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Abstract. The “Multivariate Ring Learning with Errors” problem was
presented as a generalization of Ring Learning with Errors (RLWE),
introducing efficiency improvements with respect to the RLWE counter-
part thanks to its multivariate structure. Nevertheless, the recent attack
presented by Bootland et al. has some important consequences on the
security of the multivariate RLWE problem with “non-coprime” modular
functions; this attack transforms instances of m-RLWE with power-of-
two cyclotomic modular functions of degree n =

∏
i ni into a set of

RLWE samples with dimension maxi {ni}. This is especially devastating
for low-degree modular functions (e.g., Φ4(x) = 1 +x2). In this work, we
revisit the security of multivariate RLWE and propose new alternative
instantiations of the problem that avoid the attack while still preserving
the advantages of the multivariate structure, especially when using low-
degree modular functions. Additionally, we show how to parameterize
these instances in a secure and practical way, therefore enabling con-
structions and strategies based on m-RLWE that bring notable space
and time efficiency improvements over current RLWE-based construc-
tions.

Keywords: Tensor of Number Fields, Lattice Cryptography, Homomorphic En-
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1 Introduction

Lattices have become a very promising tool for the development and improve-
ment of new cryptographic constructions, notably those belonging to the field of
homomorphic encryption. Instead of directly working with lattice assumptions,
it is frequent to deal with assumptions whose underlying security can be based
on the hardness of lattice problems. Among them, the family of LWE (Learning



with Errors) [77, 78] has become the preferred one due to its versatility. Lyuba-
shevsky et al. [60, 58] proposed a variant of LWE called Ring-LWE (or RLWE),
whose hardness can be reduced from hardness problems over ideal lattices (in-
stead of the general ones used in the LWE version). RLWE has proven to be more
practical than LWE, as the underlying primitives can be usually more efficient;
e.g., RLWE enables a notable reduction in the size of the public and secret keys
in public key cryptosystems.

The ring structure of RLWE enables homomorphic cryptography with a
ring homomorphism supporting both addition and multiplication of ciphertexts.
Among the possible polynomial rings used for this purpose, the most practical
ones are those where the modular function is a cyclotomic polynomial of the form
1 + zn, with n a power of two. They present two advantages: (a) they enable
efficient implementations of polynomial operations through fast radix algorithms
of the NTT (Number Theoretic Transforms) [1, 50], and (b) the polynomial op-
erations over the used ring correspond to basic blocks in practical applications in
Computer Vision and Signal Processing [67, 71, 66], comprising, among others,
linear convolutions, filtering, and linear transforms.

Recently, a multivariate version of RLWE (m-RLWE) was proposed as a
means to efficiently deal with encrypted multidimensional structures, such as
videos or images [68, 66, 72]. In this scenario, the use of a tensorial decomposition
in “coprime” cyclotomic rings (see [61, 58, 60]) is a priori not applicable, as these
structures require that the modular functions have the same form (e.g., 1 + zn).
This is the context in which m-RLWE [68] was originally introduced.

Additionally, current hot problems in (fully) homomorphic encryption involve
the optimization of elementary polynomial operations through fast transforms
and, especially, the search for optimal strategies to execute homomorphic slot
manipulations and trade off storage and computation needs for relinearization
operations. These are fundamental blocks in homomorphic processing and in
the implementation of the bootstrapping (see [48, 21, 25, 31]) primitives enabling
fully homomorphic encryption. As we will show, m-RLWE can bring significant
efficiency improvements in all of them (see Sections 8 and 9).

The use of the tensor of lattices and/or adding a multivariate structure to the
involved rings has been the subject matter of several previous works, but with
very different targets. We briefly survey here the closest ones: (a) In [51], the
authors applied the standard tensor product of lattices to improve the hardness
factor of the SVP problem under different assumptions. (b) In [61], the authors
define an isomorphism between some cyclotomic fields and a tensor product of
cyclotomic fields when the order m in Φm(z) can be factored into several (differ-
ent) prime powers. (c) The “tensor” representation also appears in the definition
of the GLWE problem (also called Module-LWE [55]) which was originally in-
troduced in [17, 15]. In fact, analogously to LWE versus RLWE, the introduced
multivariate RLWE problem can be seen as a ring version of the GLWE prob-
lem, by means of adding for a second time a ring structure into the module.
(d) Finally, the FHEW fully homomorphic encryption scheme features [11] a
ring tensoring for a speed-up of the homomorphic accumulator, and also bivari-
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ate rings are used as a means to enhance the efficiency of polynomial products
inside the refreshing procedure in [63].

It can be shown that the m-RLWE problem can be reduced from worst
case discrete Gaussian Sampling (equivalent to SIVP) over the tensor of rings
(see [70]). Unfortunately, a recent work [12] shows an effective attack against m-
RLWE when the univariate subrings share common roots, therefore considerably
lowering the security of the underlying problem. Hence, our main contribution
in this work is to redefine the m-RLWE problem and find secure instantiations
that preserve the efficient results on multivariate RLWE [72], by basing their
security on a subset of RLWE on general number fields (see the recent work by
Peikert et al. [75], that generalizes the RLWE problem to any modulus and any
ring over number fields).

We now informally introduce the definition of m-RLWE, the attack by Boot-
land et al. [12], and the rationale of our solution, all exemplified in the bivariate
case.

Bivariate RLWE Let K(T ) = Kx

⊗
Ky be the tensor product of 2 cy-

clotomic number fields of dimensions nx = φ(mx) and ny = φ(my), and
R = Z[x, y]/(Φmx(x), Φmy (y)) the tensor of their corresponding ring of integers.

We define a Bivariate Ring LWE sample (see Definition 2 for the general
formulation of m-RLWE) as the pair (a, b = (a ·s)/q+e mod R∨), where a← Rq
is uniformly random and e← Ψ comes from the error distribution Ψ .

Bootland et al.’s attack Choices of modular functions fx(x) = Φmx(x),
fy(y) = Φmy (y) as fx(x) = xnx + 1, fy(y) = yny + 1 have been proposed in [68],
as this structure presents computational advantages and can be very beneficial
for practical applications.

Bootland et al.’s attack is able to exploit common roots on the involved
rings to factorize the multivariate RLWE samples into RLWE samples of smaller
dimension. For example, consider that nx = ny = n; by applying the substitution
y ← x, we obtain n RLWE samples of dimension n each, hence decreasing the
n2 lattice dimension of the original m-RLWE sample.

Secure multivariate RLWE instantiations Let m = mxmy and
gcd(mx,my) = 1; then, the m-th cyclotomic field K = Q(ζm) ∼= Q[x]/(Φm(x))
(with ζm the m-th root of unity) is isomorphic (see Theorem 1) to the bivariate
field

K ∼= Q[x, y]/(Φmx(x), Φmy (y)). (1)

Consequently, by considering instantiations satisfying gcd (mx,my) = 1, the
bivariate RLWE problem becomes equivalent to the equally sized RLWE prob-
lem. However, we would like to search for other instantiations where the modular
functions can have a similar form and, if possible, the same degree.

By restricting ourselves to the most common scenario of “power-of-two” cy-
clotomics, modular functions of the form {xnx +dx, y

ny +dy, z
nz +dz, . . .}, could
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avoid Bootland et al.’s attack for some parameters {nx, dx, ny, dy, nz, dz, . . .}.
E.g., the rings Z[x]/(x64 + 1) and Z[y]/(y27 + 5) do not have common roots, so
trivial substitutions such as x → y cannot be applied. Additionally, whenever
we reduce modulo q and work over Rq, we can impose (for the sake of efficiency)
that both modular functions x64 + 1 and y27 + 5 factor in linear terms enabling
the use of variants of the NTT. Additionally, slot encoding and slot manipula-
tions are still possible in the plaintext ring by means of the pre-/post-processing,
as presented in [67]. Analogously to the negayclic convolution, these pre-/post-
processing steps preserve the properties of the NTT transform over a ring with
an α-generalized convolution [64].

This seems to effectively avoid a substitution attack; however, there might be
some small ideal divisor for which, modulo some particular q, the noise does not
increase substantially, and we can distinguish the resulting sample from uniform.
This attack has been extensively studied by Peikert in [73] and we will discuss
it in Section 7.1.

The proposed solution The previous strategy preserves most of the advan-
tages of the multivariate constructions while apparently avoiding the effects of
Bootland et al.’s attack. However, the security of these instantiations is not based
on any specific formulation of the RLWE problem, and there is no trivial way of
parameterizing them. This raises the following questions:

1. Can we find multivariate rings similar to Z[x, y, . . .]/(xnx +dx, y
ny +dy, . . .)

while (a) still preserving the aforementioned advantages of this structure,
and (b) basing its security on the hardness of the RLWE problem (see Def-
inition 7); i.e., without a decrease in the ring dimension due to Bootland’s
attack (see Theorem 3)?

2. If these multivariate rings exist, how can the values {nx, ny, . . .}, {dx, dy, . . .}
be chosen to easily define the ring of integers R, its dual R∨ and the basis?

From this point forward, we focus on answering these two questions. To this
aim, we identify number fields whose ring of integers (and their dual) have the
sought structure (see Section 4). In particular, we divide this set of fields in two
categories:

1. Multiquadratic number fields (see Section 5). These structures enable efficient
radix-2 transforms for faster polynomial arithmetic (see Section 8).

2. More general number fields with modular functions {xnx + dx, yny + dy, . . .}
(see Section 6). These structures support all the signal processing applica-
tions described in [71], and the matrix operations introduced by the original
MHEAAN scheme [26] (not based on coprime cyclotomic polynomials [28])
while preserving the equivalent RLWE security.

Rationale on the security of our solution The weakness of some m-RLWE in-
stantiations is rooted on the existence of (small norm) zero divisors in the
compositum field. For example, Q[x, y]/(x2 + 1, y2 + 1) has zero divisors as

4



x + y (e.g., (x + y)(x − y) = 0), and hence m-RLWE samples defined on rings
Z[x, y]/(x2 + 1, y2 + 1) can be easily factored, as the effective degree can be re-
duced with substitutions {x → y,−x → y}. Additionally, as these roots have
small norm, the noise in the reduced samples is not increased enough to preserve
security.

Instead of the previously proposed Z[x, y]/(x2 + 1, y2 + 1), we work with a
bivariate ring with modular functions of the form {xnx + dx, y

ny + dy} (we use
Z[x, y]/(x2 + 1, y2 + 3) as our example). The use of different modular functions
avoids a trivial substitution attack. However, we need to rule out the possibility
of (small norm) substitution attacks, such as the one from [12], modulo some q;
even if they exist, finding them would require solving a hard subset-sum modq
(knapsack) problem.

As there is a security reduction from ideal lattices to RLWE defined on gen-
eral number fields [75], we search for the ring of integers of multivariate number
fields. This gives us a way to find secure parameters for the used ring, and also
the right error distribution to guarantee that the noise increase after a substi-
tution modulo q is enough to preserve the required security [73]. To exemplify
this rationale, we compare the differences between a bivariate cyclotomic ring
(which can be seen as a univariate cyclotomic ring), and our proposed solution.

Consider the ring Z[z]/Φ12(z) with Φ12(z) = z4 − z2 + 1. There is an iso-
morphism with the bivariate ring Z[x, y]/(Φ4(x), Φ3(y)) where Φ4(x) = x2 + 1
and Φ3(y) = y2 + y + 1. Therefore, our intuition is that if we found an effective
substitution attack on our example ring Z[x, y]/(x2 + 1, y2 + 3), this would work
analogously for the cyclotomic bivariate case Z[x, y]/(Φ4(x), Φ3(y)). In partic-
ular, if we apply the transformation T (y) = 2y + 1 in the ring Z[y]/(y2 + 3),
we obtain Z[y]/y2 + y + 1, which is the mentioned cyclotomic ring with Φ3(y).
Consequently, for this particular case, it is clear that the existence of an attack
in our example ring implies an attack to the bivariate cyclotomic ring.

For more general multivariate rings, we can apply a similar idea. In general,
for a secure bivariate ring such as Z[x, y]/(xnx + dx, y

ny + dy), we can search for
a transformation y ← T (y) where the new modular function can share at least
some roots with xnx + dx. If this transformation can be effectively applied, we
could use it to attack multivariate cyclotomic rings.

Thus, this strengthens the belief that an attack on secure m-RLWE instanti-
ations defined on a general number field should provide us with either an attack
to RLWE on the product of prime-powers cyclotomic rings, and/or a better
understanding on the weaknesses of general cyclotomic rings.

For a discussion on the practical security of RLWE on the proposed number
fields we refer the reader to Section 7.1.

Division algebras and non-norm condition In [46], the authors propose an alter-
native variant of LWE over cyclic algebras, which they denote as CLWE (Cyclic
Algebra LWE). The main difference with respect to RLWE relies on the fact
that, instead of adding a ring structure, they incorporate into Module-LWE a
cyclic algebra structure, constructing a non-commutative variant of LWE.
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The security of CLWE is supported by the hardness of finding short vectors in
certain structured lattices induced by ideals in a cyclic algebra A. Additionally,
they explicitly address Bootland et al.’s attack by means of the “non-norm”
condition (see Proposition 1).

Let a cyclic algebra A = (L/K, θ, γ) where K is a number field of degree k
and L is a Galois extension of K of degree n such that Gal(L/K) = 〈θ〉. For a
non-zero γ ∈ K, the cyclic algebra is defined as A = L⊕uL⊕ . . .⊕un−1L where
u ∈ A and un = γ (see Definition 9).

The non-norm condition on γ (see Proposition 1) avoids Bootland et al.’s
attack by stating that the lowest power of γ which appears in NL/K(L) is γn,
where NL/K represents the relative norm of L into K (see [46] for more details).

This defense against Bootland et al.’s attack also relies on avoiding the ex-
istence of zero divisors, which are needed for the attack to succeed. In our case,
as we already work in a number field, we can adhere to the security conditions
established by Peikert [73] to avoid this type of attacks.

It is worth mentioning that we see both approaches as potentially comple-
mentary, in such a way that the underlying field K considered in the (cyclic)
division algebra (see Definition 9) could be one of the multivariate fields dis-
cussed in Sections 5 and 6.

Contributions The main contribution of this work is the definition and parame-
terization of secure instantiations of the multivariate Ring Learning With Errors
problem [70, 71], supported by the extended reduction [75] of the original proof
by Lyubashevsky et al. [60, 58]. The proposed instantiations address the vulner-
ability leveraged on Bootland’s attack to m-RLWE [12], while still preserving
all the efficiency improvements that m-RLWE brings. Moreover we show that
is possible to securely instantiate the m-RLWE problem, because the canonical
embedding of R has a polynomial skewness (λn/λ1).

The applications of these secure instantiations are numerous, achieving im-
proved space-time tradeoffs in the most critical lattice operations, and therefore
enabling more efficient homomorphic processing and closing the gap to the re-
alization of practical fully homomorphic encryption. This is the main list of
applications:

– We introduce the α-generalized Walsh-Hadamard Transform as the basic
block that can replace Number Theoretic Transforms in multivariate rings,
achieving an improvement on the computational complexity of degree-n poly-
nomial products by a factor log(n) in terms of elemental multiplications, with
additional savings in memory usage (see Section 8).

– We enable net improvements in cryptographic primitives built on top of
m-RLWE, such as efficient time and space computation of automorphisms,
relinearizations, packing, unpacking and homomorphic slot manipulation,
and, consequently, bootstrapping, improving on current achievable trade-offs
in RLWE (see Section 9).

– We instantiate a simple cryptosystem based on m-RLWE (see Section 7.2),
and exemplify with it the use of the multivariate structure of m-RLWE
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to improve on complex number embedding, enabling fully packed complex
numbers, compared to the exponentially decreasing packing ratio of current
approaches [26, 28] (see Section 10). This enables applications in homomor-
phically encrypted approximate arithmetic, complex processing, and efficient
multidimensional signal manipulation (see Appendix A).

Structure The rest of the paper is organized as follows: Section 2 describes
Bootland et al.’s attack to multivariate RLWE. Section 3 introduces some alge-
braic number theory notions and the main definitions for the m-RLWE problem.
Section 4 describes the followed strategy to achieve secure instantiations of mul-
tivariate RLWE, including the well-known tensor of “coprime” cyclotomic rings.
Section 5 focuses on the analysis of multiquadratic rings. Section 6 studies a
set of more general multivariate rings. Section 7 includes a discussion on the
achieved resilience against known attacks together with example instantiations
that showcase the practicality of multivariate RLWE, and discusses some prac-
tical applications. Finally, Section 11 draws some conclusions. Additionally, the
included Section 8 particularizes the problem to rings enabling an α-generalized
Walsh-Hadamard Transform, and compares its performance with fast NTT al-
gorithms currently used in state-of-the-art RLWE cryptosystems. Section 9 in-
troduces the strategies for homomorphic packing/unpacking and the space/time
tradeoffs improving on current RLWE relinearization and bootstrapping opera-
tions.

2 Worst case security of multivariate RLWE

We first introduce the notation used in this section. Polynomials are denoted
with regular lowercase letters, omitting the polynomial variable (i.e., a instead
of a(x)) when there is no ambiguity.

We follow a recursive definition of multivariate modular rings: Rq[x1] =
Zq[x1]/f1(x1) denotes the polynomial ring in the variable x1 modulo f1(x1) with
coefficients belonging to Zq. Analogously, Rq[x1, x2] = (Rq[x1])[x2]/(f2(x2)) is
the bivariate polynomial ring with coefficients belonging to Zq reduced modulo
univariate f1(x1) and f2(x2). In general, Rq[x1, . . . , xl] (resp. R[x1, . . . , xl]) rep-
resents the multivariate polynomial ring with coefficients in Zq (resp. Z) and
the l modular functions fi(xi) with 1 ≤ i ≤ l. The polynomial a can also be de-
noted by a column vector a whose components are the corresponding polynomial
coefficients.

For the sake of clarity, we present the definition of multivariate RLWE with
power-of-two cyclotomic polynomials, as originally introduced in [68], but all the
results in this section can be generalized to any cyclotomic function:

Definition 1 (multivariate RLWE with power-of-two modular functions as
xnii + 1). Given a multivariate polynomial ring Rq[x1, . . . , xl] with fj(xj) =
1 + x

nj
j for j = 1, . . . , l where n =

∏
j nj (with all nj a power of two) and

an error distribution χ[x1, . . . , xl] ∈ Rq[x1, . . . , xl] that generates small-norm
random multivariate polynomials in Rq[x1, . . . , xl], the multivariate polynomial
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RLWE problem relies upon the computational indistinguishability between sam-
ples (ai, bi = ai · s + ei) and (ai, ui), where ai, ui ← Rq[x1, . . . , xl] are chosen
uniformly at random from the ring Rq[x1, . . . , xl]; s, ei ← χ[x1, . . . , xl] are drawn
from the error distribution.

The original works of multivariate RLWE [68, 71] assume that the search and
decision m-RLWE problems (see Definitions 3 and 4) in dimension n =

∏m
i=1 ni

are as hard as the corresponding RLWE problems in dimension n. However,
Bootland et al. [12] introduced an attack that can exploit modular functions
that allow repeated “low-norm” roots in the multivariate ring. As a result, when
the subrings of the tensor have common roots, this attack is able to factor the
m-RLWE samples into RLWE samples of smaller dimension, hence reducing the
security of these m-RLWE samples to that of solving a set of independent RLWE
samples which are easiest to break. E.g., for the ring Z[x, y]/(x2n + 1, yn + 1),
changes of variable y ← x2i with i ∈ Z∗2n factors the m-RLWE sample into n
different RLWE samples with rings of modular function x2n + 1 and an increase
in the error variance of n (maximum degree of yn + 1).

The instantiations of (multivariate) RLWE with cyclotomic rings where the
different modular functions have “coprime” order are not affected by this attack,
as they do not introduce these “common” roots (see Section 4.1).

We now give a more formal description of the attack, particularized for bi-
variate RLWE (2-RLWE) with power of two cyclotomics (Definition 1). Let
(a, b = as+e) ∈ R2

q [x, y] and Rq[x, y] = Zq[x, y]/ (xnx + 1, yny + 1) with nx ≥ ny
and k = nx

ny
without loss of generality.

Now we define the map Θ̃:

Θ̃ : Zq[x, y]/(xnx + 1, yny + 1)→ (Zq[x]/(xnx + 1))
ny

a(x, y)→
(
a(x, xk), a(x, x3k), . . . , a(x, x(2ny−1)k)

)
This map is a ring homomorphism, and if q is odd it is also invertible

(see [12]). This transforms the pair (a, b) ∈ Rq[x, y] into (Θ̃(a), Θ̃(b) ∈ Rnyq [x]. If

we denote each of the components by Θ̃i, for i = 1, . . . , ny, we have(
Θ̃i(a), Θ̃i(b) = Θ̃i(a)Θ̃i(s) + Θ̃i(e)

)
∈ R2

q [x], (2)

for i = 1, . . . ny. This results in ny different RLWE samples of dimension nx and
whose noise has a variance ny times higher than the original 2-RLWE sample
(the result of adding ny independent variables).

The attack works by trying to break the obtained ny RLWE samples. Once
this is done, as the map is invertible, it is possible to reconstruct the original
secret key with the different ny smaller keys.

This attack can be generalized to an m-RLWE sample (Definition 1) by re-
cursively applying “versions” of this map (l − 1) times. This recursion converts
an m-RLWE sample into n

n1
RLWE samples (assuming, without loss of general-

ity, that n1 ≥ n2 ≥ . . . ≥ nl) with dimension n1 and an error variance n
n1

times
higher.
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3 Multivariate Ring Learning with Errors

This section revisits the main definitions from algebraic number theory and mul-
tivariate RLWE, including a generalized version of the multivariate polynomial
RLWE problem which admits any type of cyclotomic polynomial as modular
function. For the sake of clarity, we particularize to power-of-two modular cyclo-
tomic functions (Definition 1) when exemplifying some of the results, but this
does not affect to the generality of the discussion.

3.1 Algebraic Number Theory background

This section presents the fundamental concepts of lattices and algebraic number
theory and extends them to the more general case of a tensor of number fields
on which m-RLWE is based.

The Space H(T ) =
⊗

iHi When dealing with cyclotomic fields, it is useful
to work with the subspace H ⊆ Rs1 × C2s2 with s1 + 2s2 = n, where the tuple
(s1, s2) is called the signature of the number field, and H satisfies

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 such that xs1+s2+j = x̄s1+j ,∀j ∈ [s2]} ⊆ Cn
(3)

An orthonormal basis {hj}j∈[n] for H can be defined as

hj =


ej if j ∈ [s1]

1√
2
(ej + ej+s2) if s1 < j ≤ s1 + s2√

−1√
2

(ej−s2 − ej) if s1 + s2 < j ≤ s1 + 2s2,

where ej are the vectors of the standard basis in Rn. Each element a =∑
j∈[n] ajhj ∈ H (with aj ∈ R) has its own lp norm. For our purposes, we

define the subspace H(T ) =
⊗

i∈[l]Hi as the tensor product of l subspaces Hi

(each subspace Hi defined as in Eq. (3) but with s1 + 2s2 = ni).
In particular, if we see each element belonging to each Hi as a different

linear transformation, we are actually working with the Kronecker product of
the subspaces Hi. We can therefore express an orthonormal basis for H(T ) given
by {hj}j∈[n] as the result of the Kronecker product of the original basis of
each Hi, by defining any invertible mapping for j and {j1, . . . , jl}, where hj =⊗

i∈[l] h
(i)
ji

are the basis vectors for H(T ), and n =
∏
i∈[l] ni; each {h(i)

ji
}ji∈[ni] is

the orthonormal basis of each Hi ⊆ Cni for i ∈ [l].

Lattice background A lattice in our multivariate setting is defined as an
additive subgroup of H(T ). We only consider full rank lattices, obtained as the
set of all integer linear combinations of a set of n linear independent basis vectors
B = {b1, . . . , bn} ⊂ H(T )

9



Λ = L(B) =

∑
i∈[n]

zibi such that z ∈ Zn


The minimum distance λ1(Λ) of a lattice Λ for the norm ||.|| is given by the
length of the shortest non-zero lattice vector, that is, λ1(Λ) = minx∈Λ/x 6=0||x||.

The dual lattice of Λ ⊂ H(T ) is defined as Λ∗ = {x ∈ H(T )|〈Λ,x〉 ⊆ Z} and
it satisfies (Λ∗)

∗
= Λ.

Gaussian Measures The results on nonspherical Gaussian distributions pre-
sented in [58] can be extended to our case. Hence, we revisit here some of the
concepts for Gaussian measures, adapted to our tensor setting.

We consider the Gaussian function ρr : H(T ) → (0, 1] with r > 0 as

ρr(x) = exp(−π||x||2/r2). A continuous Gaussian probability distribution Dr

can be obtained by normalizing the previous function to obtain a probability
density function as r−nρr(x). Extending this to the non spherical Gaussian
case, we consider the vector r =

⊗
i∈[l] ri where r = (r1, . . . , rn) ∈ (R+)

n
and

ri = (ri,1, . . . , ri,ni) ∈ (R+)
ni and whose components satisfy ri,j+s1+s2 = ri,j+s1 .

Finally, a sample from Dr is given by
∑
j∈[n] xjhj where each xj is drawn inde-

pendently from a Gaussian distribution Drj over R; rj equals
∏
i∈[l] ri,ji (where l

is the number of “unidimensional” spaces Hi in the tensor, that is n =
∏
i∈[l] ni)

and we are using any invertible mapping between {j}j∈[n] and {ji}ji∈[ni],i∈[l].

3.2 Main Definitions for Multivariate Ring-LWE

Let K(T ) =
⊗

i∈[l]Ki be the tensor product of l cyclotomic fields of dimension

ni = φ(mi) each, and R =
⊗

i∈[l]OKi (R∨ =
⊗

i∈[l]O∨Ki) the tensor of their

corresponding (dual of the) ring of integers. We have the following definitions:

Definition 2 (Multivariate Ring LWE distribution). For s ∈ R∨q and an error
distribution ψ over K(T ),R, a sample from the m-RLWE distribution As,ψ over4

Rq × T is generated by a ← Rq uniformly at random, e ← ψ, and outputting
(a, b = (a · s)/q + e mod R∨).

Definition 3 (Multivariate Ring LWE, Search). Let Ψ be a family of distri-
butions over K(T ),R. m-RLWEq,Ψ denotes the search version of the m-RLWE
problem. It is defined as follows: given access to arbitrarily many independent
samples from As,Ψ for some arbitrary s ∈ R∨q and ψ ∈ Ψ , find s.

Definition 4 (Multivariate Ring LWE, Average-Case Decision). Let Υ be a
distribution over a family of error distributions, each over K(T ),R. The average-
case decision version of the m-RLWE problem, denoted m-R-DLWEq,Υ , is to
distinguish with non-negligible advantage between arbitrarily many independent

4 T = K(T ),R/R
∨ and K(T ),R = K(T ) ⊗Q R.
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samples from As,ψ, for a random choice of (s, ψ)← U(R∨q )× Υ ,5 and the same
number of uniformly random and independent samples from Rq × T.

For an asymptotic treatment of the m-RLWE problems, we let K(T ) come
from an infinite sequence of tensors of number fields K = {K(T ),n} of increasing
dimension n (n =

∏
i φ(mi) is the number of basis elements that form the integral

basis), and let q, Ψ , and Υ depend on n as well.

Error distributions We include here two definitions about the error distributions.

Definition 5 (extension of Lyubashevsky et al. [58], Definition 3.4). For a pos-
itive real α > 0, the family Ψ≤α is the set of all elliptical Gaussian distributions
Dr (over K(T ),R), where each parameter ri ≤ α with i ∈ [n].

Definition 6 (extension of Lyubashevsky et al. [58], Definition 3.5). Let K(T ) =⊗
i∈[l]Ki where the Ki are the mi-th cyclotomic number field having degree ni =

φ(mi). For a positive real α > 0, a distribution sampled from Υα is given by an
elliptical Gaussian distribution Dr (over K(T ),R) whose parameters are rj ∈ [n]
using the unidimensional index (see Section 3.1), and each rj satisfies r2

j =

α2(1+
√
nxj) where different xj,xk that do not correspond to conjugate positions

are chosen independently from the distribution Γ (2, 1).

Practical applications [68, 67, 66] usually deal with variants of the problem:

– discrete b: Instead of working with an error distribution ψ over K(T ),R, the
m-RLWE distribution As,χ can use χ as a discrete error distribution over
R∨, so that the element b belongs to R∨q .

– small key: Instead of a uniform s, s can be a ”short key” equivalently sampled
from the error distribution (this is known as “normal form” in [61]), with
equivalent security. Given a list of l m-RLWE samples, s can be substituted
with the error e of any sample (a, b) whose term a is invertible in Rq, which
occurs with constant probability by Claim 3.2 below.

– power of 2 cyclotomic: Instead of sampling a and s from Rq and R∨q re-
spectively, both are usually sampled from Rq (this is usually known as the
non-dual variant). In general, the works which consider s in Rq deal with
cyclotomic fields where mi is a power of two. It can be shown that for this
particular type of cyclotomic fields both definitions are equivalent.

– modulus switching: The original definitions of the problem are presented with
a prime modulus q that splits the space into small independent coordinates.
With the same hardness guarantees, it is possible to modulus-switch to other
compute-friendly modulus at the price of a slight increase of the error.

Lyubashevsky et al. [61] show that the variant of RLWE with discrete and
short error (R-DLWEq,χ) is as hard as the original R-DLWEq,ψ, by following
the technique from [4]. These results can be adapted to our more general case
as follows:

5 U(R∨q ) represents the uniform distribution over R∨q .
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Claim. The fraction of invertible elements in Rq is
⊗

i∈[l]OKi/〈q〉, for prime

q = 1 mod φ(mi) for all i is (1 − 1
q )n, with n =

∏
i φ(mi). Thus, if q ≥ n, this

probability is constant.

Proof. Since Rq is in bijection with the ring (Z/qZ)n via the tensor embedding
mod q, so an element is invertible iff. its image does not contain any zero. Hence,
there are (q − 1)n invertible elements out of qn.

Pseudorandomness of m-RLWE: To show that the m-RLWE distribution is
pseudorandom (that is, there exists a reduction from the search problem to
the decision variant of the hardness problem) we rely on the results from [58],
applied to the case of multivariate elements. The main needed properties are
those related to the decomposition of 〈q〉 into n prime ideals (q ≡ 1 mod φ(mi)
for all i) and the use of the automorphisms that permute the prime ideals.

4 Proposed approach for secure multivariate rings

Despite the efficiency benefits of multivariate RLWE, its security can be much
smaller than originally expected for those instances vulnerable to Bootland et
al.’ s attack [12]. This motivates us to redefine the set of instantiations that
preserve the security in the tensor lattice dimension.

This section enumerates those secure instantiations of multivariate RLWE.
With this in mind, we first briefly revise the choice of “coprime” order cyclo-
tomics explicitly included in [61]. Afterwards, we discuss the possibility of using
a more general set of number fields, enabling other multivariate rings that can
be more convenient for practical applications.

4.1 Multivariate RLWE as a subset of RLWE

It is well known that for two cyclotomic number fields Q(ζa) and Q(ζb) with
coprime orders gcd(a, b) = 1, their product is the cyclotomic number field Q(ζab)
(see Lemma 11.8 in [33]). For convenience, we include an adapted version of this
property using the polynomial representation of the cyclotomic number fields.

