
1

On the Complexity of hybrid n-term Karatsuba
Multiplier for Trinomials

Yin Li, Shantanu Sharma Yu Zhang, Xingpo Ma and Chuanda Qi

I. INTRODUCTION

There is an increasing attention about the fast arithmetic operations in finite field GF (2m), which have many applications such
as coding theory and cryptography [1], [3]. Specifically, efficient arithmetic algorithms and their related hardware architectures
are crucial to high performance of these applications. Among the arithmetic operations defined in GF (2m), field multiplication
is one of the most frequently desired operations, as other complex operations such as exponentiation and division can be
implemented by iterative multiplications. Therefore, it is essential to design a suitable GF (2m) multiplier under conditions of
the different hardware resources.

Under polynomial basis (PB) representation, the field multiplication consists of a polynomial multiplication followed by a
modular reduction. Generally speaking, there are three types of bit-parallel GF (2m) multipliers of different architectures, i.e.,
quadratic [12], [13], [20], [21], subquadratic [6], [5] and hybrid bit-parallel multipliers [10], [8], [19], [9], [14]. Quadratic
multipliers normally utilize schoolbook approach to implement the polynomial multiplication, while subquadratic or hybrid
methods usually apply a certain divide-and-conquer algorithm, e.g., Karatsuba algorithm (KA) [2]. The main advantage of the
sub-quadratic multipliers is that their space complexities are generally smaller than other two types of multipliers. Nevertheless,
their time complexities are often bigger than quadratic or hybrid counterparts. Conversely, the hybrid multipliers can offer a
trade-off between the time and space complexities [10]. Some of these schemes can save about 1/4 logic gates, while the time
complexities cost only one more TX compared with the fastest quadratic multipliers [17], [28], where TX is the delay of one
2-input XOR gate. In these schemes, the KA is applied only once to compute the product of two m-degree polynomials.

Karatsuba algorithm is a classic divide-and-conquer algorithm, which can optimize polynomial multiplication by partitioning
each polynomial into two halves and utilizing three sub-multiplications instead of four ones. This algorithm is usually denoted
as 2-term Karatsuba algorithm. Besides the 2-term KA, there are several variations, e.g. generalized n-term KA (n ≥ 3)
introduced by Weimerskirch and Paar [6] and 4, 5 and 6-term of Karatsuba-like formulae introduced by Montgomery [4]. The
former algorithm splits each polynomial into n parts and applies KA strategy for every two sub-polynomials. The latter ones
introduced new formulae to minimize the number of sub-multiplications. Based on Montgomery’s work, several combinations
of these formulae resulted in remarkable improvements for higher degree polynomial multiplications [7]. Compared with 2-term
KA, all these variations can obtain even fewer coefficients multiplications. However, these Karatsuba-like formulae usually
contain complicated linear combinations of the split parts, which will yield extra gates delay for the bit-parallel multiplier.
Conversely, Weimerskirch and Paar’s approach is more fit for constructing hybrid GF (2m) multipliers, as all the intermediate
inputs can be obtained in one TX delay[29]. We call this algorithm as n-term KA and use this notion thereafter.

Recently, Li et al. investigated the application of n-term KA to a special class of trinomial xm + xk + 1,m = nk,
and developed an efficient hybrid multiplier [28]. The lower bound of the space complexity of the proposed multiplier is
approximately m2/2 + O(m3/2), while its time delay matches the fastest Karatsuba-based multipliers known to date [17].
Nevertheless, such irreducible trinomials are not abundant, so that puts a confinement to the application of n-term KA. Park et
al. [30] generalized above scheme and investigated the n-term Karatsuba hybrid multipliers for xm + xk + 1, where m = n`
or m = n`+ 1. Inspired by this point, in this paper, we focus on an extension of the schemes in [28] and [30]. We investigate
the application of n-term KA over general trinomials, i.e., xm + xk + 1,m > 2k. Note that m may not be divisible by n. The
degree m is generally partitioned as m = n`+r with r < n, r < `. We also use shifted polynomial basis (SPB) to optimize the
modular reduction. Specifically, since the polynomial multiplication is partitioned into several independent parts and computed
in parallel, constructing Mastrovito matrices for all these parts becomes more complicated. We utilize an alternative approach
to perform modular reduction and exploit spatial correlation among different subexpressions. The main architecture is described
in details. We explicitly study the space and time complexities under different parameters n, ` and r. Some upper and lower
bounds with respect to these complexities are evaluated. As a result, we show that the optimal space complexity of our proposal
is m2/2 +O(

√
11m3/2/4), which roughly matches the best result of [28], [30]. The time complexity is slightly higher, but it

can be improved for some special types of trinomials. Moreover, it is demonstrated that the hybrid multiplier for xm+xm/2 +1
can achieve a better space and time trade-off than any other trinomials.

Yin Li, Yu Zhang, Xingpo Ma and Chuanda Qi are with 1. Department of Computer Science and Technology, Xinyang Normal University, 2. Henan
Key Lab of Analysis and Application of Educating Big Data, Henan, P.R.China, 464000. Shantanu Sharma is with Department of Computer Science at the
University of California, Irvine, USA.

email: yunfeiyangli@gmail.com (Yin Li).

2

The rest of our paper is organized as follows: In Section 2, we briefly review a n-term KA formula and some relevant
notions. Then, we investigate the application of n-term KA for polynomial multiplication of arbitrary degrees in Section 3.
A new bit-parallel multiplier architecture is proposed as well. Section 4 presents an analysis of our proposal and study the
optimal parameters of n-term KA and irreducible trinomials. Finally, some conclusions are drawn.

II. PRELIMINARY

In this section, we briefly review some related notations and algorithms used throughout this paper.

A. Shifted Polynomial Basis

The shifted polynomial basis (SPB) was originally proposed by Fan and Dai [11] and it is a variation of the polynomial
basis. Consider a binary extension field GF (2m) generated by an irreducible trinomial f(x) = xm+xk +1. Let x be a root of
f(x), and the set M = {xm−1, · · · , x, 1} constitute a polynomial basis (PB). Then, the SPB can be obtained by multiplying
the set M by a certain exponentiation of x:

Definition 1 [11] Let v be an integer and the ordered set M = {xm−1, · · · , x, 1} be a polynomial basis of GF (2m) over F2.
The ordered set x−vM := {xi−v|0 ≤ i ≤ m− 1} is called the shifted polynomial basis(SPB) with respect to M .

Under SPB representation, the field multiplication can be performed as:

C(x)x−v = A(x)x−v ·B(x)x−v mod f(x).

Please notice that the modular reduction under SPB is a little different with that under PB, where the range [−v,m− v − 1]
is the rational term degree range. To distinguish with PB reduction, we call this operation as SPB reduction.

If the parameter v is properly selected, the SPB reduction is simpler than that PB reduction, especially for irreducible
trinomial or some special types of pentanomials [12]. Specially, for trinomial xm +xk + 1, it has been proved that the optimal
value of v is k or k − 1 [11]. In this paper, we choose that v = k and use this denotation thereafter. Additionally, we utilize
both SPB and PB reduction in our scheme, and the default modular reduction refers the SPB one without specification.

B. n-term Karatsuba Algorithm

Besides 2-term Karatsuba algorithm, Weimerskirch and Paar [6] gave a generalized Karatsuba formulae, say n-term KA,
that is applicable for the polynomial multiplication of arbitrary degree. Firstly, assume that there are two n-term polynomial
with n− 1 degree over F2:

A(x) =

n−1∑
i=0

aix
i, B(x) =

n−1∑
i=0

bix
i.

Then, we calculate intermediate values based on the coefficients. Compute for each i = 0, · · · , n− 1,

Di = aibi.

Compute for each i = 1, · · · , 2n− 3 and for all s, t with s+ t = i and n > s > t ≥ 0,

Ds,t = (as + at)(bs + bt).

Thus, the coefficients of A(x)B(x) =
∑2n−2
i=0 cix

i can be computed as

c0 = D0,
c2n−2 = Dn−1,

ci =



∑
s+t=i,
n>s>t≥0

Ds,t +
∑
s+t=i,
n>s>t≥0

(Ds +Dt) (odd i),

∑
s+t=i,
n>s>t≥0

Ds,t +
∑
s+t=i,
n>s>t≥0

(Ds +Dt) +Di/2 (even i),

where i = 1, 2, · · · , 2n− 3. Merging the similar items for Di, i = 0, 1, · · · , n− 1, AB is rewritten as:

AB =Dn−1(x2n−2 + · · ·+ xn−1) +Dn−2(x2n−3+

+ · · ·+ xn−2) + · · ·+D0(xn−1 + · · ·+ 1)

+

2n−3∑
i=1

(
∑
s+t=i,
n>s>t≥0

Ds,t)x
i.

(1)

One can easily check that this formula costs about O(n2/2) coefficient multiplications and O(5n2/2) additions. Please note
that the addition and subtraction are the same in GF (2m). Compared with classic KA, the n-term KA saves more partial

3

multiplications but costs more partial additions. It is noteworthy that the inputs of Ds,t can be calculated using one addition,
which make the computation of Ds,t having only one more TX in comparison with Di. This characteristic is similar with
2-term KA; therefore, such an algorithm can be easily applied in developing bit-parallel multipliers. Besides this algorithm,
Montgomery [4] and Fan [7] proposed more Karatsuba-like formulae. These formulae aim to decrease as many coefficient
multiplications as possible. Nevertheless, their formulae contain more complicated linear combinations of subexpressions that
require more gate delay for parallel implementation.

In the following section, we study the application of n-term KA in developing efficient bit-parallel multiplier for general
irreducible trinomials.

III. BIT-PARALLEL MULTIPLIER USING n-TERM KARATSUBA ALGORITHM

In this section, we firstly investigate the multiplication of two m-term polynomials using n-term KA (m ≥ n). Then,
the modular reduction for related results are considered. Accordingly, we propose an efficient bit-parallel n-term Karatsuba
multiplier architecture.

Provide that f(x) = xm+xk+1 be an irreducible trinomial that defines the finite field GF (2m). Without loss of generality,
we only consider the case of m ≥ 2k, as the reciprocal polynomial xm + xm−k + 1 is also irreducible whenever xm + xk + 1
is irreducible. Let A,B ∈ GF (2m) are two arbitrary elements in PB representation, namely,

A =

m−1∑
i=0

aix
i, B =

m−1∑
i=0

bix
i.

Their SPB representation can be recognized as the PB representations multiplying x−k. Analogous with PB multiplication, the
SPB field multiplication consists of performing polynomial multiplication with parameter x−k and then reducing the product
modulo f(x), i.e.,

Cx−k =Ax−k ·Bx−k mod f(x)

=x−2k ·

(
m−1∑
i=0

aix
i

)
·

(
m−1∑
i=0

bix
i

)
mod f(x)

=x−k
m−1∑
i=0

cix
i.

A. Polynomial multiplication using n-term Karatsuba algorithm

Notice that m is not always divisible by n. Therefore, we first decompose m as m = n`+r, where 0 ≤ r < n and 0 ≤ r < `.
Then, A,B can be partitioned into n parts with the former n− r parts consisting of ` and the later r ones consisting of `+ 1
bits. More explicitly,

A = An−1x
(n−1)`+r−1 + · · ·+An−r+1x

(n−r+1)`+1 +An−rx
(n−r)`

+An−r−1x
(n−r−1)` + · · ·+A1x

` +A0,

and
B = Bn−1x

(n−1)`+r−1 + · · ·+Bn−r+1x
(n−r+1)`+1 +Bn−rx

(n−r)`

+Bn−r−1x
(n−r−1)` + · · ·+B1x

` +B0,

where Ai =
∑ −̀1
j=0 aj+i`x

j , Bi =
∑ −̀1
j=0 bj+i`x

j , for i = 0, 1, · · · , n− r− 1, and Ai =
∑`
j=0 aj+(`+1)i−n+rx

j , Bi =∑`
j=0 bj+(`+1)i−n+rx

j , for i = n− r, · · · , n− 1. Applying n-term KA stated in previous section to A · B, we have the
following proposition to illustrate the expansion of this polynomial multiplication.

Proposition 1 Assume that A,B are defined as above, then the expansion of AB using n-term KA can be written as:

AB =
(
An−1Bn−1x

(n−1)`+r−1 +An−2Bn−2x
(n−2)`+r−2+

· · ·+An−rBn−rx
(n−r)` + · · ·+A1B1x

` +A0B0

)
· h(x)

+

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Ds,t
)
xi`+δs,t

(2)

where h(x) = x(n−1)`+r−1 + x(n−2)`+r−2 + · · ·+ x(n−r)` + · · ·+ x` + 1 and Ds,t = (As +At)(Bs +Bt) as well as

δs,t =

 s+ t− 2(n− r), if s > t > n− r,
s− (n− r), if s > n− r, t ≤ n− r,
0, if 0 < t < s ≤ n− r.

(3)

4

Proof For simplicity, we rewrite the formulae of A,B as follows:

A = An−1x
n−1 +An−2x

n−2 + · · ·+A1x
1 +A0x

0,

B = Bn−1x
n−1 +Bn−2x

n−2 + · · ·+B1x
1 +B0x

0,

where i = (`+1)i−n+r for i= n−r+1, · · · , n− 1 and i = `i for i = 0, 1, · · · , n− r. The expansion of AB is

AB =

n−1∑
i=0

AiBn−1x
i+n−1 + · · ·+

n−1∑
i=0

AiB0x
i+0

=

n−1∑
i=0

AiBix
2i +

∑
0≤i<j<n

(AiBj +AjBi)x
i+j

(4)

Applying Eq. (1), we know that (AiBj +AjBi)x
i+j = ((Ai +Aj)(Bi +Bj) +AiBi +AjBj)x

i+j . Plug these formulae into
above expression, Eq. (4) can be rewritten as:

AB =An−1Bn−1x
n−1(xn−1 + xn−2 + · · ·+ x1 + 1)

+An−1Bn−1x
n−2(xn−1 + xn−2 + · · ·+ x1 + 1)

+ · · ·+A1B1x
1(xn−1 + xn−2 + · · ·+ x1 + 1)

+A0B0x
0(xn−1 + xn−2 + · · ·+ x1 + 1)

+

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Ds,t
)
xs+t.

When we substitute the symbol i with the original degree, the conclusion is direct. �

Analogous to the approach present in [17], we can divide (2) into two parts and compute them independently, i.e.,

S1 =

(
n−1∑

i=n−r+1

AiBix
(`+1)i−n+r +

n−r∑
i=0

AiBix
`i

)
h(x),

S2 =

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Ds,t
)
xi`+δs,t .

Therefore, the SPB field multiplication is given by

Cx−k = (S1x
−2k + S2x

−2k) mod xm + xk + 1.

In the following subsections, we discuss the computation of S1x
−2k, S2x

−2k and analyze their complexities, respectively.

B. Computation of S1x
−2k mod xm + xk + 1

Since

S1 =

(
n−1∑

i=n−r+1

AiBix
(`+1)i−n+r +

n−r∑
i=0

AiBix
`i

)
h(x),

we firstly consider the calculation of the subexpression in the parenthesis, denoted by E(x), and then S1x
−2k modulo f(x).

In fact, one can compute S1x
−2k modulo f(x) by constructing a Mastrovito matrix with respect to S1x

−2k, analogous to
the authors did in [28], [30]. Nevertheless, we found that if the irreducible trinomial xm +xk + 1 is not special, e.g., m = nk,
related Mastrovito matrix for is far more complicated than that of xnk+xk+1, which make it difficult to reuse logic gates and
increase the overall space complexity. Therefore, we prefer an alternative approach that computes E(x) first and then S1x

−2k.
This approach increases the time delay a little but can save more logic gates.

Based on the degrees of Ai, Bi, let

AiBi = (

`−1∑
j=0

aj+i`x
j) · (

`−1∑
j=0

bj+i`x
j) =

2`−2∑
j=0

c
(i)
j xj ,

for i = 0, 1, · · · , n− r − 1, and

AiBi =

(
∑̀
j=0

aj+(`+1)i−n+rx
j) · (

∑̀
j=0

bj+(`+1)i−n+rx
j) =

2∑̀
j=0

c
(i)
j xj ,

5

for i = n−r, · · · , n−1. It is easy to check that E(x) is of the degree (n−1)`+r−1+2` = m+`−1. Let E(x) =
∑m+`−1
i=0 eix

i.
Then, the coefficients eis are given by

ei =

c
(0)
i 0 ≤ i ≤ `− 1,

c
(0)
i + c

(1)
i−` ` ≤ i ≤ 2`− 2,

c
(1)
i−` i = 2`− 1,

c
(1)
i−` + c

(2)
i−2` 2` ≤ i ≤ 3`− 2,

...
c
(n−r−1)

i−(n−r−1)` + c
(n−r)
i−(n−r)` (n−r)` ≤ i ≤ (n−r+1)`−2,

c
(n−r)
i−(n−r)` i = (n−r+1)`−1, (n−r+1)`

...
c
(n−2)

i−(n−2) −̀r+2+c
(n−1)

i−(n−1) −̀r+1 (n− 1)`+ r − 1 ≤ i ≤ m− 2,

c
(n−1)

i−(n−1)`−r+1 m− 1 ≤ i ≤ m+ `− 1.

(5)

Recall that deg(E) = m+ `− 1. If we perform the PB reduction E(x) mod f(x), there are only ` terms of E(x) that needs
to be reduced further. To save the circuit delay of implementation, we can compute E(x) mod f(x) directly, which can be
obtained by using the formula xi = xi−m + xi−m+k. Provide that E(x) = p1x

m + p0, where p1(x) =
∑`−1
i=0 ei+mx

i and
p0(x) =

∑m−1
i=0 eix

i. Then, we have
E(x) mod f(x) = p1x

k + (p1 + p0).

Let E′(x) =
∑m−1
i=0 e′ix

i denote p1 + p0. The coefficients e′is can be obtained by adding the ` most significant bits of E(x)
to its ` least significant bits, i.e.,

e′i =

c
(0)
i + c

(n−1)
i+`+1 0 ≤ i ≤ `− 1,

c
(0)
i + c

(1)
i−` ` ≤ i ≤ 2`− 2,

c
(1)
i−` i = 2`− 1,

c
(1)
i−` + c

(2)
i−2` 2` ≤ i ≤ 3`− 2,

...
c
(n−r−1)

i−(n−r−1)` + c
(n−r)
i−(n−r)` (n−r)` ≤ i ≤ (n−r+1)`−2,

c
(n−r)
i−(n−r)` i = (n−r+1)`−1, (n−r+1)`,

...
c
(n−2)

i−(n−2) −̀r+2+c
(n−1)

i−(n−1) −̀r+1 (n− 1)`+ r − 1 ≤ i ≤ m− 2,

c
(n−1)

i−(n−1)`−r+1 i = m− 1.

(6)

Thus, one can calculate (6) instead of (5), and the computation of p0 can be combined with that of (6). We give the details
in Section 4.1.

After that, we then consider the SPB modular reduction of S1x
−2k. Note that

S1x
−2k mod f(x) = E(x)h(x)x−2k mod f(x)

= [p1x
k + (p1 + p0)]h(x)x−2k mod f(x)

= E′(x)h(x)x−2k + p1(x)h(x)x−k mod f(x).

In order to facilitate analysis, denoted by εi the extra term degrees in h(x) except i`, i = 0, 1, · · · , n− 1, where εi = i−n+ r
if εi > 0 and 0 otherwise. Then,

E′(x)h(x)x−2k =

n−1∑
i=0

E′(x)x−k · xi`+εi−k,

p1(x)h(x)x−k =

n−1∑
i=0

p1(x)x−k · xi`+εi .

On one hand, since p1 consists of ` terms and εi ≥ εi−1, there is no overlap between p1x
i`+εi and p1x

(i−1)`+εi−1 , for
i = 1, 2, · · · , n − 1. Also, one can check that deg(p1hx

−k) = (n − 1)` + r − 1 + ` − 1 − k = m − k − 2, and all its term
degrees are in the range [−k,m − k − 1]. Therefore, under SPB representation, p1(x)h(x)x−k mod f(x) = p1(x)h(x)x−k

and no XOR gate is needed to compute this expression. Figure 1 depicts bit positions for these subexpressions.
On the other hand, as E′(x) is of degree m− 1, E′(x)x−k can be viewed as an element of GF (2m) in SPB representation.

The reduction of E′(x)x−k · xi`+εi−k modulo f(x) is equal to shifting E′(x)x−k by i` + εi − k bits in such a field. These

6

... ...

p1x(i-1)l+єi-1p1xil+єi

Fig. 1. Bit positions for p1xi`+εi , i = 1, 2, · · · , n− 1.

operations depend on the magnitude relations between k and `. Recall that k ≤ m/2, and m = n` + r, n > r, ` > r. Two
cases are considered:

1) k ≥ (n− 1)`
2) k < (n− 1)`;

Particularly, if n ≥ 3, we have

n` ≥ 3` > 2`+ r ⇒ (n− 1)` > `+ r
⇒ 2(n− 1)` > n`+ r = m⇒ (n− 1)` > m/2 ≥ k.

Therefore, the case of k ≥ (n− 1)` happens only if n = 2. It is noteworthy that similar multiplier scheme using 2-term KA
has already been studied in [17]. Thus, we only analyze the case of k < (n− 1)` in this study. The SPB reduction relies on
the following formula: 

xi = xm+i + xi+k, for i = −2k, · · · ,−k − 1;

xi = xi−m + xi−m+k, for i = m−k,m−k+1,

· · · , 2m− 2k − 2.

(7)

On top of that, we give a useful lemma.

Lemma 1 Let A(x) =
∑m−1
i=0 aix

i−k be an element of GF (2m) in SPB representation. Then, for an integer −k ≤ ∆ ≤
m− k − 1,∆ 6= 0, A(x) · x∆ mod xm + xk + 1 can be expressed as

m−1∑
i=0

aix
−k+(i+∆) mod m +

m−1∑
i=m−∆

aix
i+∆−m, if 1 ≤ ∆ ≤ m−k−1,

m−1∑
i=0

aix
−k+(i+∆) mod m +

−∆−1∑
i=0

aix
i+∆, if − k ≤ ∆ < 0.

The proof of above lemma can be found in the appendix. This lemma indicates that if we shift a GF (2m) element by ∆ bits,
the result equals a ∆-bit cyclic shift of its coefficients plus an extra expression of ∆ bits.

Based on Lemma 1, we can perform the modular reduction with respect to E′(x)x−k ·xi`+εi−k. Please notice that i`+εi−k
here is equivalent to the integer ∆ in Lemma 1. Let an integer t satisfy that (t − 1)` + εt−1 ≤ k < t` + εt. Then, we have
i`+ εi − k ≤ 0, for i = 0, 1, · · · , t− 1 and i`+ εi − k > 0 for i = t, · · · , n− 1. The results of E′(x)xi`+εi−2k mod f(x) are
given by:

E′(x)xi`+εi−2k mod f(x) =

m−1∑
j=0

e′jx
−k+(j+θi) mod m

+

−θi−1∑
j=0

e′jx
j+θi ,

(8)

for i = 0, 1, · · · , t− 1, and

E′(x)xi`+εi−2k mod f(x) =

m−1∑
j=0

e′jx
−k+(j+θi) mod m

+

m−1∑
j=m−θi

e′jx
j+θi−m,

(9)

for i = t, · · · , n− 1, where θi = i`+ εi − k. Particularly, if (t− 1)`+ εt−1 = k, the corresponding expression

E′(x)x(t−1)`+εt−1−2k mod f(x) = E′(x)x(t−1)`+εt−1−2k

does not need any reduction. But it can be recognized as a special case of (8) with θi = 0 and
∑−θi−1
j=0 djx

j+θi = 0. For
simplicity, we do not discuss this case independently.

7

......

p0, p1,......, pn-1, p0
', p1

',..., p't-1, p't, p't+1,···, p'n-1

-k
.
.
.

-1
0
.
.
.
.
.

m-k-1

...

...

Fig. 2. Bit positions for all the subexpressions.

One can easily check that (8) and (9) consist of two subexpressions, in which the former one contains m terms and the
latter one contains θi terms. Moreover, we note that the subexpressions

∑−θi−1
j=0 e′jx

j+θi (i = 0, 1, · · · , t − 1) have all their
term degrees smaller than 0, while

∑m−1
j=m−θi e

′
jx
j+θi−m (i = t, · · · , n− 1) have all their term degrees larger than 0. That is

to say, there are no overlapped terms between these two kinds of subexpressions. We can add them without any logic gates.
Figure 2 demonstrates the bit positions for these subexpressions.

The vectors Pi,P′i in Figure 2 represent the coefficients vectors with respect to all the subexpressions presented in (8) and (9).
Recall that p1(x)h(x)x−k is also needed to be added. In parallel implementation, it only needs dlog2(n+1+max{t, n−t})eTX
to add all these subexpressions together using a binary XOR tree. Moreover, as t ≥ 1, we have dlog2(n+1+max{t, n−t})e ≤
dlog2 2ne. Therefore, no more than (1 + dlog2 ne)TX gates delays are needed for the modular reduction pertaining to S1x

−2k,
after we finish computing p1 + p0 and p1.

C. Computation of S2x
−2k mod xm + xk + 1

The computation of S2x
−2k modulo f(x) is different from that of S1x

−2k, as such a expression consists of
(
n
2

)
different

subexpressions Ds,tx
δ, (0 ≤ t < s < n), each of which can be computed independently. One can see that Ai, Bi, for

i = 0, 1, · · · , n− r− 1, are of degrees `− 1 and the rest of Ai, Bi are of degrees `. Let As +At =
∑`
i=0 u

(s,t)
i xi, Bs +Bt =∑`

i=0 v
(s,t)
i xi, for 0 ≤ t < s, s ≥ n− r, and As +At =

∑`−1
i=0 u

(s,t)
i xi, Bs +Bt =

∑`−1
i=0 v

(s,t)
i xi, for 0≤ t<s<n− r. Then,

we have

Ds,t = (

`−1∑
i=0

u
(s,t)
i) · (

`−1∑
i=0

v
(s,t)
i) =

2`−2∑
i=0

d
(s,t)
i xi, (10)

if 0≤ t<s<n− r, and

Ds,t = (
∑̀
i=0

u
(s,t)
i) · (

∑̀
i=0

v
(s,t)
i) =

2∑̀
i=0

d
(s,t)
i xi, (11)

if 0 ≤ t < s, s ≥ n − r. In order to perform modular reduction for S2x
−2k efficiently, we apply a trick established in [27]

to categorize all the Ds,ts, where the Ds,ts from the same category can be recognized as an integral to perform modular
reduction. We first have the following proposition.

Proposition 2 S2 can be expressed as the plus of g1x
(2λ−1)`, g2x

(2λ−3)`, · · · , gλx` for λ = n
2 (n is even) or λ = n−1

2 (n is
odd), where

g1 =Cn−1,n−2x
(n−2)`+Cn−1,n−3x

(n−3)`+· · ·+Cn−1,1x
`+Cn−1,0,

g2 =Cn−2,n−3x
(n−2)`+Cn−2,n−4x

(n−3)`+· · ·+Cn−2,0x
`+Cn

2
−1,n

2
−2,

g3 =Cn−3,n−4x
(n−2)`+Cn−3,n−5x

(n−3)`+· · ·+Cn
2
−1,n

2
−3x

`+Cn
2
−1,n

2
−4,

...

gn
2

=Cn
2
,n
2
−1x

(n−2)`+Cn
2
,n
2
−2x

(n−3)`+· · ·+C2,0x
`+C1,0,

8

or

g1 =Cn−1,n−2x
(n−1)`+Cn−1,n−3x

(n−2)`+· · ·+Cn−1,0x
`+Cn−1

2
,n−3

2
,

g2 =Cn−2,n−3x
(n−1)`+Cn−2,n−4x

(n−2)`+· · ·+Cn−1
2
,n−5

2
x`+Cn−1

2
,n−7

2
,

...

gn−1
2

=Cn+1
2
,n−1

2
x(n−1)`+Cn+1

2
,n−3

2
x(n−2)`+· · ·+C2,0x

`+C1,0.

Here, Cs,t = Ds,t · xδs,t , for n > s > t ≥ 0.

The proof of this proposition can be built using mathematical induction, which is nearly the same as the Proposition 1 in [27].
One just replaces Ds,t by Ds,t · xδs,t in that proof and obtains the conclusion directly.

Therefore, based on Proposition 2,

S2x
−2k = g1x

(2λ−1)`−2k + g2x
(2λ−3)`−2k + · · ·+ gλx

`−2k.

Accordingly, its SPB reduction can also be expressed as a plus of these λ sub-expressions modulo f(x). We can perform these
modular reductions in parallel and then add the results together. The detailed computation for S2x

−2k mod f(x) is presented
as following steps:

(i) Perform bitwise addition As +At, Bs +Bt, (n > s > t ≥ 0) in parallel.
(ii) Classify the sub-expressions Ds,t into λ parts according to Proposition 2 and compute these λ bigger expressions, i.e.,

g1, g2, · · · , gλ.
(iii) Perform reductions of g1x

(2λ−1)`−2k, g2x
(2λ−3)`−2k, · · · , gλx`−2k modulo f(x).

(iv) Add all these results using binary XOR tree to obtain the S2x
−2k mod f(x).

Remark. In Step (i), there are 2 ·
(
n
2

)
= n(n−1) polynomial additions in all that need to be computed. All these additions can

be performed in parallel, which costs one TX delay. In Step (ii), we do not compute Ds,t directly but λ integral expressions
g1, · · · , gλ. These computations are analogous to that of E(x) in Section 3.2. The reduction of S2x

−2k are performed in Step
(iii) and Step (iv). Note that these steps can be computed jointly.

As polynomials additions in Step (i) are easy to implement, in the following, we mainly consider the computation of Step
(ii)-(iv).

1) Step (ii): Step (ii) consists of the computation of g1, g2, · · · , gλ, which are composed of Ds,ts. As mentioned in previous
paragraphs, Ds,ts have different degrees. More explicitly, there are

(
n−r

2

)
such Ds,ts of degrees 2` − 2 and

(
n
2

)
−
(
n−r

2

)
Ds,ts of degrees 2`. Therefore, according to Proposition 2, if n is even, λ = n

2 , the degrees of g1, g2, · · · , gn2 are at most
(n−2)`+2`+2r−3 = m+r−3, if n is odd, λ = n−1

2 , the degrees of g1, g2, · · · , gn−1
2

are at most (n−1)`+2`+2r−3 =

m+ `+ r − 3. We assume that gi =
∑m+r−3
j=0 h

(i)
j xj if n is even, and gi =

∑m+`+r−3
j=0 h

(i)
j xj if n is odd.

On top of that, g1, g2, · · · , gλ have slightly different formulations as the Ds,ts in the same category may have different
degrees and δs,t may also be different. We rewrite Ds,t in a unified form: Ds,t =

∑2`
i=0 d

(s,t)
i xi, with d2` = d2`−1 = 0 if

0≤ t<s<n− r. According to the explicit formulation of gi presented in Proposition 2, gi consists of n (n is odd) or n− 1 (n
is even) subexpressions Ds,tx

δs,t and three arbitrary contiguous subexpressions in a same gi have the following characteristic:

Ds1,t1x
δs1,t1+s` +Ds2,t2x

δs2,t2+(s−1)` +Ds3,t3x
δs3,t3+(s−2)`,

where s1 ≥ s2 ≥ s3 and s1 + t1 = s2 + t2 + 1 = s2 + t2 + 2.
From (3), it is easy to obtain that δs1,t1 ≥ δs2,t2 ≥ δs3,t3 . One can check that only if δs1,t1 = δs2,t2 = δs3,t3 , the

corresponding coefficients of gi are overlapped by these three subexpressions. Part of its coefficients are given by:

h
(i)
j =

...
...

d
(s3,t3)

j−(s−3)`−δ + d
(s2,t2)

j−(s−2)`−δ, (s− 2)`+ δ ≤ j ≤
(s− 1)`+ δ − 1,

d
(s3,t3)
2` + d

(s2,t2)
` + d

(s1,t1)
0 , j = (s− 1)`+ δ,

d
(s2,t2)

j−(s−2)`−δ + d
(s1,t1)

j−(s−1)`−δ, (s− 1)`+ δ + 1 ≤ j
≤ s`+ δ − 1,

...
...

where δ = δs1,t1 = δs2,t2 = δs3,t3 . We note that in this case, h(i)
(s−1)`+δ is a plus of three terms. Except this case, there is no

coefficient of gi obtained by a plus of three terms. Plug (10) and (11) into above formula, it is easy to check that h(i)
(s−1)`+δ

contains ` + 3 terms of u(s,t)
i · v(s,t)

i , which leads to at most dlog2(` + 3)eTX delays using binary XOR tree. Also notice
that one TA is needed to calculate the coefficient multiplication related to Ds,t. We immediately obtain that all gis can be
implemented in parallel using TA + dlog2(`+ 3)eTX gates delay.

9

2) Step (iii) and (iv): Then we consider the computations of Step (iii) and (iv). Firstly we have a following observation.
Observation 1 The modular reduction of g1x

(2λ−1)`−2k, g2x
(2λ−3)`−2k, · · · , gλx`−2k by f(x) only require one reduction

step.
The proof of this observation is given in the appendix. We then investigate the computation of Step (iii). For simplicity, let

∆i = (2λ− 2i+ 1)`− k, i = 1, 2, · · · , λ, then g1x
(2λ−1)`−2k, g2x

(2λ−3)`−2k, · · · , gλx`−2k can be rewritten in a unified form,
i.e.,

gix
∆i−k, i = 1, 2, · · · , λ.

Please notice that the explicit reduction formulations of gix∆i−k modulo f(x) depend on the choice of n, ` and k. According
to the previous statement, it is clear that n ≥ 2 and thus ` ≤ m/2. We also have 0 < k ≤ m/2. But, the magnitude relations
of these parameters are uncertain, which highly influence the application of the reduction rule. For example, if ` > k, we have
`− 2k > −k. All the terms of gix∆i−k have their degrees larger than −k. We only need to reduce the terms whose degrees
are greater than m− k − 1. Therefore, to investigate the modular reduction details, six cases are considered:

1) n is even, ` < k, (n− 1)` ≤ k;
2) n is even, ` < k, (n− 1)` > k;
3) n is even, ` ≥ k;
4) n is odd, ` < k, (n− 2)` ≤ k;
5) n is odd, ` < k, (n− 2)` > k;
6) n is odd, ` ≥ k.

As described in Section 3.2, Case 1 happens only if n = 2, which has already been studied in [17]; thus, we only analyze the
rest of the cases, separately.

Since the degrees of gi are at most m + r − 3 (n is even) or m + ` + r − 3 (n is odd), we partition gi into two parts
accordingly, i.e.,

gi = p
(i)
1 xm + p

(i)
0 , (12)

for i = 1, 2, · · · , λ, where the first part consists of r − 2 (or `+ r − 2) terms and latter one consists of m terms. We directly
have

gi mod f(x) = p
(i)
1 (xk + 1) + p

(i)
0 .

Thus, the modular reductions with respect to gix∆i−k can be expressed as the reduction with respect to p(i)
1 , p

(i)
2 multiplying

certain exponent of x. More explicitly,

gix
∆i−k mod f(x) =

(
p

(i)
1 + p

(i)
1 x−k+

p
(i)
0 x−k

)
x∆i mod f(x),

(13)

i = 1, 2, · · · , λ. Consider the term degree range of SPB representation, the expressions p(i)
1 , p(i)

1 x−k and p(i)
0 x−k have all their

term degrees in the range [−k,m− k− 1]. Therefore, the modular reductions of gix∆i−k will also utilize Lemma 1. Take into
account this lemma, we have following proposition.

Proposition 3 Step (iii) and (iv) can be calculated jointly within at most dlog2(n+ 2)eTX delay.

Proof Obviously, Step (iii) and (iv) actually compute
∑λ
i=1 gix

(2λ−2i+1)`−2k mod f(x), which consists of polynomial modular
reductions and additions. Without loss of generality, we only analyze Case 2 here, the proof for the rest of cases are available
in the appendix.

In this case, recall that ∆i = (n− 2i+ 1)`− k, i = 1, 2, · · · , n2 . Since ` < k, (n− 1)` > k, one can check that some of ∆is
are greater than 0 and others are less than 0, which will lead to different reduction formulae according to Lemma 1.

Let an odd integer t ≥ 1 satisfy that t` ≤ k, (t + 2)` > k. Then, we have ∆i > 0, for i = 1, 2, · · · , n−t−1
2 and ∆i ≤ 0

for i = n−t+1
2 , · · · , n2 . Now we investigate the detailed modular reduction of (13). Note that p(i)

1 =
∑r−3
j=0 h

(i)
m+jx

j and
p

(i)
2 =

∑m−1
j=0 h

(i)
j xj here. Firstly, the modular reduction of p(i)

2 x∆i−k can be obtained as follows:

p
(i)
2 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+

m−1∑
j=m−∆i

h
(i)
j xj+∆i−m,

(14)

10

for i = 1, 2, · · · , n−t−1
2 , and

p
(i)
2 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+

−∆i−1∑
j=0

h
(i)
j xj+∆i ,

(15)

for i = n−t+1
2 , · · · , n2 .

Then, consider the reduction of p(i)
1 x∆i + p

(i)
1 x∆i−k. We know that the maxium degree of p(i)

1 is r − 3 and max ∆i =

(n−1)`−k < m−k−`. Thus, it is easy to check that the degrees of p(i)
1 x∆i (i = 1, · · · , n2) are all in the range [−k,m−k−1],

which need no reduction. That is to say,
n
2∑
i=1

p
(i)
1 x∆i mod f(x) =

n
2∑
i=1

p
(i)
1 x∆i . (16)

However, as t` < k, p(i)
1 x∆i−k, i = n−t+1

2 , · · · , n2 have some term degrees less than −k and thus need reduction by f(x).

Specifically, we note that deg(p
(n−t+1

2)
1) ≤ r − 3. It is possible that t` < k and t`+ r − 3 ≥ k, which indicates that a part of

p
(n−t+1

2)
1 xt`−2kdoes not need further reduction. Therefore, the explicit reduction formulae are given by

p
(i)
1 x∆i−k mod f(x) = p

(i)
1 xm+∆i−k + p

(i)
1 x∆i , (17)

for i = n−t+3
2 , · · · , n2 . And,

p
(n−t+1

2)
1 xt`−2k mod f(x)

=
(
p

(n−t+1
2)

1,1 xk−t` + p
(n−t+1

2)
1,2

)
xt`−2k mod f(x)

= p
(n−t+1

2)
1,1 x−k + p

(n−t+1
2)

1,2 (xm+t`−2k + xt`−k).

(18)

Here, p(n−t+1
2)

1,1 consists of at most r − 2− (k − t`) bits and p(n−t+1
2)

1,2 consists of at most k − t` bits. 1.
Moreover, note that ∆i − ∆i+1 = 2` for i = 1, 2, · · · , n2 − 1 and each p

(i)
1 consists of at most r − 2 terms. There are

no overlapped terms among p
(1)
1 x∆1 , p

(2)
1 x∆2 , · · · , p(n2)

1 x
∆n

2 , so we can add them without any logic gates. Similar thing
also happens among p(i)

1 xm+∆i−k, (i = n−t+3
2 , · · · , n2), and p(i)

1 x∆i−k, (i = 1, 2, · · · , n−t−1
2). By combining the same sub-

expressions and swapping some parts of (16), (17) and (18), the result of
∑n

2
i=1(p

(i)
1 +p

(i)
1 x−k)x∆i modulo f(x) can be written

as two independent expressions:
n
2∑
i=1

p
(i)
1 x∆i +

n
2∑

i=n−t+1
2

p
(i)
1 x∆i + p

(n−t+1
2

)

1,1 x−k + p
(n−t+1

2
)

1,2 xt`−k

=

n−t−1
2∑
i=1

p
(i)
1 x∆i + p

(n−t+1
2

)

1,1 (1 + x−k), (19)

n
2∑

i=n−t+3
2

p
(i)
1 xm+∆i−k+

n−t−1
2∑
i=1

p
(i)
1 x∆i−k+p

(n−t+1
2)

1,2 xm+t`−2k, (20)

each of which consists of sub-expressions that have no overlapped terms.
Finally, we add all the modular reduction results included in (14), (15), (19) and (20) to obtain S2x

−2k mod f(x). Specifically,
we note that the subexpression

∑m−1
j=m−∆i

h
(i)
j xj+∆i−m in (14) does not overlap with

∑−∆i−1
j=0 h

(i)
j xj+∆i in (15), so that every

two of such expressions can be concatenated together. This case is similar with what happened in Figure 2. As a result, we
only need to add n

2 + 2 + max{n−t−1
2 , t+1

2 } combined expressions using binary XOR tree, which requires dlog2(n2 + 2 +
max{n−t−1

2 , t+1
2 })eTX ≤ dlog2(n+ 2)eTX delay in parallel. Then we conclude the proposition. �

1If t`+ r − 3 < k, we have p
(n−t+1

2
)

1,1 = 0 and p
(n−t+1

2
)

1,2 = p
(n−t+1

2
)

1 , which does not influence the result.

11

D. A small example of n-term Karatsuba multiplier

To illustrate the n-term Karatsuba algorithm and the modular reduction strategy related to S1x
−2k and S2x

−2k, we give
a small example. Consider the field multiplication using SPB representation over GF (214) with the underlying irreducible
trinomial x14 + x5 + 1. Obviously, we have the optimal SPB parameter k = 5 and SPB is defined as {x−5, x−4, · · · , x7, x8}.
Provide that A · x−5 =

∑13
i=0 aix

i−5 and B · x−5 =
∑13
i=0 bix

i−5 are two elements in GF (214) in SPB representation.
Without loss of generality, we apply 4-term Karatsuba algorithm to the polynomial multiplication. It is clear that 14 = 4×3+2.

We have n = 4, ` = 3, r = 2 and r satisfies r < n, r < `. Accordingly, partition A,B as A = A3x
10 +A2x

6 +A1x
3 +A0, B =

B3x
10 +B2x

6 +B1x
3 +B0, where

Ai =

2∑
j=0

aj+3ix
j , Bi =

2∑
j=0

aj+3ix
j , for i = 0, 1,

Ai =

3∑
j=0

aj+4i−2x
j , Bi =

3∑
j=0

aj+4i−2x
j , for i = 2, 3.

From equation (2),

AB=(A3B3x
10+A2B2x

6+A1B1x
3+A0B0)h(x)+D3,2x

15+1

+D3,1x
12+1+D3,0x

9+1+D2,1x
9+D2,0x

6+D1,0x
3

= S1 + S2,

where h(x) = x10 + x6 + x3 + 1. Recall that Ds,t = (As + At)(Bs + Bt). Apparently, there are
(

5
2

)
= 10 such Ds,ts. We

also write the term degrees of Ds,t in the form of i`+ δs,t, in which δ3,2 = δ3,1 = δ3,0 = 1 and the rest of δs,t are all zero.
Based on the formulations of Ai, Bi, we assume that Ds,t =

∑6
i=0 d

(s,t)
i xi for 3 ≥ s > 1, 2 ≥ t > 0, s 6= t and

D1,0 =
∑4
i=0 d

(1,0)
i xi. According to the description in Section 3.1, we have

S1 = (A3B3x
10 +A2B2x

6 +A1B1x
3 +A0B0)h(x),

and categorize S2 into to two parts, i.e., S2 = g1x
9 + g2x

3, where

g1 = D3,2x
6+1 +D3,1x

3+1 +D3,0x,

g2 = D2,1x
6 +D2,0x

3 +D1,0.

Now, consider the modular reduction of S1x
−10 and S2x

−10. We first compute E(x) = A3B3x
10+A2B2x

6+A1B1x
3+A0B0 =

p1x
m + p0. Obviously,

p0 = (a13b10+a12b11+a11b12+a10b13)x13 + (a12b10+a11b11

+a10b12+a9b9)x12 + (a11b10 + a10b11+a9b8+a8b9)x11+

(a10b10+a9b7+a8b8+a7b9)x10 + (a9b6+a8b7+a7b8+a6b9)x9

+ (a8b6+a7b7+a6b8)x8 + (a7b6+a6b7+a5b5)x7

+ (a6b6+a5b4+a4b5)x6 + (a5b3+a4b4+a3b5)x5

+ (a4b3+a3b4+a2b2)x4 + (a3b3+a2b1+a1b2)x3

+ (a2b0+a1b1+a0b2)x2 + (a1b0+a0b1)x+ a0b0,

and p1 = a13b13x
2 + (a13b12 + a12b13)x+ (a13b11 + a12b12 + a12b13). Meanwhile,

g1 = d
(3,2)
6 x13 + d

(3,2)
5 x12 + d

(3,2)
4 x11 +

(
d

(3,2)
3 + d

(3,1)
6

)
x10

+
(
d

(3,2)
2 + d

(3,1)
5

)
x9 +

(
d

(3,2)
1 + d

(3,1)
4

)
x8 +

(
d

(3,2)
0 + d

(3,1)
3

+ d
(3,0)
6

)
x7 +

(
d

(3,1)
2 + d

(3,0)
5

)
x6 +

(
d

(3,1)
1 + d

(3,0)
4

)
x5

+
(
d

(3,1)
0 + d

(3,0)
3

)
x4 + d

(3,0)
2 x3 + d

(3,0)
1 x2 + d

(3,0)
0 x,

g2 = d
(2,1)
6 x12 + d

(2,1)
5 x11 + d

(2,1)
4 x10 +

(
d

(2,1)
3 + d

(2,0)
6

)
x9

+
(
d

(2,1)
2 + d

(2,0)
5

)
x8 +

(
d

(2,1)
1 + d

(2,0)
4

)
x7 +

(
d

(2,1)
0 + d

(2,0)
3

)
x6

+ d
(2,0)
2 x5 + (d

(2,0)
1 + d

(1,0)
4

)
x4 +

(
d

(2,0)
0 + d

(1,0)
3

)
x3

+ d
(1,0)
2 x2 + d

(1,0)
1 x1 + d

(1,0)
0 .

As presented in section 3.2, in order to speed up the multiplier, we can compute E′(x) = p1 +p0 instead of p0, while p1 can
be obtained by reusing some XOR gates of E′. On top of that, one can check that p1(x10 + x6 + x3 + 1)x−5 has all its terms
in the range [−5, 8], which does not need any further reduction. Then, we can easily obtain the reduction of E′(x)h(x)x−10

and g1x
9−10, g2x

3−10 modulo x14 + x5 + 1, which is available in the appendix.

12

TABLE I
THE COMPUTATION COMPLEXITY OF e′i

e′i #AND #XOR Delay

e′0 = c
(0)
0 + c

(n−1)
`+1 `+ 1 ` TA + (dlog2(`+ 1)e)TX

e′1 = c
(0)
1 + c

(n−1)
`+2 `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

e′`−1 = c
(0)
`−1 + c

(n−1)
2` `+ 1 ` TA + (dlog2(`+ 1)e)TX

e′` = c
(0)
` + c

(1)
0 ` `− 1 TA + (dlog2 `e)TX

...
...

...
...

e′2`−1 = c
(1)
`−1 ` `− 1 TA + (dlog2 `e)TX

e′2` = c
(1)
` + c

(2)
0 ` `− 1 TA + (dlog2 `e)TX

...
...

...
...

e′
(n−r+1)`−1

= c
(n−r)
`−1 ` `− 1 TA + (dlog2 `e)TX

e′
(n−r+1)`

= c
(n−r)
` `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

e′
(n−1)`+r−1

= c
(n−2)
`+1 +c

(n−1)
0 `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

e′m−1 = c
(n−1)
` `+ 1 ` TA + (dlog2(`+ 1)e)TX

Total (n− r)`2 + r(`+ 1)2 (n− r)`(`− 1) + r`(`+ 1) TA + (dlog2(`+ 1)e)TX

IV. COMPLEXITY ANALYSIS

Based on previous description, in this section, we analyze the space and time complexities pertaining to S1x
−2k and S2x

−2k

modulo f(x).

A. Space and time complexity of S1x
−2k mod f(x)

As presented in section 3.2, the computation of S1x
−2k modulo f(x) consists of computation of p1, p1 + p0 following a

modular multiplication by h(x)x−2k. We first investigate the complexity of p1 and E′ = p1 + p0. From (5) and (6), we can
see that the coefficients of p1 and p1 + p0 are composed of c(i)j (i = 0, 1, · · · , n− 1), where

c
(i)
j =

{ ∑j
t=0 at+i`bt−j+i` 0 ≤ t ≤ `− 1,∑`−1
t=j−`+1 at+i`bt−j+i` ` ≤ t ≤ 2`− 2,

for i = 0, 1, 2, · · · , n− r − 1, and

c
(i)
j ={ ∑j

t=0 at+(`+1)i−n+rbt−j+(`+1)i−n+r 0 ≤ t ≤ `,∑`
t=j−` at+(`+1)i−n+rbt−j+(`+1)i−n+r `+ 1 ≤ t ≤ 2`,

for i = n− r, · · · , n− 1. Combine the above expressions with (5) and (6), it is easy to check that each coefficient ei and e′i
are composed of at most `+ 1 coefficient products of AiBi, i = 0, 1, · · · , n− 1. We immediately conclude that p1 + p0 and
p1 can be computed in TA + dlog2(`+ 1)eTX delay. Table I presents the gate count and time delay for the implementation of
each coefficient of p1 + p0.

Furthermore, notice that

p1(x) =

`−1∑
i=0

ei+mx
i =

`−1∑
i=0

c
(n−1)
i+`+1x

i.

It is obvious that p1 + p0 contains all the terms that are included in p1. Therefore, no AND gates are needed to compute p1,
and some XOR gates can also be saved using a so-called binary tree sub-expression sharing [16], [17]. The authors found that
if two binary XOR trees share k common items, k−W (k) XOR gates can be saved, where W (k) is the Hamming weight of
the binary representation of k. Here, the coefficient ei+m(i = 0, 1, · · · , ` − 1) of p1 consists of i + 1 items aibj and shares
i+ 1 items with those coefficients of E′, only i− (i+ 1−W (i+ 1)) = W (i+ 1)− 1 XOR gates are needed. Thus, it totally
requires

∑`
i=1W (i)− ` XOR gates in all to compute p1.

13

TABLE II
SPACE AND TIME COMPLEXITIES OF S1x−2k mod f(x).

Operation # AND #XOR Delay

E′=p1+p0 n`2+2`r+r n`2 + 2`r − n` TA+

p1 -
∑`
i=1W (i)− ` dlog2(`+ 1)eTX

S1 modf(x) -
n`+ (n− 1)m+

≤ dlog2 2neTX∑n−1
i=0 |θi|

where θi = i`+ εi − k, εi = i− n+ r for i = n− r, · · · , n− 1,

εi = 0 for i = 0, 1, · · ·n− r − 1

TABLE III
NUMBER OF BITS IN (14), (15), (19) AND (20).

Formulae number of bits

(14) m+ ∆i, i = 1, 2, · · · , n−t−1
2

(15) m+ |∆i|, i = n−t+3
2

, · · · , n
2

(19) n−t−1
2
· (r − 2) + 2(r − 2− (k − t`))

(20) (n
2
− 1) · (r − 2) + (k − t`)

We then investigate the complexity of E′(x)h(x)x−2k + p1h(x)x−k modulo f(x). As shown in Section 3.2, we only need
to add at most 2n + 1 expressions to obtain the result. Particularly, note that vectors P0, · · · ,Pn−1 consist of m bits, while
P′0, · · · ,P′n−1 consist of |θi| bits. Also, p1h(x)x−k contains at most n` nonzero items. Thus, the number of required XOR
gates is

n`+ (n− 1)m+

n−1∑
i=0

|i`+ εi − k|.

Table 2 summarizes the space and time complexity for every step of S1x
−2k mod f(x).

B. Space and time complexity of S2x
−2k mod f(x)

Now we discuss the complexity of S2x
−2k mod f(x) step by step. Firstly, based on the description in Section 3.3, it is

easy to check that As + At, Bs + Bt for 0 < t < n − r requires ` XOR gates each, while each of As + At, Bs + Bt for
s > t ≥ n− r costs `+ 1 XOR gates. Since there are

(
n
2

)
different such expressions, these additions totally require

2 ·
(
r(r−1)

2
(`+ 1)+

(
n(n−1)

2
− r(r−1)

2

)
`

)
= n2`+r2−m

XOR gates for the pre-computation of all the As +At, Bs +Bt.
Secondly, the computation of g1, g2, · · · , gλ contains the computation of Ds,ts and the additions among Ds,ts in the same

category. Recall that Ds,ts have different degrees. Thus, the computation of one Ds,t costs `2 AND gates plus (`− 1)2 XOR
gates if its degree is 2`− 2, otherwise it cost (`+ 1)2 AND and `2 XOR gates. One also can check that when adding Ds,ts
to obtain gi, only the ` least significant bits and ` most significant bits of gi do not need additions. So the additions among
Ds,ts in the same category require m+ r − 2− 2` XOR gates (even n) or m+ r − 2− ` XOR gates (odd n).

In the end, as mentioned in Section 3.3, we need to add the modular results presented in (14), (15), (19) and (20) to obtain
the final result. The number of required XOR gates depends on these formulations. For example, Table III presents the number
of bits included in (14), (15), (19) and (20) for Case 2. It totally requires at most m(n−1)

2 + (n − t−1
2)(r − 2) +

∑n/2
i=1 |∆i|

XOR gates to add these expressions. Explicit space and time complexities for each steps are summarized in Table IV.

C. Total complexity and more discussion

As mentioned in previous sections, S1x
−2k mod f(x) and S2x

−2k mod f(x) are computed in parallel and the overall delay
is equal to the longer circuit delay of either S1x

−2k mod f(x) or S2x
−2k mod f(x). From Table 2 and 3, it is clear that the

14

TABLE IV
SPACE AND TIME COMPLEXITIES OF S2 mod f(x).

Operation #AND #XOR Delay

(i)
As +At - (n2`+ r2 −m)/2

TX
Bs +Bt - (n2`+ r2 −m)/2

(ii)

Ds,t of ` bits
(n−r

2

)
`2

(n−r
2

)
(`− 1)2

≤ TA + dlog2(`+ 3)eTX
Ds,t of `+ 1 bits (

(n
2

)
−
(n−r

2

)
)(`+1)2 (

(n
2

)
−
(n−r

2

)
)`2

Additions of Ds,t -
n
2
· (m+ r − 2− 2`) (even n)

n−1
2
· (m+ r − 2− `) (odd n)

(iii), (iv)

Case 2 - m(n−2)
2

+ (n− t−1
2

)(r − 2) +
∑n/2
i=1 |∆i| dlog2(n+4

2
+max{n−t−1

2
, t+1

2
})eTX

Case 3 - m(n−2)
2

+ n(r − 2) +
∑n/2
i=1 |∆i| dlog2(n+ 2)eTX

Case 4 (n = 3) - m+ 2`+ 2r − 4 dlog2 5eTX

Case 5 - (n−3)m
2

+ (n− t+1
2

)(r + `− 2) +
∑(n−1)/2
i=1 |∆i| dlog2(n+5

2
+max{n−t−2

2
, t+1

2
})eTX

Case 6 - (n−3)m
2

+ (n− 1)(r + `− 2) +
∑(n−1)/2
i=1 |∆i| dlog2(n+ 1)eTX

where ∆i = (n− 2i+ 1)`− k, if n is even or (n− 2i)`− k if n is odd, t ≥ 1 is an odd integer that satisfy t` ≤ k, (t+ 2)` > k

delay of S2x
−2k mod f(x) is slightly higher. Thus the overall circuit delay for parallel implementation of S1x

−2k, S2x
−2k

modulo f(x) is TA + (1 + dlog2(` + 3)e + dlog2(n + 2)e)TX . Afterwards, m more XOR gates are needed to add these two
results, which leads to one more TX delay. To sum up, the total delay of our proposed architecture is

Time Delay: ≤ TA + (2 + dlog2(`+ 3)e+ dlog2(n+ 2)e)TX .

The space complexity is

AND: m2

2 + m`
2 + (m+ n+ `+1

2)r − (`+ 2)r2,

XOR: m2

2 + (2n+ `
2 + r−2)m+ n2+rn+r+`r

2 +
∑`
i=1W (i)

+
∑n−1
i=0 |θi|+

∑n/2
i=1 |∆i|− `r2 − `− 7n

2 , (n even),

or

m2

2 + (2n+ r + `−3
2)m+ n2+rn+`r+6

2 +
∑`
i=1W (i)

+
∑n−1
i=0 |θi|+

∑(n−1)/2
i=1 |∆i|− `r2 − 5r+3`+7n

2 , (n odd),

where the explicit values of ∆i and θi are presented in Table 2 and 3. It is noteworthy that in Table 3, there are several cases
for the number of required XOR gates. For simplicity, we only present the upper bound of required XOR gates.

According to these formulations, we directly know that no matter which n-term KA (i.e., the choice of n, `, r) we choose,
the corresponding hybrid multiplier requires at least m2

2 AND gates as well as m2

2 XOR gates. Thus, it is the lower bound of
the space complexity that our proposal can achieve. In fact, since the parameters n, `, r and k all influence the space and time
complexity, we can only obtain a certain optimal result under some preconditions. For example, if we consider minimizing
the number of required AND gates only, ` should be equal to one. But in this case, we have n = m. The number of required
XOR gates will be greater than 5m2

2 .
Specifically, as r is a small integer, the functions related to mr can roughly be recognized as a linear function of m. Thus,

the space complexity of our proposal depends on the selection of n, `, k. Note that
∑`
i=0W (i) can be roughly written as

`
2 log2 ` [16]. If we ignore these linear or small parts of above complexities formulae, the space complexity of our proposal is
determined by some quadratic subexpressions.

1) Influence of parameter k: Although the irreducible trinomial xm + xk + 1 is usually given in advance, its term order k
does have a significant impact on the space and time complexity. As we presented in Section 3.2, the time delay of adding
these vectors Pi,P

′
i and p1(x)h(x)x−k in parallel is dlog2(n+ 1 + max{t, n− t})e, where t satisfies

(t− 1)`+ εt−1 ≤ k < t`+ εt.

It is obvious that when t approaches n/2, we obtain the minimal time delay. We then directly know that k is close to
(n/2) · ` ≈ m/2. Meanwhile, from Table IV, the computations of step (iii) and (iv) in this case also have lower gates delay.

15

Also notice that, in the space complexity formulae related to #XOR, the values of
∑n−1
i=0 |θi| and

∑λ
i=1 |∆i| (λ = n/2 for

even n and λ = (n− 1)/2 of odd n) are determined by k. In fact,
n−1∑
i=0

|θi| =
n−1∑
i=0

|i`+ εi − k| = tk +

n−1∑
i=t

(i`+ εi)

−
t−1∑
i=0

(i`+ εi)− (n− t)k,

and
λ∑
i=1

|∆i| =
λ∑
i=1

|(2λ− 2i+ 1)`− k| = (t′ + 1)k

2

−
λ∑

i= 2λ−t′+1
2

(2λ− 2i+ 1)`+

2λ−t′−1
2∑
i=1

(2λ− 2i+ 1)`− (λ− t′+ 1

2
)k,

where t satisfies (t− 1)`+ εt−1 ≤ k < t`+ εt and t′ is an odd integer satisfying t′` ≤ k < (t′ + 2)`. Please note that t− 1 is
not always equal to t′.

In order to inspect the variation tendency of above expressions with respect to t and t′, we expand these expressions by
omitting the small parameter εi and recognize them as two functions:

f1(t) = (2t− n)k + (−t2 + t+
n2 − n

2
)`,

f2(t′) = (t′ + 1− λ)k +
(−t′2 − 2t′ + 2λ2 − 1)`

2
.

Obviously, the bigger of the parameters t and t′ are, the smaller of two functions become. That is to say, bigger k can lead
to a lower space complexity. As a result, the trinomial xm + xk + 1 with k approaching to m

2 is more suitable to develop
efficient hybrid Karatsuba multiplier. In fact, the authors of [19] already show that xm + xm/2 + 1 combined with 2-term KA
can develop a high efficient hybrid multiplier, which conