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Abstract. The Schnorr signature scheme is an efficient digital signature
scheme with short signature lengths, i.e., 4k-bit signatures for k bits of
security. A Schnorr signature σ over a group of size p ≈ 22k consists of
a tuple (s, e), where e ∈ {0, 1}2k is a hash output and s ∈ Zp must be
computed using the secret key. While the hash output e requires 2k bits
to encode, Schnorr proposed that it might be possible to truncate the
hash value without adversely impacting security.

In this paper, we prove that short Schnorr signatures of length 3k
bits provide k bits of multi-user security in the (Shoup’s) generic group
model and the programmable random oracle model. We further analyze
the multi-user security of key-prefixed short Schnorr signatures against
preprocessing attacks, showing that it is possible to obtain secure sig-
natures of length 3k + logS + logN bits. Here, N denotes the number
of users and S denotes the size of the hint generated by our preprocess-
ing attacker, e.g., if S = 2k/2, then we would obtain secure 3.75k-bit
signatures for groups of up to N ≤ 2k/4 users.

Our techniques easily generalize to several other Fiat-Shamir-based
signature schemes, allowing us to establish analogous results for Chaum-
Pedersen signatures and Katz-Wang signatures. As a building block, we
also analyze the 1-out-of-N discrete-log problem in the generic group
model, with and without preprocessing.

1 Introduction

The Schnorr signature scheme [Sch90] has been widely used due to its simplicity,
efficiency and short signature size. In the Schnorr signature scheme, we start with
a cyclic group G = 〈g〉 of prime order p and pick a random secret key sk ∈ Zp.
To sign a message m, we pick r ∈ Zp uniformly at random, compute I = gr,
e = H(I‖m), and s = r + sk · e mod p. Then, the final signature is σ = (s, e).

We recall that a signature scheme Π yields k bits of (multi-user) security if
any attacker running in time at most t can forge a signature with probability
at most εt = t/2k in the (multi-user) signature forgery game, and this should
hold for all time bounds t ≤ 2k. To achieve k bits of security, we select a hash
function H with 2k-bit outputs, and we select p to be a random 2k-bit prime so
that the length of a signature is 4k bits.
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In Schnorr’s original paper [Sch90], the author proposed the possibility of
achieving even shorter Schnorr signatures by selecting a hash function H with k-
bit outputs (or truncating to only use the first k bits) so that the final signature
σ = (s, e) can be encoded with 3k bits. We refer to this signature scheme as
the short Schnorr signature scheme. In this paper, we investigate the following
questions:

Does the short Schnorr signature scheme achieve k bits of (multi-user)
security? If so, is the short Schnorr signature scheme also secure against
preprocessing attacks?

Proving security for the Schnorr signatures has been a challenging task against
the interactive attacks. Pointcheval and Stern [PS96] provided a reduction from
the discrete-log problem in the random oracle model [BR93]. However, their
reduction is not tight, i.e., they show that Advsig ≤ Advdlog× qH for any attacker
making at most qH queries to the random oracle. The loss of the factor qH, which
prevents us from concluding that the scheme provides k bits of security, seems
to be unavoidable, e.g., see [Seu12,FJS14].

Neven et al. [NSW09] analyzed Schnorr signatures in the generic group
model [Sho97], showing that the scheme provides k bits of security as long as
the hash function satisfies two key properties: random-prefix preimage (rpp) and
random-prefix second-preimage (rpsp) security. Interestingly, Neven et al. do not
need to assume that H is a random oracle, though a random oracle H would
satisfy both rpp and rpsp security. Neven et al. considered the short Schnorr
signature scheme, but their upper bounds do not allow us to conclude that the
short Schnorr signature scheme provides k bits of security1.

An earlier paper of Schnorr and Jakobsson [SJ00] analyzed the security of
the short Schnorr signature scheme in the random oracle model plus the generic
group model. While they show that the scheme provides k bits of security, they
also consider another version of the generic group model which is different from
the definition proposed by Shoup [Sho97]. The reason is that the version they
consider is not expressive enough to capture all known attacks, e.g., any attack
that requires the ability to hash group elements including preprocessing attacks
of Corrigan-Gibbs and Kogan [CK18] cannot be captured in their generic group
model. See Appendix B for further discussion if interested.

Galbraith et al. [GMLS02] claimed to have a tight reduction showing that
single-user security implies multi-user security of the regular Schnorr signature

1 Neven et al. [NSW09, Section 7] present two upper bounds on the success probability
of a Schnorr signature forgery attacker under plausible assumptions about rpp, rpsp

and discrete log security. The first upper bound is O
(
t2
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)
where p is the size

of the group and n denotes the length of a hash output (# bits). The second bound

is O
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)
. To achieve k-bit security with the second bound we can use

shorter hashes n = k, but we must use a larger group p ≈ 23k. By contrast, to achieve
k-bit security with the first bound we can use a smaller group size p ≈ 22k, but we
require longer hash outputs n = 2k. See additional discussion in Appendix D.
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scheme. However, Bernstein [Ber15] identified an error in the security proof
in [GMLS02], proposed a modified “key-prefixed” version of the original Schnorr
signature scheme (including the public key as a hash input), and proved that
the “key-prefixed” version does provide multi-user security. Derler and Sla-
manig [DS19] later showed a tight reduction from single-user security to “key-
prefixed” multi-user security for a class of key-homomorphic signature schemes
including Schnorr signatures. The Internet Engineering Task Force (IETF) adopted
the key-prefixed modification of Schnorr signatures to ensure multi-user security
[Hao17]. Kiltz et al. [KMP16] later gave a tight security reduction establishing
multi-user security of regular Schnorr signatures in the programmable random
oracle model plus (another version of) the generic group model without key-
prefixing. Our results imply that key-prefixing is not even necessary to estab-
lish tight multi-user security of short Schnorr signatures2. On the other hand
key-prefixing is both necessary and sufficient to establish multi-user security of
(short) Schnorr signatures against preprocessing attackers.

1.1 Our Contributions

We show that the short Schnorr Signature scheme provides k bits of security
against an attacker in both the single and multi-user versions of the signature
forgery game. Our results assume the programmable random oracle model and
the (Shoup’s) generic group model. We further analyze the multi-user security
of key-prefixed short Schnorr signatures against preprocessing attacks. The pre-
processing attacker outputs a hint of size S after making as many as 23k queries
to the random oracle and examining the entire generic group oracle. Later on,
the online attacker can use the hint to help win the multi-user signature forgery
game by forging a signature for any one of the N users. By tuning the parameters
of the key-prefixed short Schnorr signature scheme appropriately, we can obtain
(3k+logS+logN)-bit signatures with k bits of security against a preprocessing
attacker.

Single-User Security of Short Schnorr Signatures. As a warm-up, we first con-
sider the single-user security of the short Schnorr Signature scheme without
preprocessing, showing that short Schnorr signatures provide k bits of security
in the (Shoup’s) generic group model and the random oracle model.

Theorem 1 (informal). Any attacker making at most q queries wins the sig-
nature forgery game (chosen message attack) against the short Schnorr signature
scheme with probability at most O

(
q/2k

)
in the generic group model (of order

p ≈ 22k) plus programmable random oracle model (See Definition 1 and Theo-
rem 4).

2 The authors of [KMP16] pointed out that their analysis can be adapted to demon-
strate multi-user security of short Schnorr signatures (private communication)
though the paper itself never discusses short Schnorr signatures. Furthermore, their
proof is in a different version of the generic group model which is not suitable for
analyzing preprocessing attacks. See discussion in Remark 1.
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Theorem 1 tells us that the short Schnorr signature obtained by truncating
the hash output by half would yield the same k bits of security level with the
signature length 3k, instead of 4k. A 25% reduction in signature length is par-
ticularly significant in contexts where space/bandwidth is limited, e.g., on the
blockchain.

Multi-User Security of Short Schnorr Signatures. We show that our proofs can
be extended to the multi-user case even in the so-called “1-out-of-N” setting,
i.e., if the attacker is given N public keys pk1, . . . , pkN , s/he can forge a signature
σ which is valid under any one of these public keys (it does not matter which).

Theorem 2 (informal). Let N denote the number of distinct users/public
keys. Then any attacker making at most q queries wins the multi-user signa-
ture forgery game (chosen message attack) against the short Schnorr signature
scheme with probability at most O

(
(q +N)/2k

)
in the generic group model (of

order p ≈ 22k) plus programmable random oracle model (See Definition 2 and
Theorem 6).

Theorem 2 guarantees that breaking multi-user security of short Schnorr
signatures in the 1-out-of-N setting is not easier than breaking a single instance,
as the winning probability is still in the same order as long as N ≤ q, which
is the typical case. A näıve reduction loses a factor of N , i.e., any attacker
winning the multi-user forgery game with probability εMU can be used to win
the single-user forgery game with probability ε ≥ εMU/N . For example, suppose
that p ≈ 2224 (i.e., k = 112), and there are N = 232 instances of short Schnorr
signatures, which is more than the half of the entire world population. In the
original single-user security game, an attacker wins with probability at most ε ≤
O
(
t/2k

)
, so an attacker running in time t = 280 would succeed with probability

at most ε ≈ 2−32. This only allows us to conclude that an attacker succeeds with
probability at most εMU ≤ Nε ≈ 1 in the multi-user security game! Our security
proof implies that the attacker will succeed with probability εMU ≈ ε ≈ 2−32

in the above example. In particular, we don’t lose a factor of N in the security
reduction.

Security of Key-Prefixed Short Schnorr Signatures against Preprocessing At-
tacks. We further show that key-prefixed short Schnorr signatures are also secure
against preprocessing attacks. Here, we consider a key-prefixed version of Schnorr
signatures, because regular Schnorr signatures are trivially vulnerable to prepro-
cessing attacks, e.g., if a preprocessing attacker finds some message m and an
integer r such that e = H(gr‖m) = 0, then σ = (r, 0) is always a valid signature
for any public key pk = gsk since gr−sk·0 = gr. We note that several standardized
implementations of Schnorr signatures (i.e., BSI [fIS18] or ISO/IEC [fSC18])
slightly deviate from Schnorr’s original construction and explicitly disallowing
e = 0 signatures which defends against our particular preprocessing attack – see
Remark 2.

We consider a preprocessing attacker who may query the random oracle at
up to 23k points and may also examine the entire generic group oracles before
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outputting an S-bit hint for the online attacker. We leave it as an interesting open
question whether or not the restriction on the number of random oracle queries is
necessary. However, from a practical standpoint, we argue that a preprocessing
adversary will never be able to make 22k queries, e.g., if k ≥ 128, then 22k

operations is already far too expensive for even a nation-state attacker.

Theorem 3 (informal). Let N denote the number of distinct users/public
keys. Then any preprocessing attacker making at most qpre queries and outputs
an S-bit hint during the preprocessing phase and making at most qon queries
during the online phase wins the multi-user signature forgery game (chosen mes-
sage attack) against the short Schnorr signature scheme with probability at most

Õ
(
SN(qon +N)2/p+ qon/2

k +Nqpreqon/p
2
)

in the generic group model of order
p > 22k plus programmable random oracle model (see Theorem 8).

Theorem 3 tells us that with suitable parameter setting, key-prefixed short
Schnorr signatures also achieve k bits of multi-user security even against pre-
processing attacks. In particular, by setting p ≈ 22kSN and maintaining k-bit
hash outputs, the short Schnorr signature scheme still maintains k bits of multi-
user security against our preprocessing attacker. For example, if S = 2k/2 and
N = 2k/4, then setting p ≈ 22.75k yields signatures of length k+log p = 3.75k. Up
to a factor N , the results from Theorem 3 are tight as a preprocessing attacker
can succeed with probability at least Sq2on/p.

Other Fiat-Shamir Signatures. Using similar reductions, we establish similar se-
curity bounds for the full-domain hash variant of (key-prefixed) Chaum-Pedersen
signatures [CP93] and for Katz-Wang signatures [KW03] with truncated hash
outputs. In particular, a preprocessing attacker wins the multi-user signature
forgery game with probability at most O

(
SNq2/p+ q/2k

)
– see Theorem 10

and Theorem 12 in Section 6. Short Katz-Wang signatures [KW03] have the
same length as short Schnorr signatures with equivalent security guarantees,
while Chaum-Pedersen signatures are a bit longer.

1.2 Our Techniques

The Multi-User Bridge-Finding Game. We introduce an intermediate problem
called the 1-out-of-N bridge-finding game. Oversimplifying a bit, in a cyclic group
G = 〈g〉, the attacker is given N inputs gx1 , . . . , gxN , and the goal of the attacker
is to produce a non-trivial linear dependence, i.e., a1, . . . , aN and b such that
a1x1 + . . . + aNxN = b, and ai 6= 0 for at least one i ≤ N . We then show that
in the generic group model, an attacker making at most q generic group queries
can succeed with probability at most O

(
q2/p+ qN/p

)
, where p ≈ 22k is the size

of the group.
We also show that a preprocessing attacker wins the 1-out-of-N bridge-

finding game with probability at most O
(
SNq2 log p/p

)
when given an arbi-

trary S-bit hint fixed a priori before x1, . . . , xN are chosen. Our proof adapts
a compression argument of [CK18] which was used to analyze the security of
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the regular discrete logarithm problem. In particular, if the probability that our
preprocessing attacker wins is ω

(
SNq2 log p/p

)
, then we could derive a contra-

diction by compressing our random injective map τ , mapping group elements to
binary strings.

An interesting corollary of these results is that the 1-out-of-N discrete-log
problem is hard even for a preprocessing attacker. Intuitively, if a discrete-log
attacker can successfully compute xi for any i ≤ N , then s/he can also win the
1-out-of-N bridge-finding game.

Restricted Discrete-Log Oracle. In fact, we consider a stronger attacker A who
may query the usual generic group oracle, and is additionally given access to
a restricted discrete-log oracle DLog. The oracle DLog will solve the discrete-
log problem but only for “fresh” inputs, i.e., given N inputs gx1 , . . . , gxN , if
h = ga1x1+...+aNxN for known values of a1, . . . , aN , then this input would not be
considered fresh.

We remark that by restricting the discrete-log oracle to fresh queries, we
can rule out the trivial attack where the attacker simply queries DLog(gxi) for
any 1 ≤ i ≤ N . The restriction also rules out other trivial attacks, where the
attacker simply queries DLog(gxi+r) after computing gxi+r for some i ≤ N and
some known value r.

Security Reduction. We then give a reduction showing that any attacker Asig

that breaks multi-user security of short Schnorr signatures can be used to win
the 1-out-of-N bridge-finding game. In the reduction, we interpret the bridge
inputs gx1 , . . . , gxN as public signing keys, and we simulate the attacker Asig. The
reduction uses the restricted discrete log oracle to ensure that any group element
that is submitted as an input to the random oracle has the form gb+a1x1+...aNxN

for values a1, . . . , aN , and b that are known to the bridge attacker. The reduction
also makes use of a programmable random oracle to forge signatures whenever
Asig queries the signing oracle for a particular user i ≤ N .

One challenge with carrying out this reduction in the preprocessing setting is
that we need to ensure that the hint does not allow the attacker to detect when
the random oracle has been programmed. We rely on the observation that the
reduction programs the random oracle at random inputs which are unknown to
the preprocessing a priori.

A similar reduction allows us to establish multi-user security of other Fiat-
Shamir-based signatures such as Chaum-Pedersen signatures [CP93] and Katz-
Wang signatures [KW03], with and without preprocessing.

1.3 Related Work

Security Proofs in the Generic Group Model. The generic group model goes
back to Nechaev [Nec94] and Shoup [Sho97]. One motivation for analyzing cryp-
tographic protocols in the generic group model is that for certain elliptic curve
groups, the best known attacks are all generic [JMV01,FST10,WZ11,BL12,GWZ15].
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It is well known that in Shoup’s generic group model [Sho97], an attacker re-
quires Ω(

√
p) queries to solve the discrete-log problem in a group of prime order

p and the same lower bound holds for other classical problems like Computa-
tional Diffie-Hellman (CDH) and Decisional Diffie-Hellman (DDH). This bound
is tight as discrete-log algorithms such as the Baby-Step Giant-Step algorithm by
Shanks [Sha71], Pollard’s Rho and Kangaroo algorithms [Pol78], and the Pohlig-
Hellman algorithm [PH06] can all be described generically in Shoup’s model.
However, there are some exceptions for other elliptic curves and subgroups of
Z∗p, where the best discrete-log algorithms are not generic and are much more effi-
cient than any generic discrete log algorithms, e.g., see [GHS02,MVO91,Sma99].

Dent [Den02] showed that there are protocols which are provably secure
in the generic group model but which are trivially insecure when the generic
group is replaced with any (efficiently computable) real one. However, these
results were artificially crafted to provide a counterexample. Similar to the
random oracle model, experience suggests that protocols with security proofs
in the generic group model do not have inherent structural weaknesses, and
will be secure as long as we instantiate with a reasonable elliptic curve group.
See [KM07,Fis00,JS08] for additional discussion of the strengths/weaknesses of
proofs in the generic group model.

Corrigan-Gibbs and Kogan [CK18] analyzed the security of several key cryp-
tographic problems (e.g., discrete-log, computational/decisional Diffie-Hellman,
etc.) against preprocessing attacks in the generic group model. We extend their
analysis to analyze the multi-user security of key-prefixed short Schnorr signa-
tures against preprocessing attacks. See Section 5 for the further details.

Schnorr Signatures and Multi-Signatures. Bellare and Dai [BD20] recently showed
that the (single-user) security of Schnorr signatures could be based on the Multi-
Base Discrete Logarithm problem which in turn is similar in flavor to the One
More Discrete Log Problem [BNPS03]. There has also been an active line of work
on adapting the Schnorr signature scheme to design compact multi-signature
schemes, e.g., see [BN06,BCJ08,DEF+19,MPSW19]. The goal is for multiple
parties to collaborate to generate a single Schnorr signature which is signed us-
ing an aggregate public key that can be (publicly) derived from the individually
public keys of each signing party. A very recent line of work has reduced the
interaction to generate a Schnorr multi-signature to two-rounds without pair-
ings [NRSW20,NRS20,AB20].

Other Short Signatures. Boneh et al. [BLS04] proposed even shorter signatures
called BLS signatures, which is as short as 2k bits to yield k bits of security
in the random oracle model, assuming that the Computational Diffie-Hellman
(CDH) problem is hard on certain elliptic curves over a finite field. While BLS
signatures yield even shorter signature length than Schnorr signatures, the com-
putation costs for the BLS verification algorithm is several orders of magnitude
higher, due to the reliance on bilinear pairings. If we allow for “heavy” crypto-
graphic solutions such as indistinguishability obfuscation [GGH+13] (practically
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infeasible at the moment), then it becomes possible to achieve k-bit signatures
with k bits of security [SW14,RW14,LM17].

2 Preliminaries

Let N be the set of positive integers, and we define [N ] := {1, . . . , N} for N ∈ N.
Throughout the paper, we denote the security parameter by k. We say that
~x = (x1, . . . , xN ) ∈ ZNp is an N -dimensional vector over ZNp , and for each i ∈ [N ],
we define ûi to be the ith N -dimensional unit vector, i.e., the ith element of ûi is
1, and all other elements are 0 elsewhere. For simplicity, we let log(·) be a log
with base 2, i.e., log x := log2 x. The notation ←$ denotes a uniformly random
sampling, e.g., we say x←$Zp when x is sampled uniformly at random from Zp.

2.1 The Generic Group Model

The generic group model is an idealized cryptographic model proposed by Shoup
[Sho97]. Let G = 〈g〉 be a multiplicative cyclic group of prime order p. In the
generic group model, since G is isomorphic to Zp, we select a random injective
map τ : Zp → G, where G is the set of bit strings of length ` (with 2` ≥ p) and
we encode the discrete log of a group element instead of the group element itself.

The key idea in the generic group model is that the map τ does not need
to be a group homomorphism, because any adversary against a cryptographic
scheme is only available to see a randomly chosen encoding of the discrete log of
each group element, not the group element itself. Hence, the generic group model
assumes that an adversary has no access to the concrete representation of the
group elements. Instead, the adversary is given access to an oracle parametrized
by τ , which computes the group operation indirectly in G as well as the encoding
of the discrete log of the generator g given as g = τ(1). More precisely, for an
input (a, b) ∈ G×G, the oracles Mult(a, b), and Inv(a) act as following:

Mult(a, b) = τ(τ−1(a) + τ−1(b)), and

Inv(a) = τ(−τ−1(a)),

if τ−1(a), τ−1(b) ∈ G. We remark that the adversary has no access to the map
τ itself and does not know what is going on in a group G. Hence, the adversary
has no sense that which element in G maps to Mult(a, b) in G even if s/he sees
the oracle output.

