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Abstract. The Schnorr signature scheme is an efficient digital signature
scheme with short signature lengths, i.e., 4k-bit signatures for k-bits of
security. A Schnorr signature σ over a group of size q ≈ 22k consists of
a tuple (s, e) where e ∈ Zq is a hash output and s must be computed
using the secret key. Schnorr proposed the possibility of shorter Schnorr
signatures with the same security level by truncating the hash output to
k-bits, i.e., e < 2k. A previous result showed that short Schnorr signatures
provide k-bits of single-user security in the programmable random oracle
model plus (a non-standard version of) the generic group model. Another
prior result demonstrated that standard Schnorr signatures provide k-bits
of multi-user security in the programmable random oracle model plus
(another non-standard version of) the generic group model. As we discuss
in the paper these non-standard versions of the generic group model do
not capture all generic attacks, e.g., the generic preprocessing attacks of
Corrigan-Gibbs and Kogan. In this paper we prove that short Schnorr
signatures provide k-bits of (multi-user) security under the (standard)
generic group model and the programmable random oracle model.

Our techniques also allow us to prove the 1-out-of-N discrete-log problem
is hard even if the attacker has access to a restricted discrete-log oracle.
Here the attacker is given h1 = gx1 , . . . , hN = gxN as is challenged to
output any x ∈ {x1, . . . , xN}. The restricted oracle DLogg(·) will solve
the discrete-log problem on any “fresh” input i.e., DLogg(g

x) = x as
long as x /∈ {x1, . . . , xN} and gx has not been the output of a prior
query to the generic group operation. We show that any attacker running
in time t wins the 1-out-of-N discrete-log problem with probability at
most O

(
(t+N)/2k

)
. Similarly, in our security reduction for (multi-user)

security of short Schnorr signatures we permit the attackers to have access
to the restricted discrete-log oracle DLogg(·).
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1 Introduction

The Schnorr signature scheme [Sch90] has been widely used due to its simplicity,
efficiency and short signature size. In the Schnorr signature scheme we start with
a cyclic group G of prime order q and pick a random secret key sk ∈ Zq. To sign
a message m we pick r ∈ Zq uniformly at random, compute I = gr, e = H(I||m)
and s = r + sk · e mod q. The final signature is σ = (s, e). To achieve k-bits
of security we select a hash function H with 2k-bit outputs and we select q to
be a random 2k-bit prime so that the length of a signature is 4k-bits long. In
Schnorr’s original paper [Sch90] the author proposed the possibility of achieving
even shorter Schnorr signatures by selecting a hash function H with k-bit outputs
(or truncating to only use the first k bits) so that the final signature σ = (s, e)
can be encoded with 3k-bits. Throughout the paper we refer to this signature
scheme as the short Schnorr signature scheme. In this paper we investigate the
following question:

Does the short Schnorr signature scheme achieve k-bits of (multi-user)
security?

Proving security for the Schnorr signatures has been a challenging task against the
interactive attacks. Pointcheval and Stern [PS96] provided a reduction from the
discrete-log problem in the random oracle model. However, their reduction is not
tight i.e., they show that Advsig ≤ Advdlog × qRO for any attacker making at most
qRO queries to the random oracle. The loss of the factor qRO, which prevents us from
concluding that the scheme provides k-bits of security, seems to be unavoidable
e.g., see [Seu12,FJS14]. Neven et al. [NPSW09] analyzed Schnorr signatures in
the generic group model [Sho97] showing that the scheme provides k-bits of
security as long as the hash function satisfies two key properties random-prefix
preimage (rpp) and random-prefix second-preimage (rpsp) security. Interestingly,
Neven et al. [NPSW09] do not need to assume that H is a random oracle though a
random oracle H would satisfy both rpp and rpsp security. Neven et al. [NPSW09]
considered the short Schnorr signature scheme, but their upper bounds do not
allow us to conclude that the short Schnorr signature scheme provides k-bits of
security.

An earlier paper of Schnorr and Jakobsson [SJ00] analyzed the security of the
short Schnorr signature scheme in the random oracle model plus (a non-standard
version of) the generic group model. While they show that the scheme provides
k-bits of security they also consider a restrictive version of the generic group
model which is different from the original definition proposed by Shoup [Sho97].
The non-standard version they consider is restrictive and is not expressive enough
to capture all known attacks, e.g., any attack that requires the ability to hash
group elements including a recent preprocessing attacks of Corrigan-Gibbs and
Kogan [CK18] cannot be captured in the restricted generic group model.

Galbraith et al. [GMLS02] claimed that the original Schnorr signature scheme
provides tight multi-user security. In particular, they claimed to have a tight
reduction showing that single-user security implies multi-user security of the
original Schnorr signature scheme. However, Bernstein [Ber15] identified an error
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in the security proof in [GMLS02]. Bernstein [Ber15] proposed a modified “key-
prefixed” version of the original Schnorr signature scheme, and proved that
the “key-prefixed” version does provide multi-user security. A result of Kiltz et
al. [KMP16] implies that the original Schnorr signature scheme provides k-bits of
security in the programmable random oracle model plus (another non-standard
version of) the generic group model. To the best of our knowledge the multi-user
security of short Schnorr signatures (with or without “key-prefixing”) has not
been previously studied.

1.1 Our Contributions

We show that the short Schnorr Signature scheme provides k-bits of security
against an attacker in both the single and multi-user versions of the signature
forgery game. Our results assume the programmable random oracle model and
the (standard) generic group model.

Single-User Security of Short Schnorr Signatures in GM+ROM. We first consider
the single-user security of the short Schnorr Signature scheme. We first prove
that short Schnorr signatures provide k-bits of security in the (original1) generic
group model and the random oracle model.

Theorem 1 (informal). Any attacker running in time t wins the signature
forgery game (UF-CMA) against the short Schnorr signature scheme with prob-
ability at most O

(
t/2k

)
in the generic group model (of order q ≈ 22k) plus

programmable random oracle model (See Definition 1 and Theorem 3).

Recall that a signature scheme Π yields k-bits of (multi-user) security if any
attacker running in time at most t can forge a signature with probability at
most εt = t/2k in the (multi-user) signature forgery game — this should hold
for all time bounds t ≤ 2k. Theorem 1 tells us that the short Schnorr signature
obtained by truncating the hash output by half would yield the same k-bits of
security level with the signature length 3k instead of 4k. That is, for a security
level of 128 bits, the signature size would be 384 bits which is twenty-five percent
less than the usual 512 bits. A 25% reduction in signature length is particularly
significant in contexts where space/bandwidth is limited, e.g., on the blockchain.

Multi-User Security of Short Schnorr Signatures in GM+ROM. We show that our
proofs can be extended to the multi-user case even in the so-called “1-out-of-N”
setting, i.e., if the attacker given N public keys pk1, . . . , pkN can forge a signature
σ which is valid under any of these public keys (it does not matter which).

Theorem 2 (informal). Any attacker running in time t wins the multi-user
signature forgery game (MU-UF-CMA) against the short Schnorr signature scheme
with probability at most O

(
(t+N)/2k

)
in the generic group model (of order

q ≈ 22k) plus programmable random oracle model. Here, N denote the number of
distinct users/public keys (See Definition 2 and Theorem 5).

1 The proof of Schnorr and Jakobsson [SJ00] gave a proof in a restricted version of the
generic group model which does not capture all known attacks.
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Theorem 2 guarantees that breaking multi-user security of short Schnorr
signatures in “1-out-of-N” setting is not easier than breaking a single instance
as the winning probability is still in the same order as long as N ≤ t which is the
typical case. A näıve reduction loses a factor of N i.e., any attacker winning the
multi-user forgery game with probability εMU can be used to win the single-user
forgery game with probability ε ≥ εMU/N . For example, suppose that q ≈ 2224

(i.e., k = 112) and there are N = 232 instances of short Schnorr signatures
which is almost the half of the entire world population. In the original single-user
security game an attacker wins with probability at most ε ≤ O

(
t/2k

)
so an an

attacker running in time t = 280 would succeed with probability at most ε ≈ 2−32.
This only allows us to conclude that an attacker succeeds with probability at
most εMU ≤ Nε ≈ 1 in the multi-user security game! Our security proof implies
that the attacker will succeed with probability εMU ≈ ε ≈ 2−32 in the above
example. In particular, we don’t lose a factor of N in the security reduction.

1.2 Our Techniques

We consider the variation of the discrete-log problem where the attacker A is given
access to the restricted discrete-log oracle DLog (explained later). Our security
reduction both uses the generic group model and the random oracle model.
Consider the generic group model for a multiplicative cyclic group (G = 〈g〉, ·)
of prime order q. In the generic group model we select a random injective map
τ : G → G where G is the set of bit strings of length ` (with 2` ≥ q). An
adversary is given the encoding τ(g) of the generator (along with the encoding
τ(h) of any other public group element h) and may access to the “generic oracles”
Mult(·, ·) and Inv(·). For an input (a, b) ∈ G×G the generic oracles Mult(a, b)
returns Mult(a, b) = τ(τ−1(a) · τ−1(b)) whenever τ−1(a), τ−1(b) ∈ G. Similarly,
Inv(a) = τ(τ−1(a)−1) provided that τ−1(a) ∈ G. Alternately, for group elements
a, b ∈ G the oracle Mult(τ(a), τ(b)) = τ(a · b) and Inv(τ(a)) = τ(a−1).

Restricted Discrete-Log Oracle in the Generic Group Model. Consider the generic
group model as described above and suppose that g, h1 = gx1 , . . . , hN = gxN are
public parameters. In particular, the values τ(g), τ(h1), . . . , τ(hN ) are known to
the attacker (e.g., as part of a public key) but not the corresponding discrete
log solutions xi. In our security reductions, we allow the attacker A to query a
(restricted) discrete-log oracle DLogg(τ(y)) which returns the unique value z such
that y = gz. However, the adversary is restricted and is only allowed to query
DLogg(τ(y)) only if τ(y) is “fresh”, i.e.,

– τ(y) is not τ(g) or τ(h1), . . . , τ(hN ), and
– τ(y) has not been the output of a prior random generic group query.

We remark that by restricting the discrete-log oracle to fresh queries we can rule
out the trivial attack where the attacker simply queries DLogg(τ(hi)) for any
1 ≤ i ≤ N . The restriction also rules out trival attacks where the attacker simply
queries DLogg(τ(hig

r)) after computing τ(hig
r) for some 1 ≤ i ≤ N and known

value r using the Mult oracle.
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The Known Set K and the Partially Known Set PKx. A core component of
our security involves keeping track of group elements with (partially) known
discrete-log solutions. For simplicity consider first a setting where the only
public parameters are τ(g) and τ(h) where h = gx for an unknown parameter
x ∈ Zq. We will maintain the invariant that for every group element y that
is the output of a random oracle query we know a, b ∈ Zq such that y =
τ(gax+b) i.e., the tuple (y, a, b) in recorded in a global list L. Initially, we have
L = ((τ(g), 0, 1), (τ(h), 1, 0)). Intuitively, if we know a1, b1, a2, b2 ∈ Zq such
that y1 = τ(ga1x+b1) and y2 = τ(ga1x+b1) then we know that Mult(y1, y2) =
τ(g(a1+a2)x+(b1+b2)) and can add (Mult(y1, y2), a1 + a2, b1 + b2) to L. Suppose
that the attacker provides inputs y1 and/or y2 such that a1, b1 (and/or a2, b2) is
not known. In this case y1 is fresh and we may query b1 = DLogg(y1) and then
add (y1, 0, b1) to our list L. Similarly, if y2 is fresh we may query b2 = DLogg(y2)
and then add (y2, 0, b2) to L.