Theorem 1 (Tensorial decomposition of cyclotomic number fields,
see Equation (1.1) in [61]). The m-th cyclotomic field K = Q(ζm) ∼=
Q[x]/(Φm(x)) (with ζm the m-th root of unity) is isomorphic to the multivariate
field

K ∼= Q[x1, . . . , xl]/(Φm1
(x1), . . . , Φml(xl)), (4)

where m =
∏
imi is decomposed in its prime-power decomposition with

gcd(mj ,mk) = 1 for all j 6= k.

This fact gives an alternative basis to the power basis {1, x, . . . , xφ(m)−1}
for the ring of integers R = Z[x]/Φm(x); this basis is the “powerful” basis of
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K composed of elements
∏
i x

ji
i with 0 ≤ ji < φ(mi).

6 This “powerful” basis
has some very nice properties [61] which make it more appealing than the more
“conventional” power basis. Additionally the authors of [61] provide a detailed
analysis on how the performance of ring operations can be improved by means
of this multivariate structure.

Besides [61], the use of the multivariate structure in Eq. (4) has been ex-
ploited to enhance polynomial operations in both the HElib [47, 48] and the
MHEAAN [28] libraries. This gives us a first approach to deal with multivariate
instantiations which do not suffer a decrease on the underlying lattice dimension.
However, this structure is not flexible enough to convey the same benefits that
general multivariate structures can achieve; in particular, it cannot preserve the
interesting structure of power-of-two cyclotomics (1 + xn).

4.2 More general RLWE instantiations

We look now beyond cyclotomics, into more general and flexible number fields
and their parameterization. We first introduce the definitions of RLWE over
any number field [75], and then give the intuition on the properties required
to resist the Bootland et al.’s attack. A detailed discussion on the choice of
good parameters and the security of RLWE on these number fields follows in
Sections 5, 6 and 7.1.

RLWE over any number field Peikert et al. [75] have recently generalized
the RLWE problem to any number field. Let K be a number field with ring
of integers R = OK ; let R∨ be the fractional codifferent ideal of K, and let
T = KR/R

∨. Let q ≥ 2 be a (rational) integer modulus, and for any fractional
ideal I of K,7 let Iq = I/qI. We include now the relevant definitions of RLWE
over any number field that we use in our formulation.

Definition 7 (Ring-LWE Distribution, Definition 2.14 in [75]). For s ∈ R∨q and
an error distribution ψ over KR, the R − LWE distribution As,ψ over Rq × T
is sampled by independently choosing a uniformly random a← Rq and an error
term e← ψ, and outputting (a, b = (a · s)/q + e mod R∨).

Definition 8 (Ring-LWE, Average-Case Decision, Definition 2.15 in [75]). Let Υ
be a distribution over a family of error distributions, each over KR. The average-
case Ring-LWE decision problem, denoted R − LWEq,Υ , is to distinguish (with
non-negligible advantage) between independent samples from As,ψ for a random
choice of (s, ψ) ← U(R∨q ) × Υ , and the same number of uniformly random and
independent samples from Rq × T.

6 This basis does not coincide with the power basis under the mentioned automorphism

and considering the map x
m
mi → xi for i = 1, . . . , l (see [61]).

7 For any fractional ideal I ⊂ K there is a ∈ OK such that aI ⊆ OK is an integral
ideal of OK .
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Theorem 2 (Theorem 6.2 from [75]). Let K be an arbitrary number field of
degree n, I any fractional ideal of K, and R = OK . Let α = α(n) ∈ (0, 1), and
let q = q(n) ≥ 2 be an integer such that αq ≥ 2 ·ω(1). There is a polynomial-time
quantum reduction from K − DGSγ to (average-case, decision) R − LWEq,Υα ,
for any

γ = max
{
η(I) ·

√
2/α · ω(1),

√
2n/λ1(I∨)

}
.

Additionally, it is worth highlighting some observations on the choice of a
particular number field in RLWE, as stated in [75]:

– The geometry of the dual ideal R∨ affects the error rate α (chosen to be
smaller than the minimum distance λ1(R∨)). As α decreases, worst-case
hardness theorems give weaker guarantees (i.e., larger approximation fac-
tors), and known attacks on Ring-LWE become more efficient.

– A similar phenomenon arises for rings with large “expansion factors”
(see [59]) which imposes smaller α for achieving correct decryption; hence,
good rings for practical applications have small expansion factors.

– Besides the two previous relations, there is no practical evidence on which
particular number field is better in terms of security.

Ad-hoc countermeasures to Bootland et al.’s attack Bootland’s at-
tack [12] shows that a reduced RLWE sample is at least as hard as an m-RLWE
sample. To prove the converse, we can use an oracle for m-RLWE. With access
to such oracle and a set of RWLE samples with different keys, we can construct
an m-RWLE sample (with a slight increase in the noise variance) by means of
the reverse map of Bootland et al.’s attack (i.e., Θ̃−1). Once this oracle returns
the secret key of the m-RLWE sample, the original keys of the RLWE sample
can be recovered by means of the map Θ̃.

We can therefore express the security of m-RLWE in terms of RLWE,
but the decrease of the involved dimension considerably reduces the ap-
plicability of the problem with “non-coprime” modular functions. The se-
curity of

∏
j 6=k φ(gcd (mj ,mk)) independent RLWE samples with dimension∏

i∈[l] φ(mi)∏
j 6=k φ(gcd (mj ,mk)) could be reduced to that of one m-RLWE sample (accord-

ing to Definition 2) with dimensions {φ(m1), . . . , φ(ml)}:

Theorem 3 (Θ̃−1 transform from [12] ). Let L independent univariate
RLWE samples (ai, bi) ∈ Rq×T for i ∈ [L] and dimension n. We can transform
(this transformation is invertible when q is prime) these L samples by means of
the (inverse) of Bootland et al.’s attack into one m-RLWE sample with l dimen-
sions {φ(m1), . . . , φ(ml)}(see Definition 2) satisfying L =

∏
j 6=k φ (gcd(mj ,mk))

and having for the RLWE sample n =
∏
i∈[l] φ(mi)

L . This transformation slightly
increases the variance of the error distribution by a factor L.

The decrease in the lattice dimension by a factor L =
∏
j 6=k φ (gcd(mj ,mk))

brings about the question of whether we can modify some of the multivariate
RLWE constructions where L > 1 to avoid Bootland et al.’s attack.
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Followed strategy By considering instantiations satisfying gcd (mj ,mk) =
1 for all j 6= k, we straightforwardly go back again to the RLWE problem.
However, we would like to find other instantiations where the modular functions
can have a similar form and degree. We will hence focus on modular functions
as follows: {xnx + dx, y

ny + dy, z
nz + dz, . . .}, which can avoid Bootland’s attack

for certain parameters, while enabling NTT-like fast transforms and preserving
the advantages of the originally introduced m-RLWE constructions.

However, the security of these instantiations is not based on any specific
formulation of the RLWE problem, so we do not have a clear way of choosing the
right parameters. In the next two sections, we focus on number fields satisfying
Definition 7 and whose ring of integers (and their dual) has the aforementioned
structure. In particular, we focus on multiquadratic number fields (Section 5) and
more general multivariate rings (Section 6). Before delving into these two cases,
we briefly discuss an alternative secure approach based on division algebras.

Cyclic division algebras (over multivariate number fields) A recent and
independent work [46] presents a different solution based on cyclic algebras.
To explicitly avoid Bootland et al.’s attack, they make use of the “non-norm”
condition [81], which has the role of avoiding the existence of zero divisors. For
the sake of completeness, we include the relevant definitions.

Definition 9 (Cyclic Algebra, Definition 9 in [46]). Let K be a number field
with degree k, and let L be a Galois extension of K of degree n such that the
Galois group of L over K is cyclic of degree n, Gal(L/K) = 〈θ〉. For a non-zero
γ ∈ K we define the resulting cyclic algebra

A = (L/K, θ, γ) := L⊕ uL⊕ . . .⊕ un−1L,

where u ∈ A is some auxiliary generating element of A satisfying the additional
relations xu = uθ(x) for all x ∈ L and un = γ with n the degree of the algebra
A. Such algebra A is called a division algebra if every element a ∈ A has an
inverse a−1 ∈ A such that aa−1 = 1.

The non-norm condition for γ (Proposition 1) states that the lowest power
of γ that appears in NL/K(L) is γn. In [46], the authors prove that this condition

on γ avoids the existence of the map Θ̃ used in Bootland et al.’s attack [12].

Proposition 1 (“Non-Norm” Condition, adapted Proposition 3.5 from [81] ).
The cyclic algebra A = (L/K, θ, γ) of degree n is a division algebra if and only
if the smallest positive t ∈ Z such that γt is the norm of some element of L is
n. The element γ is referred as the non-norm element.

It is worth noting that these results seem to be complementary to ours, and
different division algebras could arise from considering our proposed multivariate
number fields (see Sections 5 and 6) as the underlying field K in Definition 9.
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5 Multiquadratic Rings

LetK = Q(
√
di) be a field with prime di (hence squarefree) satisfying di = 1 mod

4; its ring of integers is OK = Z
[

1+
√
di

2

]
with basis {1, 1+

√
di

2 } and discriminant

∆K = di, then we can also represent OK as a polynomial ring Z[x]/x2−x+ 1−di
4

(OK is free of rank 2), according to (see Proposition 2):

Proposition 2 (Proposition 2.24 from [82] ). Let K = Q(
√
d) be a quadratic field

with d a squarefree integer. If d ≡ 2, 3(mod4), then OK = Z
[√

d
]
' Z[x]/(x2 −

d) and OK is free of rank 2 over Z with basis {1,
√
d}. If d ≡ 1(mod4), then

OK = Z
[

1+
√
d

2

]
' Z[x]/(x2 − x + 1−d

4 ) and OK is free of rank 2 over Z with

basis {1, 1+
√
d

2 }.

Let us extend the field to Q(
√
d1, . . . ,

√
dl) (a multiquadratic field), with

gcd (d1, . . . , dl) = 1, but still sticking to the case di = 1 mod 4. Taking into ac-
count that OKOK′ = OF when gcd (∆K , ∆K′) = 1, where F is the compositum
over Q (see [62]) of two subfields K = Q(

√
d1) and K ′ = Q(

√
d2) (see [32]), we

have that OF = Z
[

1+
√
d1

2 , 1+
√
d2

2

]
. This can be generalized to the case of a field

with l “coprime” squares, whose resulting ring of integers is

OK = Z
[

1 +
√
d1

2

]
· . . . · Z

[
1 +
√
dl

2

]
. (5)

Therefore, as all di are different primes, the discriminants of Q(
√
di) are also

coprime, which implies that the ring of integers can be expressed as the product
of the respective univariate rings of integers.

However, the definition of RLWE (see Definition 8) works on the dual of
the ring of integers, due to its geometric properties. The dual can be obtained
through Theorem 4:

Theorem 4 (Theorem 3.7 from [34] ). Let K = Q(α) and let f(T ) be the
minimal polynomial of α in Q[T ]. Write

f(T ) = (T − α)(c0(α) + c1(α)T + . . .+ cn−1(α)Tn−1), ci(α) ∈ K.

The dual basis to {1, α, . . . , αn−1} relative to the trace product is{
c0(α)

f ′(α)
,
c1(α)

f ′(α)
, . . . ,

cn−1(α)

f ′(α)

}
.

In particular, if K = Q(α) and α ∈ OK then

(Z + Zα+ . . .+ Zαn−1)
∨

=
1

f ′(α)
(Z + Zα+ . . .+ Zαn−1).
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Particularized to the quadratic case, Theorem 4 says that whenever the ring
of integers has a power basis, the basis of the dual is{

1,
1 +
√
di

2

}∨
=

{
1

f ′(α)
,

1

f ′(α)

1 +
√
di

2

}
, (6)

where f(x) = x2 − x + 1−d
4 and α = 1+

√
d

2 , so f ′(x) = 2x − 1; evaluated at

x = α = 1+
√
di

2 , it satisfies f ′(α) =
√
di.

As dual commutes tensoring, this result can be straightforwardly extended
to the compositum case with several di. Additionally, we see that we can go from
the dual to OK by just scaling with

√
di (or multiplying with the polynomial

2x− 1).
Following our requirements, we need a ring of the form Z[x1, . . . , xl]/(x

2
1 −

d1, . . . , x
2
l−dl), which is an order of the field Q(

√
d1, . . . ,

√
dl), but not necessarily

its ring of integers and a Dedekind domain.8 However, we can only base its secu-
rity on RLWE defined on a number field of the form Q(

√
d1, . . . ,

√
dl) (see Defi-

nition 7) and its ring of integers satisfying Z[x1, . . . , xl]/(x
2
1−x1 + 1−d1

4 , . . . , x2
l −

xl+
1−dl

4 ). We will therefore show that we can define an invertible map modulo q
from the ringOK (and its dualO∨K) to the ring Z[x1, . . . , xl]/(x

2
1−d1, . . . , x

2
l−dl),

while still basing its security on the original RLWE formulation from Definition 7.
Additionally, this map does not significantly increase the noise; in fact, it also
decorrelates it in the coefficient domain, enabling direct sampling of the noise in
the coefficient representation with an independent error distribution.

The map, applied to each variable xi, works as follows:

– We apply the change of variable x→ x+1
2 .

– We multiply the sample by a factor 2.

This mapping can be applied whenever the inverse of 2 exists modulo q. The
multiplication by 2 is applied afterwards to avoid the potentially high distortion
introduced by the factor 1

2 into the noise.

Canonical Embedding Let K = Q(
√
d), and note that 1

2x−1 evaluated at

x = 1+
√
d

2 equals 1√
d
. We define the Embedding map E going from O∨K ∼=

1√
d
Z[x]/x2 − x + 1−d

4 to C2, as the substitutions {x ← 1+
√
d

2 ,
√
d ←

√
d} and

{x← 1−
√
d

2 ,
√
d← −

√
d}. This gives this transformation matrix for E

1√
d

(
1 1+

√
d

2

−1
√
d−1
2

)
. (7)

8 A recent work [10] discusses the hardness of a generalization of Ring-LWE called
Order-LWE, which can be leveraged to have more freedom in the choice of the
multivariate rings (see Section 9 for more details on the advantages of Order-LWE).
We also refer the reader to [74] for a recent study on the connections between several
algebraic LWE variants.
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The inverse map E−1 is defined as the product with the matrix( √
d−1
2 − 1+

√
d

2
1 1

)
. (8)

Sampling the error directly in the coefficient domain Finally, if we de-
fine the noise in the embedding of the dual ring as two independent Gaussian
variables e0, e1 ∈ χ with variance σ2, we have in the ring 1

xZ[x]/x2 − d after
following the whole “processing chain”:

1

x

(e0 + e1)︸ ︷︷ ︸
2σ2

x+
√
d(e0 − e1)︸ ︷︷ ︸

2dσ2

 mod x2 − d.

Hence, the noise is not correlated in the coefficient domain and we can easily
sample the error distribution considering an appropriate variance per coefficient.

For simplicity, we have focused on a quadratic field, but the embedding can
be extended to the multiquadratic case by means of the Kronecker product.

Multiquadratic RLWE Let us define the multiquadratic version of m-RLWE,
where all the modular functions have the form fi(xi) = di + x2

i , as

Definition 10 (multivariate polynomial RLWE with quadratic modular func-
tions). Given a multivariate polynomial ring R∨q [x1, . . . , xl] with fj(xj) = dj+x2

j

for j = 1, . . . , l where l = log2 n (with n a power of two) and an error distri-
bution χ[x1, . . . , xl] ∈ R∨q [x1, . . . , xl] that generates small-norm random multi-
variate polynomials in R∨q [x1, . . . , xl], the multivariate polynomial RLWE relies
upon the computational indistinguishability between samples (ai, bi = ai · s+ ei)
and (ai, ui), where ai ← Rq[x1, . . . , xl], ui ← R∨q [x1, . . . , xl] are chosen uni-
formly at random from the rings Rq[x1, . . . , xl] and R∨q [x1, . . . , xl]; and s, ei ←
χ[x1, . . . , xl] are drawn from the error distribution (see Section 5).

The security reduction from Theorem 2 applies to this particular version
of the m-RLWE problem whenever −di = 1 mod 4 and gcd (∆K , ∆K′) = 1.
Section 7.1 gives further insights on the security and practicality of the chosen
parameterization, and exemplifies it with a concrete instantiation. In particular,
Proposition 6 gives a sufficient condition to consider the problem secure against
known attacks.9

Comparison with Gaussian integers We now compare the multiquadratic
RLWE with the particular case of power-of-two cyclotomics m-RLWE (see Defi-
nition 1) where all the used modular functions have the same form fi(xi) = 1+x2

i :

9 It is worth mentioning that even when the Principal Ideal Problem is easy in mul-
tiquadratics [7], to the best of our knowledge, this has not been proven enough to
solve RLWE.

18



Definition 11 (multivariate polynomial RLWE with Φ4(·) as modular func-
tions). Given a multivariate polynomial ring Rq[x1, . . . , xl] with fj(xj) = 1 +x2

j

for j = 1, . . . , l where l = log2 n (with n a power of two) and an error distribu-
tion χ[x1, . . . , xl] ∈ Rq[x1, . . . , xl] that generates small-norm random multivari-
ate polynomials in Rq[x1, . . . , xl], the multivariate polynomial RLWE relies upon
the computational indistinguishability between samples (ai, bi = ai · s + ei) and
(ai, ui), where ai, ui ← Rq[x1, . . . , xl] are chosen uniformly at random from the
ring Rq[x1, . . . , xl]; and s, ei ← χ[x1, . . . , xl] are drawn from the error distribu-
tion.

The comparison of our secure multiquadratic RLWE samples with RLWE
samples from Definition 11 is specially relevant, as the latter are severely affected
by Bootland et al.’s attack. Samples from Definition 11 can be reduced to a
dimension of 2, by applying the map Θ̃ a total of (log2 n−1) times, yielding n/2
RLWE samples with f(x) = 1+x2 and error variance n/2 times higher than the
original m-RLWE sample; this can be very easily solved. Consequently, despite
of the efficiency of the polynomial operations on the rings instantiated according
to Definition 11, they are not valid for cryptographic applications. Meanwhile,
the samples from a secure instantiation of multiquadratic RLWE (Definition 10)
preserve the lattice dimension n and withstand Bootland’s attack.

Another advantage of the multiquadratic RLWE problem is that it also en-
ables very efficient polynomial operations, without decreasing security. In par-
ticular, it is possible to apply a variant of the Fast Walsh-Hadamard transform
(over finite rings instead of the usual real numbers), featuring a convolution
property that relates the coefficient-wise representation with the transformed do-
main. This transform can be very efficiently computed with FFT-like algorithms
(specifically, a variant of the Fast Walsh-Hadamard transform) whose computa-
tional cost is only O(n log n) additions and O(n) products, hence considerably
speeding up practical implementations. For more details, we refer the reader to
Section 8, where we show how the well-known asymptotic cost of O(n log n) for
cyclotomic rings with polynomials of n coefficients can be improved by a factor
of log n in terms of elemental multiplications.

6 More general multivariate rings

Let us consider now general fields Q(a
1/n
1 , . . . , a

1/n
l ), for which the ai are square-

free and coprime, but for simplicity we will assume that they are independent
primes. The results shown in the previous section for multiquadratics cannot be
straightforwardly generalized to these fields, as the individual univariate fields

Q(a
1/n
i ) can easily have common factors in their discriminants (i.e., be non-

coprime), in such a way that finding a basis for the multivariate ring of integers
is not trivial.10

10 We refer the reader to Section 9 for a discussion on the advantages that Order-
LWE [10] brings about with respect to RLWE when choosing a basis for the ring of
integers.
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We explain the followed path that leads to our definition of valid, secure and
easily parameterizable multivariate rings. We start by choosing number fields
whose ring of integers OK can be represented as Z[x]/xn + ax + b, that is, as
polynomial rings whose modular function has the form xn + ax + b. For this
to be a valid ring OK for K, it has to be irreducible over Q, for which we use
Eisensntein’s criterion:

Proposition 3 (Eisenstein’s criterion [6]). The polynomial p(x) = anx
n +

an−1x
n−1 + . . .+ a1x+ a0, where ai ∈ Z for all i = 0, . . . , n and an 6= 0 (which

means that the degree of p(x) is n) is irreducible if some prime number p divides
all coefficients a0, . . . , an−1, but not the leading coefficient an and, moreover, p2

does not divide the constant term a0.

Therefore, we impose the following two conditions on f(x) = xn + ax+ b:

– Both a and b have to be divisible by a prime p and not by p2 (Eisenstein’s
criterion).

– If we choose b as a prime, a has to be divisible by b.

Now, we can compute the discriminant for this number field by resorting
to [79, Chapter 2.7]:

Proposition 4 (An example of the calculation of a discriminant [79] ). For the
calculation of ∆K in a number field K = Q(x) being a extension of finite degree
n of Q and f(x) = xn + ax+ b the minimal polynomial of x over Q, we obtain

∆K = (−1)
n(n−1)

2 (nnbn−1 + (−1)
n−1

(n− 1)
n−1

an). (9)

For n = 2 (respectively, 3) we rediscover the well-known expressions a2 − 4b
(respectively, −27b2 − 4a3).

Theorem 5 (Theorem 8.11 from [33] ). For Z-lattices L′ ⊂ L inside K,

[L′ : L]
2
<∞ and

discZ(L′) = [L′ : L]
2 · discZ(L).

In particular, if L′ ⊂ OK and the integer discZ(L′) ∈ Z− {0} is squarefree then
[OK : L′] = 1; i.e., L′ = OK .

If we choose values for a and b such that ∆K is squarefree, Theorem 5 guar-
antees that the ring of integers has a power basis of the form {1, α, α2, . . .}, with
α a root of xn+ax+ b. Consequently, Z[x]/xn+ax+ b is a valid ring of integers.

By including more “univariate” subrings, Z[x1, . . . , xl]/(x
n
1 + a1x +

b1, . . . , x
n
l + alx + bl) becomes a valid ring of integers when all the discrimi-

nants are coprime [32]. Therefore, this is a feasible strategy to define RLWE
over a multivariate ring, as the product of univariate rings with modular func-
tions xn + aix+ bi.

11

11 To define the dual O∨K we can make use of Theorem 4 which states that whenever
the ring of integers has a power basis, the basis of the dual is the same basis, scaled
by 1

f ′(α) = 1
nαn−1+a

, where α is a root of f(x).
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Finding valid parameters for f(x) = xn+ax+b: Unfortunately, the two previous
conditions (Eisenstein’s criterion from Proposition 3 and Theorem 5) cannot be
satisfied at the same time

– To satisfy the Eisenstein’s criterion, b and a have to be divisible by at least
a prime p (i.e., gcd (a, b) = u · p for some u ∈ Z), this introduces a factor
pn−1 in ∆K (see Equation (9)), in such a way that ∆K is not squarefree and
not satisfying [OK : L′] = 1 in Theorem 5.

We could still work with these multivariate rings provided that their dis-
criminants are coprime, but it seems that there is no straightforward way to
determine the “powerful” basis of the ring of integers: starting from Propo-
sition 4, it is known that Z[α] ⊆ OK ⊆ 1

∆K
Z[α] where f(α) = 0.

– Additionally, Eisenstein’s criterion is a sufficient but not necessary condition
for irreducibility of the modular functions. Without the imposed restrictions,
we could search for squarefree and coprime discriminants, but we would have
to verify the irreducibility of the involved functions case-by-case. Neverthe-
less, this is not impossible to find, as it is known that monogenic fields are not
scarce [40]; in fact, for random polynomials f , it has been conjectured that
Z[x]/f(x) of degree ≥ 4 is a ring of integers with probability & 0.307 [53].

Transformation based on Modulus Switching Let us assume that we have
found valid (monogenic) xni + aixi + bi functions defining the ring of integers
Z[xi]/x

n
i + aixi + bi; they do not yet feature the desired xn + d form.

In order to achieve this, we consider a map from the original RLWE samples
to RLWE samples modulo q, that removes the term ax if q divides a. It is worth
noting that this transformation is nothing but a modulus switching to q, and
if it were possible to break RLWE modulo q, the original secret key could be
recovered or at least the indistinguishability assumption could be broken.

The trick relies on all the modular functions having the form fi(xi) = xni +
a′iq︸︷︷︸
ai

xi + bi. Hence, a reduction modulo q converts the modular functions into

fi(xi) = xni + bi. We show the effect of this transformation on the ring qO∨K
for the univariate case (it extends to the multivariate case, as dual commutes
tensoring):

– O∨K is defined as 1
f ′(α)OK ; under the polynomial ring Z[x]/xn + a′iqx + bi,

this implies that the dual is 1
nxn−1+a′iq

Z[x]/xn + a′iqx+ bi.

– After reducing modulo q, we obtain 1
nxn−1Zq[x]/xn + bi; considering that x

has inverse modulo q, we can multiply numerator and denominator by x to
obtain x

nxn = x
−nbi .

– The factor 1
−nbi can be removed by just a scaling (moving to the ring of

integers OK), so we can directly work on Zq[x]/xn + bi. This gives a “basis”

{bi, x, x2, . . . , xn−1} (or a basis { 1
n ,

x
nbi
, x

2

nbi
, . . . , x

n−1

nbi
} without scaling).
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Decodability of the transformed xn + ax + b: Elias et al. [40] use an heuristic
perturbation method to bound the spectral norm of the canonical embedding
with f(x) = xn + ax + b. As the condition number is stable for most of the
random perturbations of the canonical embedding matrix associated to xn + 1,
they conjecture that many f functions have a bounded spectral norm in terms of
a and b; therefore, we can consider that the spectral norm s1(Nf ) (Nf represents

the inverse of the canonical embedding matrix) is likely bounded by
√

max (a, b)·
det (Nf )

1/n
[19]. Consequently, the same arguments about noise behavior in [19,

73] still apply, and in order to guarantee the prevalence of the security reduction
(see Proposition 6), the noise wraps around modulo q in some of the polynomial
coefficients (max (a, b) ≈ q). This is due to the large q factor introduced in f(x),
which requires the use of a high error variance, rendering some of the polynomial
coefficients modulo q useless. This makes these RLWE samples harder to use for
cryptographic applications.

Valid and practical parameterizations for Multivariate Rings The pre-
vious solutions to parameterize multivariate rings with modular functions xn+d
are not satisfactory, as (a) the search of valid univariate rings is not easy to han-
dle (due to the impossibility to use Eisenstein’s criterion) and (b) the obtained
samples are not practical for cryptographic applications due to their high noise
in some polynomial coefficients.

Here we follow a slightly different approach, releasing the condition on
equal-degree modular functions; that is, we consider multivariate rings as
Z[x1, . . . , xl]/(x

n1
1 +d1, . . . , x

nl
l +dl). Again, to simplify the explanation we only

consider an univariate ring with modular function xn+d, but all the results can
be analogously extended to the multivariate case (see Section 5) by requiring
coprime discriminants.

First, for f(x) = xn +d, Equation (9) simplifies to ∆K = (−1)
n(n−1)

2 nndn−1.

Let d be a prime number and n = um a prime power. Then,

– f(x) is an irreducible polynomial over Q by the Eisenstein’s criterion (Pro-
postion 3).

– f(x) is monogenic for d and n satisfying the following Proposition 5.

Proposition 5 (Adapted Proposition 3 from [40] ). Let n be a power of a
prime u. If d is squarefree and u2 does not divide (−1)

n
(dn−1 + 1)d, then the

polynomials xn + d are monogenic.

Proposition 5 shows that f(x) can be monogenic even when its discriminant
is not squarefree. If f(x) satisfies Proposition 5, we have OK = Z[x]/xn + d and
O∨K = 1

nxn−1Z[x]/xn + d.

In order to extend these results to multivariate rings Z[x1, . . . , xl]/(x
n1
1 +

d1, . . . , x
nl
l + dl), we only have to consider functions {xn1

1 + d1, . . . , x
nl
l + dl}

satisfying Proposition 5 and having coprime discriminants. This basically means
that all the di and ni are respectively different primes and power primes.
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Analogously to the multiquadratic rings in Section 5, we can directly map
the error distribution in the coefficient domain. In particular, for the ring

1
nixni−1Z[xi]/x

ni
i + di, the parameter for the error distribution in the (j − 1)-th

coefficient (1 ≤ j ≤ ni) is given by
√
nid

ni−j
ni

i r, where r is the parameter of an
independent spherical error distribution in the embedding domain [19]. This ex-
tends to multivariate rings by means of the Kronecker product. As the resulting
embedding matrix is the Kronecker product of the embedding matrices associ-
ated to each univariate ring, the singular values are the result of the Kronecker
product of the singular values for each univariate embedding matrix.

Finally, we introduce the definition of multivariate RLWE with the proposed
modular functions fi(xi) = di + xnii :

Definition 12 (multivariate RLWE with modular functions as xnii +di). Given a
multivariate polynomial ring Rq[x1, . . . , xl] with fj(xj) = dj+x

nj
j for j = 1, . . . , l

where n =
∏
j nj (where all nj are prime powers) and an error distribution

χ[x1, . . . , xl] ∈ R∨q [x1, . . . , xl] that generates small-norm random multivariate
polynomials in R∨q [x1, . . . , xl], the multivariate polynomial RLWE relies upon
the computational indistinguishability between samples (ai, bi = ai · s + ei) and
(ai, ui), where ai ← Rq[x1, . . . , l], ui ← R∨q [x1, . . . , l] are chosen uniformly at
random from the rings Rq[x1, . . . , xl] and R∨q [x1, . . . , xl]; s, ei ← χ[x1, . . . , xl]
are drawn from the error distribution.

For the ring R∨[x1, . . . , xl], we define χ[x1, . . . , xl] as the distribution gen-
erating polynomials belonging to R∨[x1, . . . , xl] and whose parameter per co-

efficient satisfies r
∏
i∈[l]

√
nid

ni−ji
ni

i , where 1 ≤ ji ≤ ni and 1 ≤ i ≤ l, and
hence represents the parameter for the coefficient associated to the monomial
xj1−1

1 · · · · · xjl−1
l .

Some examples of valid parameters: In order to show the feasibility of the pro-
posed parameterization, we exemplify it with some practical use cases for bivari-
ate RLWE; we will consider n1 = 211 = 2048 and n2 = 37 = 2187, and d1 = 5,
d2 = 7, for which we prove that they meet the conditions of Proposition 5

– 22 = 4 does not divide 52047 + 1, or equivalently, 52047 + 1 6= 0 mod 4. We
have 52047 + 1 mod 4 = 12047 + 1 = 2 6= 0.

– 32 = 9 does not divide 737−1 + 1, or equivalently, 737−1 + 1 6= 0 mod 9. We
have 737−1 +1 = 7−1737

+1 = 7−1737 mod 6 +1 = 72 +1 = 50 = 5 mod 9 6= 0.

Consequently, with this choice of parameters we can work on the number

field K = Q((−5)
1/2048

, (−7)
1/2187

), with OK = Z[x, y]/(x2048 + 5, y2187 + 7)
and O∨K = 1

4478976x2047y2186OK .

As for the example mentioned in the introduction, with functions x64 +1 and
y27 + 5, we can also verify that

– x64 + 1 is the Φ128(x) power-of-two cyclomic, hence it is monogenic.
– y27 +5 is monogenic by Proposition 5, as 32 = 9 does not divide 5 or 526 +1.

Additionally, as both discriminants are coprime, the product is directly the cor-
responding ring of integers.
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7 Security of multivariate RLWE and example
instantiations

This section includes a discussion on several aspects of the proposed solutions
in this work, namely their security, the geometric interpretation of the problem,
and the feasibility of the proposed parameterizations. With this purpose, we
enumerate the known attacks in the literature and include an example instan-
tiation of a simple bivariate RLWE scheme. We refer to next Sections and the
Appendix for a description of the applications enabled by our constructions.

7.1 Resilience against known attacks

The formulation proposed in this work involves working with rings whose modu-
lar function is xn+d or, more generally, xn+ax+b. Some particular instantiations
of these rings have already been studied in the literature and we can find specific
attacks to “variants” of the RLWE problem (e.g., PLWE together with non-dual
and dual RLWE versions) defined over them.

In general, the known attacks can be divided in two main types [73]:

– Attacks using a reduction modulo an ideal divisor q of the modulus qR [39,
54, 40, 22–24]. These attacks try to distinguish between the error distribution
and the uniform distribution modulo an ideal divisor.

– A reduction to errorless LWE [19] which exploits the relation between RLWE
and LWE. Expressing RLWE in its LWE form, the error term of some of the
equations can be removed by means of a rounding operation, and linear
algebra can be used to search for the secret key.

All these attacks have been generalized and studied in depth by Peikert
in [73], where he concludes that all the concrete insecure RLWE instantiations
made use of error distributions which were insufficiently well spread relative to
the rings, meaning that none of the vulnerable instantiations satisfy the condi-
tions from Theorem 2 to have worst-case hardness. In [73], Peikert also gives
sufficient conditions to make RLWE secure against the previous attacks. We
summarize the main relevant results for our constructions.

Proposition 6 (Invulnerability condition from [73]). Let ψ = Dr (see Defini-
tion 7) be a spherical Gaussian error distribution over KR for some r > 0; a
sufficient condition for invulnerability to the attacks from [39, 54, 40, 22, 19, 73,
23] is

r ≥ 2. (10)

The validity of Proposition 6 to resist the previous attacks is shown in the
following two theorems: Theorem 6 (for the attack based on reduction modulo
an ideal divisor) and Theorem 7 (for the attack based on errorless LWE).

Theorem 6 (Theorem 5.2 from [73]). Given a Ring-LWE sample (a, b =
s · a + e) ∈ Rq × KR/qR

∨ where e ← Dr is transformed into n LWE samples
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(Aa, b = sTAa + eT ), where b ∈ (R/qZ)
n

and e ∈ Rn are respectively the
coefficient vectors of b ∈ KR/qR

∨ and e ∈ KR (with respect to the chosen basis
of R∨), and Aa ∈ Zn×nq is the matrix of multiplication by a ∈ Rq with any
element of R∨q (with respect to the chosen bases of R,R∨). Then, for any Z-
basis B∨ = (b∨j ) of R∨ used above, each entry of e is a continuous Gaussian of
parameter at least r

√
n ≥ 2

√
n (which is the required lower bound to apply the

worst-case hardness theorems for plain-LWE).

Theorem 7 (Theorem 5.1 from [73]). Let q ⊆ R be any ideal of norm N(q) ≤
2n, and let the error parameter r ≥ 2 satisfy condition (10). Then the reduced
error distribution Dr mod qR∨ is within statistical distance 2−2n of uniform over
KR/qR

∨.

7.2 Geometric interpretation and examples of multivariate RLWE

In this section, we give a high level overview of how to instantiate a secure
multivariate RLWE sample from Definition 12, exemplifying it in the bivariate
case (all rings are defined over variables x, y, omitted when unambiguous).

This example can also be used as a means to showcase complex numbers
packing into slots, obtaining a net improvement on the number of available slots
per ciphertext when comparing to the recent results in [26] (see Section 10). For
the sake of clarity, we introduce a simple SHE scheme which enables homomor-
phic additions and multiplications without taking into account some of the more
advanced techniques typically considered in the literature (see Appendix C for
a brief explanation of the proposed optimizations).

A multivariate RLWE sample For simplicity, we consider a bivariate RLWE
sample (a, b = a · s + e) ∈ Rq × R∨q , where a ∈ Rq[x, y], s ∈ R∨q [x, y] and
e← χ[x, y] ∈ R∨[x, y]. We can use a uniformly random s or follow conventional
approaches where s is a small key (see Section 3).

Geometry of R, its dual R∨ and an example for {x2+3, y2−5} To easily illustrate
the geometry of R and R∨, we use a simple example R = Z[x, y]/(x2 +3, y2−5).
By means of the canonical embedding, we know that the substitutions {x ←
±
√
−3, y ← ±

√
5} yield the four different slots in the embedding domain.

This clearly shows that λ1(R) ≤
√
n = 2 by the embedding of 1, and we can

also obtain the embedding of the elements x, y and xy. The term xy can be used
to obtain an upper-bound for λ4(R), such that λ4(R) ≤ 2

√
15.

This is generalizable to any multiquadratic with l = log2 n variables, by
considering the embedding of 1 and

∏
i∈[l] xi, obtaining λ1(R) ≤

√
n and

λn(R) ≤
√
n
∏
i∈[l]

√
di. As the l-th prime is asymptotically pl ∼ l log l, a worst-

case for l = log2 n is dll ∼ ll(log l)
l

= (log2 n)
log2 n(log2 log2 n)

log2 n. Combining
the two previous expressions we have that λn(R) (and hence also the ratio λnR

λ1(R) )

is polynomially upper-bounded by n.
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These bounds are straightforwardly extended to the dual R∨ by taking into
account the corresponding “tweak” factor. For the multiquadratic scenario, the
dual only suffers a scaling by the square roots of the di terms (R is sparser than
the dual R∨). However, considering higher degrees in the modular functions
xnii + di, the tweak factor can turn the noise in the non-dual version of RLWE
into highly non-spherical.

A very detailed analysis of these effects (including also some enlightening
visual examples) can be found in [73].

Parameters’ choice We show now how to select correct parameters
{nx, ny, dx, dy} satisfying the conditions established in Sections 5 and 6 for valid
number fields.

As a brief summary, and focusing on nx, ny > 2, this mainly implies that:
(1) the discriminants of Kx = Q[x]/xnx + dx and Ky = Q[y]/yny + dy are
coprime, i.e., gcd (∆Kx , ∆Ky ) = 1, and (2) nx, ny are prime powers satisfying
Proposition 5.

This enables the definition of OK = R = Z[x, y]/(xnx + dx, y
ny + dy) as the

ring of integers. Analogously, the dual is O∨K = 1
nxnyxnx−1yny−1Z[x, y]/(xnx +

dx, y
ny + dy) (see Section 6 for some particular choices).

In this bivariate case, the error distribution χ[x, y] samples polynomials in
O∨K whose coefficients are independently sampled from Gaussian distributions

with different standard deviations. In particular, σ is equal to r
√
nd

nx−jx
nx

x d
ny−jy
ny

y

for the coefficient associated to the monomial xjx−1yjy−1 with 1 ≤ jx ≤ nx and
1 ≤ jy ≤ ny.

Working on qOK As it is usually done with power-of-two cyclotomics, we can
directly transform the dual into the ring of integers by means of a scaling. If we
have O∨K = 1

nxnyxnx−1yny−1Z[x, y]/(xnx +dx, y
ny +dy), we can first multiply the

dual by xy
xy , to see the simplified relation xy

xyO
∨
K = xy

ndxdy
OK .

Finally, analogously to the xn + 1 functions, we can scale the (a, b) sam-
ple by n = nxny and also dxdy. This gives us a sample (a(x, y), b′(x, y) =
ndxdyxyb(x, y)) ∈ R2

q . Consequently, we can directly work on the ring of in-
tegers with (a, b = as + e) ∈ R2

q where a ← Rq, s ← Rq (or also s ← χ[x, y])
and e← χ[x, y]. After the multiplication with the monomial xy, the error distri-
bution χ[x, y] generates independent coefficients from a Gaussian distribution of

σ = r
√
nd

nx−jx
nx

x d
ny−jy
ny

y for 1 < jx ≤ nx and 1 < jy ≤ ny, σ = r
√
nd

2nx−jx
nx

x d
ny−jy
ny

y

for jx = 1 and 1 < jy ≤ ny, σ = r
√
nd

nx−jx
nx

x d
2ny−jy
ny

y for 1 < jx ≤ nx and jy = 1

while σ = r
√
nd

2nx−1
nx

x d
2ny−1

ny
y for jx = jy = 1.

SHE over Multivariate Rings The basic example cryptosystem described in Ta-
ble 1 follows the structure of the SHE version introduced in [16] and implemented
in [56]. The main difference relies on the fact that our polynomial elements be-
long to the multivariate rings R[x, y], Rt[x, y] and Rq[x, y] (see Definition 12),
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Table 1. Parameters and Primitives of a Somewhat Homomorphic Cryptosystem based
on a multivariate version of RLWE (see [68, 71])

Parameters

Let Rt[x, y] be the cleartext ring and Rq [x, y] the ciphertext ring. The noise distribution χ[x, y] in

Rq [x, y] takes its coefficients from a spherically-symmetric truncated i.i.d Gaussian N (0, r2J2). q
is an integer satisfying t < q and is relatively prime to t. All the previous parameters are chosen

in terms of the security parameter λ where n = 2blog λe−1

Example SHE Cryptographic Primitives

SH.KeyGen Process s, e← χ[x, y], a1 ← Rq [x, y]; sk = s and pk = (a0 = −(a1s+ te), a1)

SH.Enc
Input pk = (a0, a1) and m ∈ Rt[x, y]

Process
u, f, g ← χ[x, y] and the fresh ciphertext is c = (c0, c1) = (a0u + tg +
m, a1u+ tf)

SH.Dec
Input sk and c = (c0, c1, . . . , cγ−1)

Process m =
((∑γ−1

i=0 cis
i
)

mod q
)

mod t

SH.Add
Input c = (c0, . . . , cβ−1) and c′ = (c′0, . . . , c

′
γ−1)

Process cadd = (c0 + c′0, . . . , cmax (β,γ)−1 + c′max (β,γ)−1)

SH.Mult
Input c = (c0, . . . , cβ−1) and c′ = (c′0, . . . , c

′
γ−1)

Process
Using a symbolic variable v their product c′′ can be obtained from the

relation
(∑β−1

i=0 civ
i
)
·
(∑γ−1

i=0 c
′
iv
i
)

=
∑β+γ−2
i=0 c′′i v

i

contrarily to the traditional univariate version Z[x]/1+xn and its analogous rings
modulo t and q. In Table 1 the diagonal of J has the corresponding standard
deviations of χ normalized by r (i.e., σ/r) for each coefficient of the bivariate
polynomials.

In particular, our plaintext ring Rt is basically a bivariate polynomial
Rt[x, y] = Zt[x, y]/(xnx + dx, y

ny + dy) which is encoded as a sub-module of
T = KR/R

∨ (see Definition 7). Our example is based on the scheme intro-
duced in [16], but other choices are possible, and we briefly discuss them in
the Appendix C. Regarding the achieved noise bounds, they are analogous to
the computations from [16] by taking into account the expansion factor of the
involved rings.

The additional variables of the multivariate structure can bring about some
significant advantages: more efficient polynomial operations (see Section 8), bet-
ter space/efficiency tradeoffs when working with automorphisms (see Section 9),
and can also be very useful when working with multidimensional structures (see
Appendix A and also the works [68, 71, 26] for more details on practical applica-
tions). In particular, in [26, 28] the authors present a library called MHEAAN,
based on multivariate RLWE, which is optimized to perform homomorphic ma-
trix operations.

Correctness and Security The condition for correct decryption is that the ef-
fective noise ||(

∑γ−1
i=0 cis

i) mod q)||∞ remains smaller than q/2. Let us consider
a simplified version of Theorem 2 from [16] where only the effect of noise is
taken into account, and let max {σ} be the maximum standard deviation of the
polynomials sampled from χ[x, y]. Let M be the maximum coefficient of the

evaluated degree-D polynomial; if M(tmax {σ}dxdyn
√
n)
D

is smaller than q/2,
the scheme of Table 1 can evaluate degree-D multivariate polynomials over el-
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ements which belong to Rt[x, y]. We could also consider a more tight empirical
condition for q, as stated in [56].

Regarding the security of this SHE scheme, it relies on the indistiguisha-
bility assumption of the polynomial multivariate version of RLWE (with ad-
equately chosen secure parameters χ[x, y], {nx, dx, ny, dy} and q) featured in
Definition 12; breaking this assumption implies, as stated in Theorem 2, the
existence of a quantum algorithm which solves short vector problems over ideal
lattices. For a practical estimation of the bit security, we can apply the LWE
security estimator developed by Albrecht el al. [3, 2] to the cryptosystems built
on multivariate RLWE and also the estimates included in the standards doc-
ument [20] for a general random lattice with the same dimension (n =

∏
ni).

This is plausible, analogously to what it is typically done with ideal lattices, as
a secure instantiation of m-RLWE works with full-rank lattices, for which no
substantially faster attacks are known than for general lattices.

8 Multiquadratic Rings with Fast Walsh Hadamard
Transforms

This section focuses on improving the cost of the underlying polynomial opera-
tions for cryptographic primitives based on RLWE, especially polynomial prod-
ucts (convolutions). We show how the well-known asymptotic cost of O(n log n)
for cyclotomic rings with polynomials of n coefficients can be improved by a fac-
tor of log n in terms of elemental multiplications when working on m-RLWE (or
RLWE over a multivariate number field). To this aim, we particularize the mul-
tivariate version to degree-2 polynomials and introduce an (α-generalized) vari-
ant of the Walsh-Hadamard transform (over finite rings instead of the usual real
numbers), featuring a convolution property that relates the coefficient-wise rep-
resentation with the transformed domain. This transform can be very efficiently
computed with FFT algorithms (specifically, with a variant of the Fast Walsh-
Hadamard transform) whose computational cost is only O(n log n) additions,
hence being much more amenable for a practical implementation. It is worth
noting that the effect of the efficiency improvement brought about by our ap-
proach goes beyond somewhat homomorphic encryption schemes (including also
the NTRU setting [52, 8]), also enhancing any cryptographic primitives involv-
ing polynomial multiplications, e.g., the candidates of the NIST Post-Quantum
challenge [2].

We start by introducing the notation used in this section. Polynomials are
denoted with regular lowercase letters, omitting the polynomial variable (e.g.,
a instead of a(x)) when there is no ambiguity. We follow a recursive defini-
tion of multivariate modular rings: Rq[x1] = Zq[x1]/f1(x1) denotes the polyno-
mial ring in the variable x1 modulo f1(x1) with coefficients belonging to Zq.
Analogously, Rq[x1, x2] = (Rq[x1])[x2]/(f2(x2)) is the bivariate polynomial ring
with coefficients belonging to Zq reduced modulo f1(x1) and f2(x2). In gen-
eral, Rq[x1, . . . , xl] (resp. R[x1, . . . , xl]) represents the multivariate polynomial
ring with coefficients in Zq (resp. Z) and the l modular functions fi(xi) with
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1 ≤ i ≤ l. The polynomial a can also be denoted by a column vector a whose
components are the corresponding polynomial coefficients.

For this section, we deal with a specific version of m-RLWE where all the
used modular functions have the same form fi(xi) = di + x2

i (see Definition 10).
The security reduction from Theorem 2 applies to this particular version

of the m-RLWE problem. To this aim, parameteres di have to be chosen as
indicated in the beginning of Section 5. Additionally, Proposition 6 gives a suf-
ficient condition to make the problem secure against the attacks described in
Section 7.1.

After defining the specific version of the problem, we introduce the (α-
generalized) Hadamard transform, that we apply to reach the aforementioned
performance gains on polynomial convolutions.

8.1 Faster polynomial arithmetic over multivariate rings

The Hadamard transform over real numbers is usually applied by means of the
recursion

Hi =
1√
2

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
, (11)

where i ∈ N and H0 = 1.
It can be seen that the matrix Hi with i ≥ 1 is equivalent to the Kronecker

product of i DFT (Discrete Fourier Transform) matrices of size 2 (H1 equals the
DFT matrix of size 2); that is, it can be seen as a 2× 2× · · · × 2︸ ︷︷ ︸

i times

-DFT transform

(defined over i dimensions of length 2 each).
Analogously to the DFT, the Walsh Hadamard Transform (WHT) of size

n possesses a particular fast algorithm called FWHT (Fast Walsh Hadamard
Transform) which can be very efficiently computed with no products and with a
cost of O(n log n) additions and subtractions (see [42, 83]). Hence, when working
over rings satisfying a convolution property with the Hadamard transform, it is
possible to efficiently compute the multiplication of elements from these rings
with a cost of O(n) elemental multiplications.

Security reasons prevent us from directly working over rings satisfying this
convolution property with the Walsh Hadamard transform (that is, multivariate
rings whose modular functions are f(xi) = x2

i −1), as they can be easily factored
into (xi−1)(xi+1) over Z. Therefore, we resort to the type of multivariate rings
presented in Definition 10 and apply an (α-generalized) variant of the WHT.

α-generalized convolutions An α-generalized convolution12 corresponds to the
ring operation defined over polynomials belonging to Zq[z]/1 − αzn. Figure 1
shows the realization of an α-generalized convolution between vectors of length
N (with l = 0, . . . , N − 1), by means of a cyclic convolution combined with an
element-wise pre/post-processing applied before/after [64, 67].

12 For example, with α = −1 we have a negacyclic convolution. In the literature, this
convolution operation is also called negative wrapped convolution.
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Pre-processing
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b

Fig. 1. Block diagram for the implementation of an α-generalized convolution.

As the cyclic convolution can be efficiently computed by means of standard
fast algorithms, this means that an α-generalized convolution can be imple-
mented with only a light overhead (O(n) scalar products). 13

α-generalized Walsh Hadamard transform We are mainly interested in modular
functions with the form x2

i + di. We can rewrite 1 − αxn as −α((−α)−1 + xn).

Hence for x2
i + di we have di = (−αi)−1

= −α−1
i . For this particular type of

polynomial rings we can define the following direct and inverse transforms:

W1 = H1

(
1 0

0 (α1)
−1/2

)
, and W−1

1 = 2−1

(
1 0

0 (α1)
1/2

)
H1,

where the square-roots (αi)
1
2 and (αi)

−1
2 have to exist in Rq for all i (see Defi-

nition 10). Equivalently, if q is an odd prime, we can make use of the Legendre
symbol

(−d mod p
p

)
to check when the multivariate ring factors into linear terms.

To this aim we need that
(−di mod q

q

)
= 1 for a prime q and for all i. We also

redefine H1 =

(
1 1
1 −1

)
without taking into account the normalizing factor 1

2 .

Therefore, now we can extend this definition to multivariate rings with mod-
ular functions of the form x2

i + di: we consider the Kronecker product of the
matrices W1 and W−1

1 as Wi =
⊗

j∈[i]W1 and W−1
i =

⊗
j∈[i]W

−1
1 , arriving

to the following expression:

Wi = Hi

⊗
j∈[i]

(
1 0

0 (αj)
−1/2

) , and W−1
i = 2−i

⊗
j∈[i]

(
1 0

0 (αj)
1/2

)Hi,

where the normalizing factors are again left outside Hi.
Consequently, if we define the vector α = (α1, . . . , αl)

T
, when working over

the multivariate ring Rq[x1, . . . , xl] with fj(xj) = dj +x2
j for j = 1, . . . , l we can

13 It is common to include these additional scalar products inside the butterflies of the
FFT algorithms to further enhance the efficiency.
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use the transforms Wl and W−1
l analogously to the use of negacyclic NTTs in

the univariate RLWE. BothWl andW−1
l transforms can be efficiently computed

in O(n) (where n = 2l) elemental multiplications thanks to the FWHT. This
enables the computation of the Hl matrix multiplications with only O(n log n)
additions and subtractions and no products, which brings a net improvement
with respect to the analogous and wide-spread radix implementation of the NTT.

Implementation of the Fast Walsh-Hadamard Transform (FWHT) Algorithm 1
shows a pseudocode implementation of the (cyclic) FWHT (Fast Walsh-
Hadamard Transform) implementation (see [42, 83]), computing the Hadamard
transform of a length-n vector a. It can be easily seen that this algorithm re-
quires a total of n log2 n additions (specifically, n log2 n

2 additions and n log2 n
2

subtractions), instead of the n2 additions/subtractions required when directly
applying the matrix multiplication.

Algorithm 1 Fast Walsh-Hadamard Transform (Hia with i ≥ 1)

1: procedure FastWalsh-HadamardTransform(a)
2: Input :
3: a such that length(a) = n = 2i and i ≥ 1
4: Algorithm for FWHT(a) (computing Hia):
5: depth = 1;
6: for j = 0 until log2 n− 1 do
7: scale = 2 ∗ depth;

8: for k = 0 until
⌊
length(a)−1

scale

⌋
do

9: for l = scale ∗ k until scale ∗ k + depth− 1 do
10: ac = a[l];
11: a[l] = a[l] + a[l + depth];
12: a[l + depth] = ac− a[l + depth];

13: depth = 2 ∗ depth;

14: Output :
15: a←Hia

Finally, the α-generalized version of the direct (inverse) FWHT can be de-
fined by adding a right (left) product by a diagonal matrix, so that the total cost
for the negacyclic FWHT on a length-n vector is n elemental multiplications and
n log2 n additions.

Implementation and evaluation Polynomial multiplications are the main bottle-
neck of lattice cryptography, as they are the most time-consuming basic blocks of
any cryptographic algorithm, from encryption/decryption to relinearization and
bootstrapping. The replacement of the traditional NTTs by FWHT by tran-
sitioning from cryptographic constructions built on univariate RLWE to the
proposed multivariate version can bring a considerable improvement in terms of
computational efficiency. To showcase the achieved gains, we have implemented
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Algorithm 1 in C++ and compared it with one of the currently most efficient
radix-2 implementations of the NTT [50]; this is the algorithm featured in the
NFLlib, one of the fastest lattice-based cryptographic libraries available for ho-
momorphic encryption. NFL also off-loads the complexity of the bit-reversal
operation to the INTT, in order to speed up the NTT, and makes use of SSE
and AVX2 optimizations to further enhance the obtained performance. Figure 2
shows the comparison of the obtained run times for a wide range of practical
values of n (vector size or polynomial degree), when using our FWHT implemen-
tations, including an SSE/AVX2 vectorized version. It can be seen that we obtain
a reduction to about 45-50% of the time of the NTT (38-43% of the INTT) in
the non-vectorized implementation of the FWHT with respect to the fast NTT
of NFLlib, while the vectorized one further reduces this figure to 22-24% (19-
22% of the INTT). Finally, it is worth noting that the memory consumption of
the FWHT is much lower, as it does not need to store the tables of the twiddle
factors.
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Fig. 2. Runtimes of the proposed FWHT compared to the NTT/INTT from [50].

9 Slot manipulation in multivariate rings

In this section we introduce the main improvements that m-RLWE brings to slot
manipulation when packing several plaintext inputs into a ciphertext, with ap-
plications in relinearization and bootstrapping operations. Packing into slots [80]
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helps to take advantage of the available space in the plaintext ring, therefore im-
proving cipher expansion. The use of this packing strategy also enables working
with homomorphic “slot”-wise additions and multiplications, i.e., SIMD (Single
Instruction, Multiple Data) operations with encrypted data. This is usually com-
bined with a mechanism to efficiently move and exchange the plaintext contents
across slots, by taking advantage of the properties of the available automor-
phisms in the used ring. In general, in the ring Rt = Zt[z]/Φm(z), we can define
a set of automorphisms φ(m) as different transformations ρi : Rt → Rt with
i ∈ Z∗m, which apply a change of variable z → zi over the elements in Rt.

Current lattice-based homomorphic cryptosystems leverage automorphisms
to perform linear transformations across plaintext slots. Whereas applying an au-
tomorphism is a very efficient operation, it produces a ciphertext encrypted un-
der a different secret key, and consequently, a switching key operation is needed
to recover a ciphertext under the original secret key. This switching key process
has two main drawbacks [49]: (a) a notable computational overhead and (b) an
increase in the memory requirements due to the need of adding additional public
information (“switching key/relinearization” matrices, a.k.a. evaluation keys).

In general, there is a tradeoff between these two dimensions: when the num-
ber of evaluation keys increases, the involved switching key runtime decreases,
and conversely, when the number of keys is reduced, a chain of several switching
key operations is needed, hence increasing the runtime. In a recent work [49],
Halevi and Shoup explore several strategies to optimize this tradeoff, claiming
improvements of even 75 times faster runtimes than those of their previous im-
plementation, together with a reduction of up to a half in the required memory
space to store the evaluation keys.

This section focuses on two different aspects: (1) We show how the introduced
multivariate rings over the RLWE problem (see Sections 5 and 6) enable con-
siderable improvements in the efficiency of the homomorphic packing/unpacking
into slots, therefore greatly improving essential blocks for homomorphic encryp-
tion, such as bootstrapping, and (2) we analyze the structure of the available set
of automorphisms on these rings, also showing that our solution can improve on
both the runtime and the memory requirements with respect to the state of the
art [49].

It is worth highlighting that some of the exemplified solutions in this section
are sketched out with negacyclic rings. For completeness, in Section 9.4 we give
some insights on how to extend these results to the more general multivariate
rings showcased in this manuscript.

9.1 Efficient Slot Packing/Unpacking

The homomorphic packing/unpacking of plaintext values into slots is one of
the most important examples of the evaluation of linear transformations on the
ciphertexts, bootstrapping being one of the most representatives applications [48,
21, 25]. The way current cryptosystems implement this packing/unpacking is
by means of a decomposition of the matrix multiplication into element-wise
products between the different diagonals of the matrix and different rotated
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versions of the ciphertext (hence by adding the result of a set of multiplications
between plaintexts and rotated ciphertexts).

The main bottleneck of this process is the number of switching key matrices
required to rotate the ciphertexts. Working with n slots, a total of n−1 rotations,
hence n − 1 switching key matrices, is required in the worst case. Available
strategies to reduce this number of matrices come at the cost of also increasing
the runtimes per automorphism/switching key operation.

Thanks to the introduced (log2 n)-RLWE, we break the need of a number
of rotations (automorphisms/switching key operations) equal to the number of
slots, and we enable homomorphically packing/unpacking operations with a single
switching key operation. This is mainly due to the structure that the multivariate
rings from Definition 10 present, which enables a much more efficient algorithm
to compute the slot packing/unpacking, as we show next.

Consider a plaintext ring Rt[x1, . . . , xi], then the required matrices for pack-
ing and unpacking are respectively:

Vi = 2−i

⊗
j∈[i]

(
1 0

0 (−1)
1/2

)
︸ ︷︷ ︸

B

Hi and V −1
i = Hi

⊗
j∈[i]

(
1 0

0 (−1)
−1/2

)
︸ ︷︷ ︸

B−1

,

where β = (−1)
1/2

is the 4-th root of unity over the plaintext modulo t. Instead
of directly applying these linear transformations (following the conventional ap-
proach), we resort to the NTT pre-/post-processing presented in [67], where
the authors show how a DFT/NTT transform can be expressed in terms of
element-wise products (NTT and a one-stage pre-/post-processing) and a nega-
cyclic convolution. We show this process step by step, by computing first Hi

and then B (resp. B−1).

Hi evaluation Adapting the results from [67] to the structure of our particular
rings, it can be seen that the Hi matrix can be homomorphically evaluated
by means of an automorphism and a negacyclic convolution with an all ones
vector. That is, if we have encrypted a polynomial a ∈ Rt[x1, . . . , xi], let us
define a polynomial 1(x1, . . . , xi) =

∏
j∈[i](1 + xj), such that the result of the

multiplication

1(x1, . . . , xi)a(−x1, . . . ,−xi) ∈ Rt[x1, . . . , xi]

is a polynomial whose coefficients correspond to the cyclic Hadamard transform.

B−1 and B evaluation The mentioned pre-/post-processing corresponds to the
main diagonal of the matrices B−1 and B, which comprise only four different
values: {1,−1, β−1,−β−1} for B−1 and {1,−1, β,−β} for B. This element-wise
multiplication can be performed homomorphically over the encrypted polynomial
coefficients through a change of variable in the ciphertext’s polynomials: (1)
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{xj → β−1xj}j∈[i] to calculate the B−1 matrix multiplication, and (2) {xj →
βxj}j∈[i] for the B matrix multiplication.14

Finally, we only need a relinearization/key switching operation to recover the
original secret key after the two changes of variables {xj → −xj}j∈[i] and {xj →
βxj}j∈[i] for packing (respectively {xj → β−1xj}j∈[i] and {xj → −xj}j∈[i] for
unpacking).

9.2 Automorphisms in Multiquadratic Rings and their Hypercube
Structure

We show now how m-RLWE improves on the tradeoffs between space and com-
putational cost when dealing with automorphisms, with respect to the univariate
version.

Let A[z]/1 + z2 be a polynomial ring as the one described by Definition 10,

and α be an element α ∈ A[z]/1 + z2; then, we denote by θ
(z)
i (α) ∈ A[z]/1 + z2

the transformation over α which applies the change of variable z → zi with
i ∈ Z∗4. For these particular rings, both transformations are, respectively, the
identity z → z and the negation z → −z. Reducing modulo t (the modulo of
the plaintext ring), the effect of the latter transformation over the slots would
be equivalent to a block shift where each block is composed by one half of the
total slots. This shift is graphically illustrated in Figure 3, where ψ is the 4-th
root of unity modulo t (i.e., ψ4 ≡ 1 mod t), and the two blocks of slots encoded
respectively in α(ψ) and α(ψ3) get shifted by applying z → −z.15

Fig. 3. Representation of the rotation between two blocks of slots encoded in α.

Going back to the notation Rt[x1, . . . , xl] with fj(xj) = 1+x2
j for our ring, we

can then apply combinations of these two transformations with the different vari-
ables xj for j ∈ [l]. Analogously to [49], this gives a multidimensional structure

14 Making use of the decomposition of the formulation of the Bluestein FFT algorithm
from [67], we can implement this change of variable by means of a homomorphic
negacyclic convolution with NTT/INTT(diag(B)) and NTT/INTT(diag(B−1)).

15 With rings A[z]/d+ z2 we have similar automorphisms {z → z} and {z → −z}.
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on the automorphisms group considering the composition of transformations

θi1,...,il(α) = θ
(x1)
i1

(θ
(x2)
i2

(. . . θ
(xl)
il

(α) . . .)) ∈ Rt[x1, . . . , xl],

where α ∈ Rt[x1, . . . , xl], t ≡ 1 mod 4 and i1, . . . , il ∈ Z∗4.
This multidimensional structure of the automorphisms group can be seen as

an l-tuple with 2 different values per component (which gives a total of 2l differ-
ent automorphisms). Hence, similarly to the shift property of a multidimensional
DFT [65], this group satisfies both the abelian and sharply transitive properties
required to perform any type of permutation [45].

Logarithmic increase in space and computational cost (Strategy 1) The effect
of each of the automorphisms over the slots can be visually represented as a
hypercube with as many dimensions as independent variables the rings have, that
is, with a total of log2 n dimensions. As a graphical example, Figure 4 shows the
slot structure corresponding to a multivariate ring with 7 independent variables;
in this case, each different vertex of the hypercube represents one of the n = 128
available slots, where the allowed transitions between vertices depend on the
chosen strategy, as we describe next.

In case of storing n switching key matrices (corresponding to all the auto-
morphisms), any vertex transition will be allowed through one single switch-
ing key operation. However, it is possible to store less switching key matrices
(which, combined, represent the whole set of automorphisms), hence increasing
the number of subsequent automorphisms/switching key operations for transi-
tioning from one vertex to another.

Due to the specific structure of our multivariate rings, we propose an opti-
mal strategy with log2 n switching key matrices, each one corresponding to a
different transformation xi → −xi; with the additional advantage that these
transformations are their own inverses. Following this strategy, we can also see
the different slots (vertices in Figure 4) as a binary vector of length log2 n, where
the available operations are bit-wise XOR operations with vectors

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

belonging to the standard basis of dimension log2 n. In the example of Figure 4
(with log2 n = 7), this method would be equivalent to working with 7 indepen-
dent vectors (of the standard basis) enabling only movements between vertices
in the dimension associated to the vector.

It can be seen that with this strategy the farthest slot to a given one is
always the slot represented as its ones’ complement, i.e., the opposite vertex.
This implies a total of log2 n automorphisms/switching key operations. Hence,
in the worst case we have an increase in the computational cost by a factor of
log2 n when storing log2 n switching key matrices and working with n slots. This
is a considerable reduction in the memory requirements when compared to the
approximately O(D) and O(

√
D) factors considered by Halevi and Shoup [49]

when working with D slots (in one dimension).
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A

B

Fig. 4. Representation of the hypercube structure of the group of automorphisms avail-
able in the multivariate polynomial RLWE with Φ4(·) as modular function and consid-
ering 7 independent variables {x1, . . . , x7}.

As a quick comparison, for the practical values reported in [49], i.e., n =
φ(m) = 16384, our strategy achieves an increase factor of 14 on the computa-
tional cost, which is not considerably higher than their results, but with huge
savings in storage for our case: we store only 14 matrices, compared to the 51
matrices and 3 automorphisms/switching key operations achieved by [49] for a
similar value of φ(m) = 15004 and one dimension with D = 682 following a
baby-step/giant-step strategy (see Appendix B).

Finally, it must be noted that when applying a switching key, noise con-
straints force the need of decomposing the coefficients of the involved polyno-
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mials in some specific base.16 As this decomposition does not straightforwardly
commute with the NTT/INTT (or CRT over the polynomial modular function)
representation, the inverse and direct transforms have to be applied over the
polynomials. Our setting in multivariate rings with FWHT enables a reduction
on complexity for these transforms by a factor of O(log n) in terms of elemental
products; i.e., this yields a net gain factor of log n in storage while keeping the
same order of (multiplicative) computational complexity.

Efficiency/space tradeoffs In practical scenarios, the tradeoff between used mem-
ory and computational cost might require a different balance with less space
efficiency than the log2 n achieved by the described strategy. Consequently, we
also cover two additional strategies which lead to an improvement of the com-
putational cost by a factor of 2.

Strategy 2 : Our first approach adds to the previous log2 n matrices those
which are associated to “diagonal” vectors in our hypercube representation of
the autormorphisms (see Figure 4); that is, we work with automorphisms {xi →
xlii , xj → x

lj
j } where li, lj ∈ Z∗4 and i, j ∈ [log2 n], being i 6= j. Going back again

to the binary representation of the slots, the additional automorphisms could
be seen as the result of all pairwise XOR operations of different vectors of the
standard basis of length log2 n.

The number of needed switching key matrices is therefore increased to(
1 + log2 n

2

)
=

(1 + log2 n) log2 n

2
.

In order to calculate the associated computational cost for this strategy, we
resort to induction, working first with the odd natural numbers, and afterwards
with the even natural numbers. Let the multivariate ring Rt[x1, . . . , xl] with
fi(xi) = 1 + x2

i where i = 1, . . . , l and l = log2 n, if we consider only the odd
values of l we have:

– For l = 1, any transition can be applied with only one automorphism/relin-
earization operation.

– Assuming that l variables require k automorphisms/relinearization opera-
tions, it can be shown that adding two variables (i.e., l+ 2), k+ 1 automor-
phisms/relinearization operations are needed. We can graphically see this
by resorting to the binary representation: moving between any two slots im-
plies, in the worst case (consider one vector and its ones’ complement), one
additional XOR operation.

– Therefore, by induction, odd values of l require d l2e automorphisms/relin-
earization operations.

16 This is true unless we resort to the strategy of Bajard et al. [5] which takes advantage
of the CRT decomposition over the polynomial coefficients. However, this strategy
cannot be applied always, as it requires a highly composite modulo with primes of
an adequate machine size (see [1]).
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The argument is analogous for even l. First, we consider l = 2, where with
only one automorphism/relinearization operation is enough to move between any
of the slots. Next, the same reasoning as before could be applied between l and
l+2 variables, resulting in a total of l

2 automorphisms/relinearization operations
for l variables.

Taking into account both results, this strategy yields an increase in the num-
ber of automorphisms/switching key operations by a factor of d log2 n

2 e. Hence, we
can reduce by a half the computational cost compared to our previous strategy,

with a quadratic increase in the memory requirements of (1+log2 n) log2 n
2 instead

of log2 n. For instance, with n = 16384 this would give an increase in cost by a
factor of 7 and a total of 105 stored matrices.

Strategy 3 : The incurred increase in space requirements by Strategy 2 might
not be acceptable for certain applications; therefore, our next approach pre-
serves the cost improvement, but achieving a negligible increase in the number
of required matrices: 1 + log2 n matrices instead of O((log n)

2
).

The idea behind this approach is adding to the switching key matrices for
transformations of the form {xi → −xi} for i = 1, . . . , log2 n the following one

{x1 → −x1, . . . , xlog2 n → −xlog2 n}.

As a graphical explanation, let us consider again the binary representation
of the slots: in addition to working with those XOR operations with vectors
belonging to the standard basis of length log2 n, now we can also apply the ones’
complement of every “slot” in one operation (e.g., in Figure 4 we could directly
move with one automorphism/switching key operation from point A to point
B).

Therefore, the worst case automorphism requiring l = d log2 n
2 e matrices with

our first strategy can now be computed with just one matrix. Moreover, as we
know that l − d l2e ≤ d

l
2e for any l ∈ N, then the farthest slot position can

be achieved by only d l2e = d log2 n
2 e automorphisms. Consequently, we can see

that with 1 + log2 n matrices, we only need a maximum of d log2 n
2 e automorphis-

m/switching key operations. For instance, with n = 16384 this would give an
increase in cost by a factor of 7 and a total of 15 matrices in terms of use of
memory.

9.3 Automorphisms in Multivariate Power-of-Two Cyclotomic
Rings

It can be useful to expand Definition 10 to also cover more general multivariate
rings, which can be leveraged by some applications (see Appendix A). Most of
these applications consider a general multivariate ring as the R and Rq, where
each of the modular functions can be defined as different power-of-two cyclotomic
polynomials fi(xi) = xnii + 1.17

17 Analogously to the procedure we followed with multiquadratics in Section 9.2, we
exemplify these results with power-of-two cyclotomics. They can be similarly ex-
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In this section the discussed efficiency/space tradeoffs achievable with auto-
morphisms on the FWHT-enabled rings will be expanded to these rings (at the
cost of lacking the faster FFT algorithms for the negacyclic Hadamard trans-
form).

We first remind the corresponding definition of multivariate RLWE with
power-of-two cyclotomic polynomials (see Definition 1):

Definition (multivariate RLWE with power-of-two modular functions as
xnii + 1 (Definition 1)). Given a multivariate polynomial ring Rq[x1, . . . , xl] with
fj(xj) = 1 + x

nj
j for j = 1, . . . , l where n =

∏
j nj (with all nj a power of two)

and an error distribution χ[x1, . . . , xl] ∈ Rq[x1, . . . , xl] that generates small-
norm random multivariate polynomials in Rq[x1, . . . , xl], the multivariate poly-
nomial RLWE relies upon the computational indistinguishability between samples
(ai, bi = ai ·s+ei) and (ai, ui), where ai, ui ← Rq[x1, . . . , l] are chosen uniformly
at random from the ring Rq[x1, . . . , xl]; s, ei ← χ[x1, . . . , xl] are drawn from the
error distribution.

Tradeoffs in the size/efficiency of automorphisms We consider the ring
R introduced in Definition 1; particularly, we work with Rt[x1, . . . , xl] where
t ≡ 1 mod 2ni for i = 1, . . . , l. Analogously to our derivation in Section 9.2,
when working with an element α ∈ Rt[x1, . . . , xl], we have the transformations

θi1,...,il(α) = θ
(x1)
i1

(θ
(x2)
i2

(. . . θ
(xl)
il

(α) . . .)) ∈ Rt[x1, . . . , xl],

now with ij ∈ Z∗2nj for all j.
This multidimensional structure can be seen again as an l-tuple, where each

component has ni different values, hence giving a total of n =
∏l
i=1 ni different

automorphisms.
Strategy 4 : Our main strategy works with ni−1 matrices for each variable xi,

where each switching key matrix will correspond to an automorphism {xi → xlii }
for li ∈ Z∗2ni (except {xi → xi}) and i = 1, . . . , l. This strategy yields a total

of
∑l
i=1 ni − l matrices with a computational cost of l automorphism/switch-

ing key operations. Let us assume that all the matrices for every “univariate”
change of variable have to be stored. However, the number of required matri-
ces per “univariate” change of variable could be further improved [49] (that is,
we could work with subsets Ai ∈ Z∗2ni in such a way that the corresponding

automorphisms would be {xi → xlii } for li ∈ Ai and i = 1, . . . , l). 18

We consider those ni = n
1
l for i = 1, . . . , l (hence being all ni equal). This

gives us several tradeoffs depending on l and n where we have l(n
1
l −1) matrices

and an increase in the computational cost by a factor of l. Table 2 shows the
number of required matrices and the increase in computational cost for n =

tended to more general rings of the form xnii +di. We refer the reader to Section 9.4
for more details.

18 For a brief summary of Halevi and Shoup full and baby-step/giant-step strategies,
see Appendix B.
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Table 2. Practical space/efficiency tradeoffs of automorphisms for n = 16384

l 2 3 4 5 6 7

# Matrices 256 80 52 36 34 28

# Calls to switching key (worst-case) 2 3 4 5 6 7

Table 3. Space/efficiency tradeoffs of automorphisms

Strategy # Matrices # Calls to switching key (worst-case)

Strategy 1 from Section 9.2 log2 n log2 n

Strategy 2 from Section 9.2 (1+log2 n) log2 n

2
d log2 n

2
e

Strategy 3 from Section 9.2 1 + log2 n d log2 n
2
e

Strategy 4 from Section 9.3 ≈ n
1
l l − l l

Strategy 4 (general) from Section 9.3
∑l
i=1 ni − l l

16384 and several values of l. As n
1
l is not always a valid value (that is, a power

of two), the choice of ni can be optimized to achieve the smallest possible number
of automorphisms (

∑
ni) such that n =

∏
ni.

Conversely, Table 3 summarizes the different tradeoffs we have presented in
this section.

9.4 On the applicability to more general multivariate rings

It is worth noting that all the solutions exemplified above (Sections 9.2 and 9.3)
are sketched out with negacyclic rings. In this section, we give some insights on
how to extend these results to the more general multivariate rings showcased in
this manuscript. To this aim, we resort to the generalized pre-/post-processing
presented in [67], together with the decomposition of the NTT/INTT transforms
into a chain of automorphisms and convolution operations.

An alternative set of modular functions Bernstein et al [8] propose a different
non-cyclotomic ring. The authors argue that with cyclotomic rings it is easy to
have non-trivial ring homomorphisms (as the modular function usually splits in
linear factors to perform FFT algorithms) and a relatively small Galois group.
Consequently, the authors propose rings of the form Zq[x]/(fp(x)), with an ir-
reducible modular function19 fp(x) = xp − x− 1 and p prime, where the Galois
group is the permutation group Sp with p! elements, and the modulo q is inert
in the ring. Hence, Zq[x]/(xp − x− 1) is indeed a finite field.

These modular functions are also interesting for our purposes, but for very
different reasons. Let K = Q(α) be a number field with α one of the roots
of xn − x − 1. We know that [36] modular functions fn(x) = xn − x − 1 with

19 See [36] for more details on the properties exhibited by functions of the form fn(x) =
xn − x− 1.
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n ≥ 2 are irreducible, and for 2 ≤ n ≤ 100 the discriminant of fn(x) is squarefree.
According to Theorem 5, this means that K is monogenic and OK = Z[x]/fn(x).

Now, from Proposition 4, we have

∆K = (−1)
n(n−1)

2 (nn(−1)
n−1 − (n− 1)

n−1
),

so it is straightforward to find coprime discriminants for different values of n.
For example, the discriminants of {fi(x)}i=2,...,7 are coprime. Therefore, we

can define a multivariate RLWE sample over the ring of integers

OK = Z[x1, . . . , x7]/(f2(x2), . . . , f7(x7))

for a multivariate number field of degree 5040 and 6 dimensions. In general, this
gives an easy way to find multivariate number fields with many variables and a
small expansion factor.

Operations over these rings are not as efficient as the ones with modular
function xn−d, but still acceptable; i.e., in the worst case, multiplications modulo
xn−x−1 can be decomposed in multiplications modulo xn−x and xn−1, hence
requiring two parallel efficient “cyclic” convolutions, and afterwards, adding the
obtained results.

Automorphisms for more general multivariate rings The multivariate rings in-
troduced in Section 6 are, in general, separable but non-Galois field extensions.
This implies that the number of available automorphisms is strictly smaller than
the degree of the extension (see Corollary 1).

Corollary 1 (Corollary 4.3 from [35]). If L/K is a finite extension that is
either inseparable or not normal then

|Aut(L/K)| < [L : K],

being [L : K] the degree of the field extension.

Fortunately, this is not a problem in practice as we can make use of Theorem 8
to extend the mentioned separable multivariate number fields in Section 6 to a
Galois extension, where we have Gal(L/K) = Aut(L/K) = [L : K]; hence,
automorphisms similar to the case of power-of-two cyclotomics (see Section 9.3)
can still be applied.

Theorem 8 (Theorem 4.8 from [35]). Every finite separable extension of a
field can be enlarged to a finite Galois extension of the field. In particular, every
finite extension of a field with characteristic 0 can be enlarged to a finite Galois
extension.

A toy example for a prime-degree field extension Consider the number field

Q(d
1
p ) (with d > 1 and d ∈ N) isomorphic to the polynomial ring Q[x]/(xp − d)

and satisfying the conditions from Section 6 (Proposition 5). We know that the

roots of xp−d are {d
1
p , ζpd

1
p , . . . , ζp−1

p d
1
p }. These roots are separable, but Q(d

1
p )
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is not the corresponding splitting field, and hence Q(d
1
d ) is not a Galois field

extension over the rationals Q.
Even so, we know from Theorem 8 that this field can be extended to a Galois

field where we have a Galois automorphism group which enables “rotations” of
the slots. It suffices to add the root ζp by means of a symbolic variable y over

the cyclotomic polynomial Φp(y) =
∑p−1
i=0 y

i, i.e., we enlarge the number field

(see Theorem 8) to have Q(d
1
p , ζp) with d and p different primes.

For this extended number field and considering a polynomial representation

with Q[x, y]/(xp − d, Φp(y)) (thanks to the field isomorphism d
1
p → x, ζp → y),

we have the chain of transformations {x→ xyi, y → yj} with i ∈ Zp and j ∈ Z∗p,
which enables homomorphic “rotation” of the slots.

As an example, consider the polynomial a(x) =
∑p−1
i=0 aix

i mod xp − d. We
apply the change of variable x→ xy

a(x) =

p−1∑
i=0

aix
i

=

p−1∑
i=0

aix
iyi

= ap−1y
p−1xp−1 +

p−2∑
i=0

aiy
ixi.

Consider now the following relation given by Φp(y)

yp−1 = −
p−2∑
i=0

yi.

By applying it, we have:

ap−1y
p−1xp−1 +

p−2∑
i=0

aiy
ixi = −ap−1x

p−1

p−2∑
i=0

yi +

p−2∑
i=0

aiy
ixi.

It is worth noting that the ring Z[x, y]/(xp − d, Φp(y)) is not, in general,

the ring of integers of the field Q(d
1
p , ζp), but instead a subring of its ring of

integers. This can be easily seen by inspecting the discriminants of xp − d and

Φp(y) which are, respectively, (−1)
p(p−1)

2 pp(−d)
p−1

and pp−2. As they are not

coprime we cannot assert that the ring of integers of Q(d
1
p , ζp) is the product of

Z[x]/(xp − d) and Z[y]/(Φp(y)).20

Consequently, when working with rings following Definition 12 in Section 6,
if we want to (1) base the security on RLWE over a general number field and also
(2) make use of the automorphisms, the reduction from Theorem 2 implies a loss

20 If xp − d satisfies the conditions established in Proposition 5, Z[x]/(xp − d) is the

ring of integers of Q(d
1
p ).
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in the lattice dimensionality; in the previous example of Z[x, y]/(xp − d, Φp(y)),
we end up working with a ring of degree p(p− 1), but being the original RLWE
sample defined over a number field of degree p. Nevertheless, we can avoid this
loss by basing the security in a generalization of RLWE called Order-LWE.

A much wider set of ring choices with Order-LWE Bolboceanu et al. [10] propose
a generalization of RLWE which, instead of considering the ring of integers OK
and its dual O∨K , relies on the subrings called orders O and their corresponding
duals O∨ to define the underlying ideal lattices.

For a number field K of degree n, an order O in K is a subring of OK
containing a Q-basis of full-rank n of K such that O ⊗Z Q = K. The ring of
integers is the maximal order of K.

Order-LWE also presents worst-case hardness with respect to short vector
problems, but in the invertible-ideal lattices of the considered order [10].

This result enables a relaxation of many of the restrictions imposed for the
rings in Sections 5 and 6, by directly basing their hardness on Order-LWE.

The previous example with the field Q(d
1
p , ζp) and order Z(d

1
p , ζp) can base its

hardness on a lattice of dimension p(p− 1) by considering Order-LWE.
The use of the modular function Φp(y) seems to contradict our initial re-

quirements regarding the desired form of the modular function (see Section 1).
However, for efficient polynomial products we can substitute Φp(y) by yp− 1 by
just multiplying both polynomial elements and modular function with the term
y − 1.

We plan to extend our results and optimizations to the corresponding relax-
ations offered by Order-LWE. In this direction, this work provides a wide set of
concrete ring instantiations which could be considered to analyze the hardness
of Order-LWE.

10 Improving on the packing capacity of complex
numbers

We have addressed packing of integer numbers in Section 9, but complex num-
bers are more difficult to efficiently pack. Nevertheless, we can also leverage the
multivariate structure to represent the complex arithmetic in a much more effi-
cient way than previous recent approaches. Knowing that a total of n/2 complex
slots can be packed over the ring Z[z]/1 + zn, Cheon et al. [27, 26] expand these
results to the bivariate case Z[x, y]/(1+xnx , 1+yny ), packing a total of nx2

ny
2 = n

4
complex slots. Generalizing this strategy to l dimensions, packing is restricted
to n

2l
complex slots (where n =

∏l
i=1 ni) when working over multivariate rings

as Z[x1, . . . , xl]/(1+xn1
1 , . . . 1+xnll ).21 Consequently, this strategy leaves a huge

gap of unused potential slots when transitioning to a multivariate ring.

21 While this strategy was introduced for a weak instance of multivariate RLWE (i.e.,
vulnerable to Bootland et al.’s attack), a similar approach works for rings following
Definition 12.
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Nevertheless, it is possible to achieve the same number of complex slots as
the univariate counterpart (that is, n/2 complex slots), effectively substituting
the multivariate complex embedding map (as used in [26]) by its univariate
version. Let us consider the ring Z[x1, . . . , xl]/(d1 +xn1

1 , . . . , dl+x
nl
l ), and choose

one of the l independent variables to work with the canonical embedding map,
x1 without loss of generality. If we have a total of n/2 complex numbers to
pack in one multivariate polynomial plaintext, we organize them as a set of n

n1

complex vectors with length n1/2. For each complex vector we use the encoding
from [27], defined as the composition of the inverse of the complex embedding
map and a discretization. This yields n

n1
polynomials belonging to the ring A =

Zt[x1]/d1 + xn1
1 .

Coming back to the multivariate ring representation, we can consider the
new message as a polynomial in the ring Zt[x1, . . . , xl]/(d1 + xn1

1 , . . . , dl + xnll ).
Hence, we gather all the polynomials in A as the different coefficients of the ring
A[x2, . . . , xl]/(d2 +xn2

2 , . . . , dl+xnll ), and we define encoding/decoding matrices
working over di+x

ni
i modular functions (i.e., α-generalized INTTs/NTTs over t,

see Section 8) for i = 2, . . . , l, considering the identity matrix In1
of size n1×n1

for x1 and the modular function d1 + xn1
1 . Using the vector representation of

the plaintext polynomial, the encoding/decoding is performed by means of one
matrix multiplication which can be efficiently realized with FFT-like algorithms.

This method can pack a total of n/2 complex slots while preserving the
properties for the automorphisms (whenever we enlarge the number field to a
Galois extension, see Section 9.4) and also removing the gap of the method used
in [26], where the fraction of used slots decreases exponentially with the number
of dimensions.

Finally, it is worth looking at the case where the considered multivariate rings
are those from Definition 10 in Section 5. In this case, the modular functions
have the form di + x2

i , so the variable x1 can directly represent the imaginary
unit, therefore perfectly mapping the complex arithmetic without the need of
applying the canonical embedding map over the polynomials in A.

11 Conclusions

This work addresses the main security flaw of the multivariate RLWE problem
revealed by Bootland et al. For this purpose, we have defined and parameter-
ized practical and secure instantiations of the multivariate Ring Learning With
Errors problem, supported by the extended reduction of the original proof by
Lyubashevsky et al. [60, 58]. The proposed instantiations are resilient against
Bootland’s attack to m-RLWE [12], while still preserving all the efficiency im-
provements that m-RLWE brings. We have shown how to find practical pa-
rameters for the proposed instantiations to make them both secure and us-
able, therefore enabling improved space-time tradeoffs in many practical appli-
cations, comprising the most critical fundamental lattice operations (faster poly-
nomial multiplications through α-generalized Walsh-Hadamard Transforms), ef-
ficient cryptographic operations such as computation of automorphisms, relin-
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earizations, packing, unpacking and homomorphic slot manipulation, and, conse-
quently, bootstrapping, and optimization of high level applications in encrypted
approximate arithmetic, complex processing, and efficient multidimensional sig-
nal manipulation.

These contributions, combined, showcase the power and versatility of secure
instantiations of the multivariate RLWE problem, and open up new research
paths and strategies for realizing efficient (fully) homomorphic encryption.
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Appendix

Summary This Appendix includes some of the possible efficiency improvements
and applications which can be implemented under the multivariate rings pro-
posed in this work.

Structure Appendix A summarizes some of the applications that our construc-
tions enable. Appendix B revises the Full and Baby-step/giant-step strategies
from [49, 76]. Appendix C introduces additional optimizations that can be ap-
plied on the example presented in Section 7.2.

A Applications for Signal Processing

For the sake of completeness, this section focuses on some of the Secure Signal
Processing (SSP) applications that benefit from m-RLWE to process encrypted
signals in a more efficient and secure way than under RLWE, showcasing the
applicability of m-RLWE. While these results were originally presented on weak
instances of m-RLWE vulnerable to the Bootland et al.’s attack, they can be
adapted to deal with those rings from Definition 12.

Image filtering In image processing, filtering is one of the most common build-
ing blocks, and it can be seamlessly implemented as a cyclic multidimensional
convolution. While RLWE-based cryptosystems support univariate convolutions,
they need to encrypt each row or column of the image or filter separately in or-
der to implement a 2D or 3D convolution between two encrypted images (or an
image and a filter). Conversely, m-RLWE introduces a natural way to work with
multidimensional linear operations, and it achieves a more compact representa-
tion of the data, as it can effectively cipher one signal value per coefficient of
the encryption polynomial. As shown in [68], the time needed for an encrypted
convolution with an m-RLWE-based cryptosystem is between one and two or-
ders of magnitude faster than with its RLWE counterpart for common image
sizes,22 while the security of the former can be much higher (whenever we work
on a secure instantiation of multivariate RLWE ), due to the large degree of the
multivariate polynomials.

Image denoising Another ubiquitous image processing operation is image
denoising. This operation involves a linear (Wavelet) transform, a thresholding

22 In [68], the authors implement an m-RLWE extension in C using GMP 6.0.0 and
FLINT. For a filtering application with an image of size 1014× 1014 and a filter of
size 11× 11, they achieve runtimes of 134 s with RLWE and 8 s with the extension.
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non-linear operation applied to each sub-band, and an inverse transform. By
resorting to 2-RLWE and a polynomial representation of the thresholding oper-
ation, it is possible to efficiently perform all these operations with a circuit of
limited depth and without an intermediate decryption of the image [66]. This
produces a denoised image of size 256 × 256 in a few minutes. If the 2-RLWE
scheme is not implemented in a weak instantiation, the RLWE counterpart would
require polynomials of large degree in each image dimension to achieve the same
security level, which renders the computation several orders of magnitude slower
than with a 2-RLWE cryptosystem.

Camera Forensic Analyzer 2-RLWE has also been used to build a secure
camera forensic analyzer [69], which enables outsourcing the extraction and de-
tection of the PRNU (Photoresponse Non-Uniformity) fingerprint on encrypted
images. The efficient computation of the denoising block for images proves to
be a fundamental piece for this task. Additionally, as the size of the involved
images is usually quite large, by using secure bivariate rings, it is possible to
very efficiently perform 2-dimensional correlations, while also taking advantage
of this size to increase the underlying lattice dimension.

Increased flexibility in image processing Finally, it is worth noting that the
additional degrees of freedom that m-RLWE introduces give more flexibility
to cope with signals with different structures, which is plainly impossible with
the regular RLWE. In [71, 72], mechanisms for converting across different signal
structures and perform efficient block processing are shown. Hence, m-RLWE
enables (a) better packing schemes by grouping image pixels in blocks (e.g., for
encrypted JPEG de-/compression by using block Discrete Cosine Transforms),
or video sequences in frames, (b) encrypted multi-dimensional transforms that
can work on a block-by-block basis taking advantage of the large signal di-
mensionality to increase the cryptosystem security with respect to their RLWE
counterpart, (c) the use of the extra-variables to encode additional information
which can be used to homomorphically evaluate encrypted divisions in the sig-
nal values, (d) flexible changes of the signal structure to update the packing and
organization of the blocks, in order to seamlessly enable different operations on
different dimensions.

B Full and Baby-step/giant-step

In a recent paper [49, 76], Halevi and Shoup introduce several improvements on
the operations with automorphisms and their associated switching key matrices,
implemented in HElib. To this aim, they take advantage of the underlying al-
gebraic structure that can be found on the group of automorphisms in RLWE.
Specifically, they exploit the fact that these automorphisms can have a multidi-
mensional structure [45] which depends on the group Z∗m/〈t〉.

The HElib library considers a “basis” g1, . . . , gd ∈ Z∗m where each element
has “order” D1, . . . , Dd, respectively (each Di is a positive natural number). This
basis induces the following representation for the elements belonging to Z∗m/〈t〉:

{ge11 . . . gedd : 0 ≤ ei < Di, i = 1, . . . , d}.
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Due to the existing bijection between the slots and vectors (e1, . . . , ed) now
we can independently apply rotations23 in each different “hypercolum” i (where
i = 1, . . . , d) by means of one (if the i-th hypercolumn is a good dimension) or
two (if the i-hypercolumn is a bad dimension) automorphisms.24

Without exploiting this multidimensional structure, we would have to work
with a total of φ(m) different matrices to represent all the available automor-
phisms in the ring R; in a practical scenario, φ(m) can easily be above one or two
thousand. However, by taking advantage of the different dimensions, we could
represent the different automorphisms with as many as

∑d
i=1Di matrices, and

roughly increasing the number of required switching key operations by a factor
of d.

In [49], the authors describe two main strategies for working in each of these
dimensions:

– Full strategy: Di matrices are needed for a dimension i and produce a cost of
one or two automorphisms/switching key operations depending on whether
i is a good or bad dimension.

– Baby-step/giant-step: g+dDi/ge−1 (roughly O(
√
Di)) matrices are needed

for a dimension i where g = d
√
Die; this yields a cost of two or three au-

tomorphisms/switching key operations depending on whether i is a good or
bad dimension.

The HElib library [49] works by default with the full strategy for those dimen-
sions of length at most 50 and with the baby-step/giant-step for higher lengths.

As an example, in [49] the authors report runtimes for the parameters m =
15709 where φ(m) = 15004, r = 22 and only one dimension with D = 682, hence
working with 682 slots. With a full strategy and considering a good dimension we
would have a total of 681 matrices; and 51 matrices with a baby-step/giant-step
strategy (682 and 52 matrices considering a bad dimension).

C Further Optimizations

The scheme we have chosen to exemplify the use of multivariate rings with
RLWE in Section 7.2 of the main article can be further optimized. We based our
choice on the scheme introduced in [16] for simplicity and clarity, but many other
options could be taken into account. For example, in [37] the authors provide a
detailed comparison among four of the main variants which are currently used in
the literature: BGV [17, 15], NTRU [57] and their corresponding scale-invariant
versions [14] which are, respectively, FV [41] and YASHE [13].

The use of a scale-invariant version simply involves additional division and
rounding operations over the polynomial coefficients; these operations can be
seamlessly addressed when working with multivariate polynomials.

23 A rotation by h in the dimension i is defined as a map from the slot associated with
(e1, . . . , ei, . . . , ed) to the slot (e1, . . . , ei + h mod Di, . . . , ed).

24 We say that the i-th hypercolumn is a good dimension if the order of gi in Z∗m is Di;
otherwise it is considered a bad dimension.
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The main optimizations which are considered for the comparison in [37] are
modulus switching and key switching [18]. The first one has been used in RLWE
to work with leveled SHE schemes [17, 15], and it requires a chain of decreasing
moduli in such a way that, after each homomorphic multiplication, a switch to
a smaller modulus is performed. The effect of this operation is a notable reduc-
tion in the noise increase after each multiplication. Similarly to scale-invariant
schemes, the use of modulus switching requires division and rounding operations
over the coefficients of the polynomials.

Regarding the key switching operation, its use removes the dependency be-
tween the number of polynomial elements in the ciphertexts and the depth of
the evaluated circuits. It is also used when working with automorphisms, where
it helps to recover the ciphertexts under the original secret key.

Both modulus and key switching can be extended to work with multivariate
polynomials. Firstly, division and rounding can be directly applied over the co-
efficients of multivariate polynomials, and secondly, switching key matrices can
be analogously generated with multivariate polynomials.

Finally, an additional “optimization” which we could incorporate is the use
of bootstrapping to obtain a FHE scheme, hence removing the upper bound on
the depth of the evaluated circuits. For this purpose, conventional procedures
could be applied over the SHE scheme, mainly consisting of homomorphically
evaluating the decryption circuit by having access to an encrypted version of the
secret key.

After Gentry’s seminal work [44, 43], different improvements on the use of
bootstrapping have appeared in the literature, varying from the recryption of
binary gates [38, 9, 29, 30, 11, 31] to the optimization of the depth of the decryp-
tion circuit for RLWE-based SHE schemes [48, 21, 25]. An interesting follow-up
work would be to study the behavior of our multivariate scheme with these
different approaches.
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