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Abstract. Keyed and unkeyed cryptographic permutations often iterate
simple round functions. Substitution-permutation networks (SPNs) are
an approach that is popular since the mid 1990s. One of the new direc-
tions in the design of these round functions is to reduce the substitution
(S-Box) layer from a full one to a partial one, uniformly distributed over
all the rounds. LowMC and Zorro are examples of this approach.
A relevant freedom in the design space is to allow for a highly non-
uniform distribution of S-Boxes. However, choosing rounds that are so
different from each other is very rarely done, as it makes security analysis
and implementation much harder.
We develop the design strategy Hades and an analysis framework for
it, which despite this increased complexity allows for security arguments
against many classes of attacks, similar to earlier simpler SPNs. The
framework builds upon the wide trail design strategy, and it additionally
allows for security arguments against algebraic attacks, which are much
more of a concern when algebraically simple S-Boxes are used.
Subsequently, this is put into practice by concrete instances and bench-
marks for a use case that generally benefits from a smaller number of
S-Boxes and showcases the diversity of design options we support: A
candidate cipher natively working with objects in GF(p), for securing
data transfers with distributed databases using secure multiparty com-
putation (MPC). Compared to the currently fastest design MiMC, we
observe significant improvements in online bandwidth requirements and
throughput with a simultaneous reduction of preprocessing effort, while
having a comparable online latency.

Keywords: Hades Strategy – Cryptographic Permutations – Secure
Multiparty Computation (MPC)



This updated version differs from the one appeared at Eurocrypt 2020 mainly
for the following reasons.

A Different Linear Layer Matrix. We assume that the MDS matrix prevents the
possibility to set up infinitely long subspace trails (either invariant or iterative
and either with active S-Boxes or with inactive S-Boxes) for the rounds with
partial S-Box layers. In order to test if a matrix satisfies the assumption just
given, we suggest to use the tools provided in [36]. This allows to prevent possible
attacks that exploit the possibility to “skip” all rounds with partial S-Box layers
due to unwanted weaknesses in the matrix.

Generic S-Box. We replaced the cube S-Box S(x) = x3 with the generic power
map S(x) = xα, where α ≥ 3 is the smallest integer s.t. gcd(p− 1, α) = 1.

Updated Cryptanalysis. We revisited the cryptanalysis in order to take care of
recently published attacks (we refer to [11,40,36] for more details).
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1 Introduction

Starting out with a layer of local substitution boxes (S-Boxes), combining it with
a global permutation box (sometimes merely wires, sometimes affine transforma-
tions), and iterating such a round a number of times is a major design approach
in symmetric cryptography. The resulting constructions are often referred to as
substitution-permutation networks (SPNs) and are used to instantiate block ci-
phers, permutations, pseudo-random functions (PRFs), one-way functions, hash
functions, and various other constructions. The approach can be traced back
to Shannon’s confusion-diffusion paradigm. There is a considerable amount of
efficient designs that exploit this design strategy, including Rijndael/AES [22]
which is perhaps the most important one. Theoretical aspects have been ana-
lyzed too, which include the asymptotic analysis by Miles and Viola [46], and
more recent results in the provable security framework [28,18].

Driven by various new application areas and settings, a variation of the SPN
approach – the so-called partial substitution-permutation network (P-SPN) –
has been proposed and investigated on the practical side [5,30]. The idea is
to replace parts of the substitution layer with an identity mapping, leading to
substantial practical advantages. A big caveat of this approach is that existing
elegant approaches to rule out large classes of attacks via the so-called wide trail
strategy [21] are no longer applicable and have to be replaced by more ad-hoc
approaches, as discussed in more details in Section 1.1. We note that the well
studied Feistel approach and its generalizations, when the round function is using
S-Boxes, also have the property that only a part of the internal state is affected
by S-Boxes in each round.

Our Contribution in a Nutshell. We propose a new generalization of SPNs,
which we call the “Hades” approach1. This is illustrated in Fig. 1. It (1st)
restores the ability to apply the elegant wide trail strategy to rule out important
classes of attacks, (2nd) is accompanied with a broad framework to rule out
various other attack vectors for many relevant instantiation possibilities, and
(3rd) is demonstrated to result in even better implementation characteristics in
the same application domains P-SPNs have been introduced for.

We use the rest of the introduction to explain this further. In Section 1.1 we
explain the difficulty of the security analysis of P-SPNs, in Section 1.2 we outline
our alternative generalization of SPNs called Hades. A big part of the paper
will then be spent on detailing the approach and its framework for the security
analysis. On the practical side, in Section 1.4 we will discuss how applications
which rely on properties like a small number of S-Boxes can benefit from this
framework. A very recent and independent work [3] explores various generalized
Feistel networks as a method benefiting similar settings. This nicely complements
our paper, and we include this approach in our practical comparisons.
1 Referring to Fig. 1 and Fig. 2, if one highlights the S-Boxes per round, the obtained
picture resembles a “bident”. In classical mythology, the bident is a weapon associated
with Hades, the ruler of the underworld.
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Fig. 1: SP-Networks and Generalizations (P-SPNs and Hades).

1.1 The Big Caveat: Security Analysis of P-SPNs

The wide trail strategy cannot guarantee security against all attacks in the lit-
erature. As a concrete example, algebraic attacks that exploit the low degree of
the encryption or decryption function – like the interpolation attack [37] or the
higher-order differential one [41] – are (almost) independent of the linear layer
used in the round transformation2, which is the crucial point of such a design
strategy. In other words, especially in the case of a low-degree S-Box, the wide
trail strategy is not sufficient by itself, and it must be combined with something
else (e.g., increasing the number of rounds) to guarantee security against all
known attacks.

Moreover, the “hidden” assumption of such a strategy is that each round con-
tains a full S-Box layer. Even if this is a well accepted practice, there are various
applications/contexts in which non-linear operations are much less expensive
than linear ones. For example, this includes masking and practical applications of
secure multi-party computation (MPC), fully homomorphic encryption (FHE),
and zero-knowledge proofs (ZK) that use symmetric primitives.

A possible way to achieve a lower implementation cost is by designing a
primitive minimizing the number of non-linear operations. To achieve this goal,
possible strategies are looking for low-degree S-Boxes and/or exploiting SPN
structures where not all the state goes through the S-Boxes in each round. This
second approach has been proposed for the first time by Gérard et al. [30] at
CHES 2013. Such partial non-linear SP networks – in which the non-linear op-
eration is applied to only part of the state in every round – contain a wide range
of possible concrete schemes that were not considered so far, some of which have
performance advantages on certain platforms. A concrete instantiation of their
methodology is Zorro [30], a 128-bit lightweight AES-like cipher which reduces
the number of S-Boxes per round from 16 to only 4 (to compensate, the number
of rounds has been increased to 24).

2 We remark that a linear/affine function does in general not change the degree.
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A similar approach has then been considered by Albrecht et al. [5] in the
recent design of a family of block ciphers called LowMC proposed at Eurocrypt
2015. LowMC is a flexible block cipher based on an SPN structure and designed
for MPC/FHE/ZK applications. It combines an incomplete S-Box layer with a
strong linear layer to reduce the total number of AND gates.

How Risky are Partial SP Networks? The wide trail strategy and tools
that were developed in order to formally prove the security of block ciphers
against standard differential and linear cryptanalysis do not apply to partial SP
networks such as Zorro, and authors use heuristic arguments instead.

For the case of Zorro, the simple bounds on the number of active S-Boxes in
linear and differential characteristics cannot be used due to the modified Sub-
Bytes operation. Even though the authors came up with a dedicated approach
to show the security of their design, this turned out to be insufficient, as Wang
et al. [51] found iterative differential and linear characteristics that were missed
by the heuristic and used them to break full Zorro. An automated characteristic
search tool and dedicated key-recovery algorithms for SP networks with par-
tial non-linear layers have been presented in [8]. In there, the authors propose
generic techniques for differential and linear cryptanalysis of SP networks with
partial non-linear layers. Besides obtaining practical attacks on P-SPN ciphers,
the authors concluded that even if “the methodology of building PSP networks
based on AES in a straightforward way is flawed, [...] the basic PSP network
design methodology can potentially be reused in future secure designs”.

Similarly, the authors of LowMC chose the number of rounds in order to
guarantee that no differential/linear characteristic can cover the whole cipher
with non-negligible probability. However, they do not provide such strong security
arguments against other attack vectors including algebraic attacks. As a result,
the security of earlier versions of LowMC against algebraic attacks was found to
be lower than expected [25,27], and full key-recovery attacks on LowMC have
been set up. More recently, generalizations of impossible differential attacks have
been found for some LowMC instances [48].

1.2 The Idea in a Nutshell – The Hades Strategy

Summarizing the current situation: The wide trail strategy is appealing due to
its simplicity, but limited to differential and linear attacks, and does not work
with partial S-Box layers. Additionally, when S-Boxes are chosen to have a low
degree, other attacks vectors are more relevant anyhow. Designs of this type,
like Zorro and LowMC, require a lot of ad-hoc analysis.

To address this issue we propose to start with a classical wide trail design,
i.e., with a full S-Box layer (outer layer), and then add a part with full and/or
partial S-Box layers in the middle. Even without the middle part, the outer layer
in itself is supposed to give arguments against differential and linear attacks in
exactly the same way the wide trail strategy does. At the same time, arguments
against low-degree attacks can be obtained working on the middle layer. Since
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algebraic attacks exploit the small degree of the encryption/decryption function,
the main role of this middle part is to achieve a high degree, with perhaps only
few (e.g., one) S-Boxes per round. Depending on the cost metric of the target
application one has in mind (e.g., minimizing the total number of non-linear
operations), we show that the best solution is to choose the optimal ratio between
the number of rounds with full S-Box layers and with partial S-Box layers in order
to achieve both security and performance. We refer to this high-level approach
as the “Hades” strategy and will be more concrete in the following.

1.3 Related Work – Designs with Different Round Functions

Almost all designs for block ciphers and permutations, not only those following
the wide trail design strategy, use round functions that are very similar, dif-
fering often only in so-called round constants which break symmetries in order
to prevent attacks like slide attacks. Notable exceptions to this are the AES
finalist MARS, the lightweight cipher PRINCE [16] and the cipher Rescue [6],
recently proposed for ZK-STARK proof systems and MPC applications. MARS
has whitening rounds with a different structure than the inner rounds with the
idea to frustrate cryptanalytic attacks. A downside was perhaps that it also
complicated cryptanalysis. PRINCE rounds differ in that the latter half of the
rounds is essentially the inverse of the first half of the rounds, and a special
middle round is introduced. This allows to achieve a special property, namely
that a circuit describing PRINCE computes its own inverse (when keyed in a
particular way). Similar to PRINCE, each round of Rescue is composed of two
steps, which are respectively a non-linear S-Box layer and its inverse (that is,
R(·) =M ′ ◦ S−1 ◦M ◦ S(·) for particular affine layers M,M ′). Finally, we men-
tion the cases of LowMC [5] and Rasta [26], for which different (independent
and random) linear layers are used in each round. Due to their particular design
strategies, this allows to maximize the amount of diffusion achieved by the linear
layer. In none of these cases, however, the amount of non-linearity, and hence
their cryptographic strength, differs over the rounds.

1.4 HadesMiMC: Concrete Instantiations for MPC Applications

We briefly outline the use cases in the following and discuss how our new design
compares against the best-in-class.

MPC. There is a large application area around secure multi-party compu-
tation. The setting is a secret-sharing-based MPC system where data is often
shared as elements of a finite field Fp for large p. In order to get data securely in
and out of such a system, an efficient solution can be to directly evaluate a sym-
metric primitive within such an MPC system. Note that “traditional” PRFs such
as AES are not efficient in this setting, since they are built for computational
engines which work over data types that do not easily match the operations
possible in the MPC engine. For example, AES is a byte-oriented cipher, which
is hard to represent using arithmetic in Fp. More details can be found in [35],
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where for the first time this setting was explicitly analyzed and where the au-
thors concluded that among various other options MiMC [4] was competitive.
After these initial works, several new primitives have been proposed for MPC
applications, including GMiMC [3] (a generalization of MiMC based on Feistel
networks), Jarvis and Friday [7], and Rescue and Vision [6]. GMiMC was
recently broken [15] by exploiting its weak key schedule, Gröbner basis attacks
were found against Jarvis and Friday [2], and also some versions of MiMC
were broken using a higher-order differential approach [29].

Concrete Instances. For our concrete instantiations of HadesMiMC, we
borrow ideas from the pre-predecessor of AES, namely SHARK [49], an SPN de-
sign with a single large MDS layer covering the whole internal state. Concretely
specified instances, both full and toy versions, together with their reference im-
plementation, test vectors, and helper scripts are available online.3

When benchmarking our new design HadesMiMC for MPC applications, we
observe significant improvements in online bandwidth requirements and through-
put with a simultaneous reduction of preprocessing effort with respect to MiMC
and Rescue, while having a comparable online latency. The same holds also for
the comparison between HadesMiMC and GMiMC, with the exception for the
online throughput when the number of blocks is bigger than or equal to 16.

New Instances for Future Use Cases. HadesMiMC is a very parame-
terizable design approach: Given any block size and a cost metric that one aims
to minimize, a concrete secure instantiation – hence, the best S-Box size and
the best ratio between rounds with full S-Box and partial S-Box layers – can be
created easily using our scripts. In fact we can already report on such usage: A
variant of HadesMiMC has been proposed [32] for use cases of efficient proof
systems like STARKs, SNARKs and Bulletproofs, for which they outperform
competing designs, often by a large margin.

2 Description of the Hades Strategy

Block ciphers and cryptographic permutations are typically designed by iterat-
ing an efficiently implementable round function many times in the hope that the
resulting composition behaves like a randomly drawn permutation. In general,
the same round function is iterated enough times to make sure that any symme-
tries and structural properties that might exist in the round function vanish. In
our case, instead of considering the same non-linear layer for all rounds, we pro-
pose to consider a variable number of S-Boxes per round, that is, to use different
S-Box layers in the round functions.

Each round of a cipher based on Hades is composed of three steps:

1. Add Round Key – denoted by ARK (·);
2. SubWords – denoted by S-Box(·);
3 https://extgit.iaik.tugraz.at/krypto/hadesmimc
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Fig. 2: Construction of Hades (the final matrix multiplication can be omitted).

3. MixLayer – denoted by M(·).

A final round key addition is then performed, and the final MixLayer opera-
tion can be omitted (we sometimes include it in this description for simplicity):

ARK → S-Box→M︸ ︷︷ ︸
1st round

→ · · · → ARK → S-Box→M︸ ︷︷ ︸
(R−1)-th round

→ ARK → S-Box︸ ︷︷ ︸
R-th round

→ ARK

The crucial property of Hades is that the number of S-Boxes per round is not
the same for every round:

– a certain number of rounds – denoted by RF – has a full S-Box layer, i.e., t
S-Box functions;

– a certain number of rounds – denoted by RP – has a partial S-Box layer,
i.e., 1 ≤ s < t S-Boxes and (t− s) identity functions.

In the following, we only consider the case s = 1, that is, RP rounds have a
single S-Box per round and t − 1 identity functions. However, we remark that
this construction can be easily generalized (e.g., like LowMC) allowing more
than a single S-Box per round in the middle RP rounds.

In more details, assume RF = 2 ·Rf is an even number. Then
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– the first Rf rounds have a full S-Box layer,
– the middle RP rounds have a partial S-Box layer (i.e., 1 S-Box per round),
– the last Rf rounds have a full S-Box layer.

Note that the rounds with a partial S-Box layer are “masked” by the rounds
with a full S-Box layer, which means that an attacker should not (directly) take
advantage of the rounds with a partial S-Box layer.

Crucial Points of the Hades Strategy. In the Hades design, Rstat
f rounds

with full S-Box layers situated at the beginning and the end provide security
arguments against statistical attacks, yielding a total of Rstat

F = 2 ·Rstat
f rounds

with full S-Box layers. As we are going to show, they are sufficient in order to
apply the wide trail strategy, even without the middle rounds with partial S-Box
layers. Moreover, the choice to have the same number of rounds with full non-
linear layers at the beginning and at the end aims to provide the same security
with respect to chosen-plaintext and chosen-ciphertext attacks.

Security against all algebraic attacks is achieved working both with rounds
RF = Rstat

F + R′F ≥ Rstat
F with full S-Box layers and rounds RP ≥ 0 with

partial S-Box layers. The degree of the encryption/decryption function has a
major impact on the cost of an algebraic attack. Even if one S-Box per round
is potentially sufficient to increase this degree, other factors can have a crucial
impact on the cost of such attacks too (e.g., a Gröbner basis attack also depends
on the number of non-linear equations and variables).

