplication
gates a “designated” solution is proposed, inspired by the half-gates approach
of Zahur et al. [ZRE15], extended to the multiparty setting. This is because
projection gates (that is, gates that convert values in one ring to the equivalent
values in another ring) are difficult to achieve in the multiparty setting, unlike
the two-party setting, where as shown by Ball et al. [BMR16], general projection
gates are feasible.

Unfortunately, row-reduction techniques [NPS99, PSSW09] in the Boolean
setting, and also applied in [BMR16], cannot be directly applied in the multi-
party setting as protocols for more than two parties are (usually) symmetrical
– that is, every party acts both as garbler and evaluator. However, by elegantly
re-applying a variation of the half-gates approach [ZRE15], Ben-Efraim proposes
a construction for a “designated” selector gate solution (i.e., a gate which selects
one out of two arithmetic inputs u and v, based on a third, binary input b)
that reduces computation cost. Specifically, after describing the construction of
a straightforward selector (projecting the bit to characteristic p, and then per-
forming a multiplication using the standard multiplexing equation u+ (v−u)b),
Ben-Efraim demonstrates the designated selector gate, which has the same com-
munication cost as the straightforward one (2p+ 2 ciphertexts), but it improves
the computation cost by 33% (i.e., 2 decryptions for the designated construction,
instead of 3).

Concurrently and independently of our work, Ball et al. [BCM+19] propose
a series of optimisations over the previous state-of-the-art in the two-party set-
ting [BMR16], which is tailored to the garbling of neural networks. One of their
main technical contributions is the new mixed-modulus half-gate, which allows
efficiently multiplying circuit wires from different domains. This can be thought
of as a generalisation of the alternative selector gate that we present in this work,
as we can only multiply bit wires by arithmetic wires, while their construction
is not limited to bits. While our method can only treat mixed-modulus half-
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gate multiplications if one of the two domains is the F2, the approach of Ball
et al. [BCM+19] is generalisable to multiplication of wires from any (different)
domain. This is achieved by exploiting the asymmetry between the parties in
the two-party case, where we can choose certain labels to only be used in one
of the parties’ half-gates. This does not extend to the multiparty garbling set-
ting, which is our focus, because all parties play the role of the garbler. Still, we
maintain that garbled multiplication of an integer by a bit is indeed the most
commonly occurring mixed-modulus multiplication (e.g., selector gates). Note
that the communication cost of our approach is almost the same as the cost of
the approach of Ball et al. [BCM+19] (in the case of multiplying by a bit). The
second contribution of that work is an improved mixed-radix addition, which is
important for increasing the efficiency of the non-linear parts of a garbled neural
network. Mixed-radix operations (other than the ones where the one operand is
base 2) do not appear to extend readily to the multiparty case.

1.2 Our Contribution

We continue the study of Ben-Efraim [Ben18] of multiparty garbling of circuits
that contain both arithmetic and Boolean gates. Ben-Efraim [Ben18] showed
how to construct a designated selector gate in this setting, based on an exten-
sion of the half-gate technique. The communication cost of Ben-Efraim’s [Ben18]
selector gate is the same as in the straightforward construction, while that work
manages to reduce the computation cost by approximately 33% (i.e., 2 decryp-
tions instead of 3 at evaluation time). We propose an alternative designated
selector gate, which while it requires again 3 decryptions at evaluation time, it
reduces the communication cost to almost half of that of Ben-Efraim’s solution.
We achieve this by making use of preprocessed data called daBits, proposed by
Rotaru and Wood [RW19] and improved on in [AOR+19].

The other contribution of this work is to show how to perform multiparty
garbling of both arithmetic circuits with active security in the full-threshold
multiparty setting. We achieve this by using an authentication subprotocol akin
to those in MASCOT [KOS16] and in SPDZ2k [CDE+18] to apply the Boolean
circuit garbling approach by Hazay et al. [HSS17] to arithmetic garbling. One
can view our contribution as extending the work of Hazay et al. [HSS17] to the
arithmetic case and combining it with recent arithmetic garbling techniques.

2 Preliminaries

In this section we discuss the security model and present the main building blocks
that we deploy or extend in our work. The goal is to evaluate an arithmetic circuit
over a field of prime order p, denoted by Fp.

2.1 Security Model

The protocols in this work are proved secure in the universal composability (UC)
framework of Canetti [Can00], and we assume the reader’s familiarity with it.
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We consider an active, static adversary that can corrupt up to n− 1 out of the
n total parties. An active adversary may deviate arbitrarily from the protocol
description, and a static adversary can choose which parties it will corrupt at
the beginning of the protocol execution but not thereafter. Consequently, the
functionalities are assumed to know at the beginning of their execution the set
of corrupt parties: in the more general setting, the ideal-world adversary sends
special “corruption” messages so that the functionality knows how to interact
with different parties. Security is parameterised by the statistical security pa-
rameter, σ, and the computational security parameter, κ. We do not provide an
implementation but typically one sets κ ∈ {64, 96, 128} and σ ∈ {40, 80} with
σ < κ.

We will make use of the standard functionalities FRand given in Figure 2 and
FCommit given in Figure 3.

Functionality FRand

On input (Rand, X) from all parties, sample x
$← X uniformly and send x to

all honest parties and S.

Fig. 2: Functionality FRand for agreeing on random strings sampled uniformly
from a specified domain.

Functionality FCommit

The ideal-world adversary is denoted by S and the indexing set of corrupt
parties by A.

Initialise On input (Initialise, sid) from all honest parties, initialise a database
DB.

Commit On input (Commit, x, i, sid) from party Pi, sample idx,i, store (idx,i, x)
in DB, and send idx,i to all honest parties and S.

Open On input (Open, idx,i, sid) from all parties and S, retrieve (idx,i, x) in
DB;
– If i ∈ A then await a message OK or Abort from S. If the message is OK

then send x to all honest parties; otherwise, send the message Abort to
all honest parties and halt.

– If i ∈ [n] \A, then send x to all honest parties and S and continue.

Fig. 3: Standard commitment functionality.
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2.2 Secret-Sharing

We use the notation 〈x〉 to denote that the secret x is additively shared amongst
the n parties: that is, the dealer samples {xi}n−1i=1 uniformly at random from F,

sets xn := x−
∑n−1
i=1 x

i, and for each i ∈ [n] sends xi to party Pi.
We denote an authenticated shared value x by [[x]], which means that x is

shared as above, and additionally there is some procedure for verifying that the
sharing of x is not modified by the adversary. In the full-threshold setting, this
is typically achieved by secret-sharing an information-theoretic MAC on every
secret, as is done in BDOZ [BDOZ11], TinyOT [NNOB12] and SPDZ [DPSZ12].
The details of how secrets are authenticated in Fp and verified for correctness
are not important for this work: it suffices to understand that if an error is
introduced on any variable written as [[x]], this will be detected by the honest
parties.

2.3 Garbling

We assume the reader is familiar with circuit garbling, but provide an overview
here. A garbled circuit is a randomised version of a circuit that allows multiple
parties to evaluate a function on the union of their private inputs without re-
vealing anything more about their private inputs than what can be inferred from
their own inputs and the output alone. In the two-party setting, this procedure
is asymmetric; the high-level idea is as follows: one party, called the garbler,
generates a “garbled” version of a circuit, hardwiring its own inputs in the cir-
cuit; then the other party, called the evaluator, evaluates the garbled circuit on
its inputs (given some encoding information by the garbler that is provided in
such a way that the garbler does not learn the evaluator’s inputs) to obtain a
“garbled” encoding of the output. At the end, the two parties communicate to
reveal the final output to both.

Now we make things more concrete. Each fan-in-2 gate g : F2 → F in the cir-
cuit with input wires u and v and output wire w is expressed as a table with one
row for each (α, β) ∈ F2 so that a row in the table has the form (α, β, g(α, β)).
The garbler then samples a key for each possible value of α, β and γ := g(α, β).
These keys typically live in some finite extension of the base field F` where ` is
O(κ) so that the keys are O(2κ), but general garbling does not prescribe how
these keys should look except that certain garbling optimisations constrain the
encryption scheme to have certain properties. The values in the input/output
table are replaced with their corresponding encryption keys. Finally, the keys
corresponding to the output wire w of the table are encrypted first under the
key corresponding to the input on wire u input, and then under the key corre-
sponding to the input on wire v input. In practice, the encryption function is a
pseudorandom one-time-pad using a pseudorandom function (PRF) taking two
keys, and using the gate index as a nonce so that the entry for input (α, β) in
the table representation of gate g is converted to a ciphertext:

g̃α,β := Fku,α,kv,β (g) + kw,g(α,β),
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where g is a gate index and acts as a nonce for the encryption, and kw,g(α,β) is the
key. All of these |F|2 ciphertexts (i.e., the final column of the table) are handed to
the evaluator. To begin evaluating, the evaluator is handed keys corresponding
to its inputs and decrypts gates by computing g̃α,β−Fku,α,kv,β (g). This results in
a key that can be used to decrypt the next gate in the circuit (after the evaluator
has also obtained the output key of another gate from elsewhere in the circuit).
The evaluation involves proceeding iteratively through the circuit in this way,
decrypting using pairs of keys, until a final output key is obtained.