For convenience, we will use the notation Pow(a, n) = τ(nτ−1(a)). Without
loss of generality, we do not allow the attacker to directly query Pow as an oracle,
since the attacker can efficiently evaluate this subroutine using the Mult oracle.
In particular, one can evaluate Pow(a, n) using just O (log n) calls to Mult using
the standard modular exponentiation algorithm.
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2.2 The Schnorr Signature Scheme

The Schnorr signature scheme is a digital signature scheme, which consists of
a tuple of probabilistic polynomial-time algorithms Π = (Kg,Sign,Vfy), where
Kg(1k) is a key-generation algorithm to generate a secret key sk ∈ Zp and a public
key pk = Pow(g = τ(1), sk) = τ(sk). The size of the prime number p will be tied
to the security parameter k, e.g., p ≈ 22k. Sign(sk,m) is a signing algorithm
which generates a signature σ on a message m ∈ {0, 1}∗, and Vfy(pk,m, σ) is a
verification algorithm which outputs 1 if the signature is valid, and 0 otherwise.

Throughout the paper, we will consider the notion of the generic group model
in the Schnorr signature scheme as described in Figure 1. We remark that ver-
ification works for a correct signature σ = (s, e), because R = Mult(τ(s), Pow(
Inv(pk), e)) = τ(s− sk · e) = τ(r) = I if the signature is valid.

Kg(1k):

1 : sk←$Zp
2 : pk← Pow(g, sk)

3 : return (pk, sk)

Sign(sk,m):

1 : r←$Zp
2 : I ← Pow(g, r)

3 : e← H(I‖m)

4 : s← r + sk · e mod p

5 : return σ = (s, e)

Vfy(pk,m, σ):

1 : Parse σ = (s, e)

2 : R← Mult(Pow(g, s), Pow(Inv(pk), e))

3 : if H(R‖m) = e then

4 : return 1

5 : else return 0

Figure 1. The Schnorr signature scheme in the generic group model. Note that instead
of the direct group operation in G, we use the encoding by the map τ and the generic
group oracle queries.

Short Schnorr Signatures. Typically, it is assumed that the random oracle H(I‖m)
outputs a uniformly random element e ∈ Zp, where p is a random 2k-bit prime.
Thus, we would need 2k bits to encode e. To produce a shorter signature, we
can assume that H(I‖m) outputs a uniformly random integer e ∈ Z2k with just
k bits. In practice, the shorter random oracle is easier to implement, since we do
not need to worry about rounding issues when converting a binary string to Z2k ,
i.e., we can simply take the first k bits of our random binary string. The result
is a signature σ = (s, e), which can be encoded in 3k bits – 2k bits to encode
s ∈ Zp plus k bits to encode e. This natural modification is straightforward and
is not new to our paper. The key question we investigate is whether or not short
Schnorr signatures can provide k bits of security.

3 Single-User Security of Short Schnorr Signatures

As a warm-up to our main result, we first prove that short Schnorr Signatures
(of length 3k) achieve k bits of security. We first describe the standard signature
forgery experiment SigForgeτA,Π(k) in the generic group model and the random
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oracle model. Here, an attacker is given the public key pk = τ(sk) along with
g = τ(1) (the encoding of the group generator 1 of Zp). The attacker is given
oracle access to the signing oracle Sign(·), as well as the generic group oracles
GO = (Mult(·, ·), Inv(·)), and the random oracle H(·). The attacker’s goal is to
eventually output a forgery (m,σ = (s, e)) for a fresh message m that has not
previously been submitted to the signing oracle.

Generic Signature Forgery Game. Fixing an encoding map τ : Zp → G, g = τ(1)
and the random oracle H, and an adversary A, consider the following experiment
defined for a signature scheme Π = (Kg,Sign,Vfy):

The Generic Signature Forgery Game SigForgeτ,HA,Π(k):

(1) Kg(1k) is run to obtain the public and the secret keys (pk, sk). Here, sk
is chosen randomly from the group Zp where p is a 2k-bit prime, and
pk = Pow(g, sk) = τ(sk).

(2) Adversary A is given (g = τ(1), pk, p) and access to the generic group
oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·), and the sign-
ing oracle Sign(·). After multiple access to these oracles, the adversary
outputs (m,σ = (s, e)).

(3) We define SigForgeτ,HA,Π(k) = Vfy(pk,m, σ), i.e., the output is 1 when A
succeeds, and 0 otherwise.

Definition 1 formalizes this argument in the sense that an attacker forges a
signature if and only if SigForgeτ,HA,Π(k) = 1.

Definition 1. Consider the generic group model with an encoding map τ : Zp →
G. A signature scheme Π = (Kg,Sign,Vfy) is said to be (qH, qG, qS, ε)-UF-CMA
secure (unforgeable against chosen message attack) if for every adversary A
making at most qH (resp. qG, qS) queries to the random oracle (resp. generic
group, signing oracles), the following bound holds:

Pr
[
SigForgeτ,HA,Π(k) = 1

]
≤ ε,

where the randomness is taken over the selection of τ , the random coins of A,
the random coins of Kg, and the selection of random oracle H.

3.1 Discrete Log Problem with Restricted Discrete Log Oracle

Restricted Discrete-Log Oracle in the Generic Group Model. In the discrete log
problem we pick a random x ∈ Zp and the attacker is challenged to recover
x given g = τ(1) and h = Pow(g, x) after making queries to the generic group
oracles Mult and Inv. As we mentioned in Section 1.2, we analyze the discrete
log problem in a stronger setting where the attacker is additionally given access
to a restricted discrete-log oracle DLog. Given the map τ : Zp → G and y ∈
Zp, DLog(τ(y)) will output y as long as τ(y) is a “fresh” group element. More
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specifically, we say τ(y) is “fresh” if (1) τ(y) is not equal to h, and (2) τ(y) has
not been the output of a previous generic group query.

The requirement that τ(y) is fresh rules out trivial attacks where the attacker
picks a, b ∈ Zp, computes τ(ax + b) = Mult(Pow(h, a), Pow(g, b)) and queries
DLog(τ(ax+ b)) and solves for x = a−1(DLog(τ(ax+ b))− b) mod p.

The Generic Discrete-Log Game. The formal definition of the discrete log ex-
periment DLogChalτA(k) is given below:

The Generic Discrete-Log Game DLogChalτA(k):

(1) The adversary A is given (g = τ(1), τ(x)) for a random value of x ∈ Zp.
Here, τ : Zp → G is a map from Zp to a generic group G with a 2k-bit
prime p.

(2) A is allowed to query the usual generic group oracles (Mult, Inv) and
is additionally allowed to query DLog(τ(y)), but only if τ(y) is “fresh”,
i.e., τ(y) is not τ(x), and τ(y) has not been the output of a previous
random generic group query.

(3) After multiple queries, A outputs x′.
(4) The output of the game is defined to be DLogChalτA(k) = 1 if x′ = x,

and 0 otherwise.

Lemma 1 upper bounds the probability that an attacker wins the generic discrete-
log game DLogChalτA(k). Intuitively, the proof works by maintaining a list L of
tuples (τ(y), a, b) such that y = ax+ b for every oracle output τ(y).

Initially, the list L contains two items (τ(x), 1, 0) and (τ(1), 0, 1), and the list
is updated after every query to the generic group oracles, e.g., if (τ(y1), a1, b1) ∈
L and (τ(y2), a2, b2) ∈ L, then querying Mult(τ(y1), τ(y2)) will result in the
addition of (τ(y1 + y2), a1 + a2, b1 + b2) into L. If L already contained a tuple of
the form (τ(y1 + y2), a′, b′) with a′ 6= a1 + a2 or b′ 6= b1 + b2, then we say that
the event BRIDGE occurs.

We can use the restricted discrete log oracle to maintain the invariant that
every output of our generic group oracles Mult and Inv can be added to L. In
particular, if we every encounter an input y = τ(b) that does not already appear
in L, then y is fresh and we can simply query the restricted discrete log oracle
to extract b = DLog(y), ensuring that the tuple (y, 0, b) is added to L before the
generic group query is processed.

The key component of the proof is to upper bound the probability of the
event BRIDGE. This is sufficient as any attacker that can recover x will also be
able to ensure that (τ(x), 0, x) is added to L, which would immediately cause
the event BRIDGE to occur, since we already have (τ(x), 1, 0) ∈ L. We defer the
full proof of Lemma 1 to Appendix C.1 for readers who are interested.

Lemma 1. The probability the attacker making at most qG generic group oracle
queries wins the generic discrete-log game DLogChalτA(k) (even with access to
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the restricted DLog oracle) is at most

Pr [DLogChalτA(k) = 1] ≤ 6qG(qG + 1) + 12

4p− (3qG + 2)2
,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenge x, as well as any random coins of A.

3.2 Security Reduction

Given Lemma 1, we are now ready to describe our security reduction for short
Schnorr signatures of length 3k. As in our security proof for the discrete-log
problem, we will ensure that for every output τ(y) of a generic group query, we
can express y = ax + b for known constants a and b – here x is the secret key
that is selected in the security game, i.e., any time Asig makes a query involving
a fresh element τ(y), we will simply query DLog(τ(y)) so that we can add τ(y)
to the list L.

Theorem 4 provides the first rigorous proof of the folklore claim that short
(3k-bit) Schnorr signatures can provide k bits of security. The formal security
proof uses both the generic group model and the random oracle model.

Theorem 4. The short Schnorr signature scheme Πshort = (Kg,Sign,Vfy) of
length 3k is (qH, qG, qS, ε)-UF-CMA secure with

ε =
6qG(qG + 1) + 12

4p− (3qG + 2)2
+
qS(qH + qS)

p
+

qH + qS
p− (3qG + 2)

+
qH + 1

2k
= O

( q
2k

)
,

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof Sketch of Theorem 4: Here, we only give the intuition of how the proof
works. The full proof of Theorem 4 is similar to that of Theorem 6 and we defer
it to Appendix C.1.

We give the proof by reduction, i.e., given an adversary Asig attacking short
Schnorr signature scheme, we construct an efficient algorithm Adlog which solves
the discrete-log problem. During the reduction, we simulate the signature signing
process without secret key x by programming the random oracle, i.e., to sign a
message m we can pick s and e randomly, compute I = τ(s − xe) by querying
adequate generic group oracles3, and see if the random oracle has been previously
queried at H(I‖m). If not, then we can program the random oracle as H(I‖m) :=
e and output the signature (s, e). Otherwise, the reduction simply outputs ⊥ for
failure. Since s and e are selected randomly, we can argue that the probability
that we output ⊥ because H(I‖m) is already defined is small, i.e., ≈ qH/p.

We can use the oracle DLog to maintain the invariant that before processing
any random oracle query of the form H(y‖·) that we know a, b such that τ(ax+

3 We can compute I without knowledge of x because τ(x) is given as public key.
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b) = y. In particular, if y is a fresh string that has not previously been observed,
then we can simply set a = 0 and query the restricted discrete log oracle to
find b such that τ(b) = y. We say that the random oracle query is lucky if
H(y‖m) = −a, or H(y‖m) = 0. Assuming that the event BRIDGE does not
occur, it is straightforward to upper bound the probability of a lucky query as
O(qH/2

k). Similarly, it is straightforward to show that the probability that Asig

gets lucky and guesses a valid signature (s, e) for a message m without first
querying H(τ(s−xe)‖m) is O(2−k). Assuming that there are no lucky queries or
guesses but the attacker still outputs a successful signature forgery (s, e). In this
case we have I = τ(s− xe) = τ(ax+ b), which allows for us to solve for x using
the equation (a + e)x = (s − b). Thus, we can argue that the probability Adlog

solves the discrete-log challenge correctly is lower bounded by the probability
that Asig forges a signature minus O(q/2k). Finally, by applying Lemma 1 we
can upper bound the probability Asig wins the generic signature forgery game

SigForgeτ,HA,Π(k) to be O(q/2k).

4 Multi-User Security of Short Schnorr Signatures

In this section, we prove that short Schnorr signatures also provide k bits of se-
curity in the multi-user setting. The reduction uses similar ideas, but requires us
to introduce and analyze a game called the 1-out-of-N generic BRIDGEN -finding
game. We first define the 1-out-of-N generic signature forgery game, where an
adversary is givenN independent public keys (pk1, . . . , pkN ) = (τ(sk1), . . . , τ(skN ))
along with oracle access to the signing oracles Sign(sk1, ·), . . . ,Sign(skN , ·), the
random oracle H, and the generic group oracles. The attacker can succeed if
s/he can output a forgery (σ,m) which is valid under any one public key, e.g.,
for some public key pkj we have Vfy(pkj ,m, σ) = 1, while the query m was never
submitted to the jth signing oracle Sign(skj , ·). In our reduction, we show that
any attacker that wins the 1-out-of-N generic signature forgery game can be
used to win the 1-out-of-N generic BRIDGEN -finding game. We separately up-
per bound the probability that a generic attacker can win the 1-out-of-N generic
BRIDGEN -finding game.

1-out-of-N Generic Signature Forgery Game. Fixing the injective mapping τ :
Zp → G, a random oracle H, and an adversary A, consider the following experi-
ment defined for a signature scheme Π = (Kg,Sign,Vfy):

The 1-out-of-N Generic Signature Forgery Game SigForgeτ,H,NA,Π (k):

(1) Kg(1k) is run N times to obtain the public and the secret keys (pki, ski)
for each i ∈ [N ]. Here, for each i ∈ [N ], ski is chosen randomly from the
group Zp, where p is a 2k-bit prime, and pki = τ(ski).

(2) Adversary A is given (g = τ(1), pk1, · · · , pkN , p), and access to the
generic group oracles GO = (Mult(·, ·), Inv(·)), the random oracle H(·),
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and the signing oracles Sign(sk1, ·), . . . , Sign(skN , ·). The experiment
ends when the adversary outputs (m,σ = (s, e)).

(3) A succeeds to forge a signature if and only if there exists some j ∈ [N ]
such that Vfy(pkj ,m, σ) = 1 and the querym was never submitted to the

oracle Sign(skj , ·). The output of the experiment is SigForgeτ,H,NA,Π (k) = 1

when A succeeds; otherwise SigForgeτ,H,NA,Π (k) = 0.

Definition 2. Consider the generic group model with an encoding map τ : Zp →
G. A signature scheme Π = (Kg,Sign,Vfy) is (N, qH, qG, qS, ε)-MU-UF-CMA se-
cure (multi-user unforgeable against chosen message attack) if for every adver-
sary A making at most qH (resp. qG, qS) queries to the random oracle (resp.
generic group, signing oracles), the following bound holds:

Pr
[
SigForgeτ,H,NA,Π (k) = 1

]
≤ ε,

where the randomness is taken over the selection of τ , the random coins of A,
the random coins of Kg, and the selection of random oracle H.

The Discrete-Log Solution List L in a Multi-User Setting. As before, we will
maintain the invariant that for every output y of a generic group query that we
have recorded a tuple (y,~a, b) in a list L where DLog(y) = ~a · ~x + b (here, ~a =
(a1, . . . , aN ), ~x = (x1, . . . , xN ) ∈ ZNp ). Note that the restricted oracle DLog(·) will
solve DLog(y) for any fresh group element y such that y 6∈ {τ(1), τ(x1), . . . , τ(xN )},
and y has not been the output of a prior generic group query.

– Initially, L contains (τ(1),~0, 1) and (τ(xi), ûi, 0) for 1 ≤ i ≤ N .
– If the attacker ever submits a fresh group element y which was not previously

an output of a generic group oracle query, then we can query b = DLog(y),
and add (y,~0, b) to our list. Thus, without loss of generality, we can assume
that all query inputs to Mult, Inv were first added to L.

– If (y1,~a1, b1), (y2,~a2, b2) ∈ L, and the attacker queries Mult(y1, y2), then add
(Mult(y1, y2),~a1 + ~a2, b1 + b2) to L.

– If (y,~a, b) ∈ L, and Inv(y) is queried, then add (Inv(y),−~a,−b) to L.

4.1 The Multi-User Bridge-Finding Game

We establish the multi-user security of short Schnorr signatures via reduction
from a new game we introduce called the 1-out-of-N generic BRIDGEN -finding
game. As in the 1-out-of-N discrete-log game, the attacker is given τ(1), as well
as τ(x1), . . . , τ(xN ) for N randomly selected values ~x = (x1, . . . , xN ) ∈ ZNp . The
key difference between this game and the 1-out-of-N discrete-log game is that
the attacker’s goal is simply to ensure that the “bridge event” BRIDGEN occurs,
whether or not the attacker is able to solve any of the discrete-log challenges. As
in Section 3, we will assume that we have access to DLog(·), and we will maintain
the invariant that for every output τ(y) of some generic group query, we have
y = ~a ·~x+b for known values ~a = (a1, . . . , aN ) ∈ ZNp and b ∈ Zp, i.e., by querying
the restricted oracle DLog(τ(y)) whenever we encounter a fresh input.
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The 1-out-of-N Generic BRIDGEN -Finding Game BridgeChalτ,NA (k, ~x):

(1) The challenger initializes the list L = {(τ(1),~0, 1), (τ(x1), û1, 0), . . . ,
(τ(xN ), ûN , 0)}, and ~x = (x1, · · · , xN ).

(2) The adversary A is given g = τ(1) and τ(xi) for each i ∈ [N ].
(3) A is allowed to query the usual generic group oracles (Mult, Inv).

(a) If the challenger ever submits any fresh element y which does not
appear in L as input to a generic group oracle, then the challenger
immediately queries by = DLog(y), and adds the tuple (y,~0, by) to
the list L.

(b) Whenever A submits a query y1, y2 to Mult(·, ·), we are ensured that
there exist tuples (y1,~a1, b1), (y2,~a2, b2) ∈ L. The challenger adds
the tuple (Mult(y1, y2),~a1 + ~a2, b1 + b2) to the list L.

(c) Whenever A submits a query y to Inv(·), we are ensured that some
tuple (y,~ay, by) ∈ L. The challenger adds the tuple (Inv(y),−~ay,−by)
to the list L.

(4) If at any point in time we have a collision, i.e., two distinct tuples
(y,~a1, b1), (y,~a2, b2) ∈ L with (~a1, b1) 6= (~a2, b2), then the event BRIDGEN

occurs, and the output of the game is 1. If BRIDGEN never occurs, then
the output of the game is 0.

We further define the game BridgeChalτ,NA (k) in which ~x = (x1, . . . , xN ) are

first sampled uniformly at random, and then we run BridgeChalτ,NA (k, ~x). Thus,
we have

Pr
A,τ

[BridgeChalτ,NA (k) = 1] := Pr
A,τ,~x

[BridgeChalτ,NA (k, ~x) = 1] .

As long as the event BRIDGEN has not occurred, we can (essentially) view
x1, . . . , xN as uniformly random values that are yet to be selected. More pre-
cisely, the values x1, . . . , xN are selected subject to a few constraints, e.g., if we
know f1 = τ(~a1 · ~x + b1) 6= f2 = τ(~a2 · ~x + b2) then we have the constraint that
~a1 · ~x+ b1 6= ~a2 · ~x+ b2.

Theorem 5. For any attackers A making at most qG := qG(k) queries to the
generic group oracles,

Pr
[
BridgeChalτ,NA (k) = 1

]
≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
,

in the generic group model of prime order p where the randomness is taken over
the selection of x1, . . . , xN , τ as well as any random coins of A.

Proof. Consider the output yi of the ith generic group query. We first analyze the
probability that this query results in the event BRIDGEN conditioning on the

event BRIDGE
N

<i that the event has not yet occurred, i.e., the event BRIDGEN

has not been occurred until the (i−1)th query. Before we even receive the output
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yi, we already know the values ~ai, bi such that the tuple (yi,~ai, bi) will be added
to L. If L does already contain this exact tuple, then outputting yi will not
produce the event BRIDGEN . If L does not already contain this tuple (yi,~ai, bi),
then we are interested in the event Bi that some other tuple (yi,~a

′
i, b
′
i) has been

recorded with (~a′i, b
′
i) 6= (~ai, bi). Observe that Bi occurs if and only if there

exists a tuple of the form (·,~a, b) with (~a − ~ai) · ~x = bi − b and (~a, b) 6= (~ai, bi).
If we pick ~x randomly, the probability that (~a − ~ai) · ~x = bi − b would be 1/p.
However, we cannot quite view ~x as random due to the restrictions, i.e., because

we condition of the event BRIDGE
N

<i we know that for any distinct pair (yi,~ai, bi)
and (yi,~aj , bj) we know that ~ai · ~x+ bi 6= ~aj · ~x+ bj .

Consider sampling ~x uniformly at random subject to this restriction. Let
r ≤ N be an index such that ~a[r]− ~ai[r] 6= 0 and suppose that xr = ~x[r] is the
last value sampled. At this point, we can view xr as being drawn uniformly at
random from a set of at least p − |L|2 − (N − 1) remaining values, subject to
all of the restrictions. We also observe that |L| ≤ N + 3qG + 1 since each generic
group oracle query adds at most three new tuples to L — exactly three in the
case that we query Mult(y1, y2) on two fresh elements. Thus, the probability
that (~a − ~ai) · ~x = bi − b is at most 1

p−(N+3qG+1)2−(N−1) . Union bounding over

all tuples (·,~a, b) ∈ L, we have

Pr
[
Bi : BRIDGE

N

<i

]
≤ N + 3i

p− (N + 3qG + 1)2 −N
.

To complete the proof, we observe that

Pr
[
BridgeChalGO,NA (k) = 1

]
=
∑
i≤qG

Pr
[
Bi : BRIDGE

N

<i

]
≤
∑
i≤qG

N + 3i

p− (N + 3qG + 1)2 −N
=

qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
.

As an immediate corollary of Theorem 5, we can show that an attacker wins
the 1-out-of-N discrete log game with (approximately) the same probability
as in the multi-user bridge-finding game. In particular, given any attacker A′
in the 1-out-of-N discrete-log game 1ofNDLogτ,NA (k), where the attacker’s goal
is to output any x ∈ {x1, . . . , xN} given input τ(1), τ(x1), . . . , τ(xN ), we can

construct an attacker A in the game BridgeChalτ,NA (k). A simply runs A′ to
obtain an output x, and then computes τ(x) using at most 2 log p queries to the
Mult(·, ·) oracle. If x ∈ {x1, . . . , xN}, then the bridge event BRIDGEN must have
occurred at some point, since we have (τ(x),~0, x) ∈ L and (τ(x), ûi, 0) ∈ L for
some i ∈ [N ].

Corollary 1. For any attacker A making at most qG + 2 log p queries,

Pr
[
1ofNDLogτ,NA (k) = 1

]
≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenges x1, . . . , xN , and any random coins of A.



On the Multi-User Security of Short Schnorr Signatures with Preprocessing 17

4.2 Security Reduction

Theorem 6. The short Schnorr signature scheme Πshort = (Kg,Sign,Vfy) of

length 3k is
(
N, qH, qG, qS, ε = O

(
q+N
2k

))
-MU-UF-CMA secure with

ε =
qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
+
qS(qH + qS)

p
+

qH + qS
p− (N + 3qG + 1)

+
qH + 1

2k
,

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof. Given an adversary Asig attacking short Schnorr signature scheme, we
construct the following efficient algorithm Abridge which tries to succeed in the

1-out-of-N generic BRIDGEN -finding game BridgeChalτ,NAbridge
(k):

Given: g = τ(1), pki = τ(xi), i ∈ [N ], p

/* begin simulation */

Asig

Mult(·)

Inv(·)

DLogg(·)

H(·)

σi∗ = (si∗, ei∗),mi∗

Signj(·)
{mi}Ni=1

{σi}Ni=1

1 : Pick si, ei randomly

2 : Compute Ii = Mult(Pow(g, si), Pow(pkj ,−ei)) = τ(si − xjei)
3 : if H(Ii||mi) previously queried then

4 : return ⊥
5 : else

6 : Program H(Ii||mi) := ei

7 : return σi = (si, ei)

Signj(mi) without secret key xj (j ∈ [N ])

/* end simulation */

Compute: Ii∗ = Mult(Pow(g, si∗), Pow(pki∗,−ei∗)) = τ(si∗ − xi∗ei∗)

Extract: a ∈ G,~a ∈ ZNp , b, c ∈ Zp

Reduction Abridge

Figure 2. A reduction to the BridgeChalτ,NAbridge
(k) attacker Abridge from the short Schnorr

signature attacker Asig.

Algorithm Abridge:
The algorithm is given p, g = τ(1), τ(xi), 1 ≤ i ≤ N as input.

1. Initialize the list L = {(τ(1),~0, 1), (τ(xi), ûi, 0) for each i ∈ [N ]}, and Hresp =
{}, where Hresp stores the random oracle queries.

2. Run Asig with a number of access to the generic oracles GO = (Mult(·, ·),
Inv(·)), DLogg(·), Signi(·) for 1 ≤ i ≤ N , and H(·). The signing oracle without
a secret key is described in Figure 2. Now we consider the following cases:
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(a) Whenever Asig submits a query w to the random oracle H:
– If there is a pair (w,R) ∈ Hresp for some string R, then return R.
– Otherwise, select R←$Z2k , and add (w,R) to the set Hresp.
– If w has the form w = (a‖mi), where the value a has not been observed

previously (i.e., is not in the list L), then we query b = DLog(a), and
add (a,~0, b) to L.

(b) Whenever Asig submits a query a to the generic group oracle Inv(a):

– If a is not in L then we immediately query b = DLog(a) and add (a,~0, b)
to L.

– Otherwise, (a,~a, b) ∈ L. Then we query Inv(a) = τ(−~a ·~x− b), output
the result and add the result (τ(−~a · ~x− b),−~a,−b) ∈ L.

(c) WheneverAsig submits a query a, b to the generic group oracle Mult(a, b):
– If the element a (resp. b) is not in L, then query b0 = DLog(a) (resp.
b1 = DLog(b)), and add the element (a,~0, b0) (resp. (b,~0, b1)) to L.

– Otherwise, both elements (a,~a0, b0), (b,~a1, b1) ∈ L. Then we return
Mult(a, b) = τ((~a0 +~a1) · ~x+ b0 + b1), and add (τ((~a0 +~a1) · ~x+ b0 +
b1),~a0 + ~a1, b0 + b1) ∈ L.

(d) Whenever Asig submits a query mi to the signing oracle Sign(xj , ·):
– We use the procedure Signj described in Figure 2 to forge a signa-

ture without knowledge of the secret key xi. Intuitively, the forgery
procedure relies on our ability to program the random oracle.

– We remark that a side effect of querying the Signj oracle is the addition

of the tuples (τ(si),~0, si), (τ(xjei), eiûi, 0) and (τ(si−xjei),−eiûi, si)
to L, since these values are computed using the generic group oracles
Inv and Mult.

(e) If at any point we find some string y such that (y,~a, b) ∈ L and (y,~c, d) ∈
L for (~a, b) 6= (~c, d), then we can immediately have a BRIDGEN instance
(τ((~a−~c) ·~x),~a−~c, 0) ∈ L and (τ(d−b),~0, d−b) ∈ L since τ((~a−~c) ·~x) =
τ(d−b).4 Thus, without loss of generality, we can assume that each string
y occurs at most once in the list L.

3. After Asig outputs σi∗ = (si∗, ei∗) and mi∗, identify the index i∗ ∈ [N ] such
that Vfy(pki∗,mi∗, σi∗) = 1.

4. Compute τ(−ei∗xi∗) = Inv(Pow(τ(xi∗), ei∗)) and si∗ = Pow(g, si∗). This will
ensure that the elements (τ(−ei∗xi∗),−ei∗ûi∗, 0) and (τ(ei∗xi∗), ei∗ûi∗, 0),
and (si∗,~0, si∗) are all added to L.

5. Compute Ii∗ = Mult(si∗, τ(−ei∗xi∗)) = τ(si∗ − xi∗ei∗) which ensures that
(Ii∗,−ei∗ûi∗, si∗) ∈ L. Finally, we can check to see if we previously had any
tuple of the form (Ii∗,~a, b) ∈ L.

Analysis. We first remark that if the signature is valid then we must have
ei∗ = H(Ii∗‖mi∗) and DLog(Ii∗) = si∗ − xi∗ei∗ = ~a · ~x+ b.

We now define failure events FailtoFind(Ii∗) and BadQuery. FailtoFind(Ii∗)
denotes the event that we find that the signature is valid, but Ii∗ was not pre-
viously recorded in our list L before we computed Mult(si∗, τ(−ei∗xi∗)) in the

4 Note that (~a, b) 6= (~c, d) implies ~a 6= ~c since if ~a = ~c then ~a · ~x+ b = ~a · ~x+ d implies
b = d as b, d ∈ Zp.
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last step. Similarly, let BadQuery denote the event that the signature is valid but
for the only prior tuple (Ii∗,~a, b) ∈ L recorded in L we have that ~a = −ei∗ûi∗.
If the signature is valid and neither of the events FailtoFind(Ii∗) and BadQuery
occur, then the bridge event BRIDGEN must have occurred and we immediately
win the game since (Ii∗,~a, b) ∈ L, (Ii∗,−ei∗ûi∗, si∗) ∈ L and ~a 6= −ei∗ûi∗.

We additionally consider then the event FailtoSign where our reduction out-
puts ⊥ in Step 2.(d) due signing oracle failure i.e., because H(Ii‖mi) has been
queried previously. Intuitively, the attacker will output a valid signature forgery
with probability at least Pr[SigForgeτ,NAsig,Πshort

(k) = 1] − Pr[FailtoSign] after we
replace the signing oracle with the procedure Signj described in Figure 2.

Claim 1, Claim 2, and Claim 3 upper bound the probability of our events
FailtoSign, FailtoFind and BadQuery respectively. We defer the proofs to Ap-
pendix C.2.

Claim 1. Pr[FailtoSign] ≤ qS(qH + qS)

p
.

Claim 2. Pr[FailtoFind(Ii∗)] ≤
qH + qS
p− |L|

+
1

2k
.

Claim 3. Pr[BadQuery] ≤ qH
2k
.

Since we have |L| ≤ N + 3qG + 1, we can apply Theorem 5 to conclude that

Pr[SigForgeτ,NAsig,Πshort
(k) = 1]

≤ Pr[BridgeChalτ,NAbridge
(k) = 1] + Pr[FailtoSign] + Pr[FailtoFind(Ii∗)] + Pr[BadQuery]

≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N +
qS(qH + qS)

p
+

qH + qS
p− (N + 3qG + 1)

+
qH + 1

2k

= O
(
q +N

2k

)
.

Remark 1. Kiltz et al. [KMP16] proved that multi-user security of regular Schnorr
signatures is tightly equivalent to the Q-IDLOG problem in the random oracle
model. Here, the Q-IDLOG problem is defined as follows: an adversary is given gx

and access to a challenge oracle Ch, where Ch(gri) returns a uniformly random
element hi ∈ Zp. After up to Q queries to Ch, the adversary wins if it returns a
value s from the set {xhi + ri | i ∈ [Q]}. Kiltz et al. [KMP16, Theorem A.1] also
proved that a generic attacker making q generic group queries and Q queries to
Ch wins with probability proportional to (q2 +Q)/p.

In private communication, the authors of [KMP16] pointed out that Theorem
A.1 could be updated to give the bound q2/p+Q/2k when Ch returns a random
element hi ∈ {0, 1}k as in short Schnorr signatures. This would also imply tight
multi-user security of short Schnorr signatures in the random oracle model and
(their version of) the generic group model. However, short Schnorr signatures are
not discussed in [KMP16]. We prefer to work in Shoup’s generic group model as
it is more suitable for analyzing protocol composition and preprocessing attacks.
/
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5 Multi-User Security of Short Schnorr Signatures with
Key-Prefixing against Preprocessing Attacks

In this section, we analyze the security of short Schnorr signatures against a
preprocessing attacker who first outputs an S-bit hint after making (a very large
number of) preprocessing queries to the generic group oracles Mult and Inv,
as well as the random oracle H. After the public/secret keys are chosen, the
signature forgery attacker will try use the hint to help win the signature forgery
game. The hint must be fixed before the public/secret keys for our signature
scheme are selected, otherwise the preprocessing attacker can generate forged
signatures and embed them in the hint.

We first observe that Schnorr signatures are trivially broken against a pre-
processsing attack, e.g., if the preprocessing attacker finds some message m
and an integer r such that e = H(τ(r)‖m) = 0, then the attacker can sim-
ply include the tuple (m, r) as part of the S-bit hint. Observe that the hint
is completely independent of the public key pk. In fact, for any public key pk,
we have that σ′ = (s = r, e = 0) is a valid signature for the message m! To
see this, note that R = τ(s − sk · 0) = τ(r) = 0 and that, by assumption,
H(R‖m) = H(τ(r)‖m) = 0 = e.

The above attack can easily be addressed with key-prefixing, i.e., to sign a
message m, we pick an integer r, compute e = H(pk‖τ(r)‖m), and output the
signature σ = (s = r+ sk ·e, e). Intuitively, since the preprocessing attacker does
not know the public key pk in advance, s/he is unlikely to have stored a tuple of
the form (pk,m, r, τ(r)). The key question is whether or not short Schnorr sig-
natures with key-prefixing are secure against any preprocessing attack. To prove
that short Schnorr signatures with key-prefixing are secure against preprocess-
ing attacks, we revisit the 1-out-of-N bridge-finding game in the preprocessing
setting.

Remark 2. Several standardized implementations of Schnorr signatures, such
as BSI-TR-03111 [fIS18] or ISO/IEC 14888-3 [fSC18], slightly deviate from
Schnorr’s original construction by explicitly disallowing e = 0 signatures. Dis-
allowing e = 0 signatures defends against the particular preprocessing attack
we described above, and it is possible that the particular preprocessing attack
was one of the motivations for excluding e = 0 signatures in these standards.
Investigating the (in)security of the BSI/ISO version of short Schnorr signatures
against preprocessing attacks remains an interesting open research challenge. /

5.1 Security of BRIDGEN -Finding Game with Preprocessing

We analyze the BRIDGEN -finding game in the setting with preprocessing attacks.
In particular, an attacker consists of a pair of algorithms (Apre,Aon). The basic
idea is that we split the attack into two phases, preprocessing and online phase,
so that the attacker has (exponential) time to make preprocessing queries before
playing the bridge game. Specifically,
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– Algorithm Apre runs a preprocessing phase, where it takes as input g = τ(1)
and outputs a hint strτ , which is a binary string after making queries to the
generic group oracles GO = (Mult(·, ·), Inv(·)). Without loss of generality, we
can assume that Apre is deterministic, and we simply use strτ to refer to the
hint when the random mapping τ is fixed.

– The online attacker Aon attempts to win the BRIDGEN -finding game. The
online attacker Aon is given the hint strτ (which was produced in the prepro-
cessing phase), as well as (τ(x1), . . . , τ(xN )). However, the challenger picks
(x1, . . . , xN ) ∈ ZNp after the hint strτ is fixed. For convenience, we will write
Aon,strτ to denote the online attacker with the hint strτ hardcoded.

We are interested in the setting where the preprocessing algorithm Apre can
make qpreG ≥ 22k queries to the generic group oracles. In other words, the prepro-
cessing algorithm Apre can examine the entire input/output table of the mapping
τ . However, the length of the hint strτ given to the online attacker is bounded
by S, and the online attacker can make at most qonG < 2k queries to the generic
group oracles. Theorem 7 says that the probability of a successful preprocessing
attack is at most Õ(SN(qonG )2/p).

Theorem 7. Let p > 22k be a prime number and N ∈ N be a parameter. Let
(Apre,Aon) be a pair of generic algorithms with an encoding map τ : Zp → G
such that Apre outputs an S-bit hint and Aon makes at most qonG := qonG (k) queries
to the generic group oracles. Then

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≤ Õ

(
SN(qonG +N)(qonG + 2N)

p

)
,

where the randomness is taken over the selection of τ , the random coins of Aon,
and the random coins used by the challenger in the bridge game (the hint strτ =
AGO

pre(g) is selected independently of the random coins used by the challenger). In
particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≤ 12SN(qonG )2 log p

p
.

Remark 3. The upper bound is essentially tight as a preprocessing attacker can
solve a random 1-out-of-N discrete-log challenge with probability Ω̃((qonG )2S/p)
which would trivially allow the attacker to win the bridge-finding game. In par-
ticular, even when N = 1, there is a preprocessing with success probability
Ω((qonG )2S/p), e.g., see [CK18, Section 7.1]. Thus, our upper bound is tight up
to a factor of N . /

The proof of Theorem 7 closely follows [CK18, Theorem 2] with a few minor
modifications, and the full proof can be found in Appendix C.3. One small
difference is that we need to extend the proofs of [CK18] to handle queries to the
inverse oracle Inv(·), and the restricted discrete log oracle DLog. The proof of
Theorem 7 relies on Lemma 2, which is similar to [CK18, Lemma 4]. Intuitively,
if the preprocessing attack is too successful, then one can derive a contradiction
by compressing the random mapping τ .
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Lemma 2. Let G be the set of binary strings of length ` such that 2` ≥ p
for a prime p. Let T = {τ1, τ2, . . .} be a subset of the labeling functions from
Zp to G. Let (Apre,Aon) be a pair of generic algorithms for Zp on G such
that for every τ ∈ T and every ~x = (x1, . . . , xN ) ∈ ZNp , Apre outputs an S-
bit advice string, Aon makes at most qon oracle queries, and (Apre,Aon) satisfy

PrAon

[
BridgeChalτ,NAon,strτ

(k, ~x) = 1
]
≥ ε, where strτ = AGO

pre(τ(1)). Then, there ex-

ists a randomized encoding scheme that compresses elements of T to bitstrings
of length at most

log
|G|!

(|G| − p)!
+ S + 1− εp

6qon(qon +N)(N log p+ 1)
,

and succeeds with probability at least 1/2.

The full proof of Lemma 2 can be found in Appendix C.3. Here, we only give
the brief idea as follows. To compress τ , our encoding algorithm first runs Apre to
extract an S-bit hint strτ . We then execute Aon(strτ , τ(x1), . . . , τ(xN )) multiple
times with different challenges x1, . . . , xN . During each execution we record the
responses to the new generic group oracle queries, so that the decoder can also
execute Aon(strτ , τ(x1), . . . , τ(xN )). Intuitively, whenever the BRIDGEN event
occurs, the decoder can save a few bits by simply recording the index of prior
query involved in the collision. This requires just log qon bits to encode instead
of log p bits.

5.2 Multi-User Security of Key-Prefixed Short Schnorr Signatures
with Preprocessing

Theorem 7 upper bounds the probability that a preprocessing attacker wins
the multi-user bridge-finding game. In this setting, we observe that the hint
str := strτ,H that the preprocessing attacker outputs may depend both on the
random oracle H as well as the encoding map τ . We show how to adapt our
prior reduction to establish the multi-user security of key-prefixed short Schnorr
signatures against preprocessing attackers. Recall that in our reduction, we sim-
ulated a signature forgery attacker for (non key-prefixed) short Schnorr signa-
tures responding to queries to the signing oracle by programming the random
oracle. In the preprocessing setting without key-prefixing, the reduction breaks
down immediately. For example, the probability of a lucky random oracle query
H(τ(r)‖m) = 0 is no longer ≈ qonH /2

k, since the preprocessing attacker can sim-
ply hardcode the pair (r,m) as part of the hint str := strτ,H. Similarly, the
hint str := strτ,H may be correlated with particular input/output pairs from the
random oracle, making it infeasible to program those points.

We address this challenge by considering a model where a preprocessing
attacker is time-bounded, i.e., the preprocessing attacker can look at the entire
generic group oracles but only allowed to query the random oracle at up to
qpreH = 23k points during the preprocessing phase. We leave it as an interesting
theoretical challenge whether or not the bounds can be extended to unbounded
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preprocessing attacks. However, we would argue that in practice, 23k greatly
overestimates the running time of any preprocessing attacker, e.g., if k = 112,
then 23k = 2336. Intuitively, the signing oracle for key-prefixed short Schnorr
signatures involves two random points: a public key pk ∈ G and a random value
r←$Zp. The probability that a preprocessing attacker submitted a query of the
form H(pk, τ(r), ·) is at most qpreH p−2 ≤ 2−k, since the qpreH random oracle queries
are fixed before pk and r are sampled.

In our analysis, we consider the bad event that the signing oracle queries the
random oracle at a point H(pki‖τ(rj)‖m), which was previously queried by the
preprocessing attacker. Note that if this bad event never occurs, then we can
view H(pki‖τ(rj)‖m) as a uniformly random string that is uncorrelated with the
attacker’s state. The probability of this bad event occurring on any single query
to the signing oracle is at most NqpreH /p2. In particular, fixing an arbitrary set
of qpreH random oracle queries and then sampling pk1, . . . , pkN ∈ G and r ∈ Zp,
we can apply union bounds to argue that the probability that the preprocessing
attacker previously submitted some query of the form H(pki, τ(r), ·) for any i
is at most NqpreH /p2. Union bounding over the qonS online queries to the signing
oracle, the probability of the bad event ever occurring on any query to the signing
oracle is at most NqpreH qonS /p

2. Assuming that the bad event never occurs, we can
safely program the random oracle to simulate queries to the signing oracle when
we simulate our signature forgery attacker.

The other challenge that arises in the preprocessing setting is upper bound-
ing the probability of the bad event that the attacker forges a signature without
causing the bridge event to occur. Previously, our argument relied on the ob-
servation that for “fresh” group elements r ∈ Zp, we can effectively view τ(r)
as random bit string that is yet to be fixed. This intuition does not carry over
into the preprocessing setting, as the hint str might be correlated with τ(r). We
address these challenges by applying a random oracle compression argument.
In particular, if the attacker can generate forged signatures without causing the
bridge event to occur, we can use this attacker to predict random oracle outputs,
allowing us to derive a contraction by compressing the random oracle.

Theorem 8. Let Π = (Kg,Sign,Vfy) be a key-prefixed Schnorr signature scheme
and p > 22k be a prime number. Let N ∈ N be a parameter and (Apre

sig ,Aon
sig) be

a pair of generic algorithms with an encoding map τ : Zp → G such that Apre
sig

makes at most qpreH queries to the random oracle H : {0, 1}∗ → {0, 1}k1 and
outputs an S-bit hint strτ,H, and Aon

sig makes at most qonG := qonG (k) queries to
the generic group oracles and at most qonH queries to the random oracle. Then

Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH )
p +

4(qonH +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =

Apre,GO
sig (g) is selected independently of the random coins used by the challenger).
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In particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

ε =
12SN(qonG )2 log p

p
+
NqpreH qonS

p2
+
qonS (qonS + qonH )

p
+

4(qonH + 1)

2k1
+
N2(S + k1)

p
.

Remark 4. The upper bound in Theorem 8 is essentially tight (up to a factor of
N), because of the following observations:

– Making the reasonable assumption that NqpreH qonS < 23k and qonG >
√
N , the

dominating terms in ε are Õ(SN(qonG )2/p) and/or O
(
qonH /2

k1
)
.

– A preprocessing attacker can simply solve one of the discrete-log challenges
with probability at least Ω(S(qonG )2/p) which would recover a secret key and
make it trivial to forge a signature.

– Any attacker who makes qonH ≥ qonS queries to the random oracle can fix
an arbitrary message m and pick random numbers r1, . . . , rqonH hoping that
H(pk1‖τ(rj)‖m) = 0 for some j ≤ qonH . In this case, (rj , 0) is a valid forged
signature for m under public key pk1. Thus, the attacker can succeed with
probability ≈ qonH /2k1 . /

The full proof of Theorem 8 can be found in Appendix C.3. The key idea is
that we can repeat the essentially same reduction from Section 4, i.e., we can
build a bridge-finding game attacker (Apre

bridge,Aon
bridge) with preprocessing from the

signature forgery attacker (Apre
sig ,Aon

sig) with preprocessing, except that when we
program a random oracle, we define an additional bad event that we program
a random oracle at a point the attacker has already queried the point during
the preprocessing phase. We observe that such probability is negligibly small.
As long as the failure event does not occur we can program the random oracle
and the attacker will not notice the difference.

Instantiating Key-Prefixed Short Schnorr Signatures. We would like to have the
success probability in Theorem 8 bounded by O

(
q/2k

)
for any q ≤ 2k, where

q = qonG +qonH +qonS is the total number of online queries made by a preprocessing
attacker. To achieve k bits of multi-user security for key-prefixed short Schnorr
signatures with preprocessing, we can fix p such that p ≈ 22kSN log p, and set the
length of our hash output to be k1 = k. With these parameters, Theorem 8 tells
us that a preprocessing attacker wins the signature forgery game with probability
at most ε = O

(
(qonH + qonG )/2k

)
. The length of the signatures we obtain will be

k + log p = 3k + logN + logS + log log p.
As a concrete example, if N ≤ 2k/4 and S ≤ 2k/2, then we obtain signatures

of length ≈ 3.75k + log 2.75k. If we want k ≥ 128 bits of security, then the
assumption that N < 2k/4 seems quite reasonable, since 232(≈ 4.3 billion) is over
half of the current global population, and 264 bits exceeds the storage capacity
of Facebook’s data warehouse5. As a second example, if we take S ≤ 280 as an
upper bound on the storage capacity of any nation state and N ≈ 240, then we
obtain signatures of length ≈ 3k + 120 + log(2k + 120).

5 See the link: https://engineering.fb.com/2014/04/10/core-data/scaling-the-
facebook-data-warehouse-to-300-pb/ (Retrieved 2/20/2021)

https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://engineering.fb.com/2014/04/10/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
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6 Multi-User Security of Other Fiat-Shamir Signatures

In this section, we show that our techniques from Section 4 and Section 5 apply
to other Fiat-Shamir-based signature schemes. We apply our reductions to ana-
lyze the multi-user security of the full-domain hash variant of Chaum-Pedersen
signatures [CP93], and (short) Katz-Wang signatures [KW03], with and with-
out preprocessing. In practice, the full-domain hash variant of Chaum-Pedersen
would be used to ensure that our signature scheme supports the message space
m ∈ {0, 1}∗ instead of requiring that m is a group element. We begin by introduc-
ing regular Chaum-Pedersen signatures in the next paragraph before describing
the full-domain hash variant (Chaum-Pedersen-FDH) that we analyze.

Security Analysis of Chaum-Pedersen-FDH Signatures. The Chaum-Pedersen
signature scheme [CP93] is obtained by applying the Fiat-Shamir transform
[FS87] to the Chaum-Pedersen identification scheme and works as follows.

– Given a cyclic group G = 〈g〉 of prime order p, the key generation algorithm
picks sk←$Zp and sets pk = gsk.

– To sign a message m ∈ G with the secret key sk, we sample r←$Zp and
compute y = msk, a = gr, b = mr, and e = H(m‖y‖a‖b). Finally, we output
a signature σ = (y, a, b, s), where s := r + sk · e mod p.

– The verification algorithm takes as inputs a signature σ′ = (y′, a′, b′, s′) and
computes e′ = H(m‖y′‖a′‖b′), A = gs

′
, B = a′gsk·e

′
, C = ms′ and D = b′y′e

′
.

Finally, we verify that (A = B) and (C = D) before accepting the signature.

The full-domain hash variant of Chaum-Pedersen signature, say Chaum-Pedersen-
FDH signature, is obtained by hashing a message m into a group element so
that we can perform generic group operations when signing the message. That
is, in the generic group model, we compute h = H′(pk‖m) := Pow(g,H(pk‖m))
and compute y = Pow(h, sk) and b = Pow(h, r) (which corresponds to y = hsk

and b = hr when instantiated with a cyclic group G = 〈g〉) during the sign-
ing procedure. Note that key-prefixing is necessary as otherwise an attacker can
always forge a signature for a message m, e.g., simply find m 6= m′ such that
H(m) = H(m′). The full description for each of these algorithms can be found in
Figure 4 in Appendix A.

Our reduction in Section 4 naturally extends to Chaum-Pedersen-FDH sig-
nature scheme by using signing oracle in Figure 3. The signing oracle is able go
generate valid signatures without the secret key by programming the random
oracle. This allows us to prove Theorem 9. We remark that a Chaum-Pedersen-
FDH signature with k bits of security has length 8k — each group element
requires 2k bits to encode since p ≈ 22k. Note that reducing the length of the
hash output does not have any effect on Chaum-Pedersen-FDH signature length.
Thus, we assume that H is a random oracle with 2k-bit outputs. The proof of
Theorem 9 can be found in Appendix C.4.

Theorem 9. The Chaum-Pedersen-FDH signature scheme is
(
N, qH, qG, qS,O

(
q+N
2k

))
-

MU-UF-CMA secure under the generic group model of prime order p ≈ 22k and
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the programmable random oracle model, where q denotes the total number of
queries made by an adversary.

We can also show that the key-prefixed Chaum-Pedersen-FDH signature
scheme is secure against proprocessing attacks. That is, we apply key-prefixing
when computing e, i.e. e ← H(pk‖h‖y‖a‖b) during the signing procedure and
e′ ← H(pk‖h‖y′‖a′‖b′) during the verification (see Figure 4). During the online
phase we can request a signature σ for m and output σ′ = σ as our forgery for
m′. We defer the full proof of Theorem 10 to Appendix C.4.

Theorem 10. Let Π = (Kg,Sign,Vfy) be a key-prefixed Chaum-Pedersen-FDH
signature scheme and p > 22k be a prime number. Let N ∈ N be a parameter and
(Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding map τ : Zp → G such

that Apre
sig makes at most qpreH < 23k queries to the random oracle H : {0, 1}∗ →

{0, 1}2k and outputs an S-bit hint strτ,H, and Aon
sig makes at most qonG := qonG (k)

queries to the generic group oracles and at most qonH queries to the random oracle.

Then Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH )
p +

4(qonH +q̃2on+1)
22k

+ 3N2(S+2k)
2p ,

where qonS denotes the number of queries to the signing oracle, q̃on = qonH + 2qonS ,
and the randomness is taken over the selection of τ and the random coins of Aon

sig

(the hint strτ,H = Apre,GO
sig (g) is selected independently of the random coins used

by the challenger).

Applying Theorem 10, we can fix p such that p ≈ 22kSN log p to achieve k
bits of multi-user security. The final signature size would be ≈ 8k + 4 logS +
4 logN + 4 log(2k + logSN).

Security Analysis of Katz-Wang Signatures. The Katz-Wang signature scheme
[KW03] is a double generator version of Schnorr signature scheme. In the generic
group model on a cyclic group G of prime order p, we have two generators
p1, p2 ∈ Zp so that we can associate with gp1 and gp2 to the generators of the
group G. Here, the message space for m is arbitrary, i.e., m ∈ {0, 1}∗.

Given our encoding τ : Zp → G and g = τ(1), our key generation algorithm
picks sk←$Zp and sets pk = (p1, p2, h1, h2), where hi = Pow(τ(pi), sk) for i = 1, 2.
To sign a message m ∈ {0, 1}∗ with the secret key sk, we sample r←$Zp, and
compute ai = Pow(τ(pi), r) for i = 1, 2, e = H(pk‖a1‖a2‖m), and s = r + sk · e
mod p. Finally, we output σ = (s, e). The verification algorithm takes as inputs
a signature σ′ = (s′, e′), pk = (p1, p2, h1, h2) and the message m, and compute
a′i = Mult(Pow(τ(pi), s

′), Pow(Inv(hi), e
′)) for i = 1, 2. Finally, we verify that

e′ = H(pk‖a′1‖a′2‖m) before accepting the signature. The pseudocode for each of
these algorithms can be found in Figure 5 in Appendix A.

We remark that the length of a regular Katz-Wang signature is 4k bits when
p ≈ 22k. Similar to short Schnorr signatures, one can shorten the length of the
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Signj(mi) without secret key xj , j ∈ [N ] (Chaum-Pedersen-FDH)

1 : Pick si and ei ∈ Zp randomly

2 : Compute si = Pow(g, si) and hij = Pow(g,H(pkj‖mi))

3 : Compute yi = Pow(pkj ,H(pkj‖mi))

4 : Compute ai = Mult(si, Pow(Inv(pkj), ei))

5 : Compute bi = Mult(Pow(hij , si), Pow(Inv(yi, ei)))

6 : if H(hij‖yi‖ai‖bi) ∈ prior query then

7 : return ⊥
8 : else Program H(hij‖yi‖ai‖bi) := ei
9 : return σi = (yi, ai, bi, si)

Signj(mi) without secret key xj , j ∈ [N ] (Katz-Wang)

1 : Pick si, ei ∈ Zp randomly

2 : Compute a1,i = Mult(Pow(τ(p1), si), Pow(Inv(Pow(τ(xj), p1)), ei))

3 : Compute a2,i = Mult(Pow(τ(p2), si), Pow(Inv(Pow(τ(xj), p2)), ei))

4 : if H(pkj‖a1,i‖a2,i‖mi) ∈ prior query then

5 : return ⊥
6 : else Program H(pkj‖a1,i‖a2,i‖mi) := ei

7 : return σi = (si, ei)

Figure 3. The signing oracle without secret key in the Chaum-Pedersen-FDH scheme
(top) and the Katz-Wang scheme (bottom). Note that pkj = τ(xj) is public in both
schemes while the signing oracle has no information about xj . We further remark that
in the key-prefixed Chaum-Pedersen-FDH scheme, the only difference is to do a key-
prefixing pkj = τ(xj) to the input of the random oracle (line 6 and 8).

hash output to k bits to obtain 3k bit signature. Essentially the same reduc-
tion can be used to demonstrate the multi-user security of (short) Katz-Wang
signatures, while we use the signing oracle in Figure 3 without the secret key.

We observe that Katz-Wang signature is already key-prefixed. The security
bounds in Theorem 11 and Theorem 12 are equivalent to our bounds for short
Schnorr signatures with and without pre-processing. Thus, we obtain 3k (resp.
3k+logN+logS+log(2k+logNS))-bit signatures with k bits of security in the
multi-user setting without preprocessing (resp. with preprocessing). As before in
the preprocessing setting we select our prime number p ≈ 22kNS log(2k+logNS)
and we fix the length of the hash output to be k1 = k. We defer the full proof
of Theorem 11 and Theorem 12 to Appendix C.4.

Theorem 11. The (short) Katz-Wang signature scheme is
(
N, qH, qG, qS,O

(
q+N
2k

))
-

MU-UF-CMA secure under the generic group model of prime order p ≈ 22k and
the programmable random oracle model, where q denotes the total number of
queries made by an adversary.

Kiltz et al. [KMP16] showed that if the decisional Diffie-Hellman problem
is (t, ε)-hard then an adversary who tries to forge one out of N (regular) Katz-
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Wang signatures running at most time t′ can succeed with the probability ε′ ≤
t′(4ε/t+ qS/p+ 1/2k). While their result is similar to Theorem 11, our bounds
apply to (short) Katz-Wang signatures, with and without preprocessing.

Theorem 12. Let Π = (Kg,Sign,Vfy) be a Katz-Wang signature scheme and
p > 22k be a prime number. Let N ∈ N be a parameter and (Apre

sig ,Aon
sig) be a pair

of generic algorithms with an encoding map τ : Zp → G such that Apre
sig makes at

most qpreH < 23k queries to the random oracle at most qpreH < 23k queries to the
random oracle H : {0, 1}∗ → {0, 1}k1 and outputs an S-bit hint strτ,H, and Aon

sig

makes at most qonG := qonG (k) queries to the generic group oracles and at most qonH

queries to the random oracle. Then Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH )
p +

4(qonH +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =

Apre,GO
sig (g) is selected independently of the random coins used by the challenger).
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A Full Description of Other Fiat-Shamir-Based
Signatures

A.1 (Key-Prefixed) Chaum-Pedersen-FDH Signature Scheme

Kg(1k):

1 : sk←$Zp
2 : pk← Pow(g, sk)

3 : return (pk, sk)

Sign(sk,m):

1 : r←$Zp
2 : h← Pow(g,H(pk‖m))

3 : y← Pow(h, sk)

4 : a← Pow(g, r)

5 : b← Pow(h, r)

6 : e← H(h‖y‖a‖b)

7 : s← r + sk · e mod p

8 : return σ = (y, a, b, s)

Vfy(pk,m, σ):

1 : Parse σ = (y′, a′, b′, s′)

2 : h← Pow(g,H(pk‖m))

3 : e′ ← H(h‖y′‖a′‖b′)
4 : A← Pow(g, s′)

5 : B ← Mult(a′, Pow(pk, e′))

6 : C ← Pow(h, s′)

7 : D ← Mult(b′, Pow(y′, e′))

8 : if (A = B) ∧ (C = D) then

9 : return 1

10 : else return 0

Figure 4. The Chaum-Pedersen-FDH signature scheme in the generic group model.
Note that in the key-prefixed Chaum-Pedersen-FDH signature scheme, we include the
public key in the input to the random oracle, i.e., e ← H(pk‖h‖y‖a‖b) on line 6 in
Sign(sk,m) and e′ ← H(pk‖h‖y′‖a′‖b′) on line 3 in Vfy(pk,m, σ).

A.2 Katz-Wang Signature Scheme

Kg(1k):

1 : sk←$Zp
2 : h1 ← Pow(τ(p1), sk)

3 : h2 ← Pow(τ(p2), sk)

4 : pk← (p1, p2, h1, h2)

5 : return (pk, sk)

Sign(sk,m):

1 : r←$Zp
2 : a1 ← Pow(τ(p1), r)

3 : a2 ← Pow(τ(p2), r)

4 : e← H(pk‖a1‖a2‖m)

5 : s← r + sk · e mod p

6 : return σ = (s, e)

Vfy(pk,m, σ):

1 : Parse σ = (s′, e′)

2 : Parse pk = (p1, p2, h1, h2)

3 : a′1 ← Mult(Pow(τ(p1), s′), Pow(Inv(h1), e′))

4 : a′2 ← Mult(Pow(τ(p2), s′), Pow(Inv(h2), e′))

5 : if e′ = H(pk‖a′1‖a′2‖m) then

6 : return 1

7 : else return 0

Figure 5. The Katz-Wang Signature Scheme in the generic group model.

B Comparing Different Generic Group Models

In our analysis we show that short Schnorr signatures provide k bits of security
in Shoup’s generic group model [Sho97]. Schnorr and Jakobsson’s model [SJ00]
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previously established the security of short Schnorr signatures in their version
of the generic group model using programmable random oracles. Similarly, Kiltz
et al. [KMP16] proved that regular Schnorr signatures provide k bits of security
in the multi-user setting using a different version of the generic group model.
In this section, we review the different variants of the generic group model, and
motivate why we chose to conduct our analysis in Shoup’s model [Sho97]. As
a motivating example, we consider a recent generic preprocessing attack on the
squared Decisional Diffie-Hellman problem (sqDDH) [KM10] due to Corrigan-
Gibbs and Kogan [CK18]. While it is straightforward to describe the attack in
Shoup’s generic group model [Sho97] it does appear to be not possible to describe
the attack in other variations of the generic group model.

B.1 The Generic Group Model based on Collisions

In the generic group model of Shoup, the attacker is given a handle τ(h) for
any group element that is the output of any generic group query. In the model
of Schnorr and Jakobsson [SJ00], the attacker is not directly given a handle. In
particular, if fi denotes the output of the ith generic group query the attacker
is simply informed whether or not fi is a new group element or whether fi
collided with a prior query. The attacker may indirectly reference previously
computed group elements by submitting a query (a1, · · · , ai−1) ∈ Zi−1p to the
generic group oracle. The attacker is then informed whether or not the group
element fi :=

∏i−1
j=1 f

aj
j is new or not. If fi ∈ {f1, . . . , fi−1} then the attacker

is given the index j < i of any group element such that fj = fi. The formal
definition of a generic algorithm, as defined by Schnorr and Jakobsson [SJ00], is
given in Definition 3.

Definition 3. [SJ00] A generic algorithm (of Schnorr and Jakobsson) is a se-
quence of t generic steps; for time 1 ≤ t′ < t, the algorithm takes inputs
as f1, · · · , ft′ ∈ G, and computes fi =

∏i−1
j=1 f

aj
j for i = t′ + 1, · · · , t, where

(a1, · · · , ai−1) ∈ Zi−1p depends arbitrarily on i, the non-group element and the
set COi−1 := {(j, k)|fj = fk, 1 ≤ j < k ≤ i− 1} of previous “collisions” of group
elements.

Remark 5. While many natural attacks can be modeled using Definition 3, there
are several limitations due to the lack of a direct handle on group elements. In
Definition 3 the only way to obtain new group elements is by executing another
generic step. By contrast, in Shoup’s model, the attacker can pick a binary string
x at any time expecting that x = τ(h) for some group element h ∈ G and submit
x as the input to generic group oracles. Similarly, in Shoup’s model, the attacker
can easily “mark” or partition the group elements G. In fact, this can be done
before the attacker ever queries the generic group oracle(s). For example, we
could define G0 = {h : 0 = τ(h) mod 2} and G1 = {h : 1 = τ(h) mod 2}.
Later when we are given the handle τ(h) it is trivial to test whether h ∈ Gb.
Similarly, if we define G0 = {h : τ(h) = 0 mod

√
p} then it is easy to sample

elements in G0 in Shoup’s model, i.e., pick a random x such that x = 0 mod
√
p

expecting that x = τ(h) for some h ∈ G. /
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Preprocessing Attacks on the sqDDH Problems. As an illustrative example of
a generic attack which cannot be described in Schnorr and Jakobsson’s generic
group model, we discuss the preprocessing attack on the sqDDH problem [KM10]
proposed by Corrigan-Gibbs and Kogan [CK18]. The sqDDH problem requires to

distinguish tuples of the form (g, gx, gy) from (g, gx, g(x
2)) for random x, y ∈ Zp.