Finally, another crucial point of our Hades strategy regards the possibility
to choose among several possible combinations of rounds (RF ≥ Rstat

F , RP ≥ 0)
that provide the same security level. Namely, one can potentially decrease (resp.
increase) the number of rounds with partial S-Box layers and add (resp. remove)
R′F = 2 · R′f ≥ 0 rounds with full S-Box layers instead without affecting the
security level. This freedom allows to choose the best combination of rounds
(RF , RP ) that minimizes a given cost metric. Roughly speaking, the idea is to
find a balance between the approach in an SPN and a P-SPN cipher.

Choosing the Field and the Linear/Non-Linear Layer. Our strategy does
not pose any restriction/constriction on the choice of the field, on the linear layer,
or on the choice of the S-Box. The idea is to consider a “traditional” SPN cipher
– defined over (Fqn)t for q = 2 or q = p prime – based on the wide trail strategy,
and then to replace a certain number of rounds with full S-Box layers with the
same number of rounds with partial S-Box layers in order to reduce the number
of non-linear operations, but without affecting the security. The Hades strategy
has a considerable impact especially in the case of ciphers with low-degree S-
Boxes, since in this case a large number of rounds is required to provide security
against algebraic attacks.
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3 The Keyed Permutation HadesMiMC

HadesMiMC is a construction for cryptographic permutations based on the
strategy just proposed. It is obtained by applying the Hades strategy to the
cipher SHARK [49] proposed by Rijmen et al. in 1996 and based on the wide
trail strategy. Our design works with texts of t ≥ 2 words4 in (Fp,+,×) ≡
(GF(p),+,×), where p is a prime of size p ≈ 2n ≥ 11 (namely, the smallest
prime bigger than 23 = 8) and where + and × are resp. the addition and the
multiplication in Fp. In the following, N denotes N := dlog2 pe · t.

3.1 Specification of HadesMiMC

Each round Rk(·) : (Fp)t → (Fp)t of HadesMiMC is defined as

Rk(·) = k +M × S(·),

where k ∈ (Fp)t is the secret subkey, M ∈ (Fp)t×t is an invertible matrix that
defines the linear layer, S(·) : (Fp)t → (Fp)t is the S-Box layer, defined as S =
[S(·), . . . , S(·)] for the rounds with full S-Box layers and as S = [S(·), I(·), . . . , I(·)]
for the rounds with partial S-Box layers, where S(·) : Fp → Fp is a non-linear
S-Box and I(·) is the identity function.

The number of rounds R = 2 ·Rf +RP depends on the choice of the S-Box
and of the parameters p and t. For the MPC applications we have in mind, we
usually consider a large prime number (namely, p ≥ 264, e.g. p ≈ 2128), and each
round is composed of the following operations:

– the non-linear S-Box is defined as the power map

S-Box(x) = xα

where α ≥ 3 is the smallest integer s.t. gcd(p − 1, α) = 1 (e.g., α = 3 if
gcd(p− 1, 3) = 1, or α = 5 if gcd(p− 1, 3) 6= 1 and gcd(p− 1, 5) = 1, and so
on)5;

– as in SHARK, the MixLayer of HadesMiMC is defined by a multiplication
with a fixed t× t MDS matrix, which satisfies the assumption given below.

Details about the MDS matrix, the key schedule, and the number of rounds are
given in the following. We also provide concrete instantiations in Supplementary
Material A.

About the MDS Matrix. A t × t MDS matrix6 M with elements in GF(p)
exists if the condition 2t + 1 ≤ p is satisfied (see [44] for details). An overview
4 The case t = 1 corresponds to MiMC [4].
5 More generally, a power map x 7→ xα is a permutation over Fp if and only if gcd(α, p−
1) 6= 1 – see e.g. Hermite’s criterion for more details.

6 A matrix M ∈ Ft×t is called a maximum distance separable (MDS) matrix iff it
has a branch number B(M) equal to B(M) = t + 1. The branch number is defined
as B(M) = minx∈Ft\{0}{wt(x) + wt(M(x))}, where wt(·) is the bundle weight in
wide trail terminology. Equally, a matrix M is MDS iff every submatrix of M is
non-singular.
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of several strategies to construct MDS matrices is given in Supplementary Ma-
terial B.

For our concrete instantiations, we use Cauchy matrices, and we note that not
every Cauchy matrix provides the same level of security. Indeed, recent results
have shown vulnerabilities in certain classes of Cauchy matrices [11,40,36]. To
discuss them, let us first recall what a subspace trail is.

Definition 1. [33] Let (U1, . . . ,Ur+1) denote a set of r+1 subspaces with dim(Ui) ≤
dim(Ui+1). If for each i ∈ {1, . . . , r} and for each ai there exists ai+1 ∈ Uci+1

(namely, the complementary subspace of Ui+1) such that

R(i)(Ui + ai) ⊆ Ui+1 + ai+1,

then (U1, . . . ,Ur+1) is a subspace trail of length r for the function F (·) = R(r) ◦
· · · ◦ R(1)(·). If all the previous relations hold with equality, the trail is called
a constant-dimensional subspace trail. If the subspace Ui is invariant (namely,
Ui = Ui+1), the subspace trail is called invariant.

With this definition in mind, we assume that the MDS matrix prevents the
possibility to set up infinitely long subspace trails (either invariant or iterative
and either with active S-Boxes or with inactive S-Boxes) for the rounds with
partial S-Box layers. Hence, the MDS matrix must guarantee that the longest
subspace trail with inactive S-Boxes can cover at most t− 1 rounds, where note
that such a subspace trail exists independently of the details of the matrix in
the case in which only 1 S-Box is applied per round. Indeed, for each i ≥ 1, we
define Si as

Si := {x ∈ Ft | ∀j ≤ i− 1 : (M j · x)[0] = 0 ∈ F}, (1)

where x[0] denotes the first word of x and where M j = M · · · · ·M for j ≥ 1
and M0 = I (where I is the identity matrix). It is not hard to check that
{Si,M ·Si, . . . ,M i−1 ·Si} forms a subspace trail for i partial rounds with inactive
S-Boxes.

In order to test if a matrix satisfies the assumption just given, we suggest
to use the tools provided in [36]. These tools allow to discard matrices that are
weak w.r.t. such assumption. As explained in [36], it is sufficient to test few
random Cauchy matrices in order to find a secure one w.r.t. the assumption just
given. More details about this and the way we construct the matrices are also
given in Supplementary Material A.

Security Level κ and Key Schedule. For our goals, we define two security
levels, respectively κ = log2(p) · t ≈ n · t = N and κ = log2(p) ≈ n (note that
n = dlog2(p)e is the field size in bits).

Case: κ = log2(p) · t ≈ N . Let k ∈ (Fp)t be the secret key of size N ≈
t·log2(p) bits, and let k = [k0, k1, . . . , kt−1] be its representation over Fp (namely,
kj ∈ Fp for each 0 ≤ j < t). We define the i-th round key k(i) for 0 ≤ i ≤ R
(where R is the number of rounds) as follows. For the first round i = 0, the
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subkey is simply given by the whitening key, that is, k(0) := k. For the next
rounds, the subkeys are defined by a linear key schedule as

∀i = 1, . . . , R : k(i) := M̂ · k(i−1) +RC(i),

where RC(i) 6= 0 are random round constants and M̂ is an MDS matrix7. For
the matrix M̂ we require that M̂ i =

∏R
i=1 M̂ has no zero coefficient8, where

1 ≤ i ≤ R and R is the total number of rounds. This condition implies that each
word of each subkey k(i) (linearly) depends on all words of k. As a result, even
if an attacker guesses a certain number of words of a subkey k(i), they do not
have information about other subkeys (more precisely, they cannot deduce any
words of other subkeys).

Case: κ = log2(p) ≈ n (for MPC Applications). Let k′ ∈ Fp be the secret
key of size n ≈ log2(p) bits. We define the subkeys as

∀i = 0, . . . , R : k(i) = [k′, k′, · · · , k′︸ ︷︷ ︸
t times

]⊕RC(i),

for random round constants RC(i).

Efficient Implementation and Decryption. Like for LowMC, the amount of
operations required in each round with a partial non-linear layer can be reduced.
Referring to the idea proposed in [24], in Supplementary Material C we recall
an equivalent representation of an SPN with partial non-linear layers that can
be exploited for an efficient implementation of HadesMiMC.

Finally, we mention that – as for MiMC [4] – decryption is much more expen-
sive than encryption (e.g., x1/3 ≡ x(2p−1)/3 over Fp). However, we emphasize that
HadesMiMC has been proposed for applications where the decryption process
(hence, computing the inverse) is not required. We therefore provide benchmark
results only for the encryption function. If used for confidentiality, we suggest to
use modes where the inverse is not needed (e.g., the counter (CTR) mode).

3.2 Design Considerations: Reviving “Old” Design Ideas

Why SHARK Among Many Others? Since in our practical applications
(e.g., the MPC use case which we will mainly consider) the cost of linear op-
erations is much lower than the cost of non-linear ones, we decided to focus
on the most efficient linear layer (from the security point of view) to construct
HadesMiMC, namely the one that provides the fastest diffusion at word level.
This corresponds to a linear layer defined as a multiplication with an MDS ma-
trix that involves the entire state, which is exactly the case for SHARK.

Since our design strategy can be applied to any SPN design, a possible in-
teresting future problem would be to apply Hades to e.g. AES, in order to see
if a certain number of rounds of AES can be replaced with rounds that contain
partial non-linear layers without decreasing its security.
7 To be as general as possible, M̂ can be equal or different from M .
8 If this is not possible, one must minimize the number of zero coefficients.
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Choosing the S-Box. Before going on, we mention that we also considered
possible variants of HadesMiMC instantiated by S-Boxes defined by e.g. a dif-
ferent power exponent. In order to motivate our choice, we remember that, since
our final goal is to use HadesMiMC for MPC applications over a LAN, the
performance in such application is mainly influenced by the total number of
non-linear operations (the AND depth/multiplication depth has a small impact
on the cost of an MPC application over a LAN, while it could play a crucial role
in the case of a WAN). Since linear operations are basically free, the choice to
consider a cube S-Box among many other non-linear permutations is motivated
by the following considerations:

– First of all, since there are no quadratic permutation polynomials (namely,
x 7→ x2+a ·x+b for a, b ∈ Fp) over the finite field Fp (see e.g. [43, Theorem 6
- 7] and [23, Sect. 2] for details), the cube S-Box requires the smallest number
of non-linear operations (namely, two) and at the same time it offers high
security against statistical attacks (e.g. its maximum differential probability
satisfies DPmax ≤ 2/|F| where |F| is the size of the field F);

– Secondly, let us focus on algebraic attacks when using an S-Box of the form
S-Box(x) = xd. An S-Box with a higher degree than the cube one allows
to reach the maximum degree faster, hence a smaller number of rounds is
potentially sufficient to provide security. However, an S-Box with a higher
degree requires more operations to be computed. As a result, even if the
number of rounds can potentially be decreased9, in general the total number
of non-linear operations does not change significantly (see e.g. [4, Sect. 5] for
a detailed analysis10). Thus, from this point of view, the choice of the S-Box
is in continuity with the choice of the cube S-Box made e.g. for MiMC and
for Rescue [6] for similar applications.

4 Security Analysis

It is paramount for a new design to present a concrete security analysis. In the
following, we provide an in-depth analysis of the security of the HadesMiMC
family of block ciphers. Since we cannot ensure that a cipher is secure against
all possible attacks, the best option of determining its security is to ensure that
it is secure against all known attacks. We follow this strategy for our proposals
and the number of rounds of HadesMiMC is then chosen accordingly.

The crucial points of our security analysis are the following:
9 We emphasize that this is not always the case. For a concrete example, we analyze
the security of HadesMiMC instantiated by the inverse S-Box S-Box(x) = 1/x in
Supplementary Material F. In there, we show that, even though this S-Box has the
highest possible degree, the number of rounds needed for security is of the same
order as the number of rounds required for the cubic case (see also [37, Sect. 3.4] for
more details).

10 In there, the authors show e.g. that the total number of non-linear operations over Fp
(hence, including the square operations) is constant for each permutation function
of the form x 7→ xd for d = 2d

′
− 1.
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– Security against statistical attacks is obtained exploiting the wide trail strat-
egy by using Rstat

F = 2 ·Rstat
f rounds with full S-Box layers.

– The combination of both rounds RF = Rstat
F + R′ with full S-Box layers

and/or rounds RP ≥ 0 with partial S-Box layers provide security against all
other possible attacks. Indeed, even if rounds with partial S-Box layers are
sufficient to increase the degree of the encryption/decryption function, other
factors can also have a crucial impact on the cost of an algebraic attack.

In the following, we present our security analysis for the case κ = N (and full
data case). Then, we adapt it for the case κ = n (together with the restriction
pt/2 ≈ 2N/2) used for the MPC applications we have in mind.

4.1 Main Points of Our Cryptanalysis Results

Here we limit ourselves to highlight the main points of our cryptanalysis results
– a detailed description of the attacks can be found in the following.

Number of Rounds. In the following, given the number of rounds of a distin-
guisher which is independent of the key, we add at least 2 rounds with full S-Box
layers to prevent key-guessing attacks. This choice is motivated by the fact that
it is not possible to skip more than a single round with a full S-Box layer without
guessing the entire key. Indeed, one round of HadesMiMC already provides full
diffusion at word level, while the S-Box provides full diffusion at bit level.

Statistical Attacks. Assuming p ≥ (α − 1)2 (which is in general satisfied
for large p � 1), we are going to show that at least 6 rounds with full S-
Box layers are needed to protect HadesMiMC against all statistical attacks
in the literature (that is, differential, linear, truncated/impossible differential,
boomerang, ...). Depending on p and t, in some cases 10 rounds are necessary in
order to guarantee security against these attacks.

Algebraic Attacks. Algebraic attacks exploit mainly the low degree of the en-
cryption/decryption function in order to break the cipher. However, as already
mentioned, other factors can influence the cost of such attacks.

Interpolation Attack. The goal of an interpolation attack is to construct the
polynomial that describes the function: If the number of monomials is too large,
such a polynomial cannot be constructed faster than via a brute force attack.
A (lower/upper) bound of the number of different monomials can be estimated
given the degree of the function. We show that – when the polynomial is dense
– the attack complexity is approximately O(dt), where d is the degree of the
polynomial after r rounds. Since d = αr, logα(p) + logα(t) rounds with partial
S-Box layers are necessary to guarantee security, where logα(t) more rounds
guarantee that the polynomial is dense. The cost of the attack does not change
when working with rounds with full S-Box layers.
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We finally remark that the degree of a function can also depend on its “rep-
resentation”. To give a concrete example, the function x−1 can be written as a
function of degree p − 2 (namely, x−1 ≡ xp−2 for x 6= 0) or using the “fraction
representation” 1/x as introduced in [37], where both the numerator and the de-
nominator are functions of degree at most 1 (see Supplementary Material F for
more details on the influence of such representation on the interpolation attack).

Gröbner Basis Attack. In a Gröbner basis attack, one tries to solve a system
of non-linear equations that describe the cipher. The cost of such an attack
depends on the degree of the equations, but also on the number of equations
and on the number of variables. We show that – when working with rounds with
full S-Box layers – the attack complexity is approximately O((d/t)t). If a partial
S-Box layer is used in order to guarantee security against this attack, it could
become more efficient to consider degree-α equations for single S-Boxes. In this
case, a higher number of rounds may be necessary to provide security.

To summarize, a round with a partial S-Box layer can be described by just
1 non-linear equation of degree d and t− 1 linear equations, while a round with
a full S-Box layer can be described by t non-linear equations of degree d. If the
cost of the attack depends on other properties than just the degree (as in the
case of a Gröbner basis attack), this fact can influence its final cost.

Higher-Order Differential Attack. In the case of a function defined over a
Boolean field, the higher-order differential attack exploits the property that given
a function f(·) of algebraic degree δ, then

⊕
x∈V⊕φ f(x) = 0 if the dimension

of the subspace V satisfies dim(V ) ≥ δ + 1 (where the algebraic degree δ of a
function f(x) = xd is given by the hamming weight of d, which we denote by
hw(d)). If the algebraic degree is sufficiently high, then the attack does not work.

At first thought, one may think that this attack does not apply (or is much
less powerful) in Ftp (due to the fact that the only subspaces of Fp are {0} and
Fp itself). Recently, it has been shown in [11] how to set up an higher-order
differential over Ftp. Given f over Fp of degree d ≤ p− 2, then

∑
x∈Fp f(x) = 0.

Since this result is related to the degree of the polynomial that describes the
permutation, we claim that the number of rounds necessary to guarantee security
against the interpolation attack provides security against this attack as well.