We can partition L into two sets K which contains tuples of the form (y, a =
0, b) and PKx which contains tuples of the form (y, a 6= 0, b). We define a special
event BRIDGE which occurs when an element y appears twice i.e., (y, a′, b′) ∈ L
and (y, a, b) ∈ L with (a′, b′) 6= (a, b). We can prove that the event BRIDGE
occurs with negligible probability O(t2/q) at best e.g., observe that if the bridge
event occurs we can solve the discrete log problem immediately i.e., a′x+ b′ =
ax+ b⇒ x = (b′ − b)(a− a′)−1 where the inverse is taken over Zq. Otherwise, x
can (essentially) be viewed as a uniformly random element from Zq subject to
a few restrictions, i.e., for any pair of non-colliding records (a1, a1, b1) ∈ L and
(a2, a2, b2) ∈ L we know that x 6= (b2 − b1)(a1 − a2)−1.

Our approach extends to the multi-user case. In particular, given public
parameters τ(h1), . . . , τ(hN ) such that hi = gxi (xi unknown) we will maintain
the invariant that for every output y of a generic group oracle the list L includes
a tuple (y,a, b) such that y = τ(ga·x+b) where a and x = (x1, . . . , xN ) are
N -dimensional vectors. We can then define the known set KN and the partially
known set PKN{xi}Ni=1

in the same way e.g., if a = 0 then the tuple (y,a, b) ∈ KN

otherwise the tuple is in PKN{xi}Ni=1
. We can also define the event BRIDGEN which

occurs when an element y appears twice i.e., (y,a′, b′) ∈ L and (y,a, b) ∈ L with
(a′, b′) 6= (a, b). We can then argue that the event bridge occurs with probability
at most O((t+N)2/q). If the event BRIDGEN does not occur then we can view
x ∈ ZNq as a uniformly random vector subject to a few restrictions i.e., for any
pair of non-colliding records (a1,a1, b1) ∈ L and (a2,a2, b2) ∈ L we know that
x · (a1 − a2) 6= (b2 − b1). See Section 4 for more discussion and analysis.

1.3 Related Work

Security Proofs in the Random Oracle Model. Pointcheval and Stern [PS96] pro-
vided the security proofs for signature schemes in the random oracle model [BR93]
using the forking lemma under the assumption that the discrete-log problem
is hard. However, the security reduction is not tight in their proof. In [Seu12],
it has been shown that the non-tight reduction cannot be improved under a
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certain assumption called the One-More Discrete Logarithm (OMDL) assumption.
Going one step further, [FJS14] showed that no “generic” reduction for Schnorr
signatures can be tight.

Security Proofs in the Generic Group Model. The generic group model goes
back to Nechaev [Nec94] and Shoup [Sho97]. Nechaev [Nec94] proved that the
discrete-log problem is hard in the generic group model. One motivation for
analyzing cryptographic protocols in the generic group model is that for certain
elliptic curve groups the best known attacks are all generic [JMV01,FST10].
Dent [Den02] showed that there are protocols which are provably secure in the
generic group model but which are trivially insecure when the generic group
is replaced with any (efficiently computable) real one. However, these results
were artificially crafted to provide a counter-example. Similar to the random
oracle model [BR93] experience suggests that protocols with security proofs in
the generic group model do no have inherent structural weaknesses and will
be secure as long as we instantiate with a reasonable elliptic curve group. See
[KM07,Fis00,JS08] for additional discussion of the strengths/weaknesses of proofs
in the generic group model.

In [NPSW09] the security proof of the Schnorr signatures in the generic group
model has been provided assuming that the hash function H(·) satisfies certain
properties such as random-prefix preimage (rpp) security and random-prefix
second-preimage (rpsp) security instead of being a random oracle. The authors
mention the possibility of short Schnorr signatures by truncating the hash output
bits by k, however, the security reduction is not tight and there exists a tradeoff
between the hash output bits k and the group size q as mentioned before.

Recently, Corrigan-Gibbs and Kogan [CK18] used the generic group model
to analyze the security of several cryptographic problems (e.g., discrete-log,
computational/decisional Diffie-Hellman, etc...) against preprocessing attacks.
We do not focus on the security of (short) Schnorr signatures against preprocessing
attacks though this could be an interesting direction for future work. Our results
do imply that any attacker, given N public signing keys, cannot forge any
signature except with probability O

(
(t+N)/2k

)
. We remark that an attacker

running in time Õ
(

2k
√
N
)

can extract all N secret keys, but we do not know if

this is tight, i.e., we do not rule out the possibility that an attacker running in
time t = 2k can successfully extract all N secret keys.

Deployment of Schnorr Signatures. The Transport Layer Security (TLS) stan-
dard for the secure HTTPS connections has been maintained by the Internet
Engineering Task Force (IETF), and IETF decided that the standard for the
Schnorr signatures should require that the public key be included inside the hash
function. Later on, Kiltz et al. [KMP16] gave a tight security reduction without
including the public key in the hash function. However, the security reduction is
in the random oracle model and loses a factor of roughly Qh, the number of hash
queries. As they made a stronger assumption, it is not yet clear whether IETF
will drop the public key from the hash input in the TLS standard [CKMS17].
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Derler and Slamanig [DS19] initiated the study of key-homomorphic signature
schemes and showed a tight reduction from single-user security to “key-prefixed”
multi-user security for a class of schemes including Schnorr, admitting a certain
key-homomorphism. In this paper we focus on the original version of Schnorr
signatures, i.e., without “key-prefixing.”

Other Short Signatures. Boneh et al. [BLS04] proposed even shorter signatures
called BLS signatures which is as shorter as 2k bits to yield k-bits of security
which is secure against existential forgery under a chosen-message attack in the
random oracle model assuming that the Computational Diffie-Hellman (CDH)
problem is hard on certain elliptic curves over a finite field. While BLS signatures
yield even shorter signature length than Schnorr signatures, the computation
costs for the BLS verification algorithm is several orders of magnitude higher
due to the reliance on bilinear pairings. If we allow for “heavy” cryptographic
solutions such as indistinguishability obfuscation [GGH+13] (practically infeasible
at the moment) then it becomes possible to achieve k-bit signatures with k-bits
of security [SW14,RW14,LM17].

Generic/Non-Generic Discrete-Log Algorithms. It is well known that in Shoup’s
standard generic group model [Sho97] the discrete-log problem in a group of prime
order q needs time Ω(

√
q) to solve. For certain elliptic curve groups, these lower

bounds are the best known [WZ11,BL12,GWZ15]. A number of popular discrete-
log algorithms can be captured by Shoup’s model, e.g., Baby-Step Giant-Step
algorithm by Shanks [Sha71], Pollard’s Rho and Kangaroo algorithms [Pol78], and
the Pohlig-Hellman algorithm [PH06]. However, not all discrete-log algorithms
are capturable by Shoup’s model. In certain groups (e.g., subgroups of Z∗q) there
exist non-generic algorithms for the discrete-log problem which outperforms the
generic ones, e.g., see [GHS02,MVO91,Sma99].

1.4 Organization of This Paper

In Section 2, we recall the generic group model and the Schnorr signature scheme,
define the short Schnorr signatures and the known and the partially known set
for the security analysis. In Section 3, we give the security definition and the
single-user security proof of short Schnorr signatures, and in Section 4, we prove
the multi-user security of short Schnorr signatures. In Section 5, we analyze the
security of other Fiat-Shamir-based signatures, and in Section 6, we introduce
some (non-standard) generic group models and a generic attack which is not able
to be captured by these models.

2 Preliminaries

2.1 The Generic Group Model

The generic group model is an idealized cryptographic model proposed by Shoup
[Sho97]. Let G = 〈g〉 be a cyclic group of prime order q where g is a generator
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of the group. Here, we can assume that G is multiplicative. Each element of
G will be encoded by bit strings of length ` in a cryptographic scheme. Let G
be a set of bit strings of length `, then the map τ : G → G gives the natural
representation of G in G. The key idea here is that the map τ does not need
to be a group homomorphism because any adversary who attacks a primitive is
only available to see a randomly chosen encoding of each group element. Hence,
the generic group model assumes that an adversary has no access to the concrete
representation of the group elements. Instead, the adversary is given access to an
oracle parametrized by τ which computes the group operation indirectly in G as
well as the encoding of the generator g given as g = τ(g). More precisely, for an
input (a, b) ∈ G×G, the oracles Mult(a, b), Inv(a), act as following:

Mult(a, b) = τ(τ−1(a) · τ−1(b)),

Inv(a) = τ(τ−1(a)−1),

if τ−1(a), τ−1(b) ∈ G. Remark that the adversary has no access to the map τ
itself and does not know what is going on in a group G. Hence, the adversary
has no sense that which element in G maps to Mult(a, b) in G even if she sees
the oracle output.

For convenience we will use the notation Pow(a, k) = τ(τ−1(a)k). Without
loss of generality, we do not allow the attacker to directly query Pow as an
oracle since the attacker can efficiently evaluate this subroutine using the Mult

oracle. In particular, one can evaluate Pow(a, k) using just O (log k) calls to the
multiplication oracle Mult using the standard modular exponentiation algorithm.

2.2 The Schnorr Signature Scheme

The Schnorr signature scheme is a digital signature scheme consists of a tuple
of PPT algorithms Π = (Kg,Sign,Vfy), where Kg(1k) is a key-generation algo-
rithm to generate a public key pk and a secret key sk for security parameter k,
Sign(sk,m) is a signing algorithm which generates a signature σ on a message
m ∈ {0, 1}∗, and Vfy(pk,m, σ) is a verification algorithm which outputs 1 if the
signature is valid and 0 otherwise.

Throughout this paper, we will consider the notion of the generic group
model in the Schnorr signature scheme. The corresponding scheme is described
in Figure 1.

We remark that verification works for a correct signature σ = (s, e) because
Mult(Pow(g, s), Pow(Inv(pk), e)) = τ

(
gs−sk·e

)
= I.