To hide the inputs of the evaluator from the garbler when obtaining the
initial gate input keys, the keys are sent using oblivious transfer (OT). Oblivious
transfer is a channel in which a sender sends many messages, and the receiver
selects one, with the guarantees that the sender cannot know which option the
receiver selected and the receiver learns nothing about the messages it did not
pick. In circuit garbling, for each wire on which the evaluator has input, the
garbler sends the |F| different possible keys and the evaluator chooses the one
corresponding to its input.

The circuit has the values of the garbler hardwired in. This is achieved,
for example, by only encrypting under the “v” keys if the garbler provides the
input on wire u for a given gate. However, at the moment the order of the
ciphertexts may reveal to the evaluator the input of the garbler. To hide the
garbler’s input from the evaluator, the ciphertexts are randomly permuted using
so-called permutation or masking values chosen by the garbler. In the arithmetic
case, this is essentially a rotation of the table rows. In order to evaluate the
gates correctly, when evaluating a gate, in addition to learning the output key,
the evaluator must learn a so-called external or signal value, which is the real
value v masked with the masking value λ, that is, e := v + λ, so that it knows
which ciphertexts to decrypt for each gate despite the rows being permuted. The
ciphertexts are then

g̃α,β := Fku,α,kv,β (g) +
(
kw,g(α−λu,β−λv)+λw

∥∥∥(g(α− λu, β − λv) + λw)
)
,

where g(α − λu, β − λv) + λw is the masked output wire (i.e., external) value.
(The reader should think of the key as being in F` for some ` which is O(κ), and
the external value as being in F, and F : F` × F` × {0, 1}log2(|g|) → F`+1.) The
reader is referred to the original work of Beaver et al. [BMR90] for a complete
discussion of the permutation method (known as point-and-permute).

A technique known as FreeXOR, generalised for arithmetic circuits by Ben-
Efraim et al. [BLO16], can be employed to allow linear gates to be evaluated
for free: the garbler chooses a global difference R and then for every non-linear
gate, the wire key for the value 0 is a random element kw,0 of F and the wire key
for each value γ ∈ Fp \ {0} is set to kw,γ := kw,0 + γ · R. Then for linear (i.e.,
addition) gates, the output 0 wire key is defined as kw,0 := ku,0 + kv,0 and the
corresponding mask as λw := λu + λv. Other gates are computed as:

g̃α,β :=Fku,α,kv,β (g) +

+
(
kw,0 + (g(α− λu, β − λv) + λwR)

∥∥∥(g(α− λu, β − λv) + λw)
)
.
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Note that instead of encrypting a concatenation of the masking bit with the
key, the garbler can use some form of authenticated encryption, and then the
evaluator decrypts ciphertexts until it finds a valid decrypted message and con-
siders this the output key. This technique will be used in the garbling described
later.

Half Gates During the evaluation of the circuit, the signal values learnt by the
evaluator “contain” the real values (in the sense that they are linearly dependent
on them); likewise, the keys contain information regarding the real values. The
idea behind half-gates is to exploit this information to reduce the amount of
garbling required: during evaluation, the evaluator can compute the product of
a signal value eu with a key kv,ev to obtain “almost” a key for the product
vu · vv, and then can correct the errors that arise from the masking values using
garbled gates (i.e., ciphertexts) in the more usual way1. In a sense, the difficult
part of the multiplication gate, namely the cross-term vu · vv in the output key
kw,ew = kw,0 + (λw + vuvv)R, is computed by computing eu · kv,ev . The reason
this is useful is that the errors that must be corrected in the product are each
functions in the value of only one of the two real wire values vu or vv (and
a combination of the (fixed) masking values). This means that the ciphertexts
containing the corrections can be generated independently for each pair of inputs
in F2

p into the gate, which means only p+ p ciphertexts are needed, rather than
p · p as required by garbling in the conventional manner.

To design a half gate, one observes what can be obtained from products of
signal value with keys of input wires, namely from eu · kv,ev , or from ev · ku,eu .
For example,

eukv,ev = (vu + λu)(kv,0 + (vv + λv)R)

= vukv,0 + λukv,0 + vuvvR + λuvvR + vuλvR + λuλvR

= vuvvR + vukv,0 + vuλvR︸ ︷︷ ︸
Dependent on vu

+ λuvvR︸ ︷︷ ︸
Dependent on vv

+ λukv,0 + λuλvR︸ ︷︷ ︸
Dependent on neither

Now since the goal is to obtain kw,ew = kw,0 + (λw + vuvv)R, for every γ ∈ Fp
the garbler generates two ciphertexts: one encrypting

kw,g,0 + λwR − ((γ − λu)(kv,0 + λvR) + (λukv,0 + λuλvR)) ,

and the other encrypting

kw,e,0 − (γ − λv)(λuR) .

The output wire key is set to kw,0 := kw,g,0 + kw,e,0. The evaluator will decrypt
the ciphertexts corresponding to γ = eu for the first half gate and γ = ev for

1 This is analogous to the key-switching operation required for relinearisation of ci-
phertexts in somewhat-homomorphic encryption (SHE) schemes, where one first
does a “näıve” multiplication, and then corrects the errors.
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the second; since eu − λu = vu and ev − λv = vv, they will obtain the correct
key by summing the two resulting plaintexts and the value eukv,ev . Note that in
the original two-party protocols, one gate input was assumed to come from the
garbler and the other from the evaluator, so the evaluator would also be involved
in the garbling of the half gates. This results in reduced communication since
each party knows one of the wire masks, which makes the MPC computations
more straightforward. In the multiparty setting described later, no party knows
the wire masks, so the main saving comes from reducing the quadratic cost p2

to the linear cost 2 · p.
Some recent papers evaluate over a ring of primorial modulus rather than over

a prime field in order to reduce the size of multiplication gates from (
∑t
i=1 pi)

2

to
∑t
i=1 p

2
i total ciphertexts. However, using the half-gate technique, the cost

is the same regardless of the modulus, at 2 ·
∑t
i=1 pi ciphertexts. Another place

where the CRT approach is useful is for performing non-linear operations such
as computing powers. These operations are quite expensive even in the passive
security setting. While it may be useful to have an actively-secure protocol for
arithmetic circuits over a composite modulus ring, there are difficult challenges
to overcome arising from the presence of zero divisors; thus we leave this to
future work.

We evaluate the garbled circuits in Fp, for which the straightforward gar-
bling approach requires that p be small enough to allow parties to send O(p)
ciphertexts per multiplication gate, but large enough so that the PRF keys used
for encryption are secure against a computationally-bounded adversary. To do
this, we evaluate circuits in Fp, but take keys in an extension field, specifically
Fp`κ , where `κ := 1 + dκ/ log pe.

Multiparty Garbling In multiparty garbling, originally developed by Beaver
et al. [BMR90], all parties act as garbler and evaluator. Lindell et al. [LPSY15]
showed how to use actively-secure secret-sharing-based MPC to compute a mul-
tiparty garbled circuit with active security. Using MPC, each party generates
keys for one circuit, and the masking values are chosen at random and are un-
known to the parties. The result is that for each gate, each party holds the
following n ciphertexts, indexed by j:

g̃jα,β :=

n∑
i=1

Fkiu,α,k
i
v,β

(g, j) +
(
kjw,0 + (g(α− λu, β − λv) + λw)Rj

)
.