Some Considerations & Other Attacks. About the Subspace Trails given
in Eq. (1). As we have seen before, independently of the details of the matrix
that defines the MixLayer, there exist subspaces trails (of the form {Sr,M ·
Sr, . . . ,Mr−1 · Sr} – see Eq. (1) for details) for at most t−1 rounds with partial
S-Box layers. Here we discuss the impact of their existence on the security of
HadesMiMC. Since rounds with partial S-Box layers are “masked” both by (at
least) Rf ≥ 3 rounds with full S-Box layers and by the presence of the secret
key, it seems very hard to exploit them in a non-trivial way in order to set up a
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key-recovery attack11.

Related-Key Attacks. The related-key attack model is a class of cryptanalytic
attacks in which the attacker knows or chooses a relation between several keys
and is given access to encryption/decryption functions with all these keys. We
explicitly state that we do not make claims in the related-key model as we do
not consider it to be relevant for the intended use case.

HadesMiMC Permutation: Security. Since we do not require the indistin-
guishability of the permutation obtained by HadesMiMC with a fixed key from
a “randomly drawn” permutation12 in the practical applications considered in
the following, we explicitly state that we do not make claims about the indistin-
guishability of the HadesMiMC Permutation.

4.2 Statistical Attacks – Security Level: κ = N

Differential Cryptanalysis. Differential cryptanalysis [13] and its variations
are the most widely used techniques to analyze symmetric-key primitives. The
differential probability of any function over the finite field (F,+,×) is defined
as

Prob[α→ β] := |{x : f(x+ α)− f(x) = β}|/|F|

where |F| is the size of the field and where “−” denotes the subtraction operation
(x − y = z iff x = z + y). The probability for the power function f(x) = xα is
bounded above by (α− 1)/|Fp| = (α− 1)/p. For example, the cube map has an
optimal differential probability over a prime field [47].

As largely done in the literature, we first compute the number of rounds nec-
essary to guarantee that each characteristic has probability at most p−t ≈ 2−N .
Since more characteristics can be used simultaneously in order to set up a
differential attack, the previous number of rounds is in general not sufficient
to guarantee security. For this reason, we claim that HadesMiMC is secure
against differential cryptanalysis if each characteristic has probability smaller
than p−2·t ≈ 2−2·N . We emphasize that (1st) this basically corresponds to dou-
bling the number of rounds necessary to guarantee that each characteristic has
probability at most 2−N and (2nd) that a similar strategy is largely used in the
literature (including e.g. AES).

11 To give a concrete example, given texts in the same input coset of a subspace Sr,
then after l < r rounds such texts would be in the same output coset of the subspace
M l · Sr. At the same time, since it is not possible to choose texts in the “middle”
of the cipher due to e.g. the presence of the secret key, it seems hard to exploit this
fact in a non-trivial way (that is, without guessing the key or without working in a
probabilistic way) in order to break the scheme.

12 This basically corresponds to the known-key or chosen-key models, where the at-
tacker can have access or even choose the key(s) used, and where the goal is to find
some (plaintext, ciphertext) pairs having a certain property with a complexity lower
than what is expected for randomly chosen permutations.
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As we are going to show, the idea is to compute the minimum number of
rounds with full S-Box layers that guarantee this. In other words, we consider a
“weaker” version of the cipher defined as

RRf ◦ L ◦RRf (·), where (2)

– L is an invertible linear layer (which is the “weakest” possible assumption),
– R(·) =M ◦ S-Box ◦ARK (·) where S-Box(·) is a full S-Box layer (remember

that M is an MDS matrix).

Assuming p ≥ (α − 1)2 (which is in general satisfied for p � 1), we show that
this “weaker” cipher is secure against differential cryptanalysis for

Rstat
F =

{
6 if p ≥ (α− 1)t+1,

10 otherwise.
(3)

As a result, it follows that also HadesMiMC (instantiated with RF rounds
with full S-Box layers) is secure against such an attack. Indeed, if the linear
layer L (which we only assume to be invertible) is replaced by RP rounds of
HadesMiMC, its security cannot decrease. The same strategy is exploited in the
following in order to prove security against all attacks in this subsection.

In order to prove the result just given, we need a lower bound on the number
of active S-Boxes. Observe that the minimum number of active S-Boxes of a
cipher of the form

Rr
′
◦ L ◦Rr(·) ≡ SB ◦ M ◦ SB︸ ︷︷ ︸

r′−1 times

◦ L′︸︷︷︸
≡L◦M(·)

◦SB ◦M ◦ SB︸ ︷︷ ︸
r−1 times

(·),

where r′, r ≥ 1, R(·) is a round with a full S-Box layer and where L′ is an
invertible linear layer, is at least13

number active S-Boxes ≥ (
⌊
r′/2

⌋
+
⌊
r/2
⌋)
×(t+ 1) +

(
r′ mod 2

)
+
(
r mod 2

)
.

We emphasize that the middle linear layer L′(·) ≡ L ◦M(·) plays no role in
the computation of the previous number (it has branch number equal to 2). By
choosing r′ = r = 2, it follows that – since at least 2 ·(t+1) S-Boxes are active in
the weaker cipher R2 ◦L ◦R2(·) and since the maximum differential probability
of the S-Box is DPmax = (α−1)/p – each characteristic has probability at most(

α− 1

p

)2·(t+1)

=

{
p−2t · (α−1)

2(t+1)

p2 ≤ p−2·t ≈ 2−2·N if p ≥ (α− 1)t+1

p−t · (α−1)
2(t+1)

pt+1 < p−t ≈ 2−N since p0.5 > α− 1

By doubling this number of rounds (i.e., by choosing r′ = r = 4), we get that
each characteristic has probability at most p−2·t ≈ 2−2·N . Finally, 2 more rounds

13 If r′ = 2 · s′ is even, then the minimum number of active S-Boxes over Rr
′
(·) rounds

with full S-Box layers is br′/2c · (t + 1). Instead, if r′ = 2 · s′ + 1 is odd, then
the minimum number of active S-Boxes over Rr

′
(·) rounds with full S-Box layers is

br′/2c · (t+ 1) + 1.
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with full S-Box layers guarantee that no differential attack can be set up by key
guessing. Indeed, note that (1st) given a partial round key, one has no informa-
tion about the other round keys (due to the key schedule), and (2nd) 1 round
with a full S-Box layer is sufficient to provide full diffusion. Hence, no more than
a single round can be skipped by exploiting a partially guessed key.

Other Attacks. In Supplementary Material D, we present a (detailed) security
analysis against other statistical attacks, including the linear one [45], truncated
[41] and impossible differential attacks [12], meet-in-the-middle statistical at-
tacks, the integral attack [20], the boomerang attack [50], the multiple-of-8 dis-
tinguisher [34], the mixture differential attack [31], and the invariant subspace
attack [42]. In there, we argue that (the “basic” variants of) all these attacks do
not outperform the differential attack discussed here. Finally, a discussion about
biclique cryptanalysis [14] is provided.

4.3 Algebraic Attacks – Security Level: κ = N

Interpolation Attack. One of the most powerful attacks against HadesMiMC
is the interpolation attack, introduced by Jakobsen and Knudsen [37] in 1997.

The strategy of the attack is to construct a polynomial corresponding to the
encryption function without knowledge of the secret key. Let Ek : F→ F be an
encryption function. For a randomly fixed key k, the interpolation polynomial
P (·) representing Ek(·) can be constructed using e.g. the Vandermonde matrix
(cost of ≈ O(t2)) or Lagrange’s theorem (cost of ≈ O(t · log t)). If an adver-
sary can construct such an interpolation polynomial without using the full code
book, then they can potentially use it to set up a forgery attack or a key-recovery
attack. The attack proceeds by simply guessing the key of the final round, de-
crypting the ciphertexts and constructing the polynomial for r − 1 rounds14.
With one extra (plaintext, ciphertext) pair, the attacker checks whether the
polynomial is correct. The data cost of the attack is well approximated by the
number of texts necessary to construct the interpolation polynomial.

Considering HadesMiMC, the degree of each word after r rounds is roughly
approximated by αr. In particular, since in each round at least one S-Box is
applied and since the affine layer does (in general) not change the degree, the
degree of one round is three as well. It follows that, if the degree of each word
after r ≥ 1 rounds is αr, then the degree of each word after r + 1 rounds is well
approximated by αr+1 even if only one S-Box per round (together with a linear
layer that provides “sufficiently good” diffusion at word level, in our case the
multiplication with an MDS matrix) is applied. For this reason, in the following
we consider a weaker cipher in which each round contains only a single S-Box. If
such a cipher is secure against the interpolation attack, then our design is also
secure (more S-Boxes per round do not decrease the security). Finally, we recall

14 The “hidden” assumption is that the cost to construct such a polynomial is smaller
than the cost of an encryption. If this assumption does not hold, then the cost of
the attack is bigger than the cost of a brute-force attack.
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that since at least 3 rounds with a full S-Box layer are applied at the beginning
and at the end, our design prevents the possibility to skip a certain number of
rounds by a proper choice of the input texts (e.g., by having no active S-Box),
as happens for the case of partial SPN ciphers. For this reason, we do not take
care of this last event.

Note that not all terms of (total) degree αr appear before the (r + 1)-th
round15. Thus, assuming the interpolation polynomial of degree αr−1 is not
sparse in the r-th round, a (rough) estimation for the number of monomials of
the interpolation polynomial (and so of the attack complexity) is given by

(αr−1 + 1)t ≥ α(r−1)·t,

since after r rounds there are t words each of degree at least αr−1. By requiring
that the number of monomials is equal to the full code book (α(r−1)·t ' pt,
that is, αr−1 ' p), the number of rounds must be at least r ' 1 + logα(p).
However, this estimation for the number of rounds does not guarantee that the
interpolation polynomial is dense. For this reason, since the cipher works over
a finite field with characteristic p and due to the specific algebraic structure
of the cube function, we add dlogα(t)e more rounds in order to guarantee that
the interpolation polynomial is not sparse (see Supplementary Material E.1 for
details).

A MitM variant of the interpolation attack can also be performed. To thwart
this variant and due to the high degree of S-Box−1(x) = x1/α, it is sufficient to
add 2 rounds. Finally, 2 more rounds are added to prevent key-guessing attacks.
As a result, the total number of rounds R must satisfy16

R = RP +RF ≥ Rinter(N, t) ≡ 5 +
⌈
logα(p)

⌉
+
⌈
logα(t)

⌉
(4)

to thwart the interpolation attack.

Gröbner Basis and GCD Attacks. In the greatest common divisors (GCD)
attack [4], given more than one known (plaintext, ciphertext) pair or working on
the output of each S-Box of a single (known) pair, one constructs their polyno-
mial representations and computes their polynomial GCD to recover a multiple
of the key. We refer to Supplementary Material E.2 for all details about the GCD
attack.

The natural generalization of GCDs is the notion of Gröbner bases [19]. The
attack proceeds like the GCD attack with the final GCD computation replaced by
a Gröbner basis computation. As our design exhibits a strong algebraic structure,
it is paramount to carefully analyze its resistance against Gröbner basis attacks.
For example, it has been shown recently that this attack vector has been able

15 E.g., after the first round not all words of degree α appear. Indeed, the input of each
S-Box in the first round is composed of a single word, which means that after the
first round there is no non-linear mixing of different words. Similarly, not all terms
of (total) degree αr appear before the (r + 1)-th round.

16 We emphasize that in this analysis we do not take into account the cost to construct
the interpolation polynomial, which is (in general) non-negligible.
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to break two proposed primitives which do not seem to be vulnerable to other
types of classical algebraic attacks [2].

A Gröbner basis attack consists of the following steps:

1. computing the Gröbner basis in degrevlex order;
2. converting the Gröbner basis into lex order;
3. factorizing the univariate polynomial, and back-substituting its roots.

As largely done in the literature, we assume that the security of ciphers against
Gröbner basis attacks follows from the infeasible complexity of computing the
Gröbner basis in degrevlex order. For generic systems, the complexity of this
step (hence, a lower bound for the complexity of computing a Gröbner basis)
for a system of ne polynomials fi in nv variables is O

((
nv+Dreg
Dreg

)ω)
operations

over the base field F [19], where Dreg is the degree of regularity and 2 ≤ ω < 3
is the linear algebra constant (the memory requirement of these algorithms is of
the same order as the running time). The degree of regularity depends on the
degrees of the polynomials d and the number of polynomials ne.

In the following, we provide three different strategies to attack our design us-
ing Gröbner bases. We give a brief overview here, while we provide more details
in Supplementary Material E.3.

First Strategy. The first strategy consists in using t variables k0, . . . , kt−1
and t equations for each (plaintext, ciphertext) pair. When being provided at
most pt − 1 (plaintext, ciphertext) pairs, the system of equations that describes
the cipher is composed of at most ne = t · (pt − 1) equations of the form ĉi =
fi(p̂0, . . . , p̂t−1, k0, . . . , kt−1) in nv = t variables k0, . . . , kt−1 (remember that
the key schedule is linear). In this over-determined case (ne > nv), there is no
closed-form expression to compute Dreg, which is defined as the index of the first
non-positive coefficient in

H(z) =

∏ne
i=1(1− z

di)

(1− z)nv =
(1− z3

r

)ne

(1− z)nv = (1− z3
r

)ne−nv · (1 + z + z2)nv ,

where di = αr is the degree of the i-th equation. By simple observation, the
index of the first non-positive coefficient cannot be smaller than d = αr, since
(1 + z + z2)nv contains only positive terms.

Depending on parameter choices, the hybrid approach [10], which combines
exhaustive search with Gröbner basis computations, may lead to a reduced cost.
Following [10], guessing κ < t parts of the key leads to a complexity of

O
(
pκ ·

(
t− κ+D′reg

D′reg

)ω)
, (5)

where D′reg ≤ Dreg is the degree of regularity for the system of equations after
substituting κ variables with their guesses. It follows that to prevent Gröbner
basis attacks, the minimum number of rounds r must satisfy pκ ·

(t−κ+D′reg
D′reg

)ω
≥ pt

for all 0 ≤ κ ≤ t − 1, and where the degree of regularity D′reg = O(d) ≈ αr. In
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our cases, the expression Eq. (5) is minimized by κ = 0, which implies that(
t+ d

d

)
=

1

t!
·
t∏
i=1

(d+ i) ≥ dt

t!
≥
(
d

t

)t
= 2t log2(d/t),

where x! ≤ xx for x ≥ 1. Setting ω = 2, we obtain 2t log2(d/t) ≈ log2(p) · t and

r ≥ 2 + logα(p)/2 + logα(t), (6)

where 2 rounds are added to thwart the MitM version of the attack (note that
the degree of the S-Box in the decryption direction is much higher, especially
for large p: hence, 2 rounds are in general sufficient to reach maximum degree in
the backward direction). As a result,

R ≥
⌈
logα(p)/2

⌉
+
⌈
logα(t)

⌉
+2

rounds are sufficient to protect the cipher from this attack. Note that the analysis
just proposed is independent of the fact whether the rounds contain a full or a
partial S-Box layer.

In general, it is possible to make use of the existence of the subspace S
defined as in Eq. (1) in order to improve the attack just described. As shown
in [11], such a subspace can be exploited in order to replace some non-linear
equations of the system that we are trying to solve with linear equations. In-
deed, given a text in a coset of the subspace S(r), the output of this text after
r rounds with partial S-Box layers is simply the result of an affine map applied
to the input (that is, no S-Box is involved). We analyzed this variant in de-
tails in Supplementary Material E.3. It turns out that the modified variant of
this attack is less competitive than the attack just presented (roughly speaking,
due to the higher number of variables that are necessary to describe the system).

Second Strategy. While we use only t variables in the first strategy, the second
strategy is to add intermediate variables in each round. Specifically for the rounds
with a partial S-Box layer, it is sufficient to add only one intermediate variable.
In total, we get a system with more variables and equations compared to the
first strategy, but with much lower degrees. We describe this strategy in detail in
Supplementary Material E.3, where we conclude that RF and RP have to fulfill

RF · t+RP ≥
⌈

N

2 · log2(αα/(α− 1)α−1)

⌉
+

⌈
t

2

⌉
+ 1

in order for our design to be secure against this type of attack.

Third Strategy. The third strategy is merely a combination of the previous
two strategies. We use 2t variables for the RF rounds with full S-box layers (i.e.,
we do not add intermediate variables in these rounds), but we apply the idea
from the second strategy during the RP rounds with partial S-box layers (i.e.,
we add intermediate variables in these rounds). This approach gives us a system
of 2t equations of degree αRf and RP equations of degree α in 2t+RP variables
(t variables for the key and t + RP intermediate variables). Since the number
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of variables is the same as the number of equations, we can estimate Dreg and
conclude that our design is secure if17

RF ≥ 2 +

⌈
logα(2) ·

(
N

2t+RP
+ 2 · log2(t+RP )

⌉
−
⌊
2 · log2(t)

)⌋
,

is fulfilled (see Supplementary Material E.3 for more details).

Conclusion. We claim that if RF and RP satisfy


RP +RF ≥ R1st-Grob(N, t) ≡ 2 +

⌈
logα(p)/2

⌉
+
⌈
logα(t)

⌉
RF · t+RP ≥ R2nd-Grob(N, t) ≡

⌈
N

2·log2(αα/(α−1)α−1)

⌉
+
⌈
t
2

⌉
+ 1

RF ≥ R3rd-Grob(N, t,RP ) ≡ 2 +

⌈
logα(2) ·

(
N

2t+RP
+ 2 · log2(t+RP )

⌉
−
⌊
2 · log2(t)

)⌋
(7)

for N ≈ t · log2(p), then HadesMiMC can be considered secure against the
Gröbner basis attacks proposed here. We mention that if RF satisfies RF ≥
R1st-Grob(N, t) ≡ 2 +

⌈
logα(p)/2

⌉
+
⌈
logα(t)

⌉
(namely, rounds with full S-Box

layers are sufficient to provide security w.r.t. the first strategy), then the second
and the third condition are also satisfied.

Higher-Order Differential Attack. A well-known result from the theory of
Boolean functions is that if the algebraic degree of a vectorial Boolean function
f(·) (like a permutation) is d, then the sum over the outputs of the function
applied to all elements of an affine vector space V ⊕ c of dimension ≥ d+ 1 for
an arbitrary constant c is zero, that is,

⊕
v∈V⊕c v =

⊕
v∈V⊕c f(v) = 0.

This property is exploited by higher-order differential attacks [41]. However,
it only holds if V is a subspace, and not just a generic set of elements. While F2m

is always a subspace of F2n for each m ≤ n, the only subspaces of Fp are {0}
and Fp. It follows that the biggest subspace of (Fp)t has dimension t, in contrast
to the biggest subspace of (F2n)

t, which has dimension n · t = N .
Due to this consideration, at first thought, one may think that this attack

does not apply (or is much less powerful) in Ftp. Recently, it has been shown
in [11] how to set up an higher-order differential over Ftp. Given f over Fp of
degree d ≤ p− 2, then

∑
x∈Fp f(x) = 0. Since this result is related to the degree

of the polynomial that describes the permutation, we claim that the number of
rounds necessary to guarantee security against the interpolation attack provides
security against this attack as well.18

17 A “more precise” condition can be found in Supplementary Material E.3.
18 We emphasize that this does not hold in general. In particular, working over FN2 ,

note that a scheme is secure against the interpolation attack if the corresponding
polynomial is full/dense. However, for security against higher-order differential at-
tacks, we want a maximum algebraic degree. These two things are in general not
strictly related.
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5 Security Analysis for MPC: κ = n and Data ≤ p1/2

In this section, we will adjust our security arguments in order to provide a
security level of only log2(p) ≈ n bits (instead of the previous log2(p

t) ≈ N
bits). At the same time, we only allow an attacker to use p1/2 data.

5.1 Statistical Attacks

Differential Attack. As before, we assume that the cipher is secure if every
characteristic has probability smaller than p−2 (namely, smaller than the square
of the data complexity equal to √p). Working with the weaker cipher RRf ◦L ◦
RRf (·) defined as in Eq. (2), it follows that Rf = 2 rounds with full S-Box layers
are sufficient, since each characteristic has a probability of at most(

(α− 1)

p

)2(t+1)

=
1

pt+1
· (α− 1)2(t+1)

(p)t+1
< p−(t+1),

under the assumption p ≥ (α−1)2 (which is in general satisfied for large p� 1).
However, since a total number of RF = 2 full rounds would not lead to 2 consec-
utive full rounds in our design (recall that we use partial rounds in the middle),
we add two other rounds to have at least 2 consecutive rounds both at the be-
ginning and at the end. Finally, we add two more rounds to prevent differential
attacks with key guessing and conclude that RF ≥ Rstat

F = 6 rounds are needed
in this setting.

Other Attacks. The situation in this setting does not differ from the situation
analyzed in Section 4.2 (namely, other statistical attacks do not outperform the
differential attack just discussed). Therefore, we argue that RF = 6 rounds also
prevent (the “basic” variant of) all other statistical attacks in the literature.

5.2 Algebraic Attacks

Interpolation Attack. The approach in this setting follows the analysis given
in Section 4.3. By choosing plaintexts with just one active word, the interpolation
polynomial depends on a single variable (namely, the active word). Hence, the
number of monomials after r rounds is approximated by αr + 1. Since the data
complexity is limited to √p, here we require that αr + 1 ≥ √p =⇒ r ≥
0.5 · logα (p). We finally add logα(t) + 4 rounds due to the reasons given in
Section 4.3 and conclude that

RF +RP ≥ Rinter(p, t) ≡ 4 +

⌈
logα (p)

2

⌉
+ dlogα(t)e (8)

rounds are needed to prevent the interpolation attack.

GCD and Gröbner Basis Attack. As further explained in Supplementary
Material E.2, the GCD attack for a key from (Fp)t works by first guessing t− 1
components of the key in order to have a univariate polynomial in the last
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component. Since we are using only one key component in this setting, we do
not need to guess these components. With other words, the encryption path alone
already yields a univariate polynomial. Since the cost of the GCD computation
is approximated by O

(
d log22 d

)
, we target a complexity of d log22 d ≈ p, where d

is well approximated by αr−1, and thus require that

RF +RP ≥ RGCD(p, t) ≡ 4 + dlogα(p)e − b2 logα(log2(p))c . (9)

Finally, since computing the Gröbner Basis of a univariate system of equa-
tions is equivalent to computing the greatest common divisor (GCD) [17], we
expect that this attack does not outperform the GCD one just discussed (we
refer to Supplementary Material E.3 for more details).

6 Number of Rounds: Security and Efficiency

The design goal of HadesMiMC is to offer a cipher optimized for schemes whose
performance critically depends on the MULTdepth/ANDdepth, the number of
MULTs/ANDs, or the number of MULTs/ANDs per bit. We thus try to be as
close to the number of rounds needed for security as possible.

Security. HadesMiMC with a security level equal to κ = N is secure iff
RF ≥ max

{
Rstat
F ;R3rd-Grob(p, t, RP )

}
,

RP +RF ≥ Ψ (1)(p, t) ≡ max
{
Rinter(p, t);R1st-Grob(p, t);RGCD(p, t)

}
= Rinter(p, t),

RP + t ·RF ≥ Ψ (t)(p, t) ≡ R2nd-Grob(p, t),

where Rinter(p, t) and R1st-Grob(p, t), R2nd-Grob(p, t), R3rd-Grob(p, t, RP ) are resp.
defined in Eq. (4) and Eq. (7) for the case κ = N . The analogous case κ = n (used
for the MPC applications that we have in mind) is discussed in the following.

Several Combinations of (RF,RP) for the Same Security Level. Besides
the possibility to choose the size of the S-Box, we emphasize that one of the
strengths of our design is the freedom to choose the ratio between the number
of rounds RF with full S-Box layers and the number of rounds RP with partial
S-Box layers without affecting the security level. In other words, the crucial point
here is that for each given p and t, the designer has in general the freedom to
choose among several combinations of rounds (RF , RP ) – that guarantee the
same security – in order to minimize the analyzed cost metric.

In the following, we show how to choose the best combination of (RF , RP ) in
order to minimize a given cost metric (for the same security level). We provide a
script19 that, given an input p, returns the best t and the best ratio between RP
and RF for several cost metrics – as the total number of non-linear operations,
the depth, etc., for both κ = N and κ = n.
19 We mention that we propose also a variant of such script that takes p and t as input,

and that returns the best choice of RF and RP that minimizes the given cost metric.
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6.1 Efficiency in the Case of MPC Applications

Consider a generic scenario in which the main goal is to minimize the total
number of non-linear operations (namely, the number of S-Boxes in our case)
and/or the depth and/or the total number of linear operations proportional
respectively to some parameters 0 ≤ ϕ,ψ, ρ ≤ 1 s.t. ϕ + ψ + ρ = 1. Among all
possible combinations of rounds (RF , RP ) that provides the same security level,
the goal is to find the one that minimizes the metric given by

ϕ

ϕ+ ψ + ρ
×# S-Boxes +

ψ

ϕ+ ψ + ρ
× depth +

ρ

ϕ+ ψ + ρ
×# Linear Op. =

=
ϕ× (t ·RF +RP ) + ψ × (RF +RP ) + ρ× (t2 ·RF + (3t− 2) ·RP )

ϕ+ ψ + ρ

where the equality holds only for the HadesMiMC design (a precise estimation
of the number of linear operations in the case of an efficient implementation of
HadesMiMC is provided in Supplementary Material C).

Cost Metric for MPC: “Number of S-Boxes” and Depth. Due to the
MPC applications we have in mind, we limit ourselves to optimize HadesMiMC
w.r.t. the metric that takes into account both the number of multiplications/S-
Boxes and the depth. Motivated by real-life applications, the goal that we face
is to reduce the total runtime (described in details in the following). Since the
main bottleneck of a protocol run on top of the SPDZ framework is the triple
generation mechanism, which is given by the number of non-linear operations,
in such a case the goal would be to minimize the total number of S-Boxes, while
the depth plays a minor role (and where the cost of a single linear operation
is negligible compared to the cost of a single non-linear operation). Due to this
consideration, here we focus only on the case 0 ≤ ρ� ϕ. For the simplified case
ρ = 0, the previous metric can be simplified as follows:

γ × number of S-Boxes + (1− γ)× depth =

= γ × (t·RF +RP ) + (1− γ)× (RF +RP ) = RF × [1 + γ · (t− 1)] +RP
(10)

for different values of a parameter γ, where 0 ≤ γ ≤ 1. Note that γ = 1 and
γ = 0 correspond to the cases in which one aims to minimize the total number
of S-Boxes and the depth, respectively.

6.2 Best Ratio Between RF and RP – MPC Application

We focus on HadesMiMC with a security level of κ = n (and the data complexity
allowed for the attack is less than p1/2), namely the case suitable for the MPC
applications we have in mind.

Security. Due to the analysis provided in the previous section, HadesMiMC
is secure if the following inequalities are satisfied:{

RF ≥ Rstat
F ;

RP +RF ≥ Ψ(p, t) ≡ max{RGCD(p, t);Rinter(p, t)}
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where RGCD(p, t) and Rinter(p, t) are defined resp. in Eq. (9) and in Eq. (8).

Efficiency – Best Combination (RF,RP). The goal is to find the best
combination of rounds RF = Rstat

F + R′F ≥ Rstat
F and RP that minimizes the

cost for different values of γ, assuming Ψ(p, t) is fixed (equivalently, both p and
t are fixed). As we are going to show, in the case in which a single inequality of
the form RP +RF ≥ Ψ(p, t) must be satisfied, for each γ the cost metric Eq. (10)
is always minimized by choosing the smallest possible RF (namely, RF = Rstat

F ).
By combining the equation RP+RF ≥ Ψ(p, t) with the cost metric for generic

α, we get that the cost is upper bounded by

RF × [1 + γ · (t− 1)] +RP

∣∣∣∣
RP+RF≥Ψ

≥ RF × γ × (t− 1) + Ψ,

which is minimized by the following choice:

– if γ 6= 0, then the cost is minimized by taking the minimum value of RF
(where note that Ψ is fixed for t and N fixed), that is, RF = Rstat

F ;
– if γ = 0, then the cost is equal for each choice of (RF , RP ) s.t. RP +RF = Ψ .

Let us analyze the case in which γ = 0 in more details. Even if every choice
of RF and RP leads to the same cost w.r.t. the metric RF + RP (namely, the
depth), one possibility would be to choose the combination that minimizes other
metrics. By taking into account the number of non-linear and linear operations,
it turns out that the best choice is to take the minimum value of RF , since

# S-Boxes: t×RF +RP

∣∣∣∣
RP+RF≥Ψ

≥ RF × (t− 1) + Ψ

# Linear Op.: t2 ×RF + (3t− 2)×RP
∣∣∣∣
RP+RF≥Ψ

≥ RF × ( t2 − 3t+ 2︸ ︷︷ ︸
≥0 for each t≥2

) + Ψ

are both minimized by taking the minimum RF ≥ Rstat
F .

6.3 Concrete Round Numbers of HadesMiMC

Based on the security analysis just proposed, in Table 1 we present some example
round numbers of HadesMiMC for different security levels and/or applications.
Due to the applications that we have in mind, we fixed α = 3 (namely, we work
with the cube S-Box): we remember that the prime p must be chosen s.t. gcd(p−
1, 3) = 1. More details together with conrete instantiations of HadesMiMC are
given in Supplementary Material A.

Reduced and Toy Versions. Many classes of cryptanalytic attacks become
more difficult with an increased number of rounds. In order to facilitate third-
party cryptanalysis and estimate the security margin, reduced-round variants
need to be considered. Hence we encourage to study reduced-round variants of
HadesMiMC where the symmetry around the middle is kept. For this reason,
we highlight that it is also possible to specify toy versions of our cipher which
aim at achieving, e.g., only 32 bits of security.
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Table 1: A range of different parameter sets for HadesMiMC (based on the cube
S-Box – α = 3) offering different trade-offs. The first set is for AES-like security
(≈ 128 bits). The second set is for MPC applications (where the ratio between
RF and RP is chosen in order to minimize the metric cost for given values of γ).
The last set includes an example of a toy version useful to facilitate third-party
cryptanalysis.

Text Size Security S-Box Size #S-Box γ Rounds RF Rounds RP

log2 p× t κ (log2 p) (t) (Full S-Box) (Partial S-Box)
128 128 8 16 - 10 4
128 128 16 8 - 8 10
256 128 128 2 0, 0.25, 0.5, 0.75, 1 6 71
256 256 128 2 0, 0.25, 0.5, 0.75, 1 12 76
512 128 128 4 0, 0.25, 0.5, 0.75, 1 6 71
512 512 128 4 0, 0.25, 0.5, 0.75, 1 12 76
1 024 128 128 8 0, 0.25, 0.5, 0.75, 1 6 71
1 024 1 024 128 8 0, 0.25 16 72
1 024 1 024 128 8 0.5, 0.75, 1 14 79
2 048 128 128 16 0, 0.25, 0.5, 0.75, 1 6 71
2 048 2 048 128 16 0, 0.25, 0.5 20 69
2 048 2 048 128 16 0.75, 1 18 93
4 096 128 128 32 0, 0.25, 0.5, 0.75, 1 6 71
4 096 4 096 128 32 0 24 66
4 096 4 096 128 32 0.25, 0.5 22 83
4 096 4 096 128 32 0.75, 1 20 121
8 192 128 128 64 0, 0.25, 0.5, 0.75, 1 6 71
8 192 8 192 128 64 0 32 58
8 192 8 192 128 64 0.25, 0.5 22 151
8 192 8 192 128 64 0.75, 1 20 240
32 32 8 4 - 6 7

About the case in which the security level κ is equal to the size of the S-Box (namely,
κ = log2 p): the given number of rounds provided security only if the data used for

the attack is smaller than p1/2 – no restriction for the case κ = log2 p · t ≈ N .

Comparison with Ciphers in “Traditional Use Cases”. We remark that
our strategy is not primarily intended to be used for pure encryption/decryption
purposes, and that it is specifically tailored towards new applications like the
MPC use case explained previously.

However, if only encryption/decryption is needed, we still expect HadesMiMC
to not be significantly worse than more suitable constructions when considering
the number of S-Boxes. E.g, when choosing the first instance given in Table 1
(namely, p ≈ 28 and t = 16) and comparing it to AES-128, we can observe that
the total number of S-Boxes is 10 · (16+4) = 200 in AES-128 (including the key
schedule), and only 10 · 16 + 4 = 164 in our design. At the same time, we point
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out that the linear layer of HadesMiMC compared to the one of AES is likely
to be a bottleneck when trying to reduce the number of operations.

7 MPC Applications

For MPC applications, we evaluated the HadesMiMC cipher (based on the
cube S-Box) using the SPDZ framework [39] within a prime field Fp following
the reasoning of [35].