Short Schnorr Signatures. Typically, it is assumed that the random oracle H(I‖m)
outputs a uniformly random element e ∈ Zq where q is a random 2k-bit prime.
Thus, we would need 2k-bits to encode e. To produce a shorter signature we
can assume that H(I‖m) outputs a uniformly random integer e ∈ Z2k which can
be described with just k-bits. In practice the shorter random oracle is easier
to implement in practice since we do not need to worry about rounding issues
when converting a binary string to Z2k i.e., we can simply take the first k bits

8



Kg(1k):

1 : sk←$Zq // q is 2k-bit prime

2 : pk ← Pow(g, sk)

3 : return (pk, sk)

Sign(sk,m):

1 : r←$Zq; I ← Pow(g, r)

2 : e← H(I||m)

3 : s← r + sk · e mod q

4 : return σ = (s, e)

Vfy(pk,m, σ):

1 : R← Mult(Pow(g, s), Pow(Inv(pk), e)) // = τ(g
s · g−sk·e

)

2 : if H(R||m) = e then

3 : return 1

4 : else return 0

Figure 1. The Schnorr Signature Scheme in the Generic Group Model. Remark that
the procedures by calling multiple generic oracles are highlighted in red.

of our random binary string. The result is a signature σ = (s, e) which can be
encoded in 3k-bits — 2k-bits to encode s ∈ Zq plus k bits to encode e. This
natural modification is straightforward and is not new to our paper. The key
question we investigate is whether or not short schnorr signatures can provide
k-bits of security.

3 Single-User Security of Short Schnorr Signatures

As a warm-up to our main result we first prove that short Schnorr Signatures
of length 3k achieve k-bits of security. We first describe the standard signature
forgery experiment SigForgeGOA,Π(k) in the generic group model and the random

oracle model. Here, an attacker is given the public key pk = τ(gsk) along with τ(g)
(the encoding of) the group generator g. The attacker is given oracle access to the
signing oracle Sign(·) as well as the generic group oracles GO = (Mult(·, ·), Inv(·))
and the random oracle H(·). The attacker’s goal is to eventually output a forgery
(m,σ = (s, e)) for a fresh message m that has not previously been submitted to
the signing oracle.

Generic Signature Forgery Game. Recall that a generic group G is defined as a
set of bit strings of length ` and τ : G→ G be the map from a cyclic group G of
prime order q to G. Consider the following experiment defined for a signature
scheme Π = (Kg,Sign,Vfy), the generic oracles GO = (Mult(·, ·), Inv(·)), and
adversary A:

The Generic Signature Forgery Game SigForgeGOA,Π(k):

(1) Kg(1k) is run to obtain the public and the secret keys (pk, sk). Here, sk
is chosen randomly from the group G = Zq where q is a 2k-bit prime,
and pk = τ(gsk) where g is the generator of the group G.
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(2) Adversary A is given (g = τ(g), pk, q) and access to the generic group
oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·) and the signing
oracle Sign(·). After multiple access to these oracles, the adversary
outputs (m,σ = (s, e)).

(3) A succeeds to forge a signature if and only if Vfy(pk,m, σ) = 1 and the
message m was not previously queried by A. We define that
SigForgeGOA,Π(k) = 1 when A succeeds.

We remark that a signature scheme Π yields k-bits of security if any attacker
running in time at most t can forge a signature with probability at most εt = t/2k

and this should hold for all t ≤ 2k. Definition 1 formalizes this argument in the
sense that an attacker forges a signature if and only if SigForgeGOA,Π(k) = 1.

Definition 1. We say that a signature scheme Π = (Kg,Sign,Vfy) is
(t, qRO, qGO, qSign, ε)-UF-CMA secure (unforgeable against chosen message attack)
if for every adversary A running in time at most t and making at most qRO (resp.
qGO, qSign) queries to the random oracle (resp. generic group, signature oracles),
the following bound holds:

Pr
[
SigForgeGOA,Π(k) = 1

]
≤ ε.

3.1 Discrete Log Problem with Restricted Discrete Log Oracle

We prove security of short Schnorr signatures by reductions from a special variant
of the discrete-log problem. It is well known that the regular discrete-log problem
(given τ(gx) find x) is hard in the generic group model. We consider a simple
variant of the problem where the attacker is given access to a (restricted) discrete-
log oracle DLogg(τ(y)) which will output x′ s.t. gx

′
= y as long as τ(y) is a “fresh”

group element, i.e., τ(y) 6= τ(gx) and τ(y) has not previously been the output of
a previous generic group query. We prove that the discrete-log problem remains
hard even if we give the attacker access to this restricted oracle. The formal
definition of the discrete log experiment DLogChalGOA (k) is given below:

The Generic Discrete-Log Game DLogChalGOA (k):

(1) The adversary A is given g = τ(g), τ(h) = τ(gx) for a random value of
x. Here, g is a generator of a cyclic group G = 〈g〉 of order q ≈ 22k and
τ : G→ G is the map from G to a generic group G.

(2) A is allowed to query the usual generic group oracles (Mult, Inv) and is
additionally allowed to query DLogg(τ(y)), but only if τ(y) is “fresh”,
i.e., τ(y) is not τ(g) or τ(h) and τ(y) has not been the output of a
previous random generic group query.

(3) After multiple queries, A outputs x′.
(4) The output of the game is defined to be 1 if x′ = x, and 0 otherwise.

We write DLogChalGOA (k) = 1 if the output of the game is 1 and in this
case we say that A succeeds.

10



Lemma 1 upper bounds the probability that an attacker wins the generic discrete-
log game DLogChalGOA (k).

Lemma 1. The probability the attacker running in time t wins the generic
discrete-log game (even with access to the restricted DLog oracle) is at most

Pr
[
DLogChalGOA (k) = 1

]
≤ 3(t+ 1)t+ 3

q − (3t+ 2)2

where q is the order of the group G.

Proof Sketch: Intuitively, the proof works by modifying the original attacker A to
maintain the invariant that for every output τ(y) that of a generic group query
we can express the discrete-log of y as y = gax+b for known constants a and b.
If we know that y1 = ga1x+b1 and y2 = ga2x+b2 then we know that the output
Mult(τ(y1), τ(y2)) = τ(g(a1+a2)x+(b1+b2)). If we don’t know a1, b1 such that
y1 = ga1x+b1 then τ(y) must be “fresh” in which case we will simply set a1 = 0 and
query for b1 = DLogg(τ(y)) before forwarding the query Mult(τ(y1), τ(y2)) to the
generic group oracle. In our security analysis we keep track of K which consists of
tuples (τ(y), a, b) with a = 0 (elements for which we know the discrete-log solution)
and PKx which consists of tuples of the form (τ(y), a, b) with a 6= 0 (elements
for which the discrete-log solution is partially known). The key-component of the
proof is to introduce an event BRIDGE which is the event that elements in K and
PK collide i.e., either Mult(τ(y1), τ(y2)) ∈ PKx while τ(y1), τ(y2) ∈ K (i.e., we
already know b1, b2 s.t. y1y2 = gb1+b2) or Mult(τ(y1), τ(y2)) ∈ K whenever we
already know a1, a2, b1, b2 with a1 + a2 6= 0 such that y1y2 = g(a1+a2)x+(b1+b2). If
the event BRIDGE occurs we can solve the discrete-log challenge. Conditioning on
the event BRIDGE we can show that any attacker succeeds with negligibly small
probability at most 1

q−(3t+2)2 . We then show that the probability of the event

BRIDGE itself is at most 3(t+1)t+2
q−(3t+2)2 . The full proof of Lemma 1 is in Appendix B.

3.2 Security Reduction

Given Lemma 1 we are now ready to describe our security reduction for short
Schnorr signatures. As in our security proof for the discrete-log problem we
will ensure that for every output τ(y) of a generic group query we can express
y = gax+b for known constants a and b — here x is the secret key that is selected
in the security game i.e., any time Asig makes a query involving a fresh element
τ(y) we will simply query DLogg(τ(y)) so that we can add τ(y) to our known set
K ⊂ L.

Theorem 3 provides the first rigorous proof of the folklore claim that short
3k-bit Schnorr signatures can provide k-bits of security. The formal security proof
uses both the generic group model and the random oracle model:

Theorem 3. In the generic group model of prime order q ≈ 22k and the pro-
grammable random oracle model the short Schnorr signature scheme is

(t, qRO, qGO, qSign, ε)-UF-CMA secure with ε = 3t2+4t+3
q−(3t+2)2 + t2

q + t+1
2k

= O
(
t
2k

)
.
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Proof. Let Π = (Kg,Sign,Vfy) be the Schnorr signature scheme. Given an ad-
versary Asig attacking Schnorr signature scheme, we construct the following
efficient algorithm Adlog which solves the discrete-logarithm problem relative to
the generic group G:

Algorithm Adlog:
The algorithm is given g = τ(g), τ(h) = τ(gx), q as input.

1. Initialize the list L = {(τ(h), 1, 0), (τ(g), 0, 1)} and Hresp = {} where Hresp

stores the random oracle queries.
2. Run Asig with a number of access to the generic oracles GO = (Mult(·, ·),

Inv(·)), Sign(·), and H(·). The signing oracle without a secret key is described
in Figure 2. Now we consider the following cases:
(a) Whenever Asig submits a query x to the random oracle H:

– If there is a pair (x, r) ∈ Hresp for some string r then return r.
– Otherwise, select r ∈ Z2k uniformly at random and add (x, r) to the

set Hresp.
– If x has the form x = (a||m) where the value a has not been observed

previously (i.e., is not in the list L) then we query b = DLogg(a) and

add
(
τ(gb), 0, b

)
to L.

(b) Whenever Asig submits a query a to the generic group oracle Inv(a):
– First check if a is not in the list L. If so we immediately query b =

DLogg(a) and add
(
τ(gb), 0, b

)
to L.

– Otherwise (a, a, b) ∈ L (i.e., a = τ(gax+b)). In this case we query
Inv(a) = τ(g−ax−b), output the result and add the result(
τ(g−ax−b),−a,−b

)
∈ L.

(c) Whenever Asig submits a query a, b to the generic group oracle Mult(a, b):
– First, if the element a (resp. b) is not in the list L then query b0 =

DLogg(a) (resp. b1 = DLogg(b)) and add the element (a, 0, b0) (resp.
(b, 0, b1)) to L.

– Otherwise both elements (a, a0, b0), (b, a1, b1) ∈ L. Then we return
Mult(a, b) = τ(g(a0+a1)x+b0+b1) and add the element
(τ(g(a0+a1)x+b0+b1), a0 + a1, b0 + b1) ∈ L.

(d) Whenever Asig submits a query m to the signing oracle Sign(·):
– We use the procedure described in Figure 2 to forge a signature without

knowledge of the secret key x. Intuitively, the forgery procedure relies
on our ability to program the random oracle.

– We remark that a side effect of querying the Sign oracle is the addition
of the triples (τ(gs), 0, s), (τ(gxe), e, 0) and (τ(gs−xe),−e, s) to L since
these values are computed using the generic group oracles Inv, Mult.

(e) If at any point we have some string y such that (y, a, b) ∈ L and (y, c, d) ∈
L for (a, b) 6= (c, d) then we can immediately return x = (d−b)(a−c)−1.2

Thus, without loss of generality, we can assume that each string y occurs
at most once in the list L.

2 Note that (a, b) 6= (c, d) implies a 6= c since if a = c then gax+b = gax+d implies b = d
as a, b, c, d ∈ Zq.
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3. After Asig outputs σ = (s, e) and m we first compute Iσ = Mult(Pow(τ(g),
s), Inv(Pow(h, e))) = τ(gs · g−xe) and then check to see if we previously had
any triple of the form (Iσ, a, b) ∈ L.
(a) If no such triple exists we return ⊥.
(b) Otherwise, we let a, b be given such that Iσ = τ(gax+b).

– If a+ e = 0 then we return ⊥.
– Otherwise, we return (s− b)(a+ e)−1.

Given: g = τ(g), τ(h) = τ(gx), q

/* begin simulation */

Asig
Mult(·)

Inv(·)

DLogg(·)

H(·)

σ = (s, e),m

Sign(·)
m

σ

1 : Pick s, e randomly

2 : Compute τ(gs), τ(gxe) = τ(τ−1(h)e)

3 : Compute I = τ(gs · g−xe)
4 : if H(I||m) previously queried then

5 : return ⊥
6 : else

7 : Program H(I||m) := e

8 : return σ = (s, e)

Sign(m) without secret key x

/* end simulation */

Compute: Iσ = τ(gs · g−xe), eσ = H(Iσ||m)

Extract: x′ ← Iσ, eσ

Reduction Adlog τ(gx)

x′

Figure 2. A reduction to the discrete-log attacker Adlog from the Schnorr signature
attacker Asig.

Analysis. We first remark that if the signature is valid then we must have
e = H(Iσ||m) and DLogg(Iσ) = s− xe = ax+ b or equivalently s− b = (a+ e)x.

Thus, as long as (a+ e) is invertible we will have x = (s− b)(a+ e)−1.
Now consider the upper bound of the probability that our algorithm outputs

⊥ for failure before Asig outputs a signature as well as the probability our
algorithm outputs ⊥ after Asig outputs a valid signature.

(1) One way to output failure is during the signing oracle if H(I||m) has been
queried previously (Algorithm 2.(d)). We define this event as FailtoSign. Then
we have the following claim to upper bound the probability of the event:

Claim 1. Pr[FailtoSign] ≤ qSign ×
qRO + qSign

q
.
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(2) The second way to output failure is if the value Iσ does not previously appear
in either set PKx or K (Algorithm 3.(a)). We use FailtoFindN (Iσ) to denote
the event that the signature is valid but the value Iσ does not appear in L.
Then we have:

Claim 2. Pr[FailtoFind(Iσ)] ≤ qRO + qSign
q − |L|

+
1

2k
.

(3) Finally, we could output failure if a = −e (Algorithm 3.(b)). We call this
event BadQuery. Then we have:

Claim 3. Pr[BadQuery] ≤ qRO
2k
.

We defer the proofs of Claim 1, Claim 2, and Claim 3 to Appendix B. Now we
have shown that

Pr[DLogChalGOAdlog
(k) = 1] ≥ Pr[SigForgeGOAsig,Π(k) = 1]− Pr[FailtoSign]

− Pr[FailtoFind(Iσ)]− Pr[BadQuery]

≥ Pr[SigForgeGOAsig,Π(k) = 1]− qSign(qRO + qSign)

q

− qRO + qSign
q − |L|

− 1

2k
− qRO

2k
.

Since qRO + qSign ≤ t and |L| ≤ 3t+ 2, we can apply Lemma 1 to conclude that

Pr[SigForgeGOAsig,Π(k) = 1] ≤ 3t2 + 3t+ 3

q − (3t+ 2)2
+
t2

q
+

t

q − 3t− 2
+
t+ 1

2k

≤ 3t2 + 4t+ 3

q − (3t+ 2)2
+
t2

q
+
t+ 1

2k
= O

(
t

2k

)
.

Note that for all t < 2k−1−2
3 we have that (3t+ 2)2 < 22k

4 ≈
q
4 and therefore it

clearly holds that 3t2+4t+3
q−(3t+2)2 = O

(
t
2k

)
.

4 Multi-User Security of Short Schnorr Signatures

We are able to extend the previous security proof of short Schnorr signatures to the
multi-user security with the similar reduction. We begin by introducing the 1-out-
of-N signature forgery game in the generic group plus random oracle model. The
attacker is given N independent public keys pk1, . . . , pkN = τ(gsk1), . . . , τ(gskN )
along with oracle access to the signing oracles Sign(sk1, ·), . . . ,Sign(skN , ·). The
attacker can succeed if he can output a forgery (σ,m) which is valid under any
public key e.g., for some public key pkj we have Vfy(pkj ,m, σ) = 1 while the
query m was never submitted to the jth signing oracle Sign(skj , ·).

In this sense, we argue that the short Schnorr signatures have the multi-user
security in the “1-out-of-N” setting which implies that the probability that the
attacker can forge any one of N signatures is negligible. We first define the
following security games in this multi-user setting.
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1-out-of-N Generic Signature Forgery Game. Consider the generic group model
of prime order q ≈ 22k as stated before. Consider the following experiment
defined for a signature scheme Π = (Kg,Sign,Vfy), the generic oracles GO =
(Mult(·, ·), Inv(·)), and adversary A:

The 1-out-of-N Generic Signature Forgery Game SigForgeGO,NA,Π (k):

(1) Kg(1k) is run N times to obtain the public and the secret keys (pki, ski)
for 1 ≤ i ≤ N . Here, for each 1 ≤ i ≤ N , ski is chosen randomly from
the group G = Zq where q is a 2k-bit prime, and pki = τ(gski) where g
is the generator of the group G.

(2) AdversaryA is given (g = τ(g), pk1, · · · , pkN , q) and access to the generic
group oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·) and the
signing oracles Sign(sk1, ·), . . . ,Sign(skN , ·). After multiple access to
these oracles, the adversary outputs (m,σ = (s, e)).

(3) A succeeds to forge a signature if and only if there exists 1 ≤ j ≤ N such
that Vfy(pkj ,m, σ) = 1 and the query m was never submitted to the

oracle Sign(skj , ·). We define that SigForgeGO,NA,Π (k) = 1 when A succeeds.

Definition 2. We say that a signature scheme Π = (Kg,Sign,Vfy) is
(t,N, qRO, qGO, qSign, ε)-MU-UF-CMA secure (multi-user unforgeable against chosen
message attack) if for every adversary A running in time at most t and making
at most qRO (resp. qGO, qSign) queries to the random oracle (resp. generic group,
signature oracles), the following bound holds:

Pr
[
SigForgeGO,NA,Π (k) = 1

]
≤ ε.

The Known/Partially Known Set in a Multi-User Setting. As before we will
maintain the invariant that for every output y of a generic group query that we
have recorded a tuple (y,a, b) in a list L where DLogg(y) = a ·x+ b (here, a and
x = (x1, . . . , xN ) are N -dimensional vectors). We can partition the global list L
into a known set KN 3 which contains tuples of the form (y,0, b) (discrete log of
τ is known to be b) and a partially known set PKN{xi}Ni=1

which contains tuples of

the form (y,a, b) with a 6= 0. We can maintain the invariant that every output y
is contained in L using our restricted oracle DLogg(·) which will solve DLogg(y)
for any fresh group element y such that y 6∈ {τ(gx1), . . . , τ(gxN )} and y has not
been the output of a prior generic group query.

– Initially,KN contains (τ(g),0, 1) and PKN{xi}Ni=1
contains (τ(hi) = τ(gxi), ei, 0)

for 1 ≤ i ≤ N , where ei is the vector such that ei[i] = 1 and ei[j] = 0 for all
j 6= i.

3 To avoid confusion, we remark that the superscript N is used to denote the known
set in the 1-out-of-N multi-user setting. That is, KN 6= K × · · · × K. Similar for the
partially known sets.
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– If the attacker every submits a fresh group element y which was not previously
the output of a group query then we can query b = DLogg(y) and add (y,0, b)
to our list. Thus, without loss of generality, we can assume that all query
inputs to Mult, Inv were first added to L.

– If (y1,a1, b1), (y2,a2, b2) ∈ L and the attacker queries Mult(y1, y2) we will
add (Mult(y1, y2),a1 + a2, b1 + b2) to L.

– If (y,a, b) ∈ L and the attacker queries Inv(y) we will add (Inv(y),−a,−b)
to L.

4.1 The Multi-User Bridge Game

We establish the multi-user security of short Schnorr signatures via reduction
from a new game we introduce called the “1-out-of-N generic BRIDGEN -finding
game”. As in the 1-out-of-N discrete-log game the attacker is given τ(g) as
well as τ(gx1), . . . , τ(gxN ) for N randomly selected values x1, . . . , xN ∈ Zq. The
key difference between this game and the (multi) discrete-log problem is that
the attackers goal is simply to ensure that the “bridge event” BRIDGEN occurs
whether or not the attacker is able to solve any of the discrete-log challenges.
As in the previous sections we will assume that we have access to a restricted
discrete-log oracle and we will maintain the invariant that for every output
τ(y) of some generic group query we have y = gb+

∑
i aixi for known values

b, a1, . . . , aN ∈ Zq i.e., by querying the restricted oracle DLogg(τ(y)) whenever we
encounter a fresh input. As before we can introduce the known/partially known
sets KN and PKN{xi}Ni=1

i.e., depending on whether (a1, . . . , aN ) = 0 or not.

The event BRIDGEN occurs if L ever contains two distinct tuples (y1,a1, b1)
and (y2,a2, b2) such that y1 = y2 but (a1, b1) 6= (a2, b2). Intuitively, if this occurs
then the attacker can “bridge” the sets KN and PKN{xi}Ni=1

as follows: 1) compute

τ(gb2−b1) using b1 and b2 to ensure (τ(gb2−b1),0, b2 − b1) ∈ KN , and 2) compute

τ(gc·x) = τ(
∏
i h

c[i]
i ) using c = a1 − a2 to ensure that τ(τ(gb2−b1), c, 0) ∈

PKN{xi}Ni=1
— note that b2 − b1 = c · x. As long as the event BRIDGEN has not

occurred we can (essentially) view x1, . . . , xN as uniformly random values that
that yet to be selected. More precisely, the values x1, . . . , xN are selected subject
to a few constraints, e.g., if we know f1 = τ(ga1·x+b1) 6= f2 = τ(ga2·x+b2) then
we have the constraint that a1 · x + b1 6= a2 · x + b2.

The 1-out-of-N Generic BRIDGEN -Finding Game BridgeChalGO,NA (k):

(1) The challenger selects uniformly random x1, · · · , xN ∈ Znq and initializes
the list L = ((τ(g),0, 1), (τ(gx1), e1, 0), . . . , (τ(gxN ), eN , 0)) where ei is
the vector such that ei[i] = 1 and ei[j] = 0 for all j 6= i.