Since each party Pi generates one set of keys (those indexed by i), the external
values on the wires can be learnt by each party examining the output plaintext

mi from its own circuit and setting ew := (mi − kiw,0) ·Ri−1 and kiw,ew := mi.
In many ways, the protocol we present in this work is a straightforward

generalisation of garbling protocols over F2. Notice that for a Boolean circuit,
the half-gate approach is no more efficient than the näıve approach, unless we are
in the two-party setting in which one party is the garbler and one the evaluator,
rather than all being both as in the multiparty setting.
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PRF Assumption To encrypt a gate, a single-keyed PRF is evaluated on a
nonce and used to one-time-pad encrypt a key. To make use of the (generalised)
FreeXOR technique, the following assumption is required.

Let F : Fp`κ × N → Fp`κ be a keyed pseudorandom function (PRF). Define
the oracle OF,R in the following way:

OF,R : Fp`κ × Fp × N× Fp → Fp`κ
OF,R(k, γ, x, δ) 7→ Fk+γ·R (x) + δ ·R

Now define FRO to be an oracle that, on input a query m = (k, γ, x, δ) ∈
Fp`κ × Fp × N × Fp, if m has not been queried before, samples r

$← Fp`κ and
outputs r, and otherwise outputs whatever was sampled previously.

The following definition was given by Hazay et al. [HSS17] for Boolean
functions, and a similar definition for arithmetic circuits was given by Ball et
al. [BMR16].

Definition 1 (Circular Correlation Robustness). For the oracles above,
define legal queries as those with inputs in the correct domain, and additionally:
1. The oracle may not be queried when γ = 0.
2. The oracle may not be queried twice for the same δ unless at least one other

variable changes.
Then we say that F is circular correlation robust if for all probabilistic polynomial-
time distinguishers D, it holds that∣∣∣∣∣∣ Pr

R
$←F

p`κ

[DOF,R(1κ)]− Pr[DFRO(1κ)]

∣∣∣∣∣∣ = O(2−κ)

In the garbling protocols, the PRF is queried on values (g, j), where g ∈ N
is the gate index and j ∈ [n] is the party index, parsed as a natural number
dlog n/ log 10e · g + j.

The choice for this definition comes from the fact that parties should not be
able to distinguish between keys generated using global differences and uniform
keys in the field. Note that while the keys generated for each wire are only in
some coset kw,0 + {γR : γ ∈ Fp} of Fp`κ , the distinguisher is only allowed to
query once per key per nonce for a fixed δ. This corresponds to the fact that in
the garbling, the evaluator(s) can only decrypt a single ciphertext.

3 Full-Threshold Active Security

We can define an n-party arithmetic garbling protocol by extending the state-
of-the-art techniques used by Hazay et al. [HSS17] for Boolean garbling to arith-
metic garbling, using actively-secure MPC over Fp as a black box, and using the
half-gate techniques described for arithmetic circuits by Ben-Efraim [Ben18].
In this section we will describe the actively-secure garbling of the “standard”
multiplication gate, since using the classical garbling techniques one can replace
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the multiplication function with any gate g : F2
p → Fp; our techniques for active

security also apply to other gates, and indeed in the protocol later we garble mul-
tiplication half gates. Many of the techniques due to Hazay et al. [HSS17] apply
almost immediately to the arithmetic case and so the exposition here closely
follows theirs. We will first explain the components of the garbling protocol at
a high level, then discuss how to realise these different parts, and finally we will
give the complete protocol.

3.1 Overview

In the arithmetic analogue of the multiparty garbling protocol of Beaver et al.
[BMR90], with the optimisations described in Section 2, the goal is to produce a
set of p2·n ciphertexts, indexed by j ∈ [n] and (α, β) ∈ F2

p, for each multiplication
gate, of the form

g̃jα,β :=

(
n∑
i=1

Fkiu,α,k
i
v,β

(g, j)

)
+ kjw,0 +Rj · ((α− λu) · (β − λv) + λw) ,

where the wire masks λu, λv and λw are not known to any party and the keys
indexed by i are generated by Pi. For now, the reader can think of ku,α, kv,β ,
kw,0 and Rj as lying in a finite extension of Fp – the same space as the codomain
of the PRF. The approach of Hazay et al. for Boolean circuits to produce these
ciphertexts with active security is to generate a secret-shared version of g̃jα,β for
every j ∈ [n] and open them, in the following way:
1. Use a generic “Bit-MPC” functionality, FBitMPC, for parties to obtain au-

thenticated secret-shared random bits [[λu]], [[λv]] and [[λw]] and to compute
[[λu · λv]].

2. Use correlated oblivious transfer (COT) to compute the products by the
global differences, that is, for each j ∈ [n] to compute secret-shared versions
of

Rj · λu, Rj · λv, Rj · (λw + λu · λv).

3. Locally combine the secret-shared values with local PRF evaluations to ob-
tain a sharing of each gate g̃jα,β .

4. Open all the sharings.
A key observation, first made by Lindell et al. [LPSY15], is that the sharings
need not be authenticated, as the parties will abort during circuit evaluation
with overwhelming probability if the adversary introduces errors. Crucially, this
means that the PRF evaluations need neither be authenticated, nor proved cor-
rect using a zero-knowledge proof. Authentication is required on the wire masks
only to ensure the multiplication is performed correctly. Thus, only one secure
Bit-MPC multiplication is required per AND gate, along with an amortised COT
operation.

Our approach here is to give the simple generalisation for the field Fp, noting
that the keys must live in the space Fp`κ , where `κ := 1 + dκ/ log pe. We first
describe the replacement of FBitMPC with MPC over a field, denoted by FMPC, and
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second show how to replace COT with correlated oblivious product evaluation
(COPE) (also known as vector oblivious linear function evaluation (vOLE)).

3.2 Wire Mask Arithmetic

For arithmetic circuits, the bit masks are replaced with masks in Fp and hence
FBitMPC is replaced with a generic FMPC protocol, which we give in Figure 4.
In the garbling protocol, just as in the work of Hazay et al. [HSS17], to obtain

a wire mask λu, each party samples λiu
$← Fp and calls FMPC to create an

authenticated sharing of this value; then they call the Add procedure to obtain
[[λu]] =

∑n
i=1[[λiu]]. They do similarly for λv and λw so that the parties obtain

[[λu]], [[λv]] and [[λw]], and then call the Multiply procedure to multiply [[λu]] and
[[λv]], and obtain [[λuv]] = [[λu · λv]].

Functionality FMPC

If a command is received where sid differs from what was sent during Initialise,
ignore the command and await the next. At any point, the ideal-world adversary
S can send the message Abort and the functionality sends the message Abort to
all honest parties and halts. To save on notation, vectors of secrets may also be
stored and computed on (where multiplication is componentwise).

Initialise On input (Initialise,F, sid), store the field F and initialise a new
database, DB := ∅.

Input On input (Input, i, idx, x, sid) from Pi and (Input, i, idx,⊥, sid) from all
other parties, where x ∈ F and idx is a new identifier, append the entry
(idx, x) to the database DB.

Add On input (Add, idx, idy, idz, sid) where idx and idy are identifiers in the
database and idz is a new identifier, retrieve (idx, x) and (idy, y) from mem-
ory and append the entry (idz, x+ y) to the database DB.

Multiply On input (Multiply, idx, idy, idz, sid) where idx and idy are identifiers
in the database and idz is a new identifier, retrieve (idx, x) and (idy, y) from
memory and append the entry (idz, x · y) to the database DB.

Output On input (Output, idx, sid) from all parties, retrieve the entry (idx, x)
from DB, send x to S, and await a message OK or Abort; if the message is
OK then send x to all honest parties, and otherwise send the message Abort
to all honest parties and halt.

Fig. 4: Functionality FMPC for performing general MPC, secure with abort.

3.3 Wire Mask/Global Difference Products

In the garbling protocol, for every wire w the parties require (unauthenticated)
sharings of Rj · λw for every j ∈ [n]. Since λw is additively shared amongst
the parties, they actually compute sharings of Rj · λiw for every j ∈ [n] and
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i 6= j. Since the global difference is fixed for all gates in the circuit, in the
Boolean case such sharings can be generated using COT, in which a sender
chooses a fixed correlation, namely Rj , and the receiver inputs their sharing of
the mask λiw; then the sender obtains some qj,i and the receiver some ti,j such
that qj,i + ti,j = λiw · Rj . The protocol for computing the wire mask/global
difference products is called ΠBit×String in the work of Hazay et al. [HSS17], since
Rj ∈ F2k and the masks are bits.