Preliminaries. In the following, we denote by [x] a sharing of x, where each
party Pi holds a random xi ∈ Fp. The process of parties reconstructing x is called
an opening, i.e., going from a shared value [x] to a public value x known to all
parties. As with modern MPC frameworks, a protocol is split into two steps: an
input-independent preprocessing phase where parties generate random Beaver
triples [a] = [b] · [c], and an input-dependent online phase where parties share
their inputs and use the triples generated in the preprocessing phase. The cost
of a multiplication between two secret values [z]← [x] · [y] is twofold: one Beaver
triple generated in the preprocessing phase as well as two openings and one round
of communications in the online phase. Since secretly shared multiplications can
be done in parallel, the number of communication rounds in the online phase is
given by the multiplicative depth of the circuit (AND depth) to be evaluated.
Linear operations such as additions and multiplications by public scalars are
non-interactive and require only a small computational overhead.

To evaluate a block cipher in our setting, both the key [k] and the message [m]
are secretly shared between the parties. Since most of the computation is linear
and is computed locally by the parties, the last thing to show is how to compute
the S-Box. The trivial way is to perform [x2]← [x] · [x] and then [x3]← [x2] · [x]
using two triples. This can be done with two communication rounds and it has
an online cost of 3 openings and uses two triples. However, we use the Grassi et
al. version [35] to reduce the online cost to one communication round with the
same amount of openings and triples. Note that every multiplication translates
into two field elements broadcasted by each party (256 bits for p ≈ 2128).

Standard Benchmarks. We implemented and benchmarked HadesMiMC
with a security level of κ = 128 ≈ log2 p bits using the SPDZ protocol in the MP-
SPDZ library20 between two computers equipped with i7-7700K CPUs, 32GB
RAM, and connected via a 10Gb/s LAN connection with an average round-trip
time of 0.47 ms. The choice of MP-SPDZ was due to having the fastest triple
generation mechanism for a dishonest majority [38] and because it integrates
the preprocessing with the online phase to check the end-to-end runtime of a
protocol.

In Table 2, we present a comparison between HadesMiMC and other existing
PRFs/block ciphers proposed in the literature for MPC applications – namely,
20 https://github.com/data61/MP-SPDZ
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MiMC and GMiMCerf (both with a security level of κ = 128 bits) and Rescue
(with a security level of κ = t · 128 bits) – in terms of four metrics:

1. latency represents the best running time of a single cipher evaluation by
running sequential single-threaded executions of it;

2. throughput represents the encryption rate given in the number of field el-
ements that can be encrypted in parallel per second by running multiple
executions using different threads;

3. communication done by each party per encrypted field element;
4. round complexity which is the multiplicative depth of the circuit when com-

puted in MPC.

Moreover, we show the difference in throughput and communication between
the online phase (columns denoted by ’Online’) and when running the entire
end-to-end protocols (Runtime).

Experiment Results: Table 2. Our design is better in all metrics for t = 2
compared to all other block ciphers (except round complexity when looking at
MiMC in CTR mode), and also enjoys the smallest online latency for all t’s.

In terms of online throughput it is surpassed by GMiMCerf from t ≥ 16 due
to the local computation involving MDS matrices. In more details, from t ≥ 16
GMiMCerf has the best online throughput due to a low number of openings in
the online phase and a low computational overhead as it is just swapping and
adding states.

When looking at the Runtime column, we see that HadesMiMC outperforms
all the existing work from t = 2 and the gap increases by a factor of four for
t = 64 when comparing with GMiMCerf . Note that for the runtime column
one has to choose carefully the number of encryptions done in parallel. This is
because for different t’s MP-SPDZ produces triples in a batch of size 524288 and
some of them might be unused. We tried to diminish this gap by tweaking the
number of encryptions to be produced when benchmarking such that it utilizes
a maximum number of triples from the last batch.

Remarks about GMiMCerf and Rescue. In order to understand the previous
results, we emphasize two facts. First, all versions of GMiMCerf with n ≈ log2 p
bits of security are vulnerable to an attack presented in [15]. Specifically, in [3] the
authors propose a number of rounds for n ≈ log2 p bits of security, assuming the
attacker has access to the full code book (up to pt ≈ 2N different texts). Secondly,
in order to have a more precise comparison, in Supplementary Material G we
adapt their analysis in the case in which the attacker has access to at most
p1/2 different chosen texts. This attack – which is reminiscent of a slide attack
– makes only use of the weak key schedule and does not exploit any particular
properties of the cipher. Hence, while the versions of GMiMCerf used here are
broken in theory, we conjecture that a stronger key schedule can help to avoid
this attack. Therefore, since in MPC applications round keys are precomputed
(the cost of MPC applications is not influenced by the key schedule), we decided
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Cipher Text Size Online Runtime (multi-thread)

log2 p× t (MPC)
Rounds

Lat. (ms)
(s-thr)

Fp/s
(m-thr)

Comm.
per Fp

Fp/s Comm.
per Fp

Rescue 256 98 5.54 23 464 6.10 70 971
MiMC2 256 73 3.53 79 728 3.50 192 366
GMiMCerf 256 146 7.50 71 661 3.50 137 487
HMiMC 256 78 3.85 117 358 1.90 261 266

Rescue 512 50 1.25 46 890 3.08 136 485
MiMC4 512 73 1.69 83 876 3.50 192 366
GMiMCerf 512 150 3.42 137 058 1.80 274 243
HMiMC 512 78 1.90 185 160 1.14 526 133.2

Rescue 1024 32 0.59 72 689 1.93 137 484
MiMC8 1024 73 1.08 85 795 3.50 192 366
GMiMCerf 1024 158 1.98 252 102 0.94 271 241
HMiMC 1024 78 0.98 253 475 0.71 1045 66.8

Rescue 2048 32 0.45 66 830 1.93 273 243
MiMC16 2048 73 0.63 87 318 3.50 192 366
GMiMCerf 2048 174 1.09 425 717 0.52 137 483
HMiMC 2048 78 0.5 283 678 0.50 1088 60.9

Rescue 4096 32 0.42 57 695 1.93 274 243
MiMC32 4096 73 0.34 87 831 3.5 192 366
GMiMCerf 4096 206 0.68 637 747 0.3 276 241
HMiMC 4096 78 0.32 258 610 0.39 1098 60.8

Rescue 8192 32 0.31 44 697 1.93 283 243
MiMC64 8192 73 0.20 87 773 3.50 192 366
GMiMCerf 8192 323 0.50 664 091 0.24 550 120
HMiMC 8192 78 0.11 189 772 0.32 2189 30.6

Table 2: Two-party costs for Rescue, MiMCt (namely, t parallel MiMC-128/128
in CTR mode), GMiMCerf and HMiMC≡HadesMiMC over a 10Gb/s LAN.
Communication is given in KiloBytes. Runtime column represents the entire
protocol execution, including preprocessing.

to keep the corresponding numbers in the table, noting that a secure variant of
GMiMCerf using an appropriate key schedule would yield the same results.

We highlight that Rescue is specified with a security level of pt ≈ 2N bits
only, besides a conservative security margin of 100%. Due to the particular design
of Rescue (each round contains a non-linear layer and its inverse), this choice has
been made due to the fact that “[...] the field of algebraic attacks seems rather
underexplored. As a result, it is difficult to make a compelling security argument
valid for the entire family of attacks” (see [6, Sect. 3.5]). Hence, we mention
that it is potentially possible that the gap (in terms of performance) between
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Rescue and HadesMiMC can actually be reduced in the case in which the
“design choices [of Rescue are] indeed too conservative, and that the complexity
and security margins can safely be reduced ” (see [6, Sect. 4.6]).

Related Work. At CCS’18, Agrawal et al. [1] applied a threshold PRF to
compute an encryption between several parties where one party Pext holds a
plaintext m, does a 2-round protocol with multiple servers, and Pext receives an
encryption Ek(m) where the key k is shared among the servers. This use case is
covered by us as well by having the servers computing the block cipher in MPC
with Pext as an external party providing the input m and getting the output
Ek(m). In the two-server case where one external party gets the ciphertext,
Agrawal et al. obtain a latency of 0.05 ms and a throughput of around 2 million
encrypted blocks. HadesMiMC with t = 2 blocks can achieve an online latency
of 3.85 ms and an online throughput of more than 117 000 blocks per second.

Although this design performs orders of magnitude slower than Agrawal et
al.’s, we provide more flexibility: (1st) Pext does not have to be online with the
other servers as in Agrawal et al. to compute the encryption; (2nd) it is more
friendly towards working with encrypted databases: servers upload the ciphertext
to a DB and anyone holding k can decrypt, whereas for Agrawal et al. each party
(Pext or else) needs to be online with the servers to decrypt.

8 Concluding Remarks: Possible Variants for Future
Works

In this paper, we proposed the Hades design strategy, based on the idea of
mixing rounds with full S-Box layers and partial S-Box layers in a SPN scheme
with the goal to achieve security and at the same time good performance in all
applications where the cost is proportional to the number of non-linear oper-
ations. As a concrete cipher, we proposed HadesMiMC, obtained by applying
the Hades strategy to (a modified version of) the block cipher SHARK defined
over Ftp for a prime p.

As future work, it could be interesting to define ciphers based on the Hades
strategy over Ft2n or over Ftpn . E.g., consider the case of HadesMiMC defined
over Ft2n or over Ftpn :

– the S-Box S(x) = xα is a permutation if gcd(2n − 1, α) = 1 (e.g., if n odd
for α = 3) and if gcd(pn − 1, α) = 1 (e.g., gcd(p− 1, α) = 1 and n odd);

– the number of rounds cannot be smaller than the corresponding number of
rounds of HadesMiMC defined over Ftq for the prime q closest to 2n or pn.

About this last point, note indeed that all attacks analyzed in this paper work
approximately in the same way if HadesMiMC is defined over Ft2n or over Ftpn .
At the same time, other attacks (as the higher-order differential attack) that
exploit the existence of subspaces of Ft2n or of Ftpn may be more efficient than
the attacks defined here.
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Finally, we point out that it is possible to define cryptographic key-less
permutations using the strategy proposed here (e.g., it is sufficient to take
HadesMiMC and fix the key to some public value). In such a case, we sug-
gest to opportunely modify the number of rounds depending on the context in
which the permutations are used.
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A Concrete Instantiations

Here we specify how we generate pseudo-random bits, the round constants, and
the MDS matrices for the linear layer. All values are given in hexadecimal nota-
tion. The MDS matrices are Cauchy matrices, further described in Supplemen-
tary Material B. The example instances are implemented using Sage and we
provide the files online.21

Pseudo-Random Number Generator. All pseudo-random numbers are generated
using the Grain LFSR [62] in a self-shrinking mode:

1. Initialize the state with 80 bits b0, b1, . . . , b79, where
(a) b0, b1 are fixed to b1 || b0 = 0x1,
(b) bi for 2 ≤ i ≤ 5 are fixed to b5 || b4 || b3 || b2 = 0x0,
(c) bi for 6 ≤ i ≤ 17 are the binary representation of n,
(d) bi for 18 ≤ i ≤ 29 are the binary representation of t,
(e) bi for 30 ≤ i ≤ 39 are the binary representation of RF ,
(f) bi for 40 ≤ i ≤ 49 are the binary representation of RP , and
(g) bi for 50 ≤ i ≤ 79 are set to 1.

2. Update the bits using bi+80 = bi+62 ⊕ bi+51 ⊕ bi+38 ⊕ bi+23 ⊕ bi+13 ⊕ bi.
3. Discard the first 160 bits.
4. Evaluate bits in pairs: If the first bit is a 1, output the second bit. If it is a

0, discard the second bit.

We focus on generating elements of GF(p). If a randomly sampled integer is
larger than or equal to p, we discard this value and take the next one. We first
generate the round constants, then the MDS matrix for the linear layer, and
finally the MDS matrix for the key schedule.

Round Constants. For the round constants, we simply use the pseudo-random
number generator just given. All numbers are generated by starting from the
most significant bit (changing this order makes no difference regarding the se-
curity). Note that cryptographically strong randomness is not needed for the
round constants or the matrices, and other methods can also be used.

MDS Matrices. All our MDS matrices are Cauchy matrices. However, we note
that not every MDS matrix provides the same level of security, in particular when
considering partial SPN constructions or our design, which also uses rounds with
partial S-Box layers. Indeed, recent results [11,40,36] have shown that there exist
vulnerabilities when using certain Cauchy matrices.

Even if no attack based on such weakness has been proposed on HadesMiMC,
we generate our matrices using the algorithms provided in [36], and we precisely
use the following method to generate them:

1. Randomly select pairwise distinct {xi}ti=1 and {yi}ti=1, where xi + yj 6= 0
and where i ∈ {1, . . . , t} and j ∈ {1, . . . , t}.

21 https://extgit.iaik.tugraz.at/krypto/hadesmimc
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2. Determine if the matrix is secure using the tools provided in [36]. For a
secure matrix, no infinitely long (invariant and/or iterative) subspace trail
(with or without active S-Boxes) can be set up for the rounds with partial
S-Box layers.

3. Repeat this procedure until a secure matrix is found (in general, the proba-
bility that a matrix is secure is quite high, hence few tests are sufficient).

We used this method to generate the matrices for all our instantiations. For [36,
Algorithm 3], we used a search period of l = 4t, and we additionally made sure
that no invariant subspace trails with active S-Boxes exist for M,M2, . . . ,M l.

Test Vectors. The plaintext and the key are chosen deterministically using in-
creasing sequences of integers. All parameters and the final ciphertexts can be
found in the files provided online.22

B MDS Matrix Construction

Here we recall several ways (proposed in the literature) that can be used to con-
struct an MDS matrix.

Cauchy Matrix [65]. We now discuss Cauchy matrices. Let xi, yi ∈ Fp for
i = 1, . . . , t s.t.

– ∀i 6= j : xi 6= xj , yi 6= yj ,
– for 1 ≤ i ≤ t and 1 ≤ j ≤ t: xi + yj 6= 0.

To fulfill these conditions, one can simply consider xi s.t. the t − log2(t) most
significant bits are zero. Then, choosing r ∈ Fp s.t. the t−log2(t) most significant
bits are non zero, let yi = xi + r. Let A be the Cauchy matrix defined by

ai,j =
1

xi + yj
.

It follows that A is MDS.

Sequential Matrix [60,61]. Let β be a generator for Fp. In other words,
for each x ∈ Fp, there exists i s.t. βi = x. Let the generator polynomial be

g(x) = (x− β) · (x− β2) · · · · · (x− βt) = xt + ct−1x
t−1 + · · ·+ c1x+ c0.

Define the matrix S as

S =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

. . .
...

0 0 0 0 · · · 1
ct−1 ct−2 · · · c2 c1 c0


22 https://extgit.iaik.tugraz.at/krypto/hadesmimc

37

https://extgit.iaik.tugraz.at/krypto/hadesmimc


and let
A = St ≡ S × S × · · · × S︸ ︷︷ ︸

t times

.

It is possible to prove that A is an MDS matrix (see [44] for details).

Vandermonde Matrix [64]. Let

A = vandt(a0, a1, . . . , at−1) =


1 a0 a20 · · · at−1

0

1 a1 a21 · · · at−1
1

1 a2 a22 · · · at−1
2

...
. . .

...
1 at−1 a

2
t−1 · · · at−1

t−1

 ,

where ai 6= aj . Let A and B be two matrices as before, s.t. ai 6= bj for each i, j.
It is possible to prove that

M = A×B−1

is an MDS matrix.

C Efficient Implementation

Like for LowMC, the fact that the non-linear layer is partial in RP rounds can
be used to reduce the amount of operations required in each of these rounds.
Referring to [24], we recall here an equivalent representation of an SPN with
partial non-linear layers for an efficient implementation.

Round Constants. In the description of an SPN, it is possible to swap the
order of the linear layer and the round key addition as both operations are linear.
The round key then needs to be exchanged with an equivalent one. For round
key k(i), the equivalent one can be written as k̂(i) = MC−1(k(i)), where MC is
the linear layer in the i-th round. If one works with partial non-linear layers, it
is possible to use this property to move parts of the original round keys from the
last round all the way through the cipher to the whitening key. In more details:

– First, find an equivalent key that is applied before the affine layer by moving
the round key through the affine layer, namely k̂(i) =MC−1(k(i)).

– Then split the round key in two parts, one that applies to the S-Box part
of the non-linear layer and one that applies to the identity part of the non-
linear layer. The part of the key that only applies to the linear layer part
(namely, the part where no non-linear layer is applied) can now move further
up where it is merged with the previous round key.

– Working in this way for all round keys, we finally end up with an equivalent
representation in which round keys are only added to the output of the S-
Boxes apart from one whitening key which is applied to the entire state after
the first Rf rounds.
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Note that the round keys of this equivalent representation can still be cal-
culated as linear functions of the master key. This simplified representation
can in certain cases also reduce the implementation cost of an SPN block ci-
pher with a partial non-linear layer. For instance, the standard representation
of HadesMiMC requires key matrices of total size t · log2 p · (R + 1), where
R = RP + RF is the number of rounds. The optimized representation only re-
quires t · log2 p · (RF + 1) + log2 p · RP , thus potentially greatly reducing the
amount of needed memory and calculation to produce the round keys.

Linear Layer. A similar trick as above can be used also for the matrix mul-
tiplication. As we use MDS matrices, the situation is simpler than for LowMC
and we can avoid the additional complexity of [24].

Focusing on the rounds with a single S-Box, let M be the t× t MDS matrix
of the linear layer:

M =



M0,0 M0,1 M0,2 · · · M0,t−1 M0,t

M1,0

M2,0

... M̂
Mt−1,0

Mt,0


≡
[
M0,0 v

w M̂

]
,

where M̂ is a (t − 1) × (t − 1) MDS matrix (note that since M is MDS, every
submatrix of M is also MDS), v is a 1 × (t − 1) matrix and w is a (t − 1) × 1
vector. By simple computation,

M =

[
1 0

0 M̂

]
︸ ︷︷ ︸

M ′

×
[
M0,0 v
ŵ I

]
︸ ︷︷ ︸

M ′′

, (11)

where
ŵ = M̂−1 × w

and I is the (t − 1) × (t − 1) identity matrix. Note that both M ′ and M
′′
are

two invertible matrices.23
As for the round constants discussed previously, it is possible to use the

previous equivalence Eq. (11) in order to swap the S-Box layer (formed by a
single S-Box and t− 1 identity functions) and the matrix multiplication with the
matrix M ′. As a result, each linear part in the RP rounds is defined only by
a multiplication with a matrix of the form M

′′
, which is a sparse matrix, since

(t − 1)2 − (t − 1) = t2 − 3t + 2 coefficients of M
′′
are equal to zero (moreover,

t − 1 coefficients of M
′′
are equal to one). This optimized representation may

greatly reduce the amount of needed memory and calculation to compute the
linear layer multiplication.
23 First of all, det(M ′) = det(M̂) 6= 0 since M̂ is an MDS matrix, and so it is invertible.

Secondly, det(M) = det(M ′)·det(M
′′
). Since det(M) 6= 0 and det(M ′) 6= 0, it follows

that det(M
′′
) 6= 0.
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D Statistical Attacks on HadesMiMC– Details

D.1 Linear Cryptanalysis

In the case of Boolean functions, linear cryptanalysis searches for a linear combi-
nation of input, output and key bits that is unbalanced, i.e., biased towards 0 or
towards 1. The natural extension of linear cryptanalysis to the case of elements
in Fp would be the search of a linear combination of input, output, and key
words that is unbalanced, i.e., biased towards an element of Fp with probability
higher than 1/|Fp| = 1/p (where | · | is the size of the field).24

Similar to differential attacks, linear attacks [45] pose no threat to the
HadesMiMC family of block ciphers instantiated with the same number of rounds
previously defined for classical differential cryptanalysis. E.g., in the case of the
cube S-Box (α = 3), this follows from the fact that the maximum square corre-
lation of the cubic function is limited to 2/p (see [52] for details). As a result, it
offers (one of) the best possible resistance against linear cryptanalysis (analogous
to the case of differential cryptanalysis).

D.2 Truncated Differentials

A variant of classical differential cryptanalysis is the truncated differential one
[41], in which the attacker can predict only part of the difference between pairs
of texts. Working on the “weaker” cipher described in Eq. (2) and focusing only
on active/passive bytes (and not on the actual differences), there exist several
differentials with probability 1 for a maximum of 1 round of HadesMiMC, e.g.,

[α, 0, . . . , 0]T
R(·)
−−−→M × [β, 0, . . . , 0]T ,

where α, β denote non-zero differences. Due to the next S-Box layer, the linear
relations given byM×(β, 0, . . . , 0)T are destroyed in the next round. As a result,
no probability-one truncated differential covers more than a single round.

For comparison, in the AES case it is possible to set up 3-round truncated
differential trails (which are independent of the S-Box) even if 2-round AES
already provides full diffusion. Recently, new truncated differential attacks on
5- and 6-round AES have been proposed [59,53,54]. Roughly speaking, these
attacks are obtained by combining two 2-round truncated differentials of prob.
1:

Di ⊕ a
R2(·)−−−−→
prob. 1

MC(IDi ⊕ b)
R(·) or R2(·)−−−−−−−−→ DJ ⊕ c

R2(·)−−−−→
prob. 1

MC(IDJ ⊕ d),

where DI is a set of chosen plaintexts with 1 ≤ |I| ≤ 3 active diagonal(s), while
IDJ is a set of chosen plaintexts with 1 ≤ |J | ≤ 3 active anti-diagonal(s). We
emphasize that in this attack the attacker works with active/passive words, and
not with actual differences.
24 Note that this is analogous to the case of a Boolean field F2, where the only elements

of F2 are 0 and 1, and where 1/|F2| = 1/2.
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Due to the strong relation between AES and our design, and since (1st) the
AES mixing layer works only on part of the state, while in our case it works on the
entire state (that is, 2 rounds of AES are necessary to provide full diffusion versus
1 round of HadesMiMC) and (2nd) the best truncated differential attack on
AES has been set up using active/passive words, rather than actual differences,
we conjecture that 4 rounds (with full S-Box layers) of HadesMiMC are secure
against truncated differential attacks.

To summarize, even if we do not exclude the possibility to set up longer
truncated differential trails (which do or do not depend on the details of the
S-Box), it seems hard to set up a truncated differential which is independent of
the secret key for more than 4 rounds. As a result and due to the key schedule, it
turns out that 6 rounds with full S-Box layers make HadesMiMC secure against
this attack.

D.3 Differential Meet-in-the-Middle Attack

A possible way to extend (truncated) differential attacks over more rounds is
using the meet-in-the-middle (MitM) technique.25 The main idea is to split the
cipher into two independent parts and use a time-memory trade-off for a more
efficient attack. In more details, assume to split the cipher E into two parts
E(·) = E2 ◦ E1(·). Roughly speaking, given a (plaintext, ciphertext) pair (p, c)
obtained under the secret key K, the attacker partially guesses the secret key
and computes

p
E1(·)−−−→ −→v ?

=←−v E2(·)←−−− c.

If there is no match in the middle, it turns out that the guessed key is wrong.
Due to the classical and truncated differential analysis just proposed (to-

gether with the fact that 1-round HadesMiMC provides full diffusion), we argue
that the number of rounds (with full S-Box layers) necessary to provide security
against classical and truncated differential attacks is sufficient to provide security
against this attack. For comparison, note that the best MitM attack on AES-128
covers 7 rounds [58], and (1st) that 8 rounds of AES are necessary in order to
guarantee that each characteristic has probability smaller than 2−256 = (2128)−2

(the probability of a characteristic over 4-round AES is at most (2−6)25 = 2−150),
(2nd) that 2 rounds of AES are necessary to guarantee full diffusion (instead of
1 in our case) and (3rd) that the key schedule of HadesMiMC provides full
diffusion (at word level) after one round, while the AES one needs more rounds
to achieve the same result.26

25 We refer to Section 4.3 for a discussion about the security against “algebraic” meet-
in-the-middle Attacks – here we focus on differential MitM attacks.

26 This fact is heavily exploited in order to set up a MitM attack on AES. Indeed,
it basically implies that the knowledge of part of one (or more) subkey(s) can be
“reused” in more than a single round, due to the fact that full diffusion is not achieved.
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D.4 Impossible Differential

Impossible differential cryptanalysis was introduced by Biham et al. [12] and
Knudsen [63]. This cryptanalytic technique exploits differentials occurring with
probability 0.

In the following, we focus only on impossible differentials which are indepen-
dent of the S-Box details, i.e., we do not consider the actual differences but only
active/passive words. To find them, we use the possible transitions of the linear
layer combined with the fact that the S-Box is a bijection. We found that the
longest impossible differential (in this class) only spans 2 rounds, e.g., α0· · ·

0

 R(·)
−−−−→
prob. 1

 M0,0 · β
M1,0 · β
· · ·

Mt−1,0 · β

 6=
 γ0· · ·

0

 R−1(·)
←−−−−
prob. 1

 M0,0 · δ
M1,0 · δ
· · ·

Mt−1,0 · δ


for α, β, γ, δ 6= 0 (note that no coefficient of M is equal to zero since M is an
MDS matrix). As a result and due to the key schedule, it turns out that 6 rounds
with full S-Box layers make HadesMiMC secure against this attack.

Note that it is possible to compare this result with a similar one on AES,
where the best known impossible differential is also in this class (of impossible
differentials) and spans four rounds [56].

D.5 Boomerang Attack

In boomerang attacks [50], good partial differential characteristics that cover
only part of the cipher can be combined to attack ciphers that might be immune
to standard differential cryptanalysis. In these attacks, two differential charac-
teristics are combined, one that covers the first part of the cipher and another
that covers the second part. If both have about the same probability, the com-
plexity corresponds roughly to the inverse of the product of the square of each
of their probabilities.

To calculate the number of rounds sufficient to ensure that no good boomerang
exists, we determine the number of rounds after which we cannot separate the
cipher into two parts and find a differential for each such that the product of
their probabilities is less than p−t/2 ≈ 2−N/2. Exploiting the analysis proposed
before, it turns out that 6 rounds with full S-Boxes are sufficient for this goal.

D.6 Multiple-of-n and “Mixture Differential Cryptanalysis”

The “Multiple-of-8” distinguisher [34] was proposed at Eurocrypt 2017 by Grassi
et al. as the first 5-round secret-key distinguisher for AES that exploits a prop-
erty which is independent of the secret key and of the details of the S-Box. By
appropriate choices of a number of input pairs it is possible to make sure that
the number of times that the difference of the resulting output pairs lie in a
particular subspace is always a multiple of 8. The input pairs of texts that sat-
isfy a certain output difference are related by linear/differential relations. Such
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relations are exploited by a variant of such a distinguisher, called the “mixture
differential" distinguisher [31] proposed at FSE/ToSC 2019.

Regarding HadesMiMC, it is possible to set up such distinguishers on 2
rounds only. In particular, consider a set of texts with 2 ≤ s ≤ t active words
(and t−s constant words). The number of pairs of texts that satisfy an (arbitrary)
output truncated differential is always a multiple of 2s−1. Moreover, the relations
of the input pairs of texts exploited by mixture differential cryptanalysis are
known.

The proofs of these two properties are analogous to the ones proposed in
[31,34] and in [57]. E.g., consider two texts τ1 and τ2 of the form

τ1 = C +
[
x0 x1 0 · · · 0

]T
, τ2 = C +

[
y0 y1 0 · · · 0

]T
for some constant C and where xi 6= yi for i = 0, 1. After one round, the
difference in each word is of the form

M0 · [S-Box(x0 + c0) + S-Box(x1 + c1)] +M1 · [S-Box(y0 + c0) + S-Box(y1 + c1)],

where M0,M1 depend on the MixLayer and c0, c1 depend on the secret key. By
simple observation, the same output difference is given by the pair of texts

τ̂1 = C +
[
y0 x1 0 · · · 0

]T
, τ̂2 = C +

[
x0 y1 0 · · · 0

]T
.

Combining this result with a 1-round truncated differential with prob. 1, it is
possible to set up a multiple-of-n distinguisher (where n = 2s−1) and a mixture
differential one on 2 rounds of HadesMiMC. As a result and due to the key
schedule, it turns out that 6 rounds with full S-Box layers make HadesMiMC
secure against these attacks.

D.7 Invariant Subspace Attack

The invariant subspace attack [42] makes use of affine subspaces that are in-
variant under the round function. As the round key addition translates this
invariant subspace [9], ciphers exhibit weak keys when all round keys are such
that the affine subspace stays invariant including the key addition. Therefore,
those attacks are mainly an issue for block ciphers that use identical round keys.

Here we consider the two cases separately, namely rounds with full S-Box
layers and rounds with partial S-Box layers.

– In the first case, as the round constant addition translates this invariant
subspace [9], random round constants provide a good protection against
these attacks.

– In the second case, it is always possible to construct a subspace trail for (at
least) t − 1 rounds without activating any S-Box and for any choice of the
linear layer. Due to the assumption made in Section 3.1, t−1 is also an upper
bound for the number of rounds for which such a trail can be constructed.
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In order words, due to the choice of the matrix that defines the MixLayer (de-
scribed in details in Section 3.1), it is not possible to cover more than t−1 rounds
with a subspace trail (or equivalently, a truncated differential with prob. 1) with
active/inactive S-Boxes. We refer to [36] for more details about the possibility
to set up infinitely-long subspace trails for partial SPN schemes (equivalently,
for the rounds with partial S-Box layers in Hades-like schemes).

D.8 Integral/Square Attack

Integral cryptanalysis is a technique first applied on SQUARE [20] and is particu-
larly efficient against block ciphers based on substitution-permutation networks,
like AES or HadesMiMC.

The idea is to study the propagation of sums of values. For the case of
HadesMiMC, it is possible to set up an integral distinguisher over two rounds,
e.g. AC· · ·

C

 S-Box(·)
−−−−−→

AC· · ·
C

 M(·)
−−−→

AA· · ·
A

 S-Box(·)
−−−−−→

AA· · ·
A

 M(·)
−−−→

BB· · ·
B


where A denotes an active word, C a constant one and B a balanced one.27 As
a result and due to the key schedule, it turns out that 6 rounds with full S-Box
layers make HadesMiMC secure against this attack.

D.9 Biclique Cryptanalysis

Biclique cryptanalysis [14] can be viewed as an improvement of classical MitM
attacks. It improves the complexity of exhaustive search by computing only a
part of the encryption algorithm. The improved factor – often evaluated by the
ratio of the number of S-Boxes involved in the partial computation to all S-Boxes
in the cipher – can be relatively big when the number of rounds in the cipher is
(very) small. Since we do not think that improving the exhaustive search by a
small factor will turn into a serious vulnerability in the future, HadesMiMC is
not designed to resist biclique cryptanalysis with small improvement.

E Algebraic Attacks – Details

E.1 Interpolation Attack and Dense Polynomial

The encryption function Ek : (Fp)t → Fp under the secret key k can be uniquely
represented by a polynomial over Fp, also denoted by Ek, in t unknowns with
maximum degree p − 1 in each variable. Because the data complexity of an
interpolation attack depends on the number of non-vanishing monomials in Ek,
it is important to make sure all monomials in Ek can be expected to occur.
27 For completeness, we recall that given a set of texts {xi}i∈I , the word xj is active if
xji 6= xjl for each i 6= l, constant if xji = xjl for each i, l, and balanced if

∑
i x

j
i = 0.
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The following Lemma provides a means to give the minimum number of
rounds such that Ek has full weight pt. For simplicity, here we work only in the
case α = 3 (namely, the cube S-Box). We conjecture that a similar result works
as well for the generic case S(x) = xα.

Lemma 1. After dlog3(p− 1)e+ dlog3(t)e rounds all monomials in the encryp-
tion polynomial do occur. Furthermore, it is the minimum number of rounds with
this property.

Proof. After one round the encryption polynomial is of the form

2∑
i=0

a0,iX0
3−i + . . .+

2∑
i=0

at−1,iXt−1
3−i + a,

for some elements ai,j , a ∈ Fp. Now it is easy to see that in order to reach the
maximum degree p− 1 in one variable the number of rounds r has to satisfy the
inequality

3r ≥ p− 1,

or equivalently (using the monotonicity of the logarithmic and cube function
respectively)

r ≥ log3(p− 1).

In other words, after at least dlog3(p − 1)e rounds all the monomials Xj
i , for

0 ≤ i ≤ t− 1 and 0 ≤ j ≤ p− 1, occur in the encryption polynomial. We claim
that it takes at least dlog3(t)e more rounds until all t variables are exhausted
and hence the encryption polynomial has reached its full weight. To see this,
note that after one more round all the monomials

Xj1
i1
Xj2
i2
Xj3
i3
,

for 0 ≤ i1, i2, i3 ≤ t − 1 and 0 ≤ j1, j2, j3 ≤ p − 1, are forced to appear. By an
inductive argument, it takes at least dlog3(t)e more rounds until all pt monomials
in the encryption polynomial do occur, as stated. ut

E.2 GCD Attack

As for MiMC [4], an attack strategy is to compute greatest common divisors
(GCD). In particular, given more than one known (plaintext, ciphertext) pair or
working on the output of each S-Box of a single known (plaintext, ciphertext)
pair, it is possible to construct their polynomial representation and compute
their polynomial GCD to recover a multiple of the key. Note that this is a
known-plaintext attack, and not a chosen-plaintext one.

Denote by E(k, x) the encryption of x under the key k. For a (plaintext,
ciphertext) pair (x, y), E(K,x) − y denotes a univariate polynomial in Fq[K]
corresponding to (x, y). Note that in our case the polynomial E(K,x)−y can be
constructed conceptually easily from the encryption process, but writing down
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E(K,x) − y becomes computationally expensive as the number of rounds in-
creases. Indeed, writing down E(K,x)−y requires not only large computational
resources but also an exponential (in r) amount of memory.

Consider now two such polynomials E(K,x1)− y1 and E(K,x2)− y2, where
yi = E(k, xi) for i = 1, 2 and for a fixed but unknown key k. It is clear that
these polynomials share (K − k) as a factor. Thus, by computing the GCD of
the two polynomials (with high probability the greatest common divisor will be
(K − k)), we can find the value of k.

As we are going to show, this attack is less efficient than e.g. the interpolation
attack. However, we remark that this is one of the few attacks that applies in the
low-data scenario. In particular, a single (plaintext, ciphertext) pair is sufficient
to compute the required polynomial E(K,x)−y, and the GCD can be computed
among the output of two different S-Boxes of the final round.

What about the complexity? It is well-known that the complexity for finding
the GCD of two polynomials of degree d is O (M(d) log2 d), where M(d) is the
cost of multiplying two degree-d polynomials. The best (known) complexity for
M(d) is O(d log2 d) using an FFT. Thus, we expect a GCD computation to cost
O
(
d log22 d

)
, where the hidden constant is greater than 1. In order to estimate

the computational cost of such an attack, we have to estimate the degree of K
in E(K,x)− y, which depends on the number of rounds r.

To set up the attack, the attacker first guesses t − 1 words of the key in
order to construct an univariate polynomial. Since the complexity of the attack
depends on the degree and since one S-Box per round (together with an affine
layer) is sufficient to increase the degree of each word, we can focus only on the
rounds RP with a single S-Box. As a result, after r > 1 rounds, the degree d is
well estimated by αr−1. Thus, to derive an estimate for the required number of
rounds, we target d log22 d ≈ p (note that the attacker has guessed t− 1 words of
the key, so the cost of this step of the attack reduces from pt to p), which implies

r ≥ logα p+ 1− 2 logα(log2 p).

To thwart a MitM variant of this attack, it is sufficient to add 1 round. Finally, we
add two rounds to prevent a key-guessing attack. As a result, the total number
of rounds must be

RP +RF ≥ RGCD(p, t) ≡ 4 +
⌈
logα p

⌉
−
⌊
2 logα(log2 p)

⌋
. (12)

As a result, if HadesMiMC is secure against the interpolation attack, then
it is also secure against the GCD attack (note that working with more S-Boxes
per round does in general not decrease the security).

E.3 Gröbner Basis Attack – Details

In Section 4.3, we determined the minimum number of rounds necessary to
protect HadesMiMC from a Gröbner basis attack. In this case, we worked with
a system of equations of degree αr. As we already anticipate there, this is not
the only possible strategy that can be used to set up this attack. In particular,
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each one of these equations can be rewritten as a system of r equations of
degree α. Here we compute the minimum number of rounds necessary to protect
HadesMiMC from this attack using this second strategy.

Before doing that, we analyzed a modified version of the First Strategy that
exploits the subspace S(r) defined as in Eq. (1) in order to reduce the complexity
of the system of equations to solve.

First Strategy – Exploiting the “Invariant” Subspace S. As shown in
[11], the attack based on the first strategy can be improved by exploiting the
existence of the subspace S(r) defined as in Eq. (1). In particular, given a text
in a coset of S(r), the output of such text after r rounds with partial S-Box layer
is just the result of an affine map applied to the input. As explained in details
in [11], this fact can be exploited in order to replace some non-linear equations
of the system that we are trying to solve with linear equations. In particular,
by starting in the “middle” with texts in a coset of S(r), one faces the following
scenario

input
R
Rf
F (·)
−−−−→

R
RP−r

2
P (·)
−−−−−−−→ text in a coset of S(r) RrP (·)−−−−−−−−−−−−→

“linear” equations

text in a coset of Mr(S(r))
R
RP−r

2
P (·)
−−−−−−−→

R
Rf
F (·)
−−−−→ output

(13)

where Mr is a t× t matrix that depends on the details of the cipher and on the
subspace S(r) (and where Mr(S(r)) = {Mr × x | x ∈ S(r)}.)

Obviously, the number of rounds r described by linear equations is related
to the dimension of the subspace S(r): this fact has an impact on the chance
to find a solution of the system of equations we are trying to solve (indeed, the
number of variables of this system of equations is related to the dimension of
the subspace). In any case, due to the assumption made in Section 3.1 on the
matrix that defines the MixLayer, this strategy does not allow the attacker to
cover more than t− 1 rounds with partial S-Box layers.

The scenario Eq. (13) can be described as follows.

– first part: t equations of degree αRf+
RP−r

2 ;
– middle part: d linear equations and t− d non-linear equations of degree αr

(where d is the dimension of the subspace S(r));
– final part: t equations of degree αRf+

RP−r
2 .

Here, r = t− d under the assumption made in Section 3.1.
Let us focus on the middle part (r rounds). Let S = 〈s1, . . . , sd〉 be the sub-

space defined before of dimension d , and let Sc = 〈w1, . . . , wt−d〉 where Sc de-
notes the complementary space of S (obviously, Ftp = 〈s1, . . . , sd , w1, . . . , wt−d〉).
Let x and y be resp. the input and the corresponding output of the middle part,
where y = F (x) for a specific function F (·) of degree αr. Given x in a coset of S
and by definition of S, the output y is in a subspace of Mr(S(r)) for a particular
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matrix Mr. Hence, the middle part can be described by a system of t equations
of the form:

d linear equations:

sTi · y = sTi · (Mr × x) ∀i ∈ {1, . . . , d};
t− d non-linear equations:

wTi · y = wTi · F (x) ∀i ∈ {1, . . . , t− d};

where aT · b denotes the scalar product between a, b ∈ Ft.
Working as before, this means that the attacker has to face a system of

t+ (t− d) + t = 3t− d equations in 3t− d variables. By adding constraints on
the previous t− d non-linear equations (which corresponds to “fixing” the coset
of the subspace S), the number of equations/variables can be reduced to t+ χ.

By using the previous computation and sinceDreg = 1+(3t−d)·(αRf+
RP−r

2 −
1) ≈ (3t− d) · α

RF+RP−r
2 , the cost can be approximated by

(
(3t− d) · α

RF+RP−r
2

3t− d

)ω
≤


(
(3t− d) · α

RF+RP−r
2

)3t−d
(3t− d)!


2

≤

≤ α(RF+RP−t+d)·(3t−d)

assuming ω ≈ 2. Hence, the number of rounds to be attacked is calculated as

α(RF+RP−t+d)·(3t−d) ≤ 2N ,

=⇒ RF +RP ≤ t− d +
t · logα(p)
3t− d

.

Since the maximum number of rounds to be attacked is achieved for d = t− 1,
the security is provided by choosing

RF +RP ≥ 2 +
t · logα(p)
2t+ 1

≈ 1 +
logα(p)

2
.

As a result, it does not seem that the first strategy can be improved using the
existence of the subspace S.

Second Strategy. Let x(j)0 , x
(j)
1 , . . . , x

(j)
t−1 denote the word values right after the

round key addition of the current round, where j ≥ 1 denotes the j-th round with
a partial S-Box layer. When using one S-Box, we know that only x(j)0 will enter
this function in the j-th partial round. Further note that every S-Box output
(x

(j)
0 )α is a linear combination of x(j+1)

0 , x
(j+1)
1 , . . . , x

(j+1)
t−1 . Of these values, all

the x(j+1)
1 , x

(j+1)
2 , . . . , x

(j+1)
t−1 are linear combinations of x(j+2)

0 , x
(j+2)
1 , . . . , x

(j+2)
t−1 .

The idea is therefore to introduce a variable and an equation for each x(j)0 , where
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RF Rounds RP Rounds log2(p) t Data Complexity (M) Cost of the Attack
(log2(·) scale)

6 36 128 2 1 257.97
6 0 16 16 1 521.45
6 0 8 32 1 1049.39

6 83 256 2 1 515.95
6 0 32 16 1 521.45
6 0 16 32 1 1049.39

6 176 512 2 1 1027.38
6 92 64 16 1 1027.38
6 0 32 32 1 1049.39

Table 3: Let RF = 6 fixed. In this table, we present the minimum number of
rounds RP necessary to protect HadesMiMC (instantiated with the cube S-Box
– α = 3) for attacks based on Gröbner bases when choosing M ≥ 1 (plaintexts,
ciphertexts). In all these cases, the cost is minimized by choosing M = 1. The
block size is n · t bits.

the equations map the (linear) output of each S-Box to the cube of its input,
which is a single variable.

Thus, we have RP variables and RP equations of degree α for the partial
rounds. In total, the number of variables and equations in the low-data case –
1 (plaintext, ciphertext) pair – is RF · t + RP − κ (as for the attack discussed
in Section 4.3, the best attack can be achieved without guessing any key word,
that is, κ = 0), which results in a cost of[(

(RF · t+RP ) + (1 + (α− 1) · (RF · t+RP ))

1 + (α− 1) · (RF · t+RP )

)]2
≈

≈

[(
α · (RF · t+RP )

(α− 1) · (RF · t+RP )

)]2
≈
(

αα

(α− 1)α−1

)2(RF ·t+RP )

,

and RF · t + RP ≈ N
2·(log2(α

α/(α−1)α−1) . Working in the same way, the cost
of the attack in the decryption direction (remember that S-Box(x) = x1/α =
x(ρ·(p−1)+1)/α where ρ ≥ 1 is the smallest integer s.t. α divides ρ · (p − 1) + 1)
turns out to be[(

(RF · t+RP ) + (1 + [(α− 1) · (ρ · (p− 1) + 1)/α] · (RF · t+RP ))

RF · t+RP

)]2
≈

≈
(
ρ · (p− 1) + 1

α

)2(RF ·t+RP )

,

It follows that

RF · t+RP ≈
⌈

N

2 · log2(αα/(α− 1)α−1)

⌉
+

⌈
N

2 · log2((ρ · (p− 1) + 1)/α)

⌉
,
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in order to thwart the MitM version of the attack. Note that

N

2 · log2((ρ · (p− 1) + 1)/α)
≈ t

2
· log2(p)

log2(p) + log2(ρ/α)
≈ t

2
+ 1

under the assumption log2(ρ/α)� log2(p).

Full-Data Case. When working in the full-data case, the number of equations
and variables can be increased by using multiple (plaintext, ciphertext) pairs.
In particular, the key variables stay the same, while additional intermediate
variables have to be introduced for each pair. Let M denote the amount of data
used by the attacker (obviously, 1 ≤M ≤ 2N − 1). This means that the number
of equations differs from the number of variables when using the same attack
strategy together with multiple pairs. Therefore, we have to use the Hilbert
series in order to determine the degree of regularity, which is the index of the
first non-positive coefficient in

H(z) =

∏ne
i=1(1− zdi)
(1− z)nv

=
(1− zα)ne
(1− z)nv

= (1− zα)ne−nv · (1 + z + z2)nv ,

where ne is the number of equations, nv is the number of variables, and di = α
is the degree of the i-th equation. When increasing the number of (plaintext,
ciphertext) pairs M , both ne and nv increase. In our case:

ne =M · (t ·RF +RP ) and nv = t+M · ((RF − 1) · t+RP ).

Note that ne − nv = t · (M − 1) and that (1 + z + z2)nv contains only positive
terms. Since

(1− zα)ne−nv = 1− t · (M − 1) · zα + . . .

it follows that the index of the first non-positive coefficient must be at least α,
which means Dreg ≥ α.

Unfortunately, this estimation is too pessimistic in order to derive a useful
approximation of the number of rounds necessary to guarantee security. However,
by practical experiments (in the case α = 3), it turns out that a much smaller
number of rounds is sufficient for this scope. Table 3 shows the complexities of
Gröbner basis attacks on various instantiations of HadesMiMC when setting
RF = 6 and choosing M such that the complexity is minimized. The crucial
point is that in all cases that we practically tested, the computational complexity
is minimized when M = 1. As concrete examples of the fact that using more
(plaintext, ciphertext) pairs increases the attack complexity (using the strategy
proposed here), Fig. 3 and Fig. 4 show that RP can be kept lower when increasing
M and maintaining the same security level.

Since similar results hold also in the decryption direction, we conjecture that

RF · t+RP ≥
⌈

N

2 · log2(αα/(α− 1)α−1)

⌉
+

⌈
t

2

⌉
+ 1

rounds are sufficient in order to protect HadesMiMC from the Gröbner basis
attack strategy proposed here.
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Fig. 3: Let RF = 6 fixed. Number of round RP necessary for 256-bit security
when using M pairs and the attack strategy proposed here (case: cube S-Box –
α = 3). The number of rounds is maximized when M = 1.

Fig. 4: Let RF = 6 fixed. Number of round RP necessary for 1024-bit security
when using M pairs and the attack strategy proposed here (case: cube S-Box –
α = 3). The number of rounds is maximized when M = 1.

Exploiting the “Invariant” Subspace S. Since each round with a partial S-Box
layer can be described by a single equation of degree α, it seems there is no
advantage to exploit the previous strategy based on the existence of the subspace
S defined in Eq. (1).

Third Strategy. Another strategy can be applied as well. Let us work for
simplicity in the encryption direction (similar results work in the decryption
one). Given an input x = (x0, . . . , xt−1), the output of the first Rf rounds
with full S-Box layers can be described by t equations of degree αRf , where
Rf = RF /2. Then, working round per round, the output of each round with a
partial S-Box layer is described by 1 non-linear equation of degree α and t − 1
linear equations. Finally, t more equations of degree αRf describe the relations
between the output of the rounds with partial S-Box layers and the input of the
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final rounds with full S-Box layers. As a result, in the case of a single (plaintext,
ciphertext) pair, one works with

– 2t equations of degree αRf and RP equations of degree α;
– t variables that describe the key and t + RP variables that describe the

internal state of the texts.

Since the number of variables is equal to the number of equations, it follows that

Dreg = 1 + 2t · (αRF /2 − 1) + 2 ·RP .

Setting ω = 2, the cost of this attack is well described by[(
(2t+RP ) + [1 + 2t · (αRF /2 − 1) + 2 ·RP ]

2t+RP

)]2
≈

[(
α ·RP + 2t · αRF /2

2t+RP

)]2
≥

≥
(
1 + 2 ·RP + 2t · αRF /2 − 2t

2t+RP

)2RP+4t

≥
(
2t · αRF /2

2t+RP

)2RP+4t

.

It follows that HadesMiMC is secure if28

RF ≥ R3rd-Grob(N, t,RP ) ≡ 2 + logα

[
1 + 2

N
2t+RP ·

(
1 +

RP
t

)
− RP

t

]
,

where 2 more rounds have been added in order to thwart meet-in-the-middle
versions of this attack (based on the high degree of the decryption function).

Since logα
[
1+2

N
2t+RP ·

(
1 + RP

t

)
− RP

t

]
≤ logα

[
1+2

N
2t+RP ·

(
1 + RP

t

) ]
, a useful

approximation of the previous formula is given by

RF ≥ 2 + logα(2) ·
(

N

2t+RP
+ 2 · log2

(
1 +

RP
t

))
.

We point out that this last approximation holds only in the case in which RP �
∞. This is due to the fact that

lim
RP→∞

N

2t+RP
+ 2 · log2

(
1 +

RP
t

)
=∞

28 We point out that the following estimation of R3rd-Grob(N, t,RP ) is actually an upper
bound. In particular, when increasing RP , one may expect that R3rd-Grob(N, t,RP )
decreases (indeed, one may expect that the cost of the attack becomes higher, until
the inequality RF ≥ R3rd-Grob(N, t,RP ) is satisfied, which means that the cipher is
secure). However, this does not happen. In particular, for certain values of p, t, it
can happen that dR3rd-Grob/dRP > 0, which means that the attack becomes “easier”
by increasing the number of rounds (in any case, observe that dR3rd-Grob/dRP < 0
for each RP ≤ R?P and that limRP→∞ dR3rd-Grob/dRP = 0). The reason of this
fact is due to the approximation of

(
3·RP+2t·αRF /2

2t+RP

)
. We expect that a more precise

approximation of the binomial coefficient allows to prevent this situation. On the
other hand, since this estimation is a lower bound, we remark that the cipher is
secure for each RF and RP that satisfy RF ≥ R3rd-Grob(N, t,RP ), even if it can
potentially be secure also with a smaller number of rounds.
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while note that

lim
RP→∞

logα

[
1 + 2

N
2t+RP ·

(
1 +

RP
t

)
− RP

t

]
= 0.

Full-Data Case. The strategy is similar when one works with more (plaintext,
ciphertext) pairs. As for the previous strategy, we found that in all cases that
we practically tested (for the case α = 3), the computational complexity is
minimized when the attacker uses a single (plaintext, ciphertext) pair. For this
reason, we conjecture that HadesMiMC is secure against this version of the
Gröbner basis attack if

RF ≥ 2 + logα(2) ·
(

N

2t+RP
+ 2 · log2(t+RP )− 2 · log2(t)

)
is satisfied.

Exploiting the “Invariant” Subspace S. Since each round with a partial S-Box
layer can be described by a single equation of degree α, it seems there is no
advantage to exploit the previous strategy based on the existence of the subspace
S defined in Eq. (1).

Special Case: RP = 0. Finally, let us briefly analyze the case in which
the security against Gröbner basis attacks is guaranteed by rounds with full
S-Box layers. Since the strategy described in Section 4.3 requires RF ≥ 2 +
logα(p)/2 + logα(t) rounds in order to provide security (assuming RP = 0),
the attack strategies proposed here do not outperform it. In other words, if the
condition RF ≥ 2 + logα(p)/2 + logα(t) is fulfilled (which corresponds to the
condition proposed for the first strategy in the case in which RP = 0), then the
cipher is secure also w.r.t. the two strategies proposed in details in this section.

E.4 Gröbner Basis Attack: κ = n and Data ≤ p1/2 (MPC
Application)

Here we present the details of the Gröbner Basis Attack in the case in which κ =
n and data is limited by ≤ p1/2 (namely, the scenario of the MPC application).
The goal is to show that such an attack does not outperform the GCD attack
presented in Section 5.

First Strategy. As shown before, in our first attack strategy we consider t
equations each of degree αr (after r rounds). Since in this case the key size is
κ = n, it follows that the system is described by nv = 1 variable and ne = t
equations of degree αr. Using generic bounds, the complexity of computing a
Gröbner basis with these parameters is in

O
((

1 +Dreg

Dreg

)ω)
,
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where we pessimistically assume ω = 2 and Dreg = O(αr). It follows that(
1+αr

αr

)2
= (αr + 1)2 ≥ p if and only if

r = RF +RP ≥ R1st-Grob(p, t) ≡ RGrobner(p, t) ≡ 2 +

⌈
logα(p)

2

⌉
.

where we add 2 additional rounds to thwart a MitM version of the attack.

Second Strategy. The crucial difference between the full-key variant of our
design and the variant with n-bit security is that each round with a full S-Box
layer can essentially be transformed into a round with a partial S-Box layer, from
an algebraic point of view. For example, consider the state after the application of
the first round. Since only one key component is used and since we clearly know
all words of the input, knowing one word after the first S-Box layer is sufficient
in order to derive all output words after the first round. Using the same idea,
knowing one of the output words after the second S-Box layer (together with
the output words after the first round) is sufficient in order to derive all output
words after the second round. By using this strategy for the first Rf rounds
with a full S-Box layer, we can describe this part of the permutation with 1+Rf
variables and Rf equations.

We consider the middle part of the permutation (i.e., the RP rounds with a
partial S-Box layer) the same way as before, resulting in RP equations and RP
variables. The final Rf rounds can then be described with Rf variables and Rf
equations using the idea from above and working in backwards direction for the
last equation.

In total, we now have 1+RF +RP variables and RF +RP equations (2Rf =
RF ). We argue that by removing one variable from the equation system, the
computation of a Gröbner basis for the new system does not become harder.
Thus, using Dreg = 1+2(RF +RP ) as an estimation for the degree of regularity
(our equations are of degree α), we get a condition of the form(

RF +RP +Dreg

Dreg

)ω
=

(
RF +RP + 1 + (α− 1)(RF +RP )

1 + (α− 1)(RF +RP )

)2

≥

(
αR

(α− 1)R

)2

≈
(

αα

(α− 1)α−1

)2R

≥ p,

where R = RF +RP , which means

R ≥ 2 +
logαα/(α−1)α−1(p)

2
= 2 +

log2(p)

2 · log2(αα/(α− 1)α−1)
≈ 2 +

log2(p)

2 · log2(α)

(where 2 rounds have been added to thwart a MitM version of the attack).

F Comparison: HadesMiMC with S-Box(x) = x−1

As mentioned in Section 2, HadesMiMC can be instantiated by an S-Box with a
higher degree than 3. Here we analyze the number of rounds necessary to provide
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security against algebraic attacks. Since the degree of the S-Box is higher, it
follows that the degree of the encryption/decryption function grows much faster
than in the case of the cube S-Box. Thus, one may expect that a smaller number
of rounds is sufficient in order to provide security. Here we propose the security
analysis of HadesMiMC instantiated with S-Box(x) = x−1, and we show that
this is in general not the case.

Main Result. As a concrete example, here we briefly report the results related
to the analysis for the interpolation attack (see in the following for more de-
tails). In order to guarantee security against interpolation attacks, the number
of monomials of the interpolation polynomial has to be close to the full code
book. For the cube case, one needs approximately

RP +RF ≥ 3 + log3(p) + log3(t)

rounds in order to guarantee this, while for the inverse case one needs

RP + log2(t) ·RF ≥ 2 + 2 · log2(p)

rounds, as shown in the following. Since we want to minimize the total number
of S-Boxes (given by RP + t · RF ), the best idea is to minimize the number of
rounds with full S-Box layers. Indeed, in this case, the number of S-Boxes

RP + t ·RF
∣∣∣∣
RP+φ(t)·RF≥ψ(N,t)

≥ ψ(N, t) +RF · [t− φ(t)]

(where φ(t) = 1 or φ(t) = log2(t)) is minimized by choosing the minimum
RF = Rstat

F .
As a result, the number of rounds for the cube and the inverse case

Rcube
P ≥ max{0; 3 + log3(p) + log3(t)−Rstat

F }
Rinverse
P ≥ max{0; 2 + 2 · log2(p)− log2(t) ·Rstat

F }

are close when t is not much bigger than log2(p). At the same time, the total
number of non-linear operations in order to compute the two S-Boxes is in general
much bigger for the inverse than for the cube case. A similar conclusion holds as
well for the Gröbner basis attack. In conclusion, it seems there is no advantage
to use an S-Box different than the cube one in the case in which one aims to
minimize the total number of non-linear operations.

Interpolation Attack – Details. As we have already seen, the goal of an
interpolation attack [37] is to determine the polynomial representation of a state
word. Since the inverse function has high degree, one may think that the inter-
polation attack can cover only few rounds in this case. However, exploiting the
original idea proposed by Jakobsen and Knudsen in [37], it is possible to show
the following:
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– for a full S-Box layer, the S-Box f(x) = x−1 has the same behavior as a
function of algebraic degree t (i.e., the number of words)29 “from the point
of view” of the interpolation attack;

– for a partial S-Box layer (with a single S-Box), the S-Box f(x) = x−1 has the
same behavior as a function of algebraic degree 2 “from the point of view”
of the interpolation attack.

Note that the two previous cases lead to two completely different results, while
we emphasize that they are equivalent for a cube S-Box. It follows that the choice
whether to use partial or full S-Box layers in order to protect from algebraic at-
tacks also depends on the details of the S-Box.

Full S-Box Layer. Firstly, consider t = 1. In this case, every encryption
function can be written as

f(x) =
x+A

B · x+ C

for any number of rounds and for some constants A,B,C. This means that 4
texts are sufficient to break the cipher.

Consider the case t = 2. Let fri (·) ≡
Nfri (·)
Dfri (·)

(for i = 0, 1) be the interpolation
polynomial at round r of the i-th word. By simple computation, the i-th word
of the function at round r + 1 (assuming a full S-Box layer) for i = 0, 1 can be
written as

fr+1
i (x ≡ [x0, x1]) =

A

fr0 (x ≡ [x0, x1]) + k0
+

B

fr1 (x ≡ [x0, x1]) + k1
=

=
A ·Dfr0 (x)

Nfr0 (x) + k0 ·Dfr0 (x)
+

B ·Dfr1 (x)
Nfr1 (x) + k1 ·Dfr1 (x)

=

=
A ·
[
Nfr1 (x) + k1 ·Dfr1 (x)

]
×Dfr0 (x) +B ·

[
Nfr0 (x) + k0 ·Dfr0 (x)

]
×Dfr1 (x)[

Nfr0 (x) + k0 ·Dfr0 (x)
]
×
[
Nfr1 (x) + k1 ·Dfr1 (x)

] =

=
Nfr+1

i (x ≡ [x0, x1])

Dfr+1
i (x ≡ [x0, x1])

for some constants A,B. It follows that the degree of the function increases at
most by a factor of 2 (where the degree after the first round is 1). As a result,
the number of unknown coefficients after r rounds is at most 2 · (2r−1 + 1)2,
where the degree of the numerator (and so the number of unknown coefficients)
is always less than or equal to the degree of the denominator.

As a result, the number of unknown coefficients after r rounds for t words is
approximately 2·(tr−1+1)t. The cipher can be considered secure if 2·(tr−1+1)t '
pt, that is, tr−1 ' p, which implies

r ≥ logt(p) + 1.

29 More precisely, the degree of S-Box(x) = x−1 ≡ xp−2 “from the point of view of the
interpolation attack” is min{t, p − 2}, where t is due to the fraction representation
and p−2 is due to the “normal” representation. Since t < p/2+1 in order to guarantee
that a t×tMDS matrix with coefficients in Fp exists, it follows that min{t, p−2} = t.
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A MitM variant of this attack can be performed. To thwart this variant (note
that S-Box−1(x) = S-Box(x) = x−1), it is sufficient to double the number of
rounds r ≥ 2 logt(p)+2. Finally, we add two rounds to prevent the key-guessing
attack. As a result, the total number of rounds (with full S-Box layers) must be

RF ≥ 2 logt(p) + 4 = 4 + 2 logt(p).

Partial S-Box Layer. Referring to the expression of fri given before, it is
possible to note that all denominators at rounds r (for any r) are in general
equal, while all numerators are in general different, that is,

∀i, j ∈ [0, 1, . . . , t− 1] : Dfri = Dfrj .

This observation seems to have no effect on the complexity of the previous attack.
Indeed, since the S-Boxes are applied on each word and since the numerators are
different, it turns out that the denominators of S-Box(fr) (which correspond to
the numerator of fr) are all different.

However, this has an important effect in the case in which we work with
a partial non-linear layer, e.g. a non-linear layer composed of a single S-Box.
Consider first the case t = 2 assuming the S-Box is applied only on the first
word:

fr+1
i (x ≡ [x0, x1]) =

A

fr0 (x ≡ [x0, x1]) + k0
+B ·

[
fr1 (x ≡ [x0, x1]) + k1

]
=

=
A ·Dfr0 (x)

Nfr0 (x) + k0 ·Dfr0 (x)
+
B ·
[
Nfr1 (x) + k1 ·Dfr1 (x)

]
Dfr1 (x)

=

=
A ·Dfr0 (x)×Dfr1 (x) +B ·

[
Nfr1 (x) + k1 ·Dfr1 (x)

]
×
[
Nfr0 (x) + k0 ·Dfr0 (x)

][
Nfr0 (x) + k0 ·Dfr0 (x)

]
×Dfr1 (x)

=

=
Nfr+1

i (x ≡ [x0, x1])

Dfr+1
i (x ≡ [x0, x1])

.

In this case, there is no difference w.r.t. the previous case.
Consider now the case t ≥ 3. By the previous observation, it follows that

Dfri (x) = Dfrj (x) for each i, j ≥ 1, which implies that

Dfr+1
i =

[
Nfr0 (x) + k0 ·Dfr0 (x)

]
×Dfr1 (x)

also for the case t ≥ 3. This fact has a considerable impact on the number of
monomials of the corresponding polynomial at round r. Indeed, the number of
unknown coefficients after r rounds for t words is approximately 2 · (2r−1 + 1)t,
which is much smaller than 2·(tr−1+1)t for large t. The cipher can be considered
secure if 2 · (2r−1 + 1)t ' pt, that is, 2r−1 ' p, which implies

r ≥ log2(p) + 1.

The previous result can even be improved. Since at least RF ≥ 6 rounds have
a full S-Box layer, it follows that the number of unknown coefficients after R =
RP +RF rounds for t words is approximately

2 · (2RP · tRF−1 + 1)t ≡ 2 · (2RP+(RF−1)·log2(t) + 1)t.
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The cipher can be considered secure if 2 · (2RP+(RF−1)·log2(t) + 1)t ' pt, that is,

RP + (RF − 1) · log2(t) ≥ log2(p).

As for the GCD attack, a MitM variant of this attack can be performed. To
thwart this variant (note that S-Box−1(x) = S-Box(x) = x−1), it is sufficient to
double the number of rounds RP +log2(t) ·(RF −1) ≥ 2 · log2(p). Finally, we add
two rounds to prevent the key-guessing attack. As a result, the total number of
rounds (with partial S-Box layers) must be

RP ≥ 2 + 2 · log2(p)− log2(t) · (RF − 1).

G GMiMCerf for MPC Applications

In [3], the authors present a security analysis for GMiMCerf in the case in which
the security level is κ = n and in which no limitation is imposed on data cost.
Here we adapt this analysis for the case in which there is also a limitation on the
data, namely the attacker can use at most ≤ 2n/2 chosen plaintexts/ciphertexts.
As we are going to show, the minimum number of rounds necessary to guarantee
security in this setting is given by

max
{
2 · dlog3(p)e − 4 · blog3(log2 p)c+ 2t− 2; 5 · t+ 3

}
.

Key Schedule. In [15], Bonnetain presented an attack on Feistel-MiMC and
univariate GMiMC. This attack, which is reminiscent of a slide attack, only
relies on their weak key schedules, and is independent of the round function and
the number of rounds. This attack only depends on the weak key schedule of
GMiMC. Thus, a change of the key schedule should be sufficient to restore the
security. Here we do not propose any key schedule. We limit ourselves to recall
that the MPC costs are independent of the details of the key schedule, since all
subkeys can be precomputed in advance.

Statistical Attacks. Here we show that 5t+3 rounds are sufficient to provide
security against statistical attacks (we remember that in the case in which full
data is available, then the number of rounds is of order t2).

(Truncated) Diff. Attack. As shown in [3, App. D.1], there exists a charac-
teristic of prob. (2/p)2 over t+ 1 rounds defined as

(0, . . . , 0, ∆I)
Rt−1(·)−−−−−→
prob. 1

(∆I , 0, . . . , 0)
R(·)−−−−→

prob. 1
(∆,∆, . . . ,∆I)

R(·)−−−−−−→
prob. 2/p

(0, . . . , 0, ∆′, ∆)

for generic ∆I 6= 0, where the characteristic over the next t−2 rounds has prob.
1. Following our argument provided in Section 5.1, we claim that GMiMCerf is
secure if every characteristic has probability smaller than p−2. As a result, 3t+2
rounds are sufficient to provide security against this attack, where 2 more rounds
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are added in order to prevent key-guessing attack. Finally, in order to prevent
meet-in-the-middle (differential) attacks, we add 2t+ 1 more rounds.

Other Statistical Attacks. As shown in [3], 2t+2 rounds are sufficient to pro-
vide security against other statistical attacks (e.g. impossible differential attack).

Algebraic Attacks. Here we give the number of rounds necessary to provide
security against algebraic attacks.

GCD Attack. As shown in [3, App. C.4], 2·dlog3(p)e−4·blog3(log2 p)c+2t−2
rounds are sufficient to prevent a (MitM) GCD attack. Note that 2 texts are suf-
ficient to set up this attack.

Interpolation Attack. Working as in [3, App. C.1] and choosing texts with
just one active words (as done in Section 5.2), the number of monomials after r
rounds is given by (3r + 1). Hence, the number of rounds necessary to provide
security must satisfy 3r + 1 ≥ p1/2, which implies r ≥ 0.5 · log3(p). Note that
by choosing plaintexts of the form (C, . . . , C,A) where C and A denotes resp.
constant and active words, no S-Box is active in the first t − 1 rounds. Since
a MitM variant of the attack can be set up, the minimum number of rounds
necessary to prevent this attack is then dlog3(p)e+ 2t+ 4.

Gröbner Basis Attack. As noted in [3, App. C.3], the Gröbner basis attack is
equivalent to a GCD attack in the case for which 2κ ≈ p. Since the GCD attack
uses only 2 texts, the number of rounds is also 2·dlog3(p)e−4·blog3(log2 p)c+2t−2
in this case.
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