(2) The adversary A is given g = τ(g), τ(hi) = τ(gxi), 1 ≤ i ≤ N for the
random values of x1, · · · , xN . Here, g is a generator of a cyclic group
G = 〈g〉 of prime order q ≈ 22k and τ : G→ G is the map from G to a
generic group G.
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(3) A is allowed to query the usual generic group oracles (Mult, Inv). If
the challenger ever submits any fresh element y which does not appear
in L as input to a generic group oracle then the challenger immedi-
ately queries by = DLogg(y) and adds the tuple (y,0, by) to L. When-
ever A submits a query y to Inv(·) we are ensured that some tuple
(y,ay, by) ∈ L. The challenger adds the tuple (Inv(y),−ay,−by) to L.
Whenever A submits a query y1, y2 to Mult(·, ·) we are ensure that there
exist tuples (y1,a1, b1), (y2,a2, b2) ∈ L. The challenger adds the tuple
(Mult(y1, y2),a1 + a2, b1 + b2) to L.

(4) If at any point in time we have a collision, i.e., two distinct tuples
(y,a1, b1), (y,a1, b1) ∈ L with (a1, b1) 6= (a2, b2) then the event BRIDGEN

occurs and the output of the game is 1 (bridge attacker succeeds). If
BRIDGEN never occurs then the output of the game is 0 (bridge attacker
fails).

Theorem 4. The probability an attacker A running in time t wins the 1-out-
of-N generic BRIDGEN -finding game (even with access to the restricted DLog

oracle) is at most

Pr
[
BridgeChalGO,NA (k) = 1

]
≤ tN + 3t(t+ 1)/2

q − (N + 3t+ 1)2 −N

where q is the order of the group G.

Proof. Consider the output yi of the ith generic group query. We first analyze
the probability that this query results in the event BRIDGEN conditioning on

the event BRIDGE
N

<i that the event has not yet occurred. Before we even receive
the output yi we already know the values ai, bi s.t. the tuple (yi,ai, bi) will be
added to L. If L does already contain this exact tuple then outputting yi will not
produce the event BRIDGEN . If L does not already contain this tuple (yi,ai, bi)
then we are interested in the event Bi that some other tuple (yi,a

′
i, b
′
i) has been

recorded with (a′i, b
′
i) 6= (ai, bi). Observe that Bi occurs if and only if there exists

a tuple of the form (·,a, b) with (a − ai) · x = bi − b and (a, b) 6= (ai, bi). If
we pick x randomly the probability that (a − ai) · x = bi − b would be 1/q.
However, we cannot quite view x as random due to the restrictions, i.e., because

we condition of the event BRIDGE
N

<i we know that for any distinct pair (yi,ai, bi)
and (yi,aj , bj) we know that ai · x + bi 6= aj · x + bj .

Consider sampling x uniformly at random subject to this restriction. Let
r ≤ N be an index s.t. a[r] − ai[r] 6= 0 and suppose that xr = x[r] is the last
value sampled. At this point we can view xr as being drawn uniformly at random
from a set of at least q − |L|2 − (N − 1) remaining values subject to all of the
restrictions. We also observe that |L| ≤ N + 3t+ 1 since each generic group oracle
adds at most three new tuples to L — exactly three in the case that we where
Mult(y1, y2) on two fresh elements. Thus, the probability that (a−ai) ·x = bi−b
is at most 1

q−(N+3t+1)2−(N−1) . Union bounding over all tuples (·,a, b) ∈ L we
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have

Pr
[
Bi : BRIDGE

N

<i

]
≤ N + 3i

q − (N + 3t+ 1)2 −N
.

To complete the proof we observe that

Pr
[
BridgeChalGO,NA (k) = 1

]
=
∑
i≤t

Pr
[
Bi : BRIDGE

N

<i

]
≤
∑
i≤t

N + 3i

q − (N + 3t+ 1)2 −N

=
tN + 3t(t+ 1)/2

q − (N + 3t+ 1)2 −N
.

As an immediate corollary of Theorem 4 we can show that an attacker wins
the 1-out-of-N discrete log game with (approximately) the same probability as
in the bridge game. In particular, given any attacker A′ in the discrete-log-game
1ofNDLogGO,NA (k) where the attackers goal is to output any x ∈ {x1, . . . , xN}
given input τ(g), τ(gx1), . . . , τ(gxn) we can construct an attacker A in the game

BridgeChalGO,NA (k). A simply runs A′ to obtain an output x and then computes
τ(gx) using at most 2 log q queries to the Mult(·, ·) oracle. If x ∈ {x1, . . . , xN}
then the bridge event BRIDGEN must have occurred at some point since we have
(τ(gx),0, x) ∈ L and (τ(gx), ei, 0) ∈ L for some i ≤ N .

Corollary 1. For any attacker A running in time t′ = t+ 2 log q we have

Pr
[
1ofNDLogGO,NA (k) = 1

]
≤ tN + 3t(t+ 1)/2

q − (N + 3t+ 1)2 −N

where q is the order of the group G.

4.2 Security Reduction

Theorem 5. In the generic group model of prime order q ≈ 22k and the pro-
grammable random oracle model the short Schnorr signature scheme is

(t,N, qRO, qGO, qSign, ε)-MU-UF-CMA secure with ε = tN+3t(t+2)/2
q−(N+3t+1)2−N + t2

q + t+1
2k

=

O
(
t+N
2k

)
.

Proof. Let Π = (Kg,Sign,Vfy) be the Schnorr signature scheme. Given an adver-
sary Asig attacking Schnorr signature scheme, we construct the following efficient

algorithm Abridge which tries to succeed in the 1-out-of-N generic BRIDGEN -

finding game BridgeChalGO,NAbridge
(k):

Algorithm Abridge:
The algorithm is given g = τ(g), τ(hi) = τ(gxi), 1 ≤ i ≤ N, q as input.
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1. Initialize the list L = {(τ(g),0, 1), (τ(hi) = τ(gxi), ei, 0) for 1 ≤ i ≤ N}
where ei is the vector such that ei[i] = 1 and ei[j] = 0 for all j 6= i, and
Hresp = {} where Hresp stores the random oracle queries.

2. Run Asig with a number of access to the generic oracles GO = (Mult(·, ·),
Inv(·)), DLogg(·), Signi(·) for 1 ≤ i ≤ N , and H(·). The signing oracle without
a secret key is described in Figure 3. Now we consider the following cases:
(a) Whenever Asig submits a query xi to the random oracle H:

– If there is a pair (xi, ri) ∈ Hresp for some string ri then return ri.
– Otherwise, select ri ∈ Z2k uniformly at random and add (xi, ri) to the

set Hresp.
– If xi has the form xi = (ai||mi) where the value ai has not been

observed previously (i.e., is not in the list L) then we query bi =
DLogg(ai) and add

(
τ(gbi),0, bi

)
to L.

(b) Whenever Asig submits a query a to the generic group oracle Inv(a):
– If a is not in the list L then we immediately query b = DLogg(a) and

add
(
τ(gb),0, b

)
to L.

– Otherwise, (a,a, b) ∈ L. Then we query Inv(a) = τ(g−a·x−b), output
the result and add the result

(
τ(g−a·x−b),−a,−b

)
∈ L.

(c) Whenever Asig submits a query a, b to the generic group oracle Mult(a, b):
– If the element a (resp. b) is not in L then query b0 = DLogg(a) (resp.
b1 = DLogg(b)) and add the element (a,0, b0) (resp. (b,0, b1)) to L.

– Otherwise both elements (a,a0, b0), (b,a1, b1) ∈ L. Then we return
Mult(a, b) = τ(g(a0+a1)·x+b0+b1) and add the element
(τ(g(a0+a1)·x+b0+b1),a0 + a1, b0 + b1) ∈ L.

(d) Whenever Asig submits a query mi to the signing oracle Sign(xj , ·):
– We use the procedure Signj described in Figure 3 to forge a signa-

ture without knowledge of the secret key xi. Intuitively, the forgery
procedure relies on our ability to program the random oracle.

– We remark that a side effect of querying the Signj oracle is the addition

of the triples (τ(gsi),0, si), (τ(gxjei), e
[i]
i , 0) and (τ(gsi−xjei),−e[i]i , si)

to L where e
[i]
i = (0, · · · 0, ei, 0 · · · , 0) ∈ ZNq denotes the vector with

the ith element ei and 0 elsewhere, since these values are computed
using the generic group oracles Inv, Mult.

(e) If at any point we have some string y such that (y,a, b) ∈ L and (y, c, d) ∈
L for (a, b) 6= (c, d) then we can immediately have a BRIDGEN instance
(τ(g(a−c)·x),a− c, 0) ∈ L and (τ(gd−b),0, d− b) ∈ L since τ(g(a−c)·x) =
τ(gd−b).4 Thus, without loss of generality, we can assume that each string
y occurs at most once in the list L.

3. AfterAsig outputs σi∗ = (si∗, ei∗) andmi∗ we first compute Iσi∗ = Mult(Pow(τ(g),
si∗), Inv(Pow(hi∗, ei∗))) = τ(gsi∗ · g−xi∗ei∗) and then check to see if we previ-
ously had any triple of the form (Iσi∗ ,a, b) ∈ L.
(a) If no such tuple exists we return ⊥.
(b) Otherwise, we let a, b be given such that Iσi∗ = τ(ga·x+b).

4 Note that (a, b) 6= (c, d) implies a 6= c since if a = c then ga·x+b = ga·x+d implies
b = d as b, d ∈ Zq.
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– If a + e
[i∗]
i∗ = 0 then we return ⊥ where e

[i∗]
i∗ = (0, · · · 0, ei∗, 0 · · · , 0) ∈

ZNq denotes the vector with the i∗th element ei∗ and 0 elsewhere.

– Otherwise, we return a BRIDGEN instance (τ(gsi∗−b),a + e
[i∗]
i∗ , 0) ∈ L

and (τ(gsi∗−b),0, si∗ − b) ∈ L.

Given: g = τ(g), τ(hi) = τ(gxi), 1 ≤ i ≤ N, q
/* begin simulation */

Asig

Mult(·)

Inv(·)

DLogg(·)

H(·)

σi∗ = (si∗, ei∗),mi∗

Signj(·)
{mi}Ni=1

{σi}Ni=1

1 : Pick si, ei randomly

2 : Compute τ(gsi), τ(gxjei) = τ(τ−1(hj)
ei)

3 : Compute Ii = τ(gsi · g−xjei)
4 : if H(Ii||mi) previously queried then

5 : return ⊥
6 : else

7 : Program H(Ii||mi) := ei

8 : return σi = (si, ei)

Signj(mi) without secret key xj (1 ≤ j ≤ N)

/* end simulation */

Compute: Iσi∗ = τ(gsi∗ · g−xi∗ei∗), eσi∗ = H(Iσi∗ ||mi∗)

Extract: a ∈ G,a ∈ ZNq , b, c ∈ Zq

Reduction Abridge

Figure 3. A reduction to the BridgeChalGO,NAbridge
(k) attacker Abridge from the Schnorr

signature attacker Asig.

Analysis. We first remark that if the signature is valid then we must have
ei∗ = H(Iσi∗ ||mi∗) and DLogg(Iσi∗) = si∗ − xi∗ei∗ = a · x + b or equivalently

si∗− b = (a+ e
[i∗]
i∗ ) ·x. Thus, as long as a+ e

[i∗]
i∗ is a nonzero vector we will have

a BRIDGEN instance (τ(gsi∗−b),a + e
[i∗]
i∗ , 0) ∈ L and (τ(gsi∗−b),0, si∗ − b) ∈ L.

Now consider the upper bound of the probability that our algorithm outputs
⊥ for failure before Asig outputs a signature as well as the probability our
algorithm outputs ⊥ after Asig outputs a valid signature.

(1) One way to output failure is during the signing oracle if H(Ii||mi) has been
queried previously (Algorithm 2.(d)). We define this event as FailtoSignN .
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Then we have the following claim to upper bound the probability of the
event:

Claim 4. Pr[FailtoSignN ] ≤ qSign ×
qRO + qSign

q
.

Proof. Since, Ii = Pow(τ(g), ri) represents a fresh/randomly selected group
element we can use union bounds to upper bound the probability that this failure
event ever occurs as Pr[FailtoSignN ] ≤ qSign × qRO+qSign

q where qSign is the total
number of queries to the signing oracle and qRO is the total number of queries to
the random oracle.

(2) The second way to output failure is if the value Iσi∗ does not previously
appear in the list L (Algorithm 3.(a)). We use FailtoFindN (Iσi∗) to denote
the event that the signature is valid but the value Iσi∗ does not appear in L.

Claim 5. Pr[FailtoFindN (Iσi∗)] ≤
qRO + qSign
q − |L|

+
1

2k
.

Proof. If Iσi∗ 6∈ L then we can view Iσi∗ = τ(gsi∗ ·g−xi∗ei∗) as a uniformly random
binary string from a set of size at least q− |L| which had not yet been selected at
the time Asig output σi∗. Thus, the probability that the query H(Iσi∗ ||mi∗) was
previously recorded is at most (qRO + qSign)/ (q − |L|). Observe that if the query
H(Iσi∗ ||mi∗) was not previously recorded then the probability of a successful
forgery H(Iσi∗ ||mi∗) = ei∗ is at most 2−k since we can view H(Iσi∗ ||mi∗) as
a uniformly random k-bit string. Hence, we have that Pr[FailtoFindN (Iσi∗)] ≤
qRO+qSign
q−|L| + 1

2k
.

(3) Finally, we could output failure if a = −e[i∗]i∗ (Algorithm 3.(b)). We call this

event BadQueryN .

Claim 6. Pr[BadQueryN ] ≤ qRO
2k
.

Proof. We first note that by construction we ensure that the tuple (I,a, b) will
always be recorded in L before a query of the form H(I||m) is ever issued — if
I is new then we call DLogg(I) before querying the random oracle. Now define

a subset L̂ ⊂ L as the set of tuples (a,a, b) ∈ G × ZNq × Zq ⊂ L such that a
has exactly one nonzero element. Now we call a random oracle query x = I||m
“bad” if H(x) = ã where the triple (I,a, b) ∈ L̂ has already been recorded and the
nonzero element of a is ã (Recall that if there were two recorded triples (I,a, b)
and (I, c, d) then our algorithm would have already found a BRIDGEN instance).
We can use union bounds to upper bound the probability of any “bad” query as
Pr[BadQueryN ] ≤ qRO

2k
.

Now We have shown that

Pr[BridgeChalGO,NAbridge
(k) = 1] ≥ Pr[SigForgeGO,NAsig,Π

(k) = 1]− Pr[FailtoSignN ]
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− Pr[FailtoFindN (Iσi∗)]− Pr[BadQueryN ]

≥ Pr[SigForgeGO,NAsig,Π
(k)]− qSign(qRO + qSign)

q

− qRO + qSign
q − |L|

− 1

2k
− qRO

2k
.

Since we have |L| ≤ N + 3t+ 1 and qRO + qSign ≤ t, we can apply Theorem 4 to
conclude that

Pr[SigForgeGO,NAsig,Π
(k) = 1] ≤ tN+3t(t+1)/2

q−(N+3t+1)2−N + t2

q + t
q−(N+3t+1) + t+1

2k

≤ tN+3t(t+2)/2
q−(N+3t+1)2−N + t2

q + t+1
2k

= O
(
t+N
2k

)
.

5 Multi-User Security of Other Fiat-Shamir Signatures

We recall that the core ideas in the security reduction of proving (multi-user)
security of short Schnorr signatures are the following:

(1) Creating the known and the partially known set in the generic group model,
(2) Defining the event BRIDGE (resp. BRIDGEN ) and upper-bounding the prob-

ability of the event happens, and
(3) Programming the random oracle H when signing the message without the

secret key.

Thus, we can follow the same technique in other Fiat-Shamir based group
signature schemes and argue that such signatures are also provide k-bits of
MU-UF-CMA-security in the generic group model and the programmable random
oracle model.

Security Analysis of Chaum-Pederson Signatures. The Chaum-Pederson signature
scheme [CP93] is obtained by applying the Fiat-Shamir transform to the Chaum-
Pederson identification scheme and works as follows5. Let q be a prime and define
G = 〈g〉 as the cyclic group of order q. In our presentation we assume that the
message m ∈ G as shown in Figure 4. One can easily extend the signature scheme
to arbitrary message m ∈ {0, 1}∗ using a collision-resistant hash function to map
m to a group element h(m) ∈ G.

Then it is not difficult to see that the same reduction technique works for
the Chaum-Pederson signature scheme as well. The key difference from the
short Schnorr signatures is to sign a message without the secret key x when
programming the random oracle as demonstrated in Figure 6.

5 The Chaum-Pederson signature scheme is nearly identical to Katz-Wang signa-
tures [KW03] except for the exclusion of the public key from the hash computation
i.e., e← H(pk, a, b,m) in [KW03].
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Kg(1k):

1 : sk←$Zq
2 : pk ← (q, g, gsk)

3 : return (pk, sk)

Sign(sk,m):

1 : r←$Zq; z = msk

2 : (a, b)← (gr,mr)

3 : e← H(m, z, a, b)

4 : s← r + sk · e mod q

5 : return σ = (z, a, b, s)

Vfy(pk,m, σ):

1 : Compute gs, agsk·e,ms, bze

2 : if gs = agsk·e ∧ms = bze then

3 : return 1

4 : else return 0

Figure 4. The Chaum-Pederson Signature Scheme.

Since the reduction procedure can be naturally extended to the Chaum-
Pederson signature scheme with the signing oracle above, we can argue that
Theorem 6 holds. We remark that a Chaum-Pederson signature with k-bits of
security has length 8k — each group element requires 2k bits to encode since
q ≈ 22k. Note that reducing the length of the hash output does not have any
affect on Chaum-Pederson signature length. Thus, we assume that H is a random
oracle with 2k-bit outputs. We defer the proofs to Appendix B for the interested
readers.

Theorem 6. The Chaum-Pederson signature scheme is(
t,N, qRO, qGO, qSign,O

(
t+N
2k

))
-MU-UF-CMA secure under the generic group model

of prime order q ≈ 22k and the programmable random oracle model.

Proof Sketch of Theorem 6: We follow the same security reduction as in
Theorem 5 using the signing oracle in Figure 6 (left). One minor difference in
the analysis is that the hash output is 2k-bits instead of k-bits e.g., in Claim 6
the bound is Pr[BadQueryN ] ≤ 2−2k instead of 2−k. 2

Security Analysis of Katz-Wang Signatures. The Katz-Wang signature scheme
[KW03] is a double generator version of Schnorr signature scheme. Here, let
G = 〈g1〉 = 〈g2〉 be a cyclic group of prime order q with two generators g1 and
g2. Here, the message space for m is arbitrary, i.e., m ∈ {0, 1}∗.

Kg(1k):

1 : sk←$Zq
2 : h1 ← gsk1 , h2 ← gsk2

3 : pk ← (g1, g2, h1, h2)

4 : return (pk, sk)

Sign(sk,m):

1 : r←$Zq
2 : a← gr1 , b← gr2

3 : e← H(pk, a, b,m)

4 : s← r + sk · e mod q

5 : return σ = (s, e)

Vfy(pk,m, σ):

1 : a′ ← gs1h
−e
1 , b′ ← gs2h

−e
2

2 : if e = H(pk, a′, b′,m) then

3 : return 1

4 : else return 0

Figure 5. The Katz-Wang Signature Scheme.
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In this case, the signing oracle Sign(m) without the secret key x works as
shown in Figure 6. We remark that this is almost the same as the one from
the Schnorr signatures except the oracle computes for the two generators g1
and g2. We remark that the length of a regular Katz-Wang signature is 4k

Sign(m) without secret key x

1 : Pick s, e, z randomly

2 : Compute τ(gs), τ(ms), τ(gx·e), τ(ze)

3 : Compute a = τ(gs · g−xe),

4 : Compute b = τ(ms · z−e)
5 : if H(m, z, a, b) ∈ prior query then

6 : return ⊥
7 : else Program H(m, z, a, b) := e

8 : return σ = (z, a, b, s)

Sign(m) without secret key x

1 : Pick s, e randomly

2 : Compute τ(gsi ), τ(gxei ) for i = 1, 2

3 : Compute a = τ(gs−xe1 ), b = τ(gs−xe2 )

4 : if H(pk, a, b,m) ∈ prior query then

5 : return ⊥
6 : else Program H(pk, a, b,m) := e

7 : return σ = (s, e)

Figure 6. The Signing Oracle without Secret Key in the Chaum-Pederson Scheme
(Left) and the Katz-Wang Scheme (Right).

bits when q ≈ 22k. Similar to Short Schnorr Signatures one can shorten the
length of the hash output to k bits to obtain 3k bit signature. Essentially the
same reduction can be used to demonstrate the multi-user security of (short)
Katz-Wang signatures.

Theorem 7. The (short) Katz-Wang signature scheme is(
t,N, qRO, qGO, qSign,O

(
t+N
2k

))
-MU-UF-CMA secure under the generic group model

of prime order q ≈ 22k and the programmable random oracle model.

Proof Sketch of Theorem 7: We follow the same security reduction as in
Theorem 5 using the signing oracle in as described in Figure 6 (right). In our
reduction we assume that DLogg1(g2) is publicly known. Thus, we can maintain

our list L of tuples (y,a, b) s.t. y = τ
(
gx·a+b1

)
where x[i] denotes the ith secret

key. 2

Remark 1. Kiltz et al. [KMP16] showed that if the decisional Diffie-Hellman
problem is (t, ε)-hard then an adversary who tries to forge one out of N (regular)
Katz-Wang signatures running at most time t′ can succeed with the probability
ε′ upper bounded by

ε′ ≤ t′
(

4 · ε
t

+
qSign
q

+
1

2k

)
.
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6 Non-Standard Generic Group Models

In our analysis we show that short Schnorr signatures provide k-bits of secu-
rity in Shoup’s original generic group model [Sho97]. Schnorr and Jakobsson’s
model [SJ00] previously established the security of short Schnorr signatures in
their version of the generic group model using programmable random oracles.
Similarly, Kiltz et al. [KMP16] proved that regular Schnorr signatures provide
k-bits of security in the multi-user setting using a different version of the generic
group model. In this section we review the different variants of the generic group
model, and motivate why we chose to conduct our analysis in Shoup’s original
model [Sho97]. As a motivating example we consider a recent generic preprocess-
ing attack on the squared Decisional Diffie-Hellman problem (sqDDH) [KM10]
due to Corrigan-Gibbs and Kogan [CK18]. While it is straightforward to describe
the attack in the standard generic group model [Sho97] it does appear to be not
possible to describe the attack in non-standard variations of the generic group
model.

6.1 The Generic Group Model based on Collisions

In the generic group model of Shoup the attacker is given a handle τ(h) for any
group element that is the output of any generic group query. In the model of
Schnorr and Jakobsson [SJ00] the attacker is not directly given a handle. In
particular, if fi denotes the output of the ith generic group query the attacker
is simply informed whether or not fi is a new group element or whether fi
collided with a prior query. The attacker may indirectly reference previously
computed group elements by submitting a query (a1, · · · , ai−1) ∈ Zi−1q to the
generic group oracle. The attacker is then informed whether or not the group
element fi :=

∏i−1
j=1 f

aj
j is new or not. If fi ∈ {f1, . . . , fi−1} then the attacker

is given the index j < i of any group element such that fj = fi. The formal
definition of a generic algorithm, as defined by Schnorr and Jakobsson [SJ00], is
given in Definition 3.

Definition 3. [SJ00] A (non-standard) generic algorithm is a sequence of t
generic steps; for time 1 ≤ t′ < t, the algorithm takes inputs as f1, · · · , ft′ ∈ G,
and computes fi =

∏i−1
j=1 f

aj
j for i = t′ + 1, · · · , t, where (a1, · · · , ai−1) ∈ Zi−1q

depends arbitrarily on i, the non-group element and the set COi−1 := {(j, k)|fj =
fk, 1 ≤ j < k ≤ i− 1} of previous “collisions” of group elements.

Remark 2. While many natural attacks can be modeled using Definition 3, there
are several limitations due to the lack of a direct handle on group elements. In
Definition 3 the only way to obtain new group elements is by executing another
generic step. By contrast, in Shoup’s model the attacker can pick a binary string
x at any time expecting that x = τ(h) for some group element h ∈ G and submit
x as the input to generic group oracles. Similarly, in Shoup’s model the attacker
can easily “mark” or partition the group elements G. In fact, this can be done
before the attacker ever queries the generic group oracle(s). For example, we could
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define G0 = {h : 0 = τ(h) mod 2} and G1 = {h : 1 = τ(h) mod 2}. Later
when we are given the handle τ(h) it is trivial to test whether h ∈ Gb. Similarly,
if we define G0 = {h : τ(h) = 0 mod

√
q} then it is easy to sample elements in

G0 in Shoup’s model i.e., pick a random x such that x = 0 mod
√
q expecting

that x = τ(h) for some h ∈ G.

Preprocessing Attacks on the sqDDH Problems. As an illustrative example of
a generic attack which cannot be described in this non-standard generic group
model we discuss the preprocessing attack on the sqDDH problem [KM10]
proposed by Corrigan-Gibbs and Kogan [CK18]. The sqDDH problem requires to

distinguish tuples of the form (g, gx, gy) from (g, gx, g(x
2)) for random x, y ∈ Zq.

Corrigan-Gibbs and Kogan [CK18] introduced a sqDDH distinguisher DsqDDH

using preprocessing. The preprocessing attack generates a hint of size at most
s (bits) in the offline phase after arbitrary interaction with the generic group
oracles. In the online phase the attacker is given the pair (τ(h1), τ(h2)) and
must guess whether the pair is a valid sqDDH pair. The attack of Corrigan-
Gibbs and Kogan [CK18] runs in time t and achieves advantage ε provided
that st2 = Ω(qε2) (see Theorem 8). Interestingly, this attack matches the lower
bound for the regular DDH problem i.e., any preprocessing attack which achieves
distinguishing advantage ε for DDH must have st2 = Ω̃(qε2).

Intuitively, the preprocessing phase takes advantage of the ability of the
attacker to “mark” and/or “color” exponentially large subsets of pairs (u1, u2) ∈
G2 — a capability that the attacker does not have in Definition 3. In particular,
the attack relies on several random functions Hm : G2 → {1, . . . , t} and Hc : G2 →
{1, . . . , s} to “mark” and “color” vertices i.e., the set of marked vertices is M =
{(u1, u2) ∈ G2 : Hm(u1, u2) = 1} and any marked node (u1, u2) ∈M is assigned
the color Hc(u1, u2). Next Corrigan-Gibbs and Kogan define a random walk using a
random function f : τ(G)2 → Zq, i.e., starting at the node (τ(h0), τ(h1)) ∈ τ(G)2

we compute α← f(τ(h0), τ(h1)) and move to (τ(hα0 ), τ(h
(α2)
1 ) ∈ τ(G)2. Letting

Y = {(τ(gx), τ(g(x
2))) : x ∈ Zq} ⊂ τ(G)2 denote the “yes” instance of the sqDDH

problem it is easy to observe that walk that starts inside (resp. outside) Y remains
inside (resp. outside) Y. The random walk is used to select Ω

(
q/(3t2)

)
marked

nodes T ⊆ Y. Then for each color c ∈ {1, . . . , s} the preprocessing algorithm
computes the advice string pc ∈ {0, 1}log q s.t.

pc = argmax
p∈{0,1}log q

∑
(m,cm)∈T :
cm=c

H(p,m),

where H : {0, 1}log q ×G2 → {0, 1} is a random function. For completeness we
include a description of the complete attack in Appendix A.

We now discuss some of the inherent challenges in modeling the attack why
the non-standard generic group model cannot capture the sqDDH distinguishing
attack illustrated above. When it comes to sampling a set of q2/t “marked” points
M := {(τ(y0), τ(y1)) : Hm(τ(y0), τ(y1)) = 1} we required an explicit handle τ(·)
in addition to the random hash function Hm : G2 → {1, . . . , t}. Similarly, coloring
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each of the marked points using the random function Hm requires an explicit
handle. Finally, we also require an explicit handle to compute each of the advice
strings pc using the hash function H : {0, 1}log q ×G2 → {0, 1}.

6.2 The Generic Group Model using Incrementing Counters

While version of the generic group model used by Kiltz et al. [KMP16] is different
from Schnorr and Jakobsson [SJ00], it is also not equivalent to the original generic
group model of Shoup [Sho97]. In fact we show that any generic attack in the
model of Kiltz et al. [KMP16] can we simulated within the model of Schnorr and
Jakobsson [SJ00]. Thus, the model used by Kiltz et al. [KMP16] would also fail
to capture attacks that require explicit handles on group elements such as the
sqDDH preprocessing attack [CK18].

In the model of Kiltz et al. [KMP16] the generic group oracle maintains a
global counter i which is incremented every time a new group element is produced.
The generic group oracle also maintains a list of tuples which consists of the
group element along with the corresponding counter, i.e., (y, Cy) ∈ Zq ×N where
N denotes the set of positive integers. The counter Cy for each group element
y is used as a “handle”, e.g., if g and h = gx are the “public” group elements
then the attacker is initially given the counters Cg = 1 and Ch = 2 and the next
group element r that is generated will be assigned counter value Cr = 3.

Formally, the generic oracle works as following:

Oracle OG:
The oracle OG takes input of two counters and output the resulting counter.

1. (Initialization) Let g = g1, h1 = gx1 , . . . , h = gxn be the initial public
elements. We add (1, C1 = 1) (the generator), and (xi, Cxi

= i+ 1) for each
xi ∈ Zq to our table. We also set our global counter i = n+ 1 to count the
number of group elements observed so far.

2. On input of two counters (Ca, Cb), the oracle searches the internal values
(a,Ca) and (b, Cb), and computes z = a+ b mod q.

3. If the tuple (z, Cz) already is in the list, then output the counter Cz.
4. Otherwise, the counter i is increased by 1, the tuple (z, Cz := i) is stored in

the list, and the oracle outputs the counter Cz.

Consider a generic attack in the model above. We can translate this attack to
an attack within model of Schnorr and Jakobsson [SJ00] by defining αCa,Cb

∈ Z∗q
s.t. αCa,Cb

[j] = 0 for all j 6= Ca, Cb. If Ca = Cb then αCa,Cb
[Ca] = 2 otherwise

αCa,Cb
[Ca] = αCa,Cb

[Cb] = 1. If we let fi be the group element corresponding to
the counter i (following the notation of Schnorr and Jakobsson [SJ00]) then the

response to the query αCa,Cb
is
∏
j f

αCa,Cb
[j]

j = fCa
fCb

. Whenever our generic
attack submits the query (Ca, Cb) to the oracle OG we intercept this query and
submit the query αCa,Cb

to the Schnorr/ Jakobsson oracle. We are not given the
output fCa

fCb
directly, but we are informed whether or not a collision occurred

(and where) which allows us to either increment the counter or (in the case of a
collision) return the original counter.
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Thus, any attack which cannot be described by the model of Schnorr and
Jakobsson [SJ00] also cannot be described using the model of Kiltz et al. [KMP16].

Remark 3. Another limitation is that there is no Inv oracle in the Kiltz et
al. [KMP16]. Thus, computing h−1 requires us to compute hq−1 using O(log q )
queries to the generic group model. Thus, to simulate an attacker who makes t
queries to the Mult, Inv oracles we might require up to t log q queries if we only
have the Mult oracle. Such a reduction increases running time by a factor of
O (log q) so we lose a factor of log q in the security reduction if their is an efficient
algorithm to compute h−1 directly.
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A Preprocessing Attack on sqDDH

For completeness we include the description of the preprocessing attack of
Corrigan-Gibbs and Kogan [CK18] on the sqDDH problem. The sqDDH problem

requires to distinguish tuples of the form (g, gx, gy) from (g, gx, g(x
2)) for random

x, y ∈ Zq. Corrigan-Gibbs and Kogan [CK18] introduced a sqDDH distinguisher
DsqDDH using preprocessing. The preprocessing attack generates a hint of size at
most s (bits) in the offline phase after arbitrary interaction with the generic group
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oracles. In the online phase the attacker is given the pair (τ(h1), τ(h2)) and must
guess whether the pair is a valid sqDDH pair. The attack of Corrigan-Gibbs and
Kogan [CK18] runs in time t and achieves advantage ε provided that st2 = Ω(qε2).
Interestingly, this attack matches the lower bound for the regular DDH problem
i.e., any preprocessing attack which achieves distinguishing advantage ε for DDH
must have st2 = Ω̃(qε2).

Consider a cyclic group G = 〈g〉 of prime order q ≈ 22k and τ : G → G a
random injective encoding map from G from the set of bit strings G. In this
algorithm we consider the image of the group G through the map τ , i.e., τ(G) ⊂ G.

Corrigan-Gibbs and Kogan define the subset of vertices Y = {(τ(gx), τ(g(x
2))) :

x ∈ Zq} ⊂ τ(G)2 that correspond to “yes” instance of the sqDDH problem.

Algorithm DsqDDH:
The algorithm takes as input s, t ∈ Z+ := {1, 2, 3, . . .}, a sqDDH challenge
(τ(h0), τ(h1)) ∈ τ(G)2 and outputs “1” if it is a valid sqDDH pair and outputs
“0” otherwise.

1. Defining a walk, marking and coloring.
(a) To define a walk, use a random function f : τ(G)2 → Zq. Given a

point (τ(h0), τ(h1)) ∈ τ(G)2, the walk computes α ← f(τ(h0), τ(h1))

and moves to (τ(hα0 ), τ(h
(α2)
1 ) ∈ τ(G)2. It is easy to observe that if the

walk starts in Y (resp. not in Y) then the walk remains inside of Y (resp.
outside of Y.)

(b) There are q2 total vertices of the form (τ(gi), τ(gj)) ∈ τ(G)2, 0 ≤ i, j ≤
q−1 in the graph. Among them, Corrigan-Gibbs and Kogan use a random
function Hm : G2 → {1, . . . , t} to “mark” points independently at random
with probability 1/t, e.g., the point (a, b) ∈ G2 is marked if and only if
Hm(a, b) = 1. Similarly, marked points are assigned to one of s different
“colors” using a separate random function Hc : G2 → {1, . . . , s}. Denote
the set of marked points by M⊂ G2.

2. Preprocessing phase.
(a) Choose q/(3t2) random points in Y. From each point, take 2t steps of

the walk on τ(G)2 that the function f defines. Halt the walk when reach
a marked point m ∈M. If the walk hits the point m, store the point m
along with its color cm in a table. We call this table T .

(b) Group the endpoints of the walks by color. For each color c ∈ {1, . . . , s},
find the prefix string pc ∈ {0, 1}log q such that

pc = argmax
p∈{0,1}log q

∑
(m,cm)∈T :
cm=c

H(p,m),

where H : {0, 1}log q ×G2 → {0, 1} is a random function.
(c) Store the prefix strings (p1, . . . , ps) as the distinguisher’s advice.

3. Online phase.
(a) Given a sqDDH challenge (τ(h0), τ(h1)) ∈ τ(G)2, perform at most 10t

steps of the walk on τ(G)2 as defined before.

31



– When the walk hits a marked point m ∈ M of color c, then return
the value H(pc,m).

– If the walk never hits a marked point, then return “0” or “1” with
probability 1/2 each.

Theorem 8 shows that the preprocessing attack by Corrigan-Gibbs and
Kogan [CK18] illustrated above gives that st2 = Ω(ε2q) which matches the lower
bound for the regular DDH problem. Corrigan-Gibbs and Kogan also remarked
that if we consider the pseudo-random generator P (x) := (τ(gx), τ(g(x

2))) that
maps Zq to G2, then with the generic algorithms with preprocessing it becomes
significantly easier to distinguish this PRG from random than it is to compute
discrete logs.

Theorem 8. [CK18] There is a sqDDH distinguisher with preprocessing that

makes use of a random function, uses Õ(s) bits of group-specific advice, runs in

time Õ(t), and achieves distinguishing advantage ε whenever st2 = Ω(ε2q).

Another significance of this preprocessing attack comes to arise when compared
to the generic lower bound for the discrete-log problems (Theorem 9). Consider
a simple sqDDH distinguisher with input (τ(h0), τ(h1)) ∈ G2, computes the

discrete-log x = logg(h0) and checks whether τ(h1) = τ(g(x
2)) ∈ G. Theorem 9

indicates that this simple attack allows the parameter setting s = t = 1/ε = q1/4

since st2 = Ω̃(εq). In contrast, the distinguisher in Theorem 8 allows the better
running time and advice complexity s = t = 1/ε = q1/5 as the preprocessing
attack has st2 = Ω(ε2q).

Theorem 9. [CK18] Let G be a cyclic group of prime order q. Let (A0,A1) be
a pair of generic algorithms for G on G, such that A0 outputs an s-bit state, A1

makes at most t oracle queries, and

Pr
τ,x,A1

[
AGO

1

(
AGO

0 (τ(1)), τ(x)
)

= x
]
≥ ε,

where the probability is taken over the uniformly random choice of the encoding
function τ : G→ G, the instance x ∈ Zq, and the coins of A1. Then st2 = Ω̃(εq).

B Missing Proofs

Reminder of Lemma 1. The probability the attacker running in time t wins
the generic discrete-log game (even with access to the restricted DLog oracle) is
at most

Pr
[
DLogChalGOA (k) = 1

]
≤ 3(t+ 1)t+ 3

q − (3t+ 2)2

where q is the order of the group G.

Proof of Lemma 1: Without loss of generality, we can assume that for every
generic group query involving a “fresh” τ(y) that the attacker queries DLogg(τ(y))
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before making the query (We say WLOG because the attacker can always ignore
the result.) Thus, we will build up the known sets K (initially contains (τ(g), 0, 1))
and the partially known set PKx (initially contains (τ(h), 1, 0)) as described in
Section 1.2. Recall that we have the following observations for those sets:

– Initially, K contains (τ(g), 0, 1) and PKx contains (τ(h) = τ(gx), 1, 0).
– If (a1, 0, c1), (a2, 0, c2) ∈ K, then (Mult(a1, a2), 0, c1 + c2) can be added to K.
– If (a1, a1, b1), (a2, a2, b2) ∈ PKx, then (Mult(a1, a2), a1 + a2, b1 + b2) can be

added to PKx except for a special case when a1 + a2 = 0 in which case the
tuple (Mult(a1, a2), 0, b1 + b2) should be added to K instead.

– If (a, 0, c) ∈ K and (b, a, b) ∈ PKx, then (Mult(a, b), a, b + c) can be added
to PKx.

– If (a, a, b) ∈ K (resp. PKx), then (Inv(a),−a,−b) can be added to K (resp.
PKx.)

Now consider the event BRIDGE which is the event that one of the following
occurs when querying Mult, Inv or DLog:

(1) The output of a query which could be added to K is already found in PKx,
and

(2) The output of a query which could be added to PKx is already found in K.

Intuitively, the attacker wants the event BRIDGE to occur, e.g., in either case
we have found an element τ(y) which can be written in two ways; (1) τ(y) = τ(gr)
for some known r ∈ Zq and (2) τ(y) = τ(gax+b) for known a, b ∈ Zq with a 6= 0.
This allows us to solve for x = (r − b)a−1.

If the event BRIDGE does not occur then after all queries have finished the
attacker can still view x 6∈ K as an element yet to be sampled from a uniform
distribution over a set of size at least q − |K| × |PKx|. To see this note that
each pair of distinct elements τ(gax+b) in PKx and τ(gr) in K eliminates at
most one possible value of x, i.e., since τ(gax+b) and τ(gr) are distinct we have
x 6= (r − b)a−1. We further note that |K|+ |PKx| ≤ 3t+ 1 since each query to
the generic group model adds at most 3 elements to K ∪ PKx — equality holds
when both inputs to Mult(·, ·) are fresh. The probability the attacker guesses x
correctly is at most

Pr
[
DLogChalGOA (k) = 1

∣∣ BRIDGE] ≤ 1

q − |K| × |PKx|
<

1

q − (3t+ 2)2
.

To compute the probability that BRIDGE occurs we use our prior observation
that the combined size of |K| and |PKx| is at most (3t + 2). Consider the ith
query to the generic group oracle and let BRIDGE<i be the event that we have
not yet seen a bridge query. Conditioning on this event we can view x as a yet to
be selected value uniformly sampled from a set of size at least q− (3t+2)2. Let yi
be the output of query i and let (yi, ai, bi) be the tuple that is added to PKx ∪K.
For each tuple (y, a, b) in K ∪ PKx the probability that x = (bi − b)(a− ai)−1 is
at most 1

q−(3t+2)2 . Union bounding over all (≤ 3i+ 2) such tuples in PKx ∪ K
the probability of the event Bi that the ith query bridges is at most
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Pr
[
Bi

∣∣ BRIDGE<i ] ≤ 3i+ 2

q − (3t+ 2)2
.

Therefore, the probability of BRIDGE is upper bounded by

Pr[BRIDGE] =
∑
i≤t

Pr
[
Bi

∣∣ BRIDGE<i ]
=
∑
i≤t

3i+ 2

q − (3t+ 2)2

=
3(t+ 1)t+ 2

q − (3t+ 2)2
.

Thus, the probability the attacker succeeds is upper bounded by6

Pr
[
DLogChalGOA (k) = 1

]
≤ Pr [BRIDGE] + Pr

[
DLogChalGOA (k) = 1

∣∣ BRIDGE]
≤ 3(t+ 1)t+ 3

q − (3t+ 2)2
.

i.e., we would need t = O
(√
q
)

queries to succeed with constant probability. 2

Reminder of Claim 1. Pr[FailtoSign] ≤ qSign ×
qRO + qSign

q
.

Proof of Claim 1: Since, I = Pow(τ(g), r) represents a fresh/randomly selected
group element we can use union bounds to upper bound the probability that this
failure event ever occurs as

Pr[FailtoSign] ≤ qSign ×
qRO + qSign

q

where qSign is the total number of queries to the signing oracle and qRO is the total
number of queries to the random oracle. 2

Reminder of Claim 2. Pr[FailtoFind(Iσ)] ≤ qRO + qSign
q − |L|

+
1

2k
.

Proof of Claim 2: If Iσ /∈ L we can view Iσ = τ(gs · g−xe) as a uniformly
random binary string from a set of size at least q − |L| which had not yet been
selected at the time Asig output σ. Thus, the probability that the query H(Iσ||m)
was previously recorded is at most (qRO + qSign)/ (q − |L|). Observe that if the
query H(Iσ||m) was not previously recorded then the probability of a successful
forgery H(Iσ||m) = e is at most 2−k since we can view H(Iσ||m) as a uniformly
random k-bit string. Hence,

Pr[FailtoFind(Iσ)] ≤ qRO + qSign
q − |L|

+
1

2k
.

6 To see this note that for the events A and B we have that Pr[A] = Pr[A ∧ B] +
Pr[A ∧B] ≤ Pr[B] + Pr[A|B].
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2

Reminder of Claim 3. Pr[BadQuery] ≤ qRO
2k
.

Proof of Claim 3: We first note that by construction we ensure that the triple
(I, a, b) will always be recorded in K or PKx before a query of the form H(I||m)
is ever issued — if I is new then we call DLogg(I) before querying the random
oracle. We call a random oracle query x = I||m “bad” if H(x) = a where the
triple (I, a, b) has already been recorded. Recall that if there were two recorded
triples (I, a, b) and (I, c, d) then our algorithm would have already found x. Thus,
the probability each individual query is “bad” is at most 2−k and we can use
union bounds to upper bound the probability of any “bad” query as

Pr[BadQuery] ≤ qRO
2k
.

2
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