We can apply essentially the same techniques here, and correctness of the
protocol follows in exactly the same way. The difference is that we are now
interested in masks in Fp and global differences in Fp`κ . Thus, we must use the
correlated oblivious product evaluation (COPE) presented in Figure 5, which is
notationally identical with the protocol ΠBit×String, but works in any finite field.
Note that FCOPE accepts inputs from the sender in Fp`κ , but in our protocol the
inputs are assumed to be in Fp, as they are circuit wire masks. Thus a corrupt
sender could send an element of Fp`κ \Fp in the instance of FCOPE. However, the
proof of Lemma 1 shows that the checks ensure secrets lie in Fp. It is possible to

use a functionality such as F t,1OLE by Ghosh et al. [GNN17] that accepts input from
the sender in a small field and from the receiver in an extension field and outputs
a sharing in the larger field, but for a technical reason these are not amenable
to OT extension [IKNP03] as is FCOPE and are therefore less efficient when
performing a large number of multiplications. Realising a product functionality
more efficiently would improve the overall efficiency of the garbling protocol and
we leave this for future work. The subprotocol for mutliplying global differences
with wire masks is given in Figure 6.

For active security, it is necessary to check that each Pj provides the same
global difference Rj with every other Pi, and that every Pi provides the same
sharing λiw with every other Pj . Observe thatxj ·Rj +

∑
i 6=j

qj,i

+

∑
i 6=j

ti,j

 = Rj ·

xj +
∑
j 6=i

(qj,i + ti,j)

 = Rj ·

(
n∑
i=1

xi

)

where the first summand is computed by party Pj and for each i 6= j, ti,j is
held by Pi. The fact that this relationship must hold (indeed, it holds by design)
can be used to check correctness of a batch of secrets {[[xk]]}mk=1 as follows:
parties can take an additional mask [[xm+1]], reveal a random linear combination
c := xm+1 +

∑m
k=1 χkxk (where χk ∈ Fp for all k), and check for all j ∈ [n] that

〈zj〉 defined by

zi,j := ti,jm+1 +

m∑
k=1

χk · ti,jk (i 6= j)

and

zj,j := −c ·Rj +

xjm+1 ·Rj +
∑
i 6=j

qj,im+1

+

m∑
k=1

χk ·

xjk ·Rj +
∑
i 6=j

qj,ik
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is an additive sharing of 0. It will be shown in the proof of Lemma 1 that
the probability that parties are inconsistent but all of the n sharings {〈zi〉}ni=1

are zero is bounded above by p−1; thus the check is performed independently
`σ := dσ/ log pe times in parallel to ensure at least σ bits of statistical security.

Concrete instantiation One of the reasons that the protocol of Hazay et al. [HSS17]
is so efficient is that the functionality FBitMPC can be realised using the n-party
variant [BLN+15] of the TinyOT [NNOB12] protocol, in which bits are authen-
ticated exactly via sharings of bi ·Rj , where Rj is taken to be the secret key of
Pj . Thus sharings of the wire mask/global difference products are immediately
available to the parties by the correctness of the FBitMPC functionality, with-
out the need for a separate ΠBit×String protocol. However, currently the most
efficient protocols in the setting of a large prime field use a different form of
authentication and so this optimisation cannot be directly applied here. Instead,
we can use, for example, the most recent version of the SPDZ protocol [DPSZ12]
known as Overdrive [KPR18]. Note that in MASCOT [KOS16], pairwise MACs
are generated and then combined to create global MACs, so it may be that
this approach, which then obviates the need to perform the protocol ΠMask×Diff

separately, is better in practice.

Lemma 1, the proof of which can be found in Appendix A, states that an ad-
versary succeeds in cheating without detection in ΠMask×Diff with only negligible
probability in the statistical security parameter, σ.

Functionality FCOPE (from [KOS16])

Let g : Fdlog |F|e → F be any map such that for every x ∈ F, if x ∈ {0, 1}dlog |F|e
represents its bit-decomposition, then g(x) = x. Let g−1(x) denote the bit-
decomposition of x, which is well-defined by uniqueness of decomposition.

Initialise On receiving the message (Initialise,F, Pj , Pi, sidj,i) from parties Pi
and Pj , await ∆ ∈ F from Pj , store ∆, and set ∆ := g−1(∆).

Extend On receiving the message (Extend, sidj,i) from both parties,

1. – If Pi and Pj are honest then await x ∈ F from Pi, sample q
$← F and

set
t = x ·∆− q

– If Pi is corrupt and Pj is honest then await t ∈ F and x ∈ Fdlog |F|e
from S and set

q = g(x ∗∆)− t
where ∗ denotes the coordinatewise product.

– If Pi is honest and Pj is corrupt then await x ∈ F from Pi and q ∈ F
from S and compute

t := x ·∆− q.
2. Send t to Pi and q to Pj .

Fig. 5: Functionality for Correlated Oblivious Product Evaluation.
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Subprotocol ΠMask×Diff

Initialise For every ordered pair of parties (Pj , Pi), call an instance of FCOPE,

denoted by F (j,i)
COPE with Pi as the sender and Pj as the receiver, with input

(Initialise,Fp`κ , Pj , Pi, sidj,i), and input Rj from Pj .

Multiply To compute unauthenticated sharings (〈xk ·Ri〉)mk=1 from authenti-
cated sharings ([[xk]])mk=1 for which the parties additionally hold (〈xk〉)mk=1,
the parties do the following:
1. Mask The parties generate `σ := dσ/ log pe masks: for each l ∈ [`σ],

(a) For each i ∈ [n], party Pi samples xim+l
$← Fp and calls FMPC with

input (Input, i, xim+l, idxi
m+l

) while each party Pj , j 6= i, provides

corresponding input (Input, i,⊥, idxi
m+l

).

(b) The parties obtain [[xm+l]] =
∑n
i=1[[xim+l]] by creating a new identifier

idxm+l and calling the Add procedure of FMPC multiple times.
2. Generate For each j ∈ [n],

(a) For every i 6= j,

i. Pi and Pj call F (i,j)
COPE with input (Extend, sidi,j):

A. Pi provides xi1, . . . , x
i
m+l as input.

B. Pi receives (ti,jk )m+l
k=1 and Pj receives (qj,ik )m+l

k=1 .
ii. It holds that qj,ik + ti,jk = xikR

j . Party Pi sets zi,jk := ti,jk .
(b) Party Pj sets zj,jk := xjkR

j +
∑
i 6=j q

j,i
k .

3. Check
(a) Call FRand with input (Rand,F`σ×mp ) to obtain a matrix H =

(χl,k)l∈[`σ ],k∈[m].

(b) Let x := (xk)mk=1 and x̂ := (xm+l)
`σ
l=1. The parties compute [[c]] :=

H · [[x]] + [[x̂]] and call FMPC with input (Output, idc, sid) to obtain c.
If it aborts, then the parties abort.

(c) Each party Pi computes ci,j := H · (zi,jk )mk=1 + (zi,jm+l)
`σ
l=1 and ci,i :=

−c ·Ri +H · (zi,ik )mk=1 + (zi,im+l)
`σ
l=1.

(d) Each party Pi calls FCommit with input (Commit, ci,j , i, sid) for all
j ∈ [n].

(e) When idci,j has been received from FCommit for all i, j ∈ [n]2, call
FCommit with input (Open, idci,j , sid).

(f) Check that
∑n
i=1 ci,j = 0 for all j ∈ [n]. If so, then each party Pi

(locally) outputs (zi,jk )k∈[m],j∈[n]; otherwise, they abort.

Fig. 6: Subprotocol ΠMask×Diff for multiplying global differences with wire masks.

The subprotocol for garbling is given in Figure 7, and the one for evaluation
in Figure 8.

Lemma 1. For the outputs (zi,jk )i,j∈[n] of the subprotocol ΠMask×Diff it holds that∑n
i=1 z

i,j
k = xik ·Rj for all j except with probability at most 2−σ.

Notice that in order to establish a unique signal value after decrypting cipher-
texts, it is necessary to multiply by R−1, which means that R must be invertible.
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However, since R is sampled from a field, the random choice is invertible except
if it is 0, which happens with probability p−`κ < 2−κ < 2−σ.

Theorem 1. The execution of the subprotocol ΠGarble followed by the execution
of the subprotocol ΠEval, making use of the subprotocol ΠMask×Diff, UC-securely
realises the functionality FAC in the presence of a static, active adversary that
corrupts up to n − 1 parties, in the FCommit,FCOPE,FMPC,FRand-hybrid model,
assuming the PRF F satisfies correlation-robustness.