Corrigan-Gibbs and Kogan [CK18] introduced a sqDDH distinguisher DsqDDH

using preprocessing. The preprocessing attack generates a hint of size at most
s (bits) in the offline phase after arbitrary interaction with the generic group
oracles. In the online phase the attacker is given the pair (τ(h1), τ(h2)) and must
guess whether the pair is a valid sqDDH pair. The attack of Corrigan-Gibbs and
Kogan [CK18] runs in time t and achieves advantage ε provided that st2 =
Ω(pε2). Interestingly, this attack matches the lower bound for the regular DDH
problem, i.e., any preprocessing attack which achieves distinguishing advantage
ε for DDH must have st2 = Ω̃(pε2).

Intuitively, the preprocessing phase takes advantage of the ability of the
attacker to “mark” and/or “color” exponentially large subsets of pairs (u1, u2) ∈
G2 — a capability that the attacker does not have in Definition 3. In particular,
the attack relies on several random functions Hm : G2 → {1, . . . , t} and Hc :
G2 → {1, . . . , s} to “mark” and “color” vertices, i.e., the set of marked vertices
is M = {(u1, u2) ∈ G2 : Hm(u1, u2) = 1} and any marked node (u1, u2) ∈
M is assigned the color Hc(u1, u2). Next Corrigan-Gibbs and Kogan define a
random walk using a random function f : τ(G)2 → Zp, i.e., starting at the
node (τ(h0), τ(h1)) ∈ τ(G)2 we compute α ← f(τ(h0), τ(h1)) and move to

(τ(hα0 ), τ(h
(α2)
1 ) ∈ τ(G)2. Letting Y = {(τ(gx), τ(g(x

2))) : x ∈ Zp} ⊂ τ(G)2

denote the “yes” instance of the sqDDH problem it is easy to observe that
walk that starts inside (resp. outside) Y remains inside (resp. outside) Y. The
random walk is used to select Ω

(
p/(3t2)

)
marked nodes T ⊆ Y. Then for each

color c ∈ {1, . . . , s} the preprocessing algorithm computes the advice string
wc ∈ {0, 1}log p such that

wc = arg max
w∈{0,1}log p

∑
(m,cm)∈T :
cm=c

H(w,m),

where H : {0, 1}log p ×G2 → {0, 1} is a random function. Please see [CK18] for
the complete discussion.

We now discuss some of the inherent challenges in modeling the attack why
the non-standard generic group model cannot capture the sqDDH distinguish-
ing attack illustrated above. When it comes to sampling a set of p2/t “marked”
pointsM := {(τ(y0), τ(y1)) : Hm(τ(y0), τ(y1)) = 1} we required an explicit han-
dle τ(·) in addition to the random hash function Hm : G2 → {1, . . . , t}. Similarly,
coloring each of the marked points using the random function Hm requires an
explicit handle. Finally, we also require an explicit handle to compute each of
the advice strings wc using the hash function H : {0, 1}log p ×G2 → {0, 1}.
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B.2 The Generic Group Model using Incrementing Counters

While version of the generic group model used by Kiltz et al. [KMP16] is different
from Schnorr and Jakobsson [SJ00], it is also not equivalent to the generic group
model of Shoup [Sho97]. In fact, we show that any generic attack in the model
of Kiltz et al. [KMP16] can we simulated within the model of Schnorr and
Jakobsson [SJ00]. Thus, the model used by Kiltz et al. [KMP16] would also fail
to capture attacks that require explicit handles on group elements such as the
sqDDH preprocessing attack [CK18].

In the model of Kiltz et al. [KMP16], the generic group oracle maintains
a global counter i which is incremented every time a new group element is
produced. The generic group oracle also maintains a list of tuples which consists
of the group element along with the corresponding counter, i.e., (y, Cy) ∈ Zp×N
where N denotes the set of positive integers. The counter Cy for each group
element y is used as a “handle”, e.g., if g and h = gx are the “public” group
elements then the attacker is initially given the counters Cg = 1 and Ch = 2
and the next group element r that is generated will be assigned counter value
Cr = 3.

Formally, the generic oracle works as following:

Oracle OG:
The oracle OG takes input of two counters and output the resulting counter.

1. (Initialization) Let g = g1, h1 = gx1 , . . . , h = gxn be the initial public ele-
ments. We add (1, C1 = 1) (the generator), and (xi, Cxi = i + 1) for each
xi ∈ Zp to our table. We also set our global counter i = n + 1 to count the
number of group elements observed so far.

2. On input of two counters (Ca, Cb), the oracle searches the internal values
(a,Ca) and (b, Cb), and computes z = a+ b mod p.

3. If the tuple (z, Cz) already is in the list, then output the counter Cz.

4. Otherwise, the counter i is increased by 1, the tuple (z, Cz := i) is stored in
the list, and the oracle outputs the counter Cz.

Consider a generic attack in the model above. We can translate this attack to
an attack within model of Schnorr and Jakobsson [SJ00] by defining αCa,Cb ∈ Z∗p
such that αCa,Cb [j] = 0 for all j 6= Ca, Cb. If Ca = Cb then αCa,Cb [Ca] = 2 other-
wise αCa,Cb [Ca] = αCa,Cb [Cb] = 1. If we let fi be the group element correspond-
ing to the counter i (following the notation of Schnorr and Jakobsson [SJ00])

then the response to the query αCa,Cb is
∏
j f

αCa,Cb [j]

j = fCafCb . Whenever our
generic attack submits the query (Ca, Cb) to the oracle OG we intercept this
query and submit the query αCa,Cb to the Schnorr/Jakobsson oracle. We are not
given the output fCafCb directly, but we are informed whether or not a collision
occurred (and where) which allows us to either increment the counter or (in the
case of a collision) return the original counter.

Thus, any attack which cannot be described by the model of Schnorr and
Jakobsson [SJ00] also cannot be described using the model of Kiltz et al. [KMP16].
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Remark 6. Another (minor) limitation is that there is no Inv oracle in the Kiltz
et al. [KMP16]. Thus, computing h−1 requires us to compute hp−1 usingO(log p)
queries to the generic group model. Thus, to simulate an attacker who makes
t queries to the Mult, Inv oracles we might require up to t log p queries if we
only have the Mult oracle. Such a reduction increases running time by a factor
of O (log p) so we lose a factor of log p in the security reduction if their is an
efficient algorithm to compute h−1 directly. /

C Missing Proofs

C.1 Missing Proofs from Section 3

Reminder of Lemma 1. The probability the attacker making at most qG
generic group oracle queries wins the generic discrete-log game DLogChalτA(k)
(even with access to the restricted DLog oracle) is at most

Pr [DLogChalτA(k) = 1] ≤ 6qG(qG + 1) + 12

4p− (3qG + 2)2
,

in the generic group model of prime order p, where the randomness is taken over
the selection of τ , the challenge x, as well as any random coins of A.

Proof of Lemma 1: Without loss of generality, we can assume that for every
generic group query involving a “fresh” τ(y) that the attacker queries DLog(τ(y))
before making the query (We say WLOG because the attacker can always ignore
the result.) Thus, we will build up the known sets K (elements for which we know
the discrete-log solution and it initially contains (τ(1), 0, 1)) and the partially
known set PKx (elements for which the discrete-log solution is partially known
and it initially contains (τ(x), 1, 0)) which are the subsets of the list L. Then we
have the following observations for those sets:

– Initially, K contains (τ(1), 0, 1) and PKx contains (τ(x), 1, 0).
– If (a1, 0, c1), (a2, 0, c2) ∈ K, then (Mult(a1, a2), 0, c1 + c2) can be added to K.
– If (a1, a1, b1), (a2, a2, b2) ∈ PKx, then (Mult(a1, a2), a1 + a2, b1 + b2) can be

added to PKx except for a special case when a1 + a2 = 0 in which case the
tuple (Mult(a1, a2), 0, b1 + b2) should be added to K instead.

– If (a, 0, c) ∈ K and (b, a, b) ∈ PKx, then (Mult(a, b), a, b + c) can be added
to PKx.

– If (a, a, b) ∈ K (resp. PKx), then (Inv(a),−a,−b) can be added to K (resp.
PKx.)

Now consider the event BRIDGE which is the event that one of the following
occurs when querying Mult, Inv or DLog:

(1) The output of a query which could be added to K is already found in PKx,
and

(2) The output of a query which could be added to PKx is already found in K.
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Intuitively, the attacker wants the event BRIDGE to occur, e.g., in either case
we have found an element τ(y) which can be written in two ways; (1) τ(y) = τ(r)
for some known r ∈ Zp and (2) τ(y) = τ(ax+ b) for known a, b ∈ Zp with a 6= 0.
This allows us to solve for x = (r − b)a−1.

If the event BRIDGE does not occur then after all queries have finished the
attacker can still view x 6∈ K as an element yet to be sampled from a uniform
distribution over a set of size at least p − |K| × |PKx|. To see this note that
each pair of distinct elements τ(ax + b) in PKx and τ(r) in K eliminates at
most one possible value of x, i.e., since τ(ax+ b) and τ(r) are distinct we have
x 6= (r − b)a−1.

We further note that |K| + |PKx| ≤ 3qG + 2 since each query to the generic
group oracles adds at most 3 elements to K∪PKx — equality holds when both
inputs to Mult(·, ·) are fresh. The probability the attacker guesses x correctly is
at most

Pr
[
DLogChalτA(k) = 1

∣∣ BRIDGE] ≤ 1

p− |K| × |PKx|

<
1

p− (3qG + 2)2/4
.

To compute the probability that BRIDGE occurs we use our prior observation
that the combined size of |K| and |PKx| is at most 3qG + 2 and the AM-GM
inequality.

Consider the ith query to the generic group oracle and let BRIDGE<i be the
event that we have not yet seen a bridge query. Conditioning on this event we
can view x as a yet to be selected value uniformly sampled from a set of size
at least p − (3qG + 2)2/4. Let yi be the output of query i and let (yi, ai, bi) be
the tuple that is added to PKx ∪ K. For each tuple (y, a, b) in K ∪ PKx the
probability that x = (bi − b)(a− ai)−1 is at most 1

p−(3qG+2)2/4 . Union bounding

over all (≤ 3i+ 2) such tuples in PKx ∪ K the probability of the event Bi that
the ith query bridges is at most

Pr
[
Bi

∣∣ BRIDGE<i ] ≤ 3i+ 2

p− (3qG + 2)2/4
.

Therefore, the probability of BRIDGE is upper bounded by

Pr[BRIDGE] =
∑
i≤qG

Pr
[
Bi

∣∣ BRIDGE<i ]
≤
∑
i≤qG

3i+ 2

p− (3qG + 2)2/4

≤ 3(qG + 1)qG/2 + 2

p− (3qG + 2)2/4
.
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Thus, the probability the attacker succeeds is upper bounded by6

Pr [DLogChalτA(k) = 1] ≤ Pr [BRIDGE] + Pr
[
DLogChalτA(k) = 1

∣∣ BRIDGE]
≤ 6qG(qG + 1) + 12

4p− (3qG + 2)2
,

i.e., we would need qG = O
(√
p
)

queries to succeed with constant probability.

Reminder of Theorem 4. The short Schnorr signature scheme Πshort =
(Kg,Sign,Vfy) of length 3k is (qH, qG, qS, ε)-UF-CMA secure with

ε =
6qG(qG + 1) + 12

4p− (3qG + 2)2
+
qS(qH + qS)

p
+

qH + qS
p− (3qG + 2)

+
qH + 1

2k
= O

( q
2k

)
,

in the generic group model of prime order p ≈ 22k and the programmable random
oracle model, where q denotes the total number of queries made by an adversary.

Proof of Theorem 4: Given an adversary Asig attacking Schnorr signa-
ture scheme, we construct the following efficient algorithm Adlog which solves
the discrete-logarithm problem relative to the generic group G using Asig as a
subroutine:

Algorithm Adlog:
The algorithm is given g = τ(1), τ(x), p as input. The goal of Adlog is to output
the discrete log of τ(x), i.e., find x.

1. Initialize the list L = {(τ(x), 1, 0), (g, 0, 1)} and Hresp = {} where Hresp stores
the random oracle queries.

2. Run Asig with a number of access to the generic oracles GO = (Mult(·, ·),
Inv(·)), Sign(·), and H(·). The signing oracle without a secret key is described
in Figure 6. Now we consider the following cases:
(a) Whenever Asig submits a query w to the random oracle H:

– If there is a pair (w,R) ∈ Hresp for some string R then return R.
– Otherwise, select R ∈ Z2k uniformly at random and add (w,R) to the

set Hresp.
– If w has the form w = (a‖m) where the value a has not been observed

previously (i.e., is not in the list L) then we query b = DLog(a) and
add (τ(b), 0, b) to L.

(b) Whenever Asig submits a query a to the generic group oracle Inv(a):
– First check if a is not in the list L. If so we immediately query b =

DLog(a) and add (τ(b), 0, b) to L.
– Otherwise (a, a, b) ∈ L (i.e., a = τ(ax + b)). In this case we query

Inv(a) = τ(−ax− b), output the result and add the result
(τ(−ax− b),−a,−b) ∈ L.

(c) WheneverAsig submits a query a, b to the generic group oracle Mult(a, b):

6 To see this note that for the events A and B we have that Pr[A] = Pr[A ∧ B] +
Pr[A ∧B] ≤ Pr[B] + Pr[A|B].
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– First, if the element a (resp. b) is not in the list L then query b0 =
DLog(a) (resp. b1 = DLog(b)) and add the element (a, 0, b0) (resp.
(b, 0, b1)) to L.

– Otherwise both elements (a, a0, b0), (b, a1, b1) ∈ L. Then we compute
Mult(a, b) = τ((a0 + a1)x+ b0 + b1) and add the element
(τ((a0 + a1)x+ b0 + b1), a0 + a1, b0 + b1) ∈ L.

(d) Whenever Asig submits a query m to the signing oracle Sign(·):
– We use the procedure described in Figure 6 to forge a signature with-

out knowledge of the secret key x. Intuitively, the forgery procedure
relies on our ability to program the random oracle.

– We remark that a side effect of querying the Sign oracle is the addition
of the tuples (τ(s), 0, s), (τ(xe), e, 0) and (τ(s− xe),−e, s) to L since
these values are computed using the generic group oracles Inv, Mult.

(e) If at any point we have some string y such that (y, a, b) ∈ L and (y, c, d) ∈
L for (a, b) 6= (c, d) then we can immediately return x = (d−b)(a−c)−1.7

Thus, without loss of generality, we can assume that each string y occurs
at most once in the list L.

3. AfterAsig outputs σ = (s, e) andm we first compute Iσ = Mult(Pow(g, s), Inv(
Pow(τ(x), e))) = τ(s − xe) and then check to see if we previously had any
tuple of the form (Iσ, a, b) ∈ L.

(a) If no such tuple exists we return ⊥.

(b) Otherwise, we let a, b be given such that Iσ = τ(ax+ b).

– If a+ e = 0 then we return ⊥.
– Otherwise, we return x = (s− b)(a+ e)−1.

Analysis. We first remark that if the signature is valid then we must have
e = H(Iσ‖m) and DLog(Iσ) = s− xe = ax + b or equivalently s− b = (a + e)x.
Thus, as long as (a+ e) is invertible we will have x = (s− b)(a+ e)−1.

Now consider the upper bound of the probability that our algorithm out-
puts ⊥ for failure before Asig outputs a signature as well as the probability our
algorithm outputs ⊥ after Asig outputs a valid signature.

(1) One way to output failure is during the signing oracle if H(I‖m) has been
queried previously (Algorithm 2.(d)). We define this event as FailtoSign. Note
that every time the attacker queries the signing oracle, we would generate
a new query to the random oracle H. Thus, we would have at most qH + qS
input/output pairs recorded for the random oracle. Since I = τ(s − xe)
represents a fresh/randomly selected group element of size p, the probability
that (I,m) is one of the inputs is at most (qH +qS)/p. Applying union bound
over qS queries to the signing oracle, we conclude that

Pr[FailtoSign] ≤ qS(qH + qS)

p
.

7 Note that (a, b) 6= (c, d) implies a 6= c since if a = c then ax + b = ax + d implies
b = d as a, b, c, d ∈ Zp.
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Given: g = τ(1), τ(x), p

/* begin simulation */

Asig
Mult(·)

Inv(·)

DLogg(·)

H(·)

σ = (s, e),m

Sign(·)
m

σ

1 : Pick s, e randomly

2 : Compute I = Mult(Pow(g, s), Pow(Inv(τ(x), e) = τ(s− xe)
3 : if H(I||m) previously queried then

4 : return ⊥
5 : else

6 : Program H(I||m) := e

7 : return σ = (s, e)

Sign(m) without secret key x

/* end simulation */

Compute: Iσ = Mult(Pow(g, s), Pow(Inv(τ(x), e) = τ(s− xe), eσ = H(Iσ||m)

Extract: x′ ← Iσ, eσ

Reduction Adlog τ(x)

x′

Figure 6. A reduction to the discrete-log attacker Adlog from the Schnorr signature
attacker Asig.

(2) The second way to output failure is if the value Iσ does not previously
appear in either set PKx or K (Algorithm 3.(a)). We use FailtoFindN (Iσ)
to denote the event that the signature is valid but the value Iσ does not
appear in L. If Iσ /∈ L we can view Iσ = τ(s − xe) as a uniformly random
binary string from a set of size at least p − |L| which had not yet been
selected at the time Asig output σ. Thus, the probability that the query
H(Iσ‖m) was previously recorded is at most (qH + qS)/ (p− |L|). Observe
that if the query H(Iσ‖m) was not previously recorded then the probability
of a successful forgery H(Iσ‖m) = e is at most 2−k since we can view H(Iσ‖m)
as a uniformly random k-bit string. Hence,

Pr[FailtoFind(Iσ)] ≤ qH + qS
p− |L|

+
1

2k
.

(3) Finally, we could output failure if a = −e (Algorithm 3.(b)). We call this
event BadQuery. We first note that by construction we ensure that the tuple
(I, a, b) will always be recorded in K or PKx before a query of the form
H(I‖m) is ever issued — if I is new then we call DLog(I) before querying
the random oracle. We call a random oracle query x = I‖m “bad” if H(x) =
−a where the tuple (I, a, b) has already been recorded. Recall that if there
were two recorded tuples (I, a, b) and (I, c, d) then our algorithm would have
already found x. Thus, the probability each individual query is “bad” is at
most 2−k and we can use union bounds to upper bound the probability of
any “bad” query as

Pr[BadQuery] ≤ qH
2k
.

Now we have shown that

Pr[DLogChalτAdlog
(k) = 1]
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≥ Pr[SigForgeτAsig,Π(k) = 1]− Pr[FailtoSign]− Pr[FailtoFind(Iσ)]− Pr[BadQuery]

≥ Pr[SigForgeτAsig,Π(k) = 1]− qS(qH + qS)

p
− qH + qS
p− |L|

− 1

2k
− qH

2k
.

Since |L| ≤ 3qG + 2, we can apply Lemma 1 to conclude that

Pr[SigForgeτAsig,Π(k) = 1]

≤ 6qG(qG + 1) + 12

4p− (3qG + 2)2
+
qS(qH + qS)

p
+

qH + qS
p− (3qG + 2)

+
qH + 1

2k

= O
( q

2k

)
,

where q denotes the total number of queries made by the adversary. Note that

for all qG <
2k−2

3 we have that (3qG + 2)2 < 22k ≈ p and therefore it clearly holds

that 6qG(qG+1)+12
4p−(3qG+2)2 = O

(
q
2k

)
.

C.2 Missing Proofs from Section 4

Reminder of Claim 1. Pr[FailtoSign] ≤ qS(qH + qS)

p
.

Proof of Claim 1: Note that every time the attacker queries the signing
oracle, we would generate a new query to the random oracle H. Thus, we would
have at most qH + qS input/output pairs recorded for the random oracle. Since
Ii = τ(si−xiei) represents a fresh/randomly selected group element of size p, the
probability that (Ii,mi) is one of the inputs is at most (qH+qS)/p. Applying union
bound over qS queries to the signing oracle, we conclude that Pr[FailtoSign] ≤
qS(qH+qS)

p .

Reminder of Claim 2. Pr[FailtoFind(Ii∗)] ≤
qH + qS
p− |L|

+
1

2k
.

Proof of Claim 2: If Ii∗ 6∈ L then we can view Ii∗ = τ(si∗ − xi∗ei∗) as a
uniformly random binary string from a set of size at least p − |L| which had
not yet been selected at the time Asig output σi∗. Thus, the probability that the
query H(Ii∗‖mi∗) was previously recorded is at most (qH+qS)/ (p− |L|). Observe
that if the query H(Ii∗‖mi∗) was not previously recorded then the probability of
a successful forgery H(Ii∗‖mi∗) = ei∗ is at most 2−k since we can view H(Ii∗‖mi∗)
as a uniformly random k-bit string. Hence, we have that Pr[FailtoFind(Ii∗)] ≤
qH+qS
p−|L| + 1

2k
.

Reminder of Claim 3. Pr[BadQuery] ≤ qH
2k
.

Proof of Claim 3: Recall that the event BadQuery happens if ~a = −ei∗ûi∗.
Note that by construction we ensure that the tuple (I,~a, b) will always be
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recorded in L before a query of the form H(I‖m) is ever issued — if I is new then

we call DLog(I) before querying the random oracle. Now define a subset L̂ ⊂ L
as the set of tuples (a,~a, b) ∈ G× ZNp × Zp such that ~a has exactly one nonzero
element. Now we call a random oracle query x = (I‖m) “bad” if H(x) = −ã
where the tuple (I,~a, b) ∈ L̂ has already been recorded and the nonzero element
of ~a is ã (Recall that if there were two recorded tuples (I,~a, b) and (I,~c, d) then
our algorithm would have already found a BRIDGEN instance). Thus, the proba-
bility each individual query is “bad” is at most 2−k and we can use union bounds
to upper bound the probability of any “bad” query as Pr[BadQuery] ≤ qH

2k
.

C.3 Missing Proofs from Section 5

Reminder of Theorem 7. Let p > 22k be a prime number and N ∈ N be
a parameter. Let (Apre,Aon) be a pair of generic algorithms with an encoding
map τ : Zp → G such that Apre outputs an S-bit hint and Aon makes at most
qonG := qonG (k) queries to the generic group oracles. Then

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≤ Õ

(
SN(qonG +N)(qonG + 2N)

p

)
,

where the randomness is taken over the selection of τ , the random coins of Aon,
and the random coins used by the challenger in the bridge game (the hint strτ =
AGO

pre(g) is selected independently of the random coins used by the challenger). In
particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≤ 12SN(qonG )2 log p

p
.

Proof of Theorem 7: We follow the same idea from [CK18, Theorem 2],
which shows the relationship between the size of the hint S and the probability
ε that can win the multi-user bridge-finding game. Say that a map τ is good if
(Apre,Aon) wins the multi-user bridge-finding game with probability at least ε/2
on τ . That is, τ is good if we have

Pr
[
BridgeChalτ,NAon,strτ

(k) = 1
]
≥ ε

2
,

where the probability is taken over the selection of ~x = (x1, . . . , xN ) ∈ ZNp , the
random coins of Aon, and the random coins used by the challenger in the bridge
game (the hint strτ = AGO

pre(g) is selected independently of the random coins used
by the challenger).

Let T = {τ1, τ2, . . .} be the set of good labeling maps. Then by a stan-
dard averaging argument ([AB09, Lemma A.12]), an (ε/2)-fraction of injec-
tive mappings from Zp to G are good. One could also observe that the num-
ber of injective mappings from Zp to G is |G|!/(|G| − p)!, which implies that
|T | ≥ (ε/2) · |G|!/(|G| − p)!.
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We introduce Lemma 3 which has been adapted from Abadi et al. [AFK87]
that an average-case multi-user bridge-finding game implies a worst-case multi-
user bridge-finding game as shown below.

Lemma 3. For a prime p, let (Apre,Aon) be a pair of generic algorithms for Zp
on G with an encoding map τ : Zp → G such that Apre outputs an S-bit hint
strτ and Aon makes at most qon generic group oracle queries. Then there exists a
generic algorithm A′on that makes at most qon+2N log p+N generic group oracle

queries, and, for every τ : Zp → G, if Pr~x,Aon
[BridgeChalτ,NAon,strτ

(k, ~x) = 1] ≥ ε,

then for every ~x = (x1, . . . , xN ) ∈ ZNp , PrA′on [BridgeChal
τ,N
A′on,strτ

(k, ~x) = 1] ≥ ε.

Proof. Algorithm A′on(strτ , τ(x1), . . . , τ(xN )) executes the following:

– Sample a random (r1, . . . , rN )←$ZNp and computes Mult(τ(xi), τ(ri)) for
each i ∈ [N ], using at most 2N log p+N group operations, since it would need
at most 2 log p group operations to compute τ(ri) given each ri for i ∈ [N ]
and we have extra one operation of Mult to compute Mult(τ(xi), τ(r)) for
each i ∈ [N ].

– Run Aon(strτ , τ(x1 + r1), . . . , τ(xN + rN )), which plays a multi-user bridge-

finding game BridgeChalτ,NAon,strτ
(k, ~x′), where ~x′ = (x1 + r, . . . , xN + r).

– When Aon outputs 1, then algorithm A′on also outputs 1, and vice versa.

Observe that during the execution of A′on, we run Aon on (τ(x1+r1), . . . , τ(xN +
rN )), which is the image of a uniformly random point in ZNp . Since we assume
that the bridge-finding game with Aon succeeds with probability at least ε over
the random selection of ~x = (x1, . . . , xN ) ∈ ZNp and its coins, we can conclude
that the bridge-finding game with A′on also succeeds with probability at least ε
only over the selection of its coins.

Now we are back to the proof of Theorem 7. Lemma 3 implies that there
exists a pair of generic algorithms (Apre,A′on) such that for every τ ∈ T and every

~x = (x1, . . . , xN ) ∈ ZNp , A′on making at most qon
′

G = qonG + 2N log p + N generic

group oracle queries and we have PrA′on [BridgeChal
τ,N
A′on,strτ

(k, ~x) = 1] ≥ ε/2.

Now from Lemma 2, we can use (Apre,A′on) to compress any mapping τ ∈ T
to a binary string of length at most

log
|G|!

(|G| − p)!
+ S + 1− (ε/2)p

6qon
′

G (qon
′

G +N)(N log p+ 1)
,

where the encoding scheme works with probability at least 1/2. The incompress-
ibility argument8 of De et al. [DTT10] says that this length must be at least
log |T | − log 2. Hence, we have that

log
|G|!

(|G| − p)!
+ S + 1− (ε/2)p

6qon
′

G (qon
′

G +N)(N log p+ 1)
≥ log

|G|!
(|G| − p)!

− log
4

ε
,

8 [DTT10, Fact 8.1] says that “Suppose there is a randomized encoding procedure
Enc : {0, 1}n×{0, 1}r → {0, 1}m and a decoding procedure Dec : {0, 1}m×{0, 1}r →
{0, 1}n such that Prr∈Ur [Dec(Enc(x, r), r) = x] ≥ δ. Then m ≥ n− log(1/δ).” Since
{0, 1}n corresponds to the set of mapping T , setting δ = 1/2, we get the result.
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which implies that

S ≥ εp

6(qonG + 2N log p+N)(qonG + 2N log p+ 2N)(N log p+ 1)
− log

8

ε
.

Without loss of generality, we may assume that ε ≥ 1/p, since the probability
to find a BRIDGEN instance is not lower than solving 1-out-of-N discrete log
problem (see Corollary 1), which is also not lower than 1/p when guessing them
randomly. Hence, we have that log 8

ε ≤ log(8p) and we get

6 (S + log(8p)) (qonG + 2N log p+N)(qonG + 2N log p+ 2N)(N log p+ 1) ≥ εp,

which implies that

ε ≤ 6

p
(S + log(8p)) (qonG +N + 2N log p)(qonG + 2N + 2N log p)(N log p+ 1)

= Õ
(
SN(qonG +N)(qonG + 2N)

p

)
,

i.e., if the size of the hint is bounded then the probability of winning the 1-out-
of-N generic bridge-finding game is also bounded correspondingly. In particular,
if qon ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then we observe that

ε ≤ 6

p
(S + log(8p)) (qonG +N + 2N log p)(qonG + 2N + 2N log p)(N log p+ 1)

≤ 6

p
(1.1S)(1.1qonG )2(1.5N log p) ≤ 12SN(qonG )2 log p

p
,

where we have N log p+1 ≤ 1.5N log p because p > 22k implies N log p > 2kN ≥
2k and N log p+ 1 ≤ (1 + 1/(2k))N log p ≤ 1.5N log p.

Reminder of Lemma 2. Let G be the set of binary strings of length ` such
that 2` ≥ p for a prime p. Let T = {τ1, τ2, . . .} be a subset of the labeling
functions from Zp to G. Let (Apre,Aon) be a pair of generic algorithms for Zp
on G such that for every τ ∈ T and every ~x = (x1, . . . , xN ) ∈ ZNp , Apre outputs
an S-bit advice string, Aon makes at most qon oracle queries, and (Apre,Aon)

satisfy PrAon

[
BridgeChalτ,NAon,strτ

(k, ~x) = 1
]
≥ ε, where strτ = AGO

pre(τ(1)). Then,

there exists a randomized encoding scheme that compresses elements of T to
bitstrings of length at most

log
|G|!

(|G| − p)!
+ S + 1− εp

6qon(qon +N)(N log p+ 1)
,

and succeeds with probability at least 1/2.

Proof of Lemma 2: The proof works largely the same as it from [CK18] except
for some modifications. In the proof of [CK18], they build an encoding and a
decoding routine to construct a randomized encoding scheme. The encoding
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routine takes as input an encoding function τ : Zp → G and a random binary
string r, and outputs a compression of τ . The decoding routine reverts this
operation; it takes as input a compressed representation of τ and the same
random string r as used in the encoding routine, and outputs the original τ . One
modification from the proof of [CK18] is that in the encoding routine, we also
need to handle Inv(·) while [CK18] only considers Mult(·, ·). Another difference is

that the multi-user bridge-finding game BridgeChalτ,NAon
(k, ~x) that Aon plays does

not aim for finding discrete-log solutions but for finding a BRIDGEN instance.

Encoding Routine:

Input: an encoding function τ : Zp → G, and parameters d,R ∈ Z+, where
Z+ denotes the set of positive integers.

(1) Compute and write the S-bit hint strτ ← Apre(g) into the encoding.

(2) Write the image of τ using log
(|G|
p

)
bits into the encoding.

(3) Initialize Table to an empty list. It will store the pairs (y, τ(y)), i.e., an
element in the image of τ and its discrete log value.

(4) Repeat the following d times in total:
(a) Choose the first N strings in the lexicographical order of the image

of τ that are not in the table. Call these strings τ(x1), . . . , τ(xN )
and add the pairs (X1, τ(x1)), . . . , (XN , τ(xN )) to the table, where
for each i ∈ [N ], Xi is the indeterminate that represents discrete log
value xi of τ(xi) that the decoder does not yet know.

(b) Run Aon(strτ , τ(x1), . . . , τ(xN )) up to R times using independent
randomness from the encoder’s random string in each run. Write the
index r∗ ∈ [R] of the successful execution (i.e., it finds a BRIDGEN

instance) into the encoding using logR bits. If Aon fails on all R
execution, then return ⊥ and abort the entire routine.

(c) Write a placeholder of log qon zeros in the encoding, and it will be
overwritten by the actual number of queries until it finds a BRIDGEN

instance during the next step.
(d) Rerun Aon(strτ , τ(x1), . . . , τ(xN )) using the r∗th random tape. It

processes each generic group oracle query (see Handling Mult(y1, y2)
and Handling Inv(y) as described below) and as soon as it finds
a BRIDGEN instance it will mark the actual number of total queries
q∗ ≤ qon into its placeholder. Note that it will count the number of
queries altogether whenever it queries Mult(·, ·) or Inv(·).

(e) For the remaining indeterminates that are not yet resolved, simply
replace them with the discrete log values (näıve encoding), since
the encoder knows all of τ . If this is the ith entry in Table, then it
requires log(p− i+ 1) bits since all the entries that were already in
the table are constants.

(f) Write the remaining values that are not yet in the table to the
encoding in lexicographical order.
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Handling Mult(y1, y2):

(1) If either of y1 or y2 is not in the image of τ , reply ⊥ and continue to
the next query.

(2) If either of y1 or y2 is not in the table, then this is a fresh query input.
For each such argument s ∈ {y1, y2}, add the pair (DLog(s), s) to the
table and write s to the encoding using log(p − l) bits, where l is the
number of labels already in the table.

(3) Otherwise, look up the tuples (f1, y1), (f2, y2) in the table where f1 =
f1(X1, . . . , XN ) and f2 = f2(X1, . . . , XN ) are linear polynomials of N
indeterminates X1, . . . , XN , and compute f1 + f2.
(a) If (f1 + f2, Mult(y1, y2)) is already in the table, simply reply with

Mult(y1, y2).
(b) If (f1 + f2, Mult(y1, y2)) is not in the table, then add Mult(y1, y2)

to the encoding and reply with Mult(y1, y2). Write Mult(y1, y2) into
the encoding requires log(p− l) bits, where l is the number of labels
already in the table.

(c) If Mult(y1, y2) is in the table but its corresponding discrete log value
in the table is a linear polynomial f = f(X1, . . . , XN ) such that f
is not identical to f1 + f2 (i.e., the coefficients for Xi’s are not all
the same), then encode the reply to this query as a pointer to the
table entry (f, Mult(y1, y2)) and add this pointer to the encoding.
Then use the equation f = f1 + f2 to derive an equation Xj =
g(X1, . . . , Xj , . . . , XN ) for some j and a linear polynomial g of
X1, . . . , XN except forXj , and replaceXj by g(X1, . . . , Xj , . . . , XN )
in the table.
In this case, we successfully found a BRIDGEN instance, so stop the
execution of the algorithm and indicate the early stop by writing
the actual number of queries q∗ ≤ qon into its placeholder above.

Handling Inv(y):

(1) If y is not in the image of τ , reply ⊥ and continue to the next query.
(2) If y is not in the table, then this is an fresh query input. Add the pair

(DLog(y), y) to the table.
(3) Otherwise, look up the tuple (f, y) in the table where f = f(X1, . . . , XN )

is a linear polynomial of N indeterminates X1, . . . , XN , and compute
−f .
(a) If (−f, Inv(y)) is already in the table, simply reply with Inv(y).
(b) If (−f, Inv(y)) is not in the table, then add Inv(y) to the encod-

ing and reply with Inv(y). Write Inv(y) into the encoding requires
log(p− l) bits, where l is the number of labels already in the list.

(c) If Inv(y) is in the table but its corresponding discrete log value in
the table is a linear polynomial f̃ = f̃(X1, . . . , XN ) such that f is
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not identical to f̃ (i.e., the coefficients for Xi’s are not all the same),
then encode the reply to this query as a pointer to the table entry
(f̃ , Inv(y)) and add this pointer to the encoding.
Then use the equation f = −f̃ to derive an equationXj = g(X1, . . . ,
Xj , . . . , XN ) for some j and a linear polynomial g of X1, . . . , XN

except for Xj , and replace Xj by g(X1, . . . , Xj , . . . , XN ) in the ta-
ble.
In this case, we successfully found a BRIDGEN instance, so stop the
execution of the algorithm and indicate the early stop by writing
the actual number of queries q∗ ≤ qon into its placeholder above.

Decoding Routine:

The decoding routine is given the encoded string and recovers τ as follows:

(1) Extract strτ from the first S bits of the encoding.

(2) Extract the image of τ from the next log
(|G|
p

)
bits from the encoding.

(3) Initialize Table (input/output pairs for τ) as an empty list.
(4) Extract τ(1) from the encoding and add (1, τ(1)) to table.
(5) Repeat the following d times in total:

(a) Choose the first N strings in the lexicographical order of the image
of τ that are not in Table. Call these strings y1, . . . , yN and add the
pairs (X1, y1), . . . , (XN , yN ) to the table, where X1, . . . , XN denotes
the indeterminates that represent the discrete log of yi’s for i =
1, . . . , N .

(b) Decode r∗ ∈ [R] after reading logR bits from the encoding.
(c) Decode q∗ ∈ [qon] after reading log qon bits from the encoding.
(d) Run Aon(strτ , y1, . . . , yN ) for q∗ queries using the r∗th random tape

allocated for this instance of Aon.
i. If Aon makes the query Mult(s1, s2):

A. If either s1 or s2 is not in the image of τ , reply ⊥.
B. If either s1 or s2 is in the image of τ , but not in the table,

then add entries (Si, s1) and (Sj , s2) to the table, where i
and j are the smallest integers such that Si and Sj are the
fresh indeterminates in the table.

C. Search for the table and find the pairs (f1, s1) and (f2, s2),
and compute the linear polynomial f1 + f2.
(1) If (f1 + f2,w) is already in the table, then reply with w
and continue to the next query.
(2) If there is no such w in the table, and if this is not the
last (q∗th) query of this execution, then read log(p − l) bits
from the encoding, where l is the number of labels in the
table, and decode the bits to output w. Reply with w, and
add (f1 +f2,w) to the table and continue to the next query.
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(3) If there is no such w in the table, and if this is the last
(q∗th) query, then we know that we have a bridge instance
here. Thus, read a log |Table|-bit pointer from the encoding
and search for the entry in the table with that pointer, say
(f,w). Solve the equation f = f1 + f2 mod p for the first
indeterminate S in the equation. Replace every S in the
polynomials in the table with the solution of the equation
so that there is no longer S in the entire table.

ii. If Aon makes the query Inv(s):
A. If s is not in the image of τ , reply ⊥.
B. If s is in the image of τ , but not in the table, then add an

entry (Si, s) to the table, where i is the smallest integer such
that Si is the fresh indeterminate in the table.

C. Search for the table and find the pair (f, s), and compute
the linear polynomial −f .
(1) If (−f,w) is already in the table, then reply with w and
continue to the next query.
(2) If there is no such w in the table, and if this is not the
last (q∗th) query of this execution, then read log(p − l) bits
from the encoding, where l is the number of labels in the
table, and decode the bits to output w. Now reply with w,
and add (−f,w) to the table and continue to the next query.
(3) If there is no such w in the table, and if this is the last
(q∗th) query, then we know that we have a bridge instance
here. Thus, read a log |Table|-bit pointer from the encod-
ing and search for the entry in the table with this pointer,
say (f̃ ,w). Solve the equation f̃ = −f mod p for the first
indeterminate S in the equation. Replace every S in the
polynomials in the table with the solution of the equation
so that there is no longer S in the entire table.

iii. Read the values of all the remaining indeterminates as they
appear in the table.

The total encoding length will be calculated as follows:

– the hint τ (S bits),

– the encoding of the image of τ (log
(|G|
p

)
bits),

– the index r∗ which denotes the successful execution of Aon (d logR bits),
– the actual number of total queries q∗ (d log qon bits),
– for the lth entry that is added to the table (0 ≤ l < |Table|), if the entry

◦ corresponds to an indeterminate that has been resolved by finding a
BRIDGEN instance (at most log |Table| bits),

◦ otherwise, log(p− l) bits, and

– the remaining discrete log values, encoded using log(p− l) bits each, where
l ∈ {|Table|, . . . , p− 1}.
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Note that at the end of each of the d executions of Aon, we either learn the
discrete log of one label τ(·), or, we find a bridge instance in the table. In this
case, we get log(p − l) bits of information on τ at a cost of at most logR +
log qon + log |Table| bits. Since each execution of Aon adds at most 3qon +N rows
to the table (N inputs, qon query replies, and at most 2qon fresh query inputs),
we observe that |Table| ≤ d(3qon + N). Since l ≤ |Table|, the net profit is lower
bounded by

log
p− l

logR+ log qon + log |Table|
≥ log

p− |Table|
Rqon|Table|

≥ log
p− d(3qon +N)

Rdqon(3qon +N)
.

We further observe that log p−d(3qon+N)
Rdqon(3qon+N) ≥ 1 for d = bp/((2Rqon+1)(3qon+N))c.

Thus, with this value of d, we have that this net profit becomes at least 1 bit for
each of the d executions of Aon. Hence, the total bitlength of the encoding is at
most

S + log

(
|G|
p

)
+

p∑
l=0

log(p− l)− d = log
|G|!

(|G| − p)! + S − d

≤ log
|G|!

(|G| − p)! + S − p

(2Rqon + 1)(3qon +N)
+ 1

≤ log
|G|!

(|G| − p)! + S − p

6Rqon(qon +N)
+ 1.

We want that this randomized encoding routine succeeds with probability at
lease 1/2. In the encoding routine, we run Aon up to R times and see if there
is any successful execution. Since each execution fails with probability at most
ε, if we choose R = (1 + N log p)/ε, then such R executions all fail with the
probability at most

(1− ε)R ≤ e−εR ≤ 2−εR ≤ 2−1−N log p ≤ 2−1−log ( pN) ≤ 1

2
·
(
p

N

)−1
,

since pN ≥
(
p
N

)
. Union bounding over all

(
p
N

)
different inputs on Aon, the prob-

ability that the encoding routine fails is at most 1/2. Hence, with this value of
R, the encoding length is at most

log
|G|!

(|G| − p)!
+ S + 1− εp

6qon(qon +N)(N log p+ 1)
,

which completes the proof.