We define a security game in which a successful adversary breaks the circular
correlation robustness assumption of a PRF F in the following way:

Game
1. The challenger C samples a bit b

$← {0, 1}; if b = 0 then it initialises the

oracle O := FRO; if b = 1 then it samples R
$← Fp`κ and initialises the

oracle O := OF,R .
2. The adversary D is provided with black-box access to O.
3. After polynomially-many queries to O, D outputs a bit b′ to C.
4. The adversary D wins the game if b′ = b.

We are now ready to prove the theorem.

Proof. Note that, in contrast to the work of Hazay et al. [HSS17], the output
masks in our work are not revealed after garbling; instead, the parties remove the
masks after evaluating the circuit. Opening the wire masks after the evaluation is
a common approach, taken for example by Wang et al. in their recent multiparty
Boolean garbling protocol [WRK17] and leads to a more straightforward proof.

To prove that the protocol UC-securely realises the functionality FAC under
the assumption that the PRF is correlation-robust, we will construct a simulator
interacting with the real-world adversary A and the ideal functionality FAC such
that if an environment can determine that A is interacting with S instead of
real honest parties then it must have been able to break the assumption on the
PRF. To do this, we will construct a situation in which distinguishing between
worlds immediately leads to a way to break the PRF assumption. Consider the
simulator S defined as follows:
1. Execute ΠGarble honestly, sampling keys, masks and global differences as

honest parties would in the execution of ΠMask×Diff and honestly executing
internal copies of the oracles FCommit, FCOPE, FMPC and FRand.

2. Sample inputs on behalf of emulated honest parties, compute signal values
honestly, and send these signal values to A; await the broadcasts from cor-
rupt parties and extract the inputs using knowledge of the masks from the
calls to FMPC in Step 1, and send the inputs to FAC. Store the signal values
for all of these input wires.

3. Await the final circuit output from FAC.
4. Determine the “evaluation path” through the circuit based on all the broad-

casted input signal values and the wire masks determined in the execution
of ΠGarble, and then fix the wire mask for the final circuit output wire w to
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be ew − vw, where vw is the output from FAC. (If there are multiple output
wires then do similarly for each.)

5. For all honest parties, for all gates and wires, sample new wire keys uniformly
at random.

6. Fix the shares of honest parties so that the gates are consistent with keys
and ciphertexts from Step 5 instead of the ones generated in the honest
execution of ΠGarble in Step 1. Specifically, for each honest party Pi, for
every j ∈ [n] \ {i}, for every γ ∈ Fp, set

g̃j,ig,γ = Fkiu,γ
(g, j) + ρij,g,g,γ

g̃j,ie,γ = Fkiv,γ
(g, j) + ρij,g,e,γ

and then for every γ ∈ Fp, set

g̃i,ig,γ = Fkiu,γ
(g, i) + kiw,ew −

∑
j 6=i

ρji,g,g,γ

g̃i,ie,γ = Fkiv,γ
(g, i)− eukiv,ev −

∑
j 6=i

ρji,g,e,γ

(Note that S knows the values of ρji,g,e,ev for all (i, j) ∈ [n]2 because it
emulates the copies of FCOPE locally, from which these values are computed.)

7. Open the gates honestly by sending the shares of (emulated) honest parties
to corrupt parties.

8. Await the call to FMPC to open the final output mask(s) and execute this
honestly. If an emulated honest party would abort, send Abort to FAC, and
otherwise send OK.
The execution of ΠGarble is simulated perfectly by the simulator, which sam-

ples contributions to masks and keys for emulated honest parties. The fact that
the simulator samples inputs on behalf of emulated honest parties in Step 2 does
not affect the correctness of simulation or change the distribution as viewed by
the environment in any way, because each broadcasted external wire value is a
real value masked by a uniform wire mask not revealed to the environment, and
the final output is fixed by the simulator to the correct value regardless of these
sampled values and the path traversed through the garbled circuit. In Step 6,
the simulator fixes shares as honest parties would for the contributions to ci-
phertexts encrypting keys generated by corrupt parties, but for honest parties
it fixes the shares so that the parties will compute the uniformly-sampled keys
from Step 5 instead of keys according to a global difference that was chosen in
Step 1. The reason for fixing keys and ciphertexts for honest parties in this way
is that the honest party’s actual global difference will be different from the sim-
ulator’s sampled random global difference (used in the simulation of ΠMask×Diff)
with high probability, so instead of arguing that a set of ciphertexts generated
using keys with a fixed global difference is indistinguishable from another set of
ciphertexts generated using keys with a different global difference (which would
be an alternative way to define the simulator), we will show that such a set of
ciphertexts is instead indistinguishable from a set of ciphertexts generated using
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uniformly-randomly sampled keys. This latter assumption is essentially exactly
the correlation-robustness assumption. Furthermore, since this is the only point
in the distribution as viewed by the environment that is potentially different
from a real execution, this is the only way to distinguish. Thus any environment
that can distinguish between the hybrid and ideal worlds must do so by observ-
ing a difference in the distributions of ciphertexts generated, which breaks the
PRF assumption.

It remains to show how to use a distinguishing environment Z to construct
an adversary D (for the game outlined above). To this end, we first define a
modified simulator S ′ that uses the oracle O provided to D. The simulator S ′
executes exactly as S, but it fixes an arbitrary choice of honest party Pi∗ , and
when it fixes the keys and ciphertexts in Step 6, it alters the shares of Pi∗ for
each ciphertext as follows:

For every j ∈ [n] \ {i∗}, for every γ ∈ Fp \ {0}, set

g̃j,i
∗

g,eu+γ = O
(
ki
∗

u,eu , γ, (g, j), 0
)

+ ρi
∗

j,g,g,eu+γ

g̃j,i
∗

e,ev+γ = O
(
ki
∗

v,ev , γ, (g, j), 0
)

+ ρi
∗

j,g,e,ev+γ

and set

g̃j,i
∗

g,eu = Fki∗u,eu
(g, j) + ρi

∗

j,g,g,eu

g̃j,i
∗

e,ev = Fki∗v,ev
(g, j) + ρi

∗

j,g,e,ev .

Then set

g̃i
∗,i∗

g,eu+γ = O
(
ki
∗

u,eu , γ, (g, i
∗), 0

)
+ ki

∗

w,ew −
∑
j 6=i∗

ρji∗,g,g,eu

g̃i
∗,i∗

e,ev+γ = O
(
ki
∗

v,ev , γ, (g, i
∗), 0

)
− euki

∗

v,ev −
∑
j 6=i∗

ρji∗,g,e,ev

and set

g̃i
∗,i∗

g,eu = Fki∗u,eu
(g, i∗) + ki

∗

w,ew −
∑
j 6=i∗

ρji∗,g,g,eu

g̃i
∗,i∗

e,ev = Fki∗v,ev
(g, i∗)− euki

∗

v,ev −
∑
j 6=i∗

ρji∗,g,e,ev .

Now observe that all queries to the oracle O are legal because:
– In all queries, γ 6= 0.
– Although the fourth entry is 0 for all queries, the remainder of the query

message is different in every query.
Thus both requirements on the oracle queries are met.

We now show that the execution of S ′ with Z is the same as hybrid-world
and ideal-world executions with S.
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Claim. The execution of Z with S ′ when O = FRO is indistinguishable from the
execution of Z with S in the ideal world.

Proof. If the oracle is O = FRO, then in the execution with S ′, every ciphertext
indexed by i∗ is a one-time-pad encryption. All the keys in S are uniformly
sampled (i.e., they are not generated using a global random difference), so if
there is a distinguisher between the distribution of each set of p ciphertexts under
the keys {ki∗w,γ}γ∈p and the uniform distribution, then there is a distinguisher
for the PRF. Since this does not exist by assumption, the claim follows. �

Claim. The execution of Z with S ′ when O = OF,R is indistinguishable from
an execution in the FCommit,FCOPE,FMPC,FRand-hybrid world.

Proof. It is easy to verify that if the oracle is O = OF,R, then the ciphertexts
generated according to the simulation with S ′ follow exactly the distribution as
in a FCommit,FCOPE,FMPC,FRand-hybrid-world execution, where the honest party
Pi∗ has global difference R that is the same as the fixed value R in the oracle’s
definition, where effectively the key ki

∗

u,eu is sampled instead of the key ki
∗

u,0,
in order to make the oracle queries legal (which makes no difference to the
distribution of the resulting keys). �

Now we define the distinguisher D to execute the environment against the
simulator S ′ using the oracle O provided the challenger of its game. If the envi-
ronment guesses the execution was the ideal world, then the distinguisher guesses
b′ = 0; if the environment guesses the execution was the hybrid world, then the
distinguisher guesses b′ = 1. Thus if there is an environment that can distin-
guish between worlds with non-negligible advantage, then the distinguisher D
defined above wins the security game defined above that breaks the correlation-
robustness assumption on the PRF, and thus the protocol UC-securely realises
FAC assuming the PRF satifies correlation-robustness.

Subprotocol ΠGarble

For simplicity, the session identifiers for functionalities are taken as implicit.

Initialise
1. Agree on a new session identifer, a computational and statistical security

parameter, κ and σ, and a circuit C to evaluate, with circuit input wires
Win, circuit output wires Wout, and a set of gates G comprised of a set
of multiplication gates Gmul, a set of addition gates Gadd, and a set of
selection gates Gsel. Let PID() : Win → [n] denote the map determining
which party provides input on which wire.

2. Set `κ := dκ/ log pe.
3. For each i ∈ [n], Pi samples Ri

$← Fp`κ and then the parties execute the
procedure Initialise from ΠMask×Diff.

4. Call an instance of FMPC with input (Initialise,Fp, sid).
Wire Masks and Keys
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Circuit Input Wires For circuit input wire w ∈Win, let i := PID(w) and
then do the following:

1. Party Pi samples λw
$← Fp and calls FMPC with this value as input.

2. Each party Pj , j ∈ [n], samples a key kjw,0
$← Fp`κ and for each

α ∈ Fp sets kjw,α := kjw,0 + α ·Rj .
Addition Output Wires For each wire w that is an output of an addition

gate with input wires u and v, do the following:
1. Compute [[λw]] = [[λu + λv]] by calling FMPC.
2. For each i ∈ [n], party Pi computes kiw,0 := kiu,0 + kiv,0 and for each

α ∈ Fp sets kiw,α := kiw,0 + α ·Ri.
Multiplication Output Wires For a wire w that is an output of a mul-

tiplication gate with input wires u and v,
1. For each x ∈ {g, e},

(a) For each i ∈ [n], party Pi samples λiw,x
$← Fp and calls FMPC with

this value as input.
(b) Compute [[λw,x]] := [[

∑n
i=1 λ

i
w,x]] by calling FMPC.

(c) For each i ∈ [n], party Pi samples a key kiw,x,0
$← Fp`κ and for

each γ ∈ Fp sets kiw,x,γ := kiw,x,0 + γ ·Ri.
2. For each i ∈ [n], party Pi sets kiw,0 := kiw,g,0+kiw,e,0 and for all γ ∈ Fp

sets kiw,γ := kiw,0 + γ ·Ri.
Wire Mask/Global Difference Products

Multiplication Gates For each g ∈ Gmul, let u and v be the input
wires and w the output wire; then do the following:
1. Compute [[λuv]] := [[λu · λv]] by calling FMPC.
2. Execute the procedure Multiply from ΠMask×Diff on the set
{λu, λv, λuv, λw,g, λw,e}g∈Gmul to obtain, for all i ∈ [n], (unau-
thenticated) sharings{
〈Ri · λu〉, 〈Ri · λv〉, 〈Ri · λuv〉, 〈Ri · λw,g〉, 〈Ri · λw,e〉

}
g∈Gmul

.

3. For each i ∈ [n], for each γ ∈ Fp, set

〈ρi,g,g,γ〉 := −γ · 〈Ri · λv〉+ 〈Ri · λuv〉+ 〈Ri · λg,w〉

〈ρi,g,e,γ〉 := −γ · 〈Ri · λu〉+ 〈Ri · λe,w〉

Garbling
Multiplication Gates For each g ∈ Gmul, for each i ∈ [n], for each γ ∈ Fp,

1. The parties compute the garbler half gate:
– Pi sets g̃i,ig,γ := Fkiu,γ

(g, i) + kiw,g,0 + ρii,g,g,γ

– For every j 6= i, Pj sets g̃i,jg,γ := F
k
j
u,γ

(g, i) + ρji,g,g,γ
2. The parties compute the evaluator half gate:

– Party Pi sets g̃i,ie,γ := Fkiv,γ
(g, i) + kiw,e,0 − γ · kiu,0 + ρii,g,e,γ

– Every party Pj , j 6= i, sets g̃i,je,γ := F
k
j
v,γ

(g, i) + ρji,g,e,γ

Fig. 7: Subprotocol ΠGarble for garbling a circuit.
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Subprotocol ΠEval

Input Wires For each wire w ∈W which is an input wire, the parties do the
following:
1. Let i = PID(w): then party Pi computes and broadcasts ew := vw + λw,

where vw ∈ Fp, is Pi’s input.
2. For each i ∈ [n], party Pi broadcasts kiw,ew .

Opening For each g ∈ Gmul, for each x ∈ {g, e}, for each i ∈ [n],
1. For each j ∈ [n], for each γ ∈ Fp, Pi broadcasts g̃j,ix,γ .
2. All parties compute g̃ix,γ :=

∑n
j=1 g̃

i,j
x,γ .

Circuit Evaluation Traversing the circuit in topological order, for every gate
G with input wires u and v and output wire w, the parties do the following:
– If g is an addition gate, each party does the following:

1. Set the external wire value to be ew := eu + ev.
2. Compute the output keys as: for each i ∈ [n], kiw,ew := kiu,eu + kiv,ev .

– If g is a multiplication gate, each party does the following:
1. For each i ∈ [n], compute

kiw,ew := g̃ig,eu −
n∑
j=1

F
k
j
u,g,eu

(g, i)︸ ︷︷ ︸
Garbler half gate

+ g̃ie,ev −
n∑
j=1

F
k
j
v,e,ev

(g, i)︸ ︷︷ ︸
Evaluator half gate

+ev·kiu,eu .

2. Each party Pi determines the signal value ew by computing ew :=
(kiw,ew − kiw,0) · (Ri)−1.

Output To obtain the output of wire w ∈ Wout, call FMPC to execute the
procedure Output to reveal the value vw − [[λw]].

Fig. 8: Subprotocol ΠEval for evaluating the garbled circuit.

All of the protocols in this section can be realised using protocols (with minor
modifications) given in MASCOT [KOS16]; however, the two parts of the com-
putation outlined above are most optimally performed using a mixed approach:
using the Overdrive protocol [KPR18] to realise FMPC, and using MASCOT-like
protocols to perform the Wire Mask/Global Difference products. The reason
is that Overdrive is more efficient over large prime fields, as opposed to large
extension fields such as F2k for which MASCOT is better.

4 Selector Gate

It was argued by Ben-Efraim [Ben18] that a selector gate taking a Boolean
selection bit and choosing between field elements is a desirable feature of gar-
bling protocols as the selection bit is likely to come from the evaluation of some
Boolean subcircuit. Such a construction was given in [Ben18]; in this section
we give an alternative construction, which we call the alternative selector gate,
which, specifically, takes one input in F2, held as a signal bit with a correspond-
ing key in F2κ and viewed as output from a Boolean circuit, and two inputs in
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Fp, and outputs one of the field elements according to the selection bit. Note
that if the selection bit is also a field element then the standard 2 · p ciphertexts
for general field/field multiplication is required, as is the case in Ben-Efraim’s
work [Ben18].

Multifield Shared Bits Rotaru and Wood [RW19] showed how to generate
secret-sharings of uniformly-random bits shared in two fields with authentication
in each; these were called daBits, for doubly-authenticated bits. This can be
viewed as an actively-secure version of the multi-field bits discussed by Ben-
Efraim, which can be used in arithmetic garbling of selector gates. The protocol
for generating such bits uses authentication in a black-box way, and so any
actively-secure MPC protocol can be used to generate them. In this work, we
use daBits shared in Fp and F2κ for our selector gates.

4.1 New Selector Gate

Recall that the standard cost of multiplication in Fp is p · p ciphertexts; the
garbler/evaluator half-gate approach reduces this to p+p ciphertexts. The main
observation driving our alternative selector gate is that the actual selection op-
eration is a multiplication of a bit by an element in Fp, and thus the goal is to
reduce the näıve 2 · p ciphertexts to (almost) 2 + p.

A selection gate based on selection bit b between the values on wires u and v
is computed via the standard multiplexer u+ (v− u) · b. Since linear operations
are garbled without communication or additional preprocessing, we focus on the
product of the wire w := v − u ∈ Fp with the bit b ∈ F2; the output wire is
denoted by z.

The point is that while the previous approach by Ben-Efraim involved con-
verting the bit to Fp using a so-called projection gate and evaluating a standard
multiplication gate in Fp, we can use daBits to perform this projection directly.
We will now explain how to garble the new selector gate; this explanation is
followed by a formal protocol description.

Let b′ be the Boolean wire, and let b be the Fp wire to which we wish to
convert. We let the wire mask output of the Boolean wire be a daBit λb′ ∈ {0, 1}
and convert it to an Fp wire using 2n ciphertexts in Fp`κ as follows: for every
β ∈ {0, 1}, for every j ∈ [n],

gjβ :=

n∑
i=1

Fki
b′,β

(g, j) + kjb,0 + ((β + λb′ − 2 · β · λb′) + λb) ·Rj ,

where kib′,β ∈ F2κ for all i ∈ [n] and λb is a uniform mask in Fp. Since the PRF
used in previous sections takes keys of length at least κ bits, we may assume the
same PRF is used here, with additional padding if necessary. Here, we use the
fact that in any field, if a and b are in {0, 1} then their XOR is computed as

a⊕ b = a+ b− 2 · a · b,
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which means that we can remove the mask in Fp since the mask λb′ used in the
garbling of the Boolean circuit was a daBit. The two ciphertexts (for each i ∈ [n])
are indexed by the two possible Boolean external values, which is denoted by eb′ ;
the external value on the output, denoted by eb, is not needed in the next steps,
but can be computed by the evaluators in the usual way (i.e., by Pi comparing
the output key indexed by i to its own p keys). In doing so, the evaluators learn
either 0 + λb or 1 + λb, but do not learn which they hold. In fact, this external
value eb is never used by the evaluators.

The multiplication gate is then computed in two halves:

gjg,α :=

n∑
i=1

Fkiw,α
(g, j) + kjg,z,0 − α(kjb,0 + λbR

j)

gje,β :=

n∑
i=1

Fkib,β
(g, j) + kje,z,0 − (β + λb′ − 2βλb′)λwR

j + λzR
j

Now when evaluating, the parties will obtain ew and eb′ , will compute a :=
Dec(gg,ew) and b := Dec(ge,eb′ ) and will compute

kz,ez = a+ b+ ewkb,eb

=
(
kjg,z,0 − ew(

�
�kjb,0 + λbR

j)
)

+
(
kje,z,0 − (eb′ + λb′ − 2eb′λb′)λwR

j + λzR
j
)

+ ew(�
�kb,0 + ebR

j)

=
(
kjg,z,0 − ewλbRj

)
+
(
kje,z,0 − vbλwRj + λzR

j
)

+ ewebR
j

=
(
kjg,z,0 − (vw + λw)λbR

j
)

+
(
kje,z,0 − vbλwRj + λzR

j
)

+ (vw + λw)(vb + λb)R
j

=
(
kjg,z,0 −((((

((((vw + λw)λbR
j
)

+
(
kje,z,0 − vbλwRj + λzR

j
)

+ ((vw + λw)vb +((((
(((vw + λw)λb)R

j

= kjg,z,0 +
(
kje,z,0 + λzR

j −����vbλwR
j
)

+ ((vw +��λw)vb)R
j

= kjz,0 + (vwvb + λz)R
j .

In total, this requires p+ 4 ciphertexts per party: 2 for the conversion, 2 for
the first half gate and p for the second.

We do not provide a complete proof of the security of the alternative selector
gate as it follows straightforwardly from the security of the selector gate of Ben-
Efraim [Ben18]. However, to give a high-level intuition, consider that the keys
kjg,z,0 and kje,z,0 are sampled uniformly at random, and independently of one
another, and so their sum kz,0 is also uniformly random, as is required of 0 keys;
furthermore, the wire mask λz is uniform and not known to any individual party,
so the external value of the output wire perfectly hides the real value vw · vb.
The complete protocol for garbling these new selector gates is given in Figure 9.
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The evaluation protocol is the same as the evaluation of a multiplication gate
and is therefore omitted.

Subprotocol ΠSelect

This subprotocol takes a gate with Boolean input wire b′ and arithmetic inputs
u and v and output wire z = u+ (v − u) · b′.

Wire Masks and Keys
Wire Mask/Global Difference Products

Selection Gates If g is a selection gate with input wires u and v, se-
lection bit wire b, and output wire z,
1. If b′ is the Boolean input wire, let λb′ be the Fp daBit mask stored

as [[λ′b]] in FMPC.
2. Generate an Fp wire mask [[λb]]:

(a) For each i ∈ [n], party Pi samples λib
$← Fp and calls FMPC

with this value as input.
(b) Compute [[λb]] := [[

∑n
i=1 λ

i
b]] by calling FMPC.

3. Each party Pi samples a key kib,0
$← Fp`κ .

4. Generate an Fp output wire mask [[λz]] in the same way as for
[[λb]], above.

5. Let [[λu]] and [[λv]] be the masks stored in FMPC for wires u and v,
respectively, generated when garbling an addition or multiplica-
tion gate or input wire. Set [[λw]] := [[λv]]− [[λu]] by calling FMPC.

6. Let kiu,0 and kiv,0 be the keys previously generated by party Pi for
wires u and v. For each i ∈ [n], party Pi sets kiw,0 := kiv,0 − kiu,0.

7. For each i ∈ [n], party Pi samples a wire key kiw,g,0
$← Fp`κ and

sets kiw,e,0 := kiw,0 − kiw,g,0.
8. Compute [[λb′w]] := [[λb′ · λw]] by calling FMPC.
9. Execute ΠMask×Diff to obtain{

〈Ri · λb′〉, 〈Ri · λb〉, 〈Ri · λw〉, 〈Ri · λb′w〉, 〈Ri · λz〉
}
.

10. For each i ∈ [n], for each α ∈ Fp and β ∈ {0, 1}, set

〈ρi,g,b,β〉 := (1− 2 · β) · 〈Rj · λb′〉+ 〈Rj · λb〉

〈ρi,g,g,α〉 := −α · 〈Rj · λb〉

〈ρi,g,e,β〉 := −β · 〈Rj · λw〉 − (1− 2 · β) · 〈Rj · λb′w〉+ 〈Rj · λz〉.

Garbling
Selection Gates If g is a selection gate with input wires u and v and

selection bit wire b,
1. The parties generate ciphertexts for converting the Boolean input

wire b′ to an Fp wire b: for every i ∈ [n],
– Pi sets g̃i,ib,β := Fki

b,β
(g, i) + kib,0 + β ·Ri + ρii,g,b,β

– For every j 6= i, Pj sets g̃i,jb,β := Fki
b,β

(g, i) + ρji,g,b,β
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2. The parties compute the gates for the product of wire w := (v − u)
with wire b:

(a) The parties compute the garbler half gate:
– Pi sets g̃i,ig,α := Fkig,z,α

(g, i) + kig,z,0 − α · kib,0 + ρii,g,g,α

– For every j 6= i, Pj sets g̃i,jg,α := F
k
j
g,z,α

(g, i) + ρji,g,g,α
(b) The parties compute the evaluator half gate:

– Pi sets g̃i,ie,β := Fki
e,b,β

(g, i) + kie,z,0 + ρii,g,e,β

– For every j 6= i, Pj sets g̃i,je,β := F
k
j
e,b,β

(g, i) + ρji,g,e,β

Fig. 9: Subprotocol ΠSelect for garbling a selector gate.

5 Evaluation in comparison to previous work

We evaluate our work in comparison to all previous works in the field of arith-
metic garbling; both in the two-party, and in the multiparty paradigm. As
shown in Table 1, we are the only work providing full-threshold active se-
curity, and proving our garbling techniques UC-secure under the named as-
sumptions. Previous work provided either two-party, passively secure construc-
tions [BMR16, BCM+19], or multiparty, passively secure constructions in the
honest majority setting [Ben18].

Recall that in the multiparty setting projection gates (significantly increasing
the efficiency of previous work [BMR16,BCM+19]) are non-trivial to construct,
and they are not universal (i.e., tailored techniques per gate are required). In gen-
eral, given that in the multiparty setting all parties play the role of the garbler,
we cannot exploit the asymmetry between garbler and evaluator that two-party
solutions enjoy. In addition, as already pointed out by Ben-Efraim [Ben18], each
garbled table row in the multiparty setting requires n ciphertexts, versus a single
ciphertext in the two-party setting, and each row decryption requires n2 PRF
calls (indicated as #Decryptions in Table 1) in the multiparty setting, versus a
single PRF call in the two-party setting. These values are reflected in our cost
description provided in Table 1.

For the works that did not suggest an improved version of a specific gar-
bled gate (e.g., multiplication gates in both our work, and the work of Ball
et al. [BCM+19]), we assume the same cost as the cost of the best previous
technique of which they make use. Our work almost halves the communica-
tion cost of the selector gate, compared to the previous work in the multiparty
setting [Ben18], at the cost of cost of loosing the ∼ 33% improvement of com-
putation cost that Ben-Efraim’s approach enjoys (in addition to the generation
of daBits). This is an overall improvement, given that the main bottleneck is
the communication cost, and that the computation cost is dominated by hash
function calls, which are efficient. Garbling is a technique suitable for secure
computation over unreliable networks, where continuous connectivity cannot be

25



guaranteed. Although most of the communication happens during the prepro-
cessing phase, the communication cost remains the main bottleneck of garbling.
Performing one additional PRF call during the online phase, given that it comes
at such a significant efficiency increase of the offline phase, is less of a concern,
since PRF are a symmetric primitive, with significant hardware optimisations on
modern processors. Our selector gate remains competitive even with the related
work in the two party setting [BCM+19], where we consider a selector gate to be
the so-called cross-modulus multiplication for q = 2. We require p+4 ciphertexts
per party, while Ball et al. [BCM+19] require p+ 1. This minor difference comes
mainly from the fact that we cannot deploy the row reduction techniques in the
multiparty setting.

Protocol Model Parties
Multiplication Selection

#Ciphertexts #Decryptions #Ciphertexts #Decryptions

[BMR16] passive 2 6p− 5 6 2p− 1 2

[Ben18] passive n 2p · n 2n2 (2p+ 2) · n 2n2

[BCM+19] passive 2 6p− 5 6 p+ 1 2

Ours active n 2p · n 2n2 (p+ 4) · n 3n2

Table 1: Comparison of our garbling techniques with the garbling of [BMR16],
[Ben18], and [BCM+19], in terms of security model supported, number of parties
supported, number of ciphertexts required per multiplication and selection gate,
and number of decryptions required per multiplication and selection gate.

6 Conclusion

Our work continues the study of multiparty arithmetic garbling initiated by Ben-
Efraim [Ben18]. Specifically, we extend the previous work from the semi-honest,
honest majority setting, to the full-threshold actively-secure setting. Given the
practical importance of circuits, which combine Boolean and arithmetic gates, we
follow this paradigm, also considered in the work of Ben-Efraim [Ben18]. In this
work we consider a selector gate as suggested by Ben-Efraim [Ben18] (essentially
a multiplexer); we extend it to the full-threshold actively-secure equivalent, and
show how to garble such a gate, while almost halving the communication cost it
incurs.

Representations of Boolean circuits have clear advantages over arithmetic
circuits when it comes to non-linear operations. On the other hand, appropriate
representations of arithmetic circuits are orders of magnitude more efficient than
Boolean circuits for linear operations on arithmetic values. Garbling techniques
that enable the construction of circuits, which integrate both Boolean and arith-
metic gates, are essential to treat numerous real-world application scenarios, and
allow computation of arbitrary circuits in constant rounds. This is the reason
why the design of such garbling schemes is on the rise. It remains an interesting
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open problem to devise techniques that allow a seamless and efficient conversion
between the two representations with active security in the multiparty setting.
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A Proof of Lemma 1

Proof. The proof follows the same line as that of Hazay et al. [HSS17, Lem 3.1]
and Cramer et al. [CDE+18, Thm 3]. There are two possible ways to cheat in
the protocol: (a) one or more parties use different inputs to the initialisation of
FCOPE with different honest parties; (b) one or more parties use different shares
xik with different honest parties. The idea is to show that if these errors are
non-zero then the protocol aborts with overwhelming probability. To do this, we
will show that the probability that the checks pass but a non-zero error has been
introduced is negligible.
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Fix an honest party Pi∗ arbitrarily2 and for each i 6= i∗ let Ri be the global

difference provided by Pi into the instance F i
∗,i

COPE and let xik be the input of Pi

into the instance F i,i
∗

COPE. Then for each i 6= i∗, for each j 6= i let R̃j,i be the input

of Pj into the instance F i,jCOPE, or the local contribution to zj,jk when i = j, and

let εj,i := R̃j,i−Rj . Similarly, for each j 6= i∗, for each i 6= j let x̃j,ik be the input

of Pj into the instance F j,iCOPE, or the local contribution to zj,jk when i = j, and

let δj,i := x̃j,ik − x
j
k.

Let εj be the error introduced when creating cj,j and εl be the sum of the
errors introduced just before the lth commitment. Now since the checks pass, for
all j ∈ [n] and all l ∈ [`σ] it holds that

0 =

n∑
i=1

ci,jl = cj,jl +
∑
i 6=j

ci,jl

=

(
εl − clRj +

(
zj,jm+l +

m∑
k=1

χl,k · zj,jk

))
+
∑
i6=j

(
zi,jm+l +

m∑
k=1

χl,k · zi,jk

)

= εl − clRj +

n∑
i=1

(
zi,jm+l +

m∑
k=1

χl,k · zi,jk

)

= εl − clRj +

n∑
i=1

zi,jm+l +

n∑
i=1

m∑
k=1

χl,k · zi,jk

= εl − clRj +

x̃j,jm+lR̃
j,j +

∑
i6=j

qj,im+l

+
∑
i 6=j

ti,jm+l

+

m∑
k=1

χl,k ·

x̃j,jk R̃j,j +
∑
i6=j

qj,ik

+
∑
i 6=j

ti,jk


= εl − clRj +

((
n∑
i=1

x̃i,jm+lR̃
j,i

)
+

(
m∑
k=1

χl,k ·
n∑
i=1

x̃i,jk R̃
j,i

))

= εl − clRj +

n∑
i=1

(
x̃i,jm+l +

m∑
k=1

χl,kx̃
i,j
k

)
· R̃j,i

= εl −���clRj +

���
���

���
���

���n∑
i=1

(
xim+l +

m∑
k=1

χl,k ·
n∑
i=1

xik

)
Rj +

n∑
i=1

(
δi,jm+l +

m∑
k=1

χl,kδ
i,j
k

)
Rj

+

n∑
i=1

(
xim+l +

m∑
k=1

χl,kx
i
k

)
εj,i +

n∑
i=1

(
δi,jm+l +

m∑
k=1

χl,kδ
i,j
k

)
εj,i

2 It can be shown that if there are multiple honest parties then the sum of the errors
subsequently defined with respect to Pi∗ is well-defined (i.e., the sum is independent
of the choice of “reference” honest party).
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= εl +

n∑
i=1

(
δi,jm+l +

m∑
k=1

χl,kδ
i,j
k

)
︸ ︷︷ ︸

=:δjl

Rj +

n∑
i=1

(
xim+l +

m∑
k=1

χl,kx
i
k

)
εj,i

+

n∑
i=1

(
δi,jm+l +

m∑
k=1

χl,kδ
i,j
k

)
εj,i

Suppose Pj is an honest party; then the goal is to show that both δi,jk = 0 for
all k ∈ [m] and i ∈ [n] and that εj,i = 0 for all i ∈ [n], except with negligible
probability in σ.

If δjl 6= 0 then since Rj is generated by the honest party, the second summand
is uniform in Fp`κ and unknown to the adversary, so the probability that the
adversary can choose the other errors so that the equation above holds is at most
p−`κ .

If δjl = 0 then δi,jk = 0 for all k ∈ [m] except with probability p−1, since the
coefficients are unknown before the errors are introduced; thus the fourth sum-
mand is also zero. (Note that these errors can be in Fp`κ but the coefficients lie
in Fp, so the greatest upper bound on the probability is only p−1 and not p−`κ .)
Now again since the matrix H is sampled after the errors εj,i are introduced on
the global differences – i.e., the values χl,k are unknown to the adversary when
introducing these errors – if one or more εj,i is non-zero then the third summand
is uniformly random in Fp, so the adversary must choose each εl to correct the
error, which can be done for a given l with probability at most p−1. Thus the
probability that some δi,jk or some εj,i is not zero but the equation above holds
for all l ∈ [`σ] is at most p−`σ .

Thus for every honest party j ∈ [n] \ A, all errors {δi,jk } and {εj,i} are 0
except with probability at most max{p−`κ , p−`σ} < 2−σ. �
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