Reminder of Theorem 8. Let Π = (Kg,Sign,Vfy) be a key-prefixed Schnorr
signature scheme and p > 22k be a prime number. Let N ∈ N be a parameter and
(Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding map τ : Zp → G such

that Apre
sig makes at most qpreH queries to the random oracle H : {0, 1}∗ → {0, 1}k1

and outputs an S-bit hint strτ,H, and Aon
sig makes at most qonG := qonG (k) queries
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to the generic group oracles and at most qonH queries to the random oracle. Then

Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH )
p +

4(qonH +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =

Apre,GO
sig (g) is selected independently of the random coins used by the challenger).

In particular, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

ε =
12SN(qonG )2 log p

p
+
NqpreH qonS

p2
+
qonS (qonS + qonH )

p
+

4(qonH + 1)

2k1
+
N2(S + k1)

p
.

Proof of Theorem 8: Given a generic adversary with preprocessing (Apre
sig ,Aon

sig)
attacking Schnorr signature scheme, we construct the following efficient generic
algorithm with preprocessing (Apre

bridge,Aon
bridge) which tries to succeed in the 1-

out-of-N generic BRIDGEN -finding game BridgeChalτ,NAon
bridge,strτ,H

(k, ~x):

Algorithm (Apre
bridge,Aon

bridge):
The algorithm is given p, g = τ(1), pki = τ(xi), 1 ≤ i ≤ N as input.

1. Apre
bridge simply runs Apre

sig to generate an S-bit hint strτ,H.
2. Aon

bridge initializes the set Hresp = {} which stores the random oracle in-
put/output pairs observed during online processing.

3. Aon
bridge takes the hint strτ,H and initializes the list L = {(τ(1),~0, 1), (pki, ûi, 0)

for 1 ≤ i ≤ N}, and runs Aon
sig with the hint strτ,H and a number of access to

the generic group oracles GO = (Mult(·, ·), Inv(·)), DLog(·),Signi(·) for 1 ≤ i ≤
N , and the random oracle H(·). We maintain the invariant that every output
of a generic group query during the online phase appears in the list L. We
consider the following cases:
(a) Whenever Aon

sig submits a query w to the random oracle H:

– If there is a pair (w,R) ∈ Hresp for some string R ∈ {0, 1}k1 then
return R.

– Otherwise, select R←$ {0, 1}k1 and add (w,R) to Hresp.
– If w has the form w = (pkj‖a‖mi) where the value a has not been

observed previously (i.e., is not in the list L then we query b = DLog(a)
and add (a,~0, b) to L.

(b) Whenever Aon
sig submits a query a to the generic group oracle Inv(·):

– If a is not in L then we immediately query b = DLog(a) and add (a,~0, b)
to L.

– Otherwise, (a,~a, b) ∈ L for some ~a and b. Then we query Inv(a) =
τ(−~a · ~x− b), output the result and add (τ(−~a · ~x− b),−~a,−b) to L.

(c) Whenever Aon
sig submits a query a, b to the generic group oracle Mult(·, ·):

– If the element a (resp. b) is not in L then query b0 = DLog(a) (resp.
b1 = DLog(b)) and add the element (a,~0, b0) (resp. (b,~0, b1)) to L.



52 J. Blocki and S. Lee

– Otherwise both elements (a,~a0, b0), (b,~a1, b1) ∈ L. Then we return
Mult(a, b) = τ((~a0 + ~a1) · ~x+ b0 + b1) and add (τ((~a0 + ~a1) · ~x+ b0 +
b1),~a0 + ~a1, b0 + b1) ∈ L.

(d) Whenever Aon
sig submits a query mi to the signing oracle Sign(xj , ·):

– The attacker tries to forge a signature without knowledge of the secret
key xj , relying on the ability to program the random oracle as follows:

i. Pick si, ei randomly and compute Ii = τ(si − xjei) = Mult(si,
Pow(pkj ,−ei)) where si = Pow(g, si).

ii. If H(pkj‖Ii‖mi) has been previously queried, then return ⊥.
iii. Otherwise, program H(pkj‖Ii‖mi) := ei and return σi = (si, ei).

– We remark that a side effect of querying the Signj oracle is the addition

of the tuples (τ(si),~0, si), (τ(xjei), eiûi, 0) and (τ(si−xjei),−eiûi, si)
to L, since these values are computed using the generic group oracles
Inv, Mult.

(e) If at any point we have some string y such that (y,~a, b) ∈ L and (y,~c, d) ∈
L for (~a, b) 6= (~c, d) then we can immediately have a BRIDGEN instance
(τ((~a−~c) ·~x),~a−~c, 0) ∈ L and (τ(d−b),~0, d−b) ∈ L since τ((~a−~c) ·~x) =
τ(d−b). Thus, without loss of generality, we can assume that each string
y occurs at most once in the list L.

4. After Aon
sig outputs σi∗ = (si∗, ei∗) and mi∗, identify the index i∗ ∈ [N ] such

that Vf(pki∗,mi∗, σi∗) = 1.
5. Compute τ(−ei∗xi∗) = Inv(Pow(τ(xi∗), ei∗)). This will ensure that the ele-

ments (τ(−ei∗xi∗),−ei∗ûi∗, 0) and (τ(ei∗xi∗), ei∗ûi∗, 0) are both added to L.
6. Compute si∗ = Pow(g, si∗) to ensure that (si∗,~0, si∗) ∈ L.
7. Finally, compute Ii∗ = Mult(si∗, τ(−ei∗xi∗)) = τ(si∗ − xi∗ei∗) which ensures

that (Ii∗,−ei∗ûi∗, si∗) ∈ L.

Analysis. We first remark that if the signature is valid then we must have
ei∗ = H(Ii∗‖mi∗) and DLog(Ii∗) = si∗ − xi∗ei∗ = ~a · ~x+ b.

We first analyze the probability that the attacker will outputs a valid sig-
nature forgery after when we use random oracle programming to simulate the
honest signing oracles without the secret keys. We introduce two bad events
FailtoSign and DetectProgramming such that the probability of a valid signature
forgery is at least

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
− Pr[DetectProgramming]− Pr[FailtoSign],

where Pr[SigForgeτ,NAon
sig,strτ,H

,Π(k) = 1] denotes the probability that the attacker is

successful when playing with the real signing oracles.
FailtoSign is the event where our reduction outputs ⊥ in Step 3.(d) due

signing oracle failure, i.e., during some query i, we generate Ii and find that
the random oracle query H(pkj‖Ii‖mi) was made previously during the online
phase. As before, we can argue that

Pr[FailtoSign] ≤ qonS (qonS + qonH )

p
,
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i.e., see Claim 1.
Intuitively, DetectProgramming denotes the event that the random oracle

query H(pkj‖Ii‖mi) was made in the offline phase. Now we have the following
claim to upper bound the probability of the event DetectProgramming:

Claim 4. Pr[DetectProgramming] ≤
NqpreH qonS

p2
.

We push the proof of Claim 4 right after the proof of our theorem. If the
event DetectProgramming occurs, then it is possible that the signature the hint
strτ,H is somehow correlated with H(pkj‖Ii‖mi), which could potentially allow
the signature attacker to halt early because it guesses that we are programming
the random oracle. Assuming that the event DetectProgramming does not occur,
the attacker will not be able to distinguish between a programmed response and
the signatures generated via the honest signing oracle.

We now upper bound the probability that the attacker outputs a valid signa-
ture forgery without the bridge event BRIDGEN occurring. Unlike our previous
analysis, we rely on a compression argument. FailtoFind(Ii∗) denotes the event
that the signature is valid, but we find that Ii∗ was not previously recorded in
our list L before we computed Mult(si∗, τ(−ei∗xi∗)). Observe that if the attacker
had previously queried H(pki∗‖Ii∗‖mi∗) during the online phase, then Ii∗ would
have been added to L already. Thus, in this case, a signature forgery allows us
to predict the value of the random oracle ei∗ = H(pki∗‖Ii∗‖mi∗). Intuitively, if
FailtoFind(Ii∗) is too large then we can derive a contradiction by compressing
the random oracle.

Similarly, we define BadQuery as the event that at some point for an element
of the form (I,−eûi, s) ∈ L, we make the random oracle query H(pki‖I‖m)
and receive the response H(pki‖I‖m) = e. Such a lucky query would allow the
attacker to forge a signature without causing BRIDGEN to occur. Intuitively,
if such an event occurs we can also compress the random oracle, i.e., by using
log qonH ≤ k1 bits to encode the index of the lucky query.

Claim 5. Pr[FailtoFind(Ii∗) ∪ BadQuery] ≤ 4(qonH + 1)

2k1
+
N2(S + k1)

p
.

We also push the proof of Claim 5 after the proof of our theorem. Now we
have shown that

Pr

[
BridgeChalτ,NAon

bridge,strτ,H

(k) = 1

]
≥ Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
− Pr[DetectProgramming]− Pr[FailtoSign]

− Pr[FailtoFind(Ii∗)]− Pr[BadQuery]

≥ Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
−
NqpreH qonS
p2

− qonS (qonS + qonH )

p
− 4(qonH + 1)

2k1
− N2(S + k1)

p
.

Finally, we can apply Theorem 7 to conclude that

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
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≤ Õ
(
SN(qonG +N)(qonG + 2N)

p

)
+
NqpreH qonS
p2

+
qonS (qonS + qonH )

p
+

4(qonH + 1)

2k1
+
N2(S + k1)

p
.

Similar to Theorem 7, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p), then

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ 12SN(qonG )2 log p

p
+
NqpreH qonS
p2

+
qonS (qonS + qonH )

p
+

4(qonH + 1)

2k1
+
N2(S + k1)

p
,

which completes the proof.

Reminder of Claim 4. Pr[DetectProgramming] ≤
NqpreH qonS

p2
.

Proof of Claim 4: Let Ii = Pow(g, ri) be the value generated during the ith

query to the signing oracle. Let Bi,j denote the bad event that the preprocessing
attacker previously submitted a query of the form H(pkj‖Ii‖·). Since pkj and
Ii are selected randomly, we have Pr[Bi,j ] ≤ qpreH /p2. We now define the event
DetectProgramming =

⋃
j≤N,i≤qS Bi,j . Applying union bounds, we have

Pr[DetectProgramming] = Pr[∪i,jBi,j ] ≤
∑
i,j

Pr[Bi,j ] ≤
NqpreH qonS

p2
. �

Reminder of Claim 5. Pr[FailtoFind(Ii∗)∪BadQuery] ≤ 4(qonH + 1)

2k1
+
N2(S + k1)

p
.

Proof of Claim 5: Fixing τ and H, and for some parameter t (which we will
determine later), we define εF,τ,H to be

εF,τ,H := min
Y :|Y |≤Nt

Pr [FailtoFind(Ii∗) ∪ BadQuery] ,

where the probability is taken over the random selection of x1, . . . , xN ∈ Zp \ Y
and the random coins of Aon

sig,strτ,H
. We can argue that removing Nt ≈ NS

points does not impact this probability, i.e., εF,τ,H ≈ ε′F,τ,H where ε′F,τ,H is the
same probability when x1, . . . , xN ∈ Zp are chosen without any restrictions. In
particular, ε′F,τ,H ≤ εF,τ,H + N2t/p where the term N2t/p upper bounds the
probability that sample some point xi ∈ Y .

We now sample t uniformly random strings R1, . . . , Rt, e.g., by querying the
random oracle at O (t) fixed points. We repeat the following experiment t times
to extract t input/output predictions, where each iteration i ∈ [t] uses Ri as its
random coin when sampling ~xi and qi:

(1) For i ∈ [t], sample ~xi = (xi1, . . . , x
i
N ) subject to the restriction that xij 6= xi

′

j′

for any pair (i, j) 6= (i′, j′).
(2) Pick qi ∈ [0, qonH ] uniformly at random.
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(3) If qi = 0, then wait for the (attempted) forged signature σi = (si, ei) to be
output, compute Ii = τ(si−eixji ), and output the prediction H(τ(xji )‖Ii‖mi) =
ei.

(4) If instead qi > 0, then we simulate Aon
sig,strτ,H

until the query qi to the random

oracle. At this point, the query has the form H(pkj‖I‖m) for some I such

that (I, eûj , 0) ∈ Li. In this case, we can extract e from Li and output the
prediction H(pkj‖I‖m) = e.

During each iteration i, we output a correct input/output pair with probability at
least εF,τ,H/(q

on
H +1). Thus, the procedure above correctly outputs t input/output

pairs with probability at least (εF,τ,H/(q
on
H + 1))t.

Let SucceedExp denotes an event that the experiment above correctly outputs
t correct input/output pairs (without querying the random oracle at these t
points) when τ and H are picked randomly.

Now let εF := Eτ,H[εF,τ,H] and suppose that εF > 4(qonH + 1)2−k1 for contra-
diction, then we can use Markov inequality to argue that

Pr
τ,H

[
εF,τ,H >

2(qonH + 1)

2k1

]
= 1− Pr

τ,H

[
εF,τ,H ≤

2(qonH + 1)

2k1

]
= 1− Pr

τ,H

[
1− εF,τ,H ≥ 1− 2(qonH + 1)

2k1

]
≥ 1− 1− εF

1− 2(qonH + 1)2−k1

>
εF /2

1− εF /2
≥ εF

2
.

Thus, if we pick τ and H randomly and run the above procedure, we will succeed
with probability at least

Pr[SucceedExp] ≥ εF
2

(
εF,τ,H
qonH + 1

)t
≥ εF

2
2(1−k1)t > 2(qonH + 1)2−k12(1−k1)t.

However, on the other hand, Lemma 4 below tells us that

Pr[SucceedExp] ≤ 2−k1t+S .

Picking t = S+ k1, we derive a contradiction, since, with this value of t we have

2(qonH + 1)2−k1S−k
2
1+S < Pr[SucceedExp] ≤ 2−k1S−k

2
1+S .

The contradiction comes from the assumption that εF > 4(qonH + 1)2−k1 . Thus,
we have

ε′F := Pr[FailtoFind(Ii∗) ∪ BadQuery]

= Eτ,H[ε′F,τ,H]

≤ Eτ,H
[
εF,τ,H +

N2(S + k1)

p

]
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= εF +
N2(S + k1)

p
≤ 4(qonH + 1)

2k1
+
N2(S + k1)

p
. �

Lemma 4 has appeared in prior work in various forms. To the best of our
knowledge, the original usage is from [DKW11] though our statement is closer
to a form from [BHK+19]. Since we rephrase the lemma slightly, we include a
proof of Lemma 4 below for completeness.

Definition 4 (k-bit prediction game). Let B be a uniformly random bit
string and let A be an algorithm that receives a hint h = f(B) ∈ H which
may depend arbitrarily on B and can additionally query B at specific indices
before outputting indices i1, . . . , ik and bits b1, . . . , bk. We say that A wins the
k-bit prediction game if for all j ≤ k we have B[ij ] = bj and A did not previously
query for B[ij ].

Lemma 4 ([DKW11,BHK+19]). Any attacker A wins the k-bit prediction
game with probability at most |H|/2k.

Proof. Let SuccessA denote the attacker’s success probability when h = f(B)
depends on B. Suppose for contradiction that Pr[SuccessA] > |H|2−k, then
consider the algorithm A′ which takes no hint, samples h ∈ H uniformly, and
simulates A with hint h. We have

Pr[SuccessA′ ] ≥ Pr[h = f(B)] Pr[SuccessA] >
1

|H|
|H|2−k = 2−k.

To obtain a contradiction, we observe that A′ succeeds with probability at most
2−k. In particular,A′ starts with no hint and outputs i1, . . . , ik and bits b1, . . . , bk
such that B[ij ] has not been queried for all j ≤ k. In this case, we can view each
B[ij ] as a uniformly random bit sampled after A′ outputs. Thus, Pr[∀j ≤ k, bj =
B[ij ]] = 2−k, which implies that Pr[successA′ ] ≤ 2−k.

C.4 Missing Proofs from Section 6

Reminder of Theorem 9. The Chaum-Pedersen-FDH signature scheme is(
N, qH, qG, qS,O

(
q+N
2k

))
-MU-UF-CMA secure under the generic group model of

prime order p ≈ 22k and the programmable random oracle model, where q denotes
the total number of queries made by an adversary.

Proof Sketch of Theorem 9: Let Π be the Chaum-Pedersen-FDH signature
scheme. We follow a similar reduction as in Theorem 6 using the signing oracle
without knowledge of the secret key xj in Figure 3 (top). Note that the corre-
sponding public key is pkj = τ(xj). Whenever the attacker queries the random
oracle of the form H(h‖y‖a‖b) we can ensure that y, a and b all appear in our
list L by using the oracle DLog(·) on any fresh input. Letting e = H(h‖y‖a‖b),
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we then compute Pow(pkj , e) and Inv(Pow(pkj , e)) to ensure that both the tuples
(Pow(pkj , e), eûj , 0) and (Inv(Pow(pkj , e)),−eûj , 0) appear in L.

We first consider the event FailtoSign that our reduction outputs ⊥ because of
a signing oracle failure. Conditioning on this event not occurring the programmed
signing oracle is equivalent to the real one. Thus, in our reduction the attacker
successfully produces a forged signature with probability at least

Pr[SigForgeτ,NAsig,Π
(k) = 1]− Pr[FailtoSign].

WhenAsig outputs a (potential) forgery σi∗ = (yi∗, ai∗, bi∗, si∗) and the corre-
sponding message mi∗ for some i∗ ∈ [N ], we perform the following computations
in hope of causing the bridge event BRIDGEN (if it has not already):

(1) Query the oracle DLog(·) on any fresh inputs yi∗, ai∗, bi∗ (if applicable),
(2) Compute hi∗ = H′(pki∗‖mi∗) = Pow(g,H(pki∗‖mi∗)),
(3) Compute si∗ = Pow(g, si∗),
(4) Compute the hash output ei∗ = H(hi∗‖yi∗‖ai∗‖bi∗), and
(5) Compute Ai∗ = Mult(si∗, Inv(Pow(pki∗, ei∗))) = τ(si∗ − xi∗ei∗).

This ensures that the following tuples appear in L :

◦ (si∗,~0, si∗),
◦ (hi∗,~0,H(pki∗‖mi∗)),
◦ (Pow(pki∗, ei∗), ûi∗ei∗, 0),
◦ (Pow(pki∗,−ei∗),−ûi∗ei∗, 0), and
◦ (Ai∗,−ei∗ûi∗, si∗).

We can now define the event FailtoFind(Ai∗) to be the event that Ai∗ was not
previously recorded in our list L before we computed Ai∗ in the last step. Sim-
ilarly, we let BadQuery denote the event that the signature is valid but for
the only prior tuple (Ai∗,~a, b) ∈ L we have ~a = −ei∗ûi∗. If the signature is
valid and neither event FailtoFind(Ai∗) nor BadQuery occurs then the bridge
event BRIDGEN must have occurred and we immediately win the game since
(Ai∗,~a, b) ∈ L, (Ai∗,−ei∗ûi∗, si∗) ∈ L and ~a 6= −ei∗ûi∗.

Our analysis of the failure events FailtoSign, FailtoFind(Ai∗), and BadQuery
is similar to the analysis in Theorem 6 with a few minor difference. First, we
consider the hash output H(hi∗‖yi∗‖Ai∗‖bi∗) instead of H(Ii∗‖mi∗) since we
are analyzing Chaum-Pedersen-FDH instead of short Schnorr Signatures. Ad-
ditionally, since we are analyzing FDH when we analyze BadQuery we have
to consider the possibility of a random oracle collisions. The attacker makes
at most qH random oracle queries and each query to a signing oracle gener-
ates at most 2 additional random oracle queries. Thus, the probability the at-
tacker outputs a collision can be upper bounded as q̃2/22k since the domain
of our random oracle where q̃ = qH + qG + 2qS. Similar to Theorem 6 we can
show that Pr[FailtoSign] ≤ qS(qH + qS)/p, Pr[FailtoFind(Ai∗)] ≤ qH+qS

p−|L| + 1
22k

, and

Pr[BadQuery] ≤ qH/2
2k + q̃2/22k, with a minor difference that the hash output

is 2k bits instead of k bits. Since we have |L| ≤ N + 3qG + 1 we conclude that

Pr[SigForgeτ,NAsig,Π
(k) = 1]
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≤ Pr[BridgeChalτ,NA (k) = 1] + Pr[FailtoSign] + Pr[FailtoFind(Ai∗)] + Pr[BadQuery]

≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N +
qS(qH + qS)

p
+

qH + qS
p− (N + 3qG + 1)

+
qH + q̃2 + 1

22k

= O
(
q +N

2k

)
,

where the second inequality follows by applying Theorem 5 to upper bound
Pr[BridgeChalτ,NA (k) = 1].

Reminder of Theorem 10. Let Π = (Kg,Sign,Vfy) be a key-prefixed Chaum-
Pedersen-FDH signature scheme and p > 22k be a prime number. Let N ∈ N
be a parameter and (Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding

map τ : Zp → G such that Apre
sig makes at most qpreH < 23k queries to the random

oracle H : {0, 1}∗ → {0, 1}2k and outputs an S-bit hint strτ,H, and Aon
sig makes at

most qonG := qonG (k) queries to the generic group oracles and at most qonH queries

to the random oracle. Then Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH )
p +

4(qonH +q̃2on+1)
22k

+ 3N2(S+2k)
2p ,

where qonS denotes the number of queries to the signing oracle, q̃on = qonH + 2qonS ,
and the randomness is taken over the selection of τ and the random coins of Aon

sig

(the hint strτ,H = Apre,GO
sig (g) is selected independently of the random coins used

by the challenger).

Proof Sketch of Theorem 10: We follow a similar security reduction as in
Theorem 8, except for the differences as follows:

– When the attacker tries to forge a signature on the message mi without
knowledge of the secret key xj , s/he follow Figure 3 (top). Note that the
corresponding public key is pkj = τ(xj) for the secret key xj .

– Whenever the attacker submits a random oracle query of the form H(pkj‖h‖y‖a‖b)
we use the oracle DLog(·) to ensure that y, a and b appear in our list L if they
do not already. Letting e = H(pkj‖h‖y‖a‖b), we then compute Pow(pkj , e)
and Inv(Pow(pkj , e)) to ensure that both the tuples (Pow(pkj , e), eûj , 0) and
(Inv(Pow(pkj , e)),−eûj , 0) appear in L.

– After Asig outputs σi∗ = (yi∗, ai∗, bi∗, si∗) and mi∗ for some i∗ ∈ [N ] we
perform the following computations in hope of causing the bridge event
BRIDGEN (if it has not already):
(1) Query the oracle DLog(·) on any fresh inputs yi∗, ai∗, bi∗ (if applicable),
(2) Compute hi∗ = H′(pki∗‖mi∗) = Pow(g,H(pki∗‖mi∗)),
(3) Compute si∗ = Pow(g, si∗),
(4) Compute the hash output ei∗ = H(pki∗‖hi∗‖yi∗‖ai∗‖bi∗), and
(5) Compute Ai∗ = Mult(si∗, Inv(Pow(pki∗, ei∗))) = τ(si∗ − xi∗ei∗).
This ensures that the following tuples appear in L :
◦ (si∗,~0, si∗),
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◦ (hi∗,~0,H(pki∗‖mi∗)),
◦ (Pow(pki∗, ei∗), ûi∗ei∗, 0),
◦ (Pow(pki∗,−ei∗),−ûi∗ei∗, 0), and
◦ (Ai∗,−ei∗ûi∗, si∗).

To analyze the probability that the bridge event occurs we first analyze the
following possibilities for the reduction to terminate early with the output ⊥.
Everything goes the same with the analysis in Theorem 8 except for the following:

(1) Consider the ith query to the signing oracle and suppose we ask for a signa-
ture for mi under public key pkj . Let Bi,j denote the bad event that the pre-
processing attacker previously submitted a query of the form H(pkj‖H′(pkj‖mi)‖yi‖ai‖bi).
Since we pick pkj randomly, and as well as ai (observe that yi, ai, and bi
might be correlated), we have Pr[Bi,j ] ≤ qpreH /p2. We now define the event
DetectProgramming =

⋃
j≤N,i≤qS Bi,j . Applying union bounds, we have

Pr[DetectProgramming] = Pr[∪i,jBi,j ] ≤
∑
i,j

Pr[Bi,j ] ≤
NqpreH qonS

p2
.

Assuming that the event DetectProgramming does not occur, the attacker will
not be able to distinguish between a programmed response and the original
response.

(2) One way to output failure is during the signing oracle if H(pkj‖H′(pkj‖mi)‖yi‖ai‖bi)
has been previously queried during the online phase. We define this event as

FailtoSign. As before we can argue that Pr[FailtoSign] ≤ qonS (qonS +qonH )
p i.e., see

Theorem 9.
(3) We also consider a bad event CollisionH′ which denotes the event that the

attacker finds a collision on H′(pki∗‖·) so that the attacker can forge a sig-
nature without the bridge event BRIDGEN occurring. Claim 6 upper bounds
the probability of this event using a similar compression argument as in
Claim 5. The proof of Claim 6 is given below.

Pr[FailtoFind ∪ BadQuery] ≤ 4(qonH + 1)

22k
+
N2(S + 2k)

p
.

Claim 6. Pr[CollisionH′ ] ≤
4q̃2on
22k

+
N2(S + 2k)

2p
, where q̃on = qonH + 2qonS .

Applying Theorem 7 and from the similar argument in Theorem 8, we have

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ Pr

[
BridgeChalτ,NAon

sig,strτ,H

(k) = 1

]
+ Pr[DetectProgramming] + Pr[FailtoSign]

+ Pr[FailtoFind] + Pr[BadQuery] + Pr[CollisionH′ ]

≤ Õ
(
SN(qonG +N)(qonG + 2N)

p

)
+
NqpreH qonS
p2

+
qonS (qonS + qonH )

p
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+
4(qonH + q̃2on + 1)

22k
+

3N2(S + 2k)

2p
,

which completes the proof.

Remark 7. Similar to Theorem 8, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p),
then we can argue that

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ 12SN(qonG )2 log p

p
+
NqpreH qonS
p3

+
qonS (qonS + qonH )

p2
+

4(qonH + q̃2on + 1)

22k
+

3N2(S + 2k)

2p
,

for a key-prefixed Chaum-Pedersen signature scheme Π. /

Reminder of Claim 6. Pr[CollisionH′ ] ≤ 4q̃2on
22k

+ N2(S+2k)
2p , where q̃on = qonH +

2qonS .

Proof of Claim 6: Fixing τ and H, and for some parameter t (which we
will determine later), we define εF,τ,H to be εF,τ,H := minY :|Y |≤Nt Pr[CollisionH′ ],
where the probability is taken over the random selection of x1, . . . , xN ∈ Zp \ Y
and the random coins of Aon

sig,strτ,H
. Similar to Claim 5, we have that ε′F,τ,H ≤

εF,τ,H + N2t/p where ε′F,τ,H is the same probability when x1, . . . , xN ∈ Zp are
chosen without any restrictions. We also sample t uniformly random strings
R1, . . . , Rt by querying the random oracle at O (t) fixed points and repeat the
following experiment t times to extract t input/output predictions by using Ri
as its random coin for each i ∈ [t].

Let z1, . . . , zq̃on be the queries to the random oracles either directly or indi-
rectly through the signing oracle, and consider the following experiment:

(1) For i ∈ [t], sample ~xi = (xi1, . . . , x
i
N ) subject to the restriction that xij 6= xi

′

j′

for any pair (i, j) 6= (i′, j′).
(2) Pick a pair (qi1, q

i
2) ∈ [q̃on]× [q̃on] uniformly at random subject to the restric-

tion that qi1 < qi2.
(3) Simulate Aon

sig,strτ,H
until the query qi1 to the random oracle and observe the

output Wqi1
:= H(zqi1). Record the input/output pair (zqi1 ,Wqi1

) of this query.

(4) For the query qi2, we predict that the output of query zqi2 is equal to Wqi1
without actually querying the random oracle, i.e., output the input/output
pair prediction (zqi2 ,Wqi1

).

During each iteration i, we output a correct input/output pair with proba-
bility at least 2εF,τ,H/q̃

2
on. Thus, the procedure above correctly outputs t in-

put/output pairs with probability at least (2εF,τ,H/q̃
2
on)

t. Similar to Claim 5,
we define SucceedExp as an event that the experiment above correctly outputs
t input/output pairs (without querying the random oracle at these t points)
when τ and H are picked randomly. Now let εF := Eτ,H[εF,τ,H] and to derive a
contradiction, suppose that εF > 4q̃2on/2

2k. Then Markov inequality tells us that

Pr
τ,H

[
εF,τ,H >

2q̃2on
22k

]
>
εF
2
.
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Thus, if we pick τ and H randomly and run the above procedure, we will succeed
with probability at least

Pr[SucceedExp] ≥ εF
2

(
2εF,τ,H
q̃2on

)t
> 2q̃2on2

−2k2(2−2k)t.

Similarly, since we have Pr[SucceedExp] ≤ 2−2kt+S from Lemma 4, picking t =
(S + 2k)/2 we have a contradiction as we have

2q̃2on2
−kS−2k2+S < Pr[SucceedExp] ≤ 2−kS−2k

2+S .

Hence, we finally have

ε′F := Pr[CollisionH′ ]

= Eτ,H[ε′F,τ,H]

≤ Eτ,H
[
εF,τ,H +

N2(S + 2k)

2p

]
= εF +

N2(S + 2k)

2p
≤ 4q̃2on

22k
+
N2(S + 2k)

2p
. �

Reminder of Theorem 11. The (short) Katz-Wang signature scheme is(
N, qH, qG, qS,O

(
q+N
2k

))
-MU-UF-CMA secure under the generic group model of

prime order p ≈ 22k and the programmable random oracle model, where q denotes
the total number of queries made by an adversary.

Proof Sketch of Theorem 11: Let Π be the Katz-Wang signature scheme.
We follow essentially the same security reduction as in Theorem 6 using the
signing oracle in Figure 3 (bottom). One minor difference here is that after
Asig outputs σi∗ = (si∗, ei∗) and mi∗ for some i∗ ∈ [N ], we first compute
aj,i∗ = Mult(Pow(τ(pj), si∗), Pow(Inv(hj), ei∗)) for j = 1, 2, and check to see
if we previously had any tuple of the form (aj,i∗,~aj , bj) ∈ L for any of j = 1, 2. If
no such tuple exists, then we return ⊥, and otherwise, we let ~a, b be given such
that aj,i∗ = τ(~aj · ~x+ bj) for some j (or both). If ~aj + ei∗ûi∗ = ~0, then we return

⊥, and otherwise, we have a BRIDGEN instance (τ(si∗ − bj),~aj + ei∗ûi∗, 0) ∈ L
and (τ(si∗ − bj),~0, si∗ − bj) ∈ L. Then we have the following possibilities to
output ⊥ for failure correspondingly:

(1) One way to output failure is during the signing oracle, if H(pkj‖a1,i‖a2,i‖mi)
has been previously queried during the online phase. We define this event
as FailtoSign. Since pkj is fixed before attacker runs, we cannot view pkj
as random. Note that every time the attacker queries the signing oracle, we
would generate a new query to the random oracle H. Thus, we would have at
most qH + qS input/output pairs recorded for the random oracle. Since there
are p possible choices for a1,i, the probability that (pkj‖a1,i‖a2,i‖mi) is one
of the inputs is at most (qH + qS)/p. Applying union bound over qS queries
to the signing oracle, we conclude that Pr[FailtoSign] ≤ qS(qH + qS)/p.



62 J. Blocki and S. Lee

(2) The second way to output failure is if both the value a1,i∗ and a2,i∗ does
not previously appear in the list L. We remark that if either value appears
in the list, then we can still generate the BRIDGEN event. We define this
event by FailtoFind(a1,i∗, a2,i∗). Since we already know that for a single in-
stance, Pr[FailtoFind(aj,i∗)] ≤ qH+qS

p−|L| + 2−k holds for each j = 1, 2 (i.e., see

Claim 2), we have that Pr[FailtoFind(a1,i∗, a2,i∗)] ≤ qH+qS
p−|L| + 1

2k
, because of

the observation that Pr[A ∩B] ≤ Pr[A].
(3) Finally, we could output failure if ~aj = −ei∗ûi∗ for both j = 1 and j = 2. We

call this event BadQuery. From Claim 3, we know that the probability to have
a bad query for a single instance aj,i∗ is upper bounded by qH/2

k. Hence,
from the same observation from (2), the probability to have bad queries for
both instances is also upper bounded by qH/2

k. Thus, Pr[BadQuery] ≤ qH/2k.

Since we have |L| ≤ N + 3qG + 1, from Theorem 5 we conclude that

Pr[SigForgeτ,NAsig,Π
(k) = 1]

≤ qGN + 3qG(qG + 1)/2

p− (N + 3qG + 1)2 −N
+
NqS(qH + qS)

p2
+

qH + qS
p− (N + 3qG + 1)

+
qH + 1

2k

= O
(
q +N

2k

)
. �

Reminder of Theorem 12. Let Π = (Kg,Sign,Vfy) be a Katz-Wang sig-
nature scheme and p > 22k be a prime number. Let N ∈ N be a parame-
ter and (Apre

sig ,Aon
sig) be a pair of generic algorithms with an encoding map τ :

Zp → G such that Apre
sig makes at most qpreH < 23k queries to the random ora-

cle at most qpreH < 23k queries to the random oracle H : {0, 1}∗ → {0, 1}k1 and
outputs an S-bit hint strτ,H, and Aon

sig makes at most qonG := qonG (k) queries to
the generic group oracles and at most qonH queries to the random oracle. Then

Pr
[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ ε, with

ε = Õ
(
SN(qonG +N)(qonG +2N)

p

)
+

NqpreH qonS
p2 +

qonS (qonS +qonH )
p +

4(qonH +1)

2k1
+ N2(S+k1)

p ,

where qonS denotes the number of queries to the signing oracle and the randomness
is taken over the selection of τ and the random coins of Aon

sig (the hint strτ,H =

Apre,GO
sig (g) is selected independently of the random coins used by the challenger).

Proof Sketch of Theorem 12: We follow essentially the same security reduction
as in Theorem 8, except for the differences as follows:

– When the attacker tries to forge a signature on the message mi without
knowledge of the secret key xj , s/he follow Figure 3 (bottom).

– After Asig outputs σi∗ = (si∗, ei∗) and mi∗ for some i∗ ∈ [N ], we first com-
pute aj,i∗ = Mult(Pow(τ(pj), si∗), Pow(Inv(hj), ei∗)) for j = 1, 2, and check
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to see if we previously had any tuple of the form (aj,i∗,~aj , bj) ∈ L for any
of j = 1, 2. If no such tuple exists, then we return ⊥, and otherwise, we
let ~a, b be given such that aj,i∗ = τ(~aj · ~x + bj) for some j (or both). If

~aj + ei∗ûi∗ = ~0, then we return ⊥, and otherwise, we have a BRIDGEN

instance (τ(si∗ − bj),~aj + ei∗ûi∗, 0) ∈ L and (τ(si∗ − bj),~0, si∗ − bj) ∈ L.

Then we have the following possibilities to output ⊥ for failure correspondingly.
Everything goes the same with the analysis in Theorem 8 except for the following:

(1) Let Bi,j denote the bad event that the preprocessing attacker previously sub-
mitted a query of the form H(pkj‖a1,i‖a2,i‖mi). Since we pick pkj randomly,
and as well as a1,i, we have Pr[Bi,j ] ≤ qpreH /p2. We now define the event
DetectProgramming =

⋃
j≤N,i≤qS Bi,j . Applying union bounds, we have

Pr[DetectProgramming] = Pr[∪i,jBi,j ] ≤
∑
i,j

Pr[Bi,j ] ≤
NqpreH qonS

p2
.

Assuming that the event DetectProgramming does not occur, the attacker will
not be able to distinguish between a programmed response and the original
response.

(2) One way to output failure is during the signing oracle if H(pkj‖a1,i‖a2,i‖mi)
has been previously queried during the online phase. We define this event as

FailtoSign. As before, we can argue that Pr[FailtoSign] ≤ qonS (qonS +qonH )
p , i.e., see

Theorem 11.

(3) Another way to output ⊥ is if the event DetectProgramming did not occur
and both the value a1,i∗ and a2,i∗ does not previously appear in the list L.
We call this event FailtoFind(a1,i∗, a2,i∗). The final case to output failure is
if both ~aj = −ei∗ûi∗ holds for j = 1 and j = 2, and we call this event
BadQuery. Similar to the argument from Theorem 11, each probability is
bounded by the event with the single instance. Hence, we can directly adapt
the same argument from Theorem 8 and say that

Pr[FailtoFind(a1,i∗, a2,i∗) ∪ BadQuery] ≤ 4(qonH + 1)

2k1
+
N2(S + k1)

p
.

Applying Theorem 7 and from the similar argument in Theorem 8, we have

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ Õ

(
SN(qonG +N)(qonG + 2N)

p

)
+
NqpreH qonS
p2

+
qonS (qonS + qonH )

p

+
4(qonH + 1)

2k1
+
N2(S + k1)

p
,

which completes the proof.
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Remark 8. Similar to Theorem 8, if qonG ≥ 10N(1 + 2 log p) and S ≥ 10 log(8p),
then we can argue that

Pr

[
SigForgeτ,NAon

sig,strτ,H
,Π(k) = 1

]
≤ 12SN(qonG )2 log p

p
+
NqpreH qonS
p2

+
qonS (qonS + qonH )

p
+

4(qonH + 1)

2k1
+
N2(S + k1)

p
,

for the Katz-Wang signature scheme Π. /

D Prior Analysis on Schnorr Signatures

In this section, we will discuss in detail why the security bounds from Neven et
al. [NSW09] do not yield k bits of security for short Schnorr signatures, as we
mentioned in the introduction.

Theorem 13 ([NSW09, Theorem 1]). If the discrete logarithm problem in a
group G is (tdlog, εdlog)-hard, then the Schnorr signature scheme is (tuf-cma, qS, qH, εuf-cma)-
secure for

εuf-cma =
√

(qH + qS + 1) · εdlog +
qH + qS + 1

2n
+
qS(qH + qS + 1)

p

and tuf-cma = tdlog/2 − qStexp + O (qH + qS + 1), where texp is the cost of an
exponentiation in the group G, p = |G| denotes the size of the group and n
denotes the length of a hash output.

As discussed by Neven et al. [NSW09] Theorem 13 shows that we can use
shorter hashes, i.e., n = k to achieve k-bit security. However, we must also use a
larger group size p ≈ 23k to achieve k-bit security due to the

√
(qH + qS + 1) · εdlog

term in the security bound. In particular, for any group we have εdlog ≥ t2dlog/p

as the following generic attack demonstrates: Given h = gx, we can compute gjt

for j = 1, . . . , tdlog and gx+i for i = 1, . . . , tdlog. If x < t2dlog, then we will find

some i, j such that gx+i = gjtdlog , which allows us to solve for x = jtdlog − i.
The attack takes time O (tdlog) and succeeds with probability t2dlog/p. If we set

p ≈ 22k then εdlog ≥ t2/p and Theorem 13 does not guarantee k-bit security, e.g.,
plugging in tdlog = 22k/3 and qH + qS + 1 = 22k/3 the security bound becomes
meaningless as we have

εuf-cma ≥
√

(qH + qS + 1) · εdlog

=
√

22k/3 · 24k/3/p

≈ 1 .

We can address the issues by increasing the size p of our group G, but if we
take p ≈ 23k the total length of a Schnorr signature is at least 4k bits even
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if we truncate the hash output to just n = k-bits. Neven et al. [NSW09] also
present a bound with better dependence on the group size, but this second
bound requires larger hash outputs. The second bound assumes that our group
is a generic group, but does not assume that the hash function is a random
oracle. Instead it relies on assumptions that the hash function satisfies random-
prefix preimage resistance (rpp) and random-prefix second-preimage resistance
(rpsp) – see [NSW09] for formal definitions.

Theorem 14 ([NSW09, Theorem 2]). Let H : {0, 1}∗ → {0, 1}n ↪→ Zp
be some hash function, and let G be some fixed group modelled as a generic
group over the set of bit strings G. Let f : G → {0, 1}d be an almost-invertible
conversion function. If both the rpp[D] and the rpsp[D] are hard for H, with
respect to the domain D = {0, 1}d, then the Schnorr signature scheme Sch[H] is
secure in the generic group model.

In particular, for an adversary A against the Schnorr signature scheme, they
proved that

Advuf-cma
Sch[H] (A) ≤ qG

δ
· εrpp +

qS + 2

δ
· εrpsp +O

(
(qS + qG)2

p

)
,

where qG (resp. qS) denote the upper bounds on the number of queries that
A makes to its generic group oracle (resp. signing oracle), and εrpp (resp. εrpsp)
denote the probability to win the rpp (resp. rpsp) problem.

To achieve k bits of security using the upper bound in Theorem 14, we can use
a smaller group size, i.e., p ≈ 22k, but we would need longer hash outputs, i.e.,
n = 2k. If we assume that it takes one time unit for evaluating the hash function
H, then generic attacks imply that εrpp = Ω(t/2n) and εrpsp = Ω(t/2n) [NSW09].
Thus, to achieve k-bit security we must set n ≥ 2k — otherwise when qG = Ω(t)

(resp. qS = Ω(t)) the term qG · εrpp = Ω
(
t2

2n

)
) (resp. qS · εrpp = Ω

(
t2

2n

)
) is too

large to achieve k-bit security. Thus, to obtain k-bit security from Theorem 14
the length of the Schnorr signature will be at least n+ log p ≥ 4k bits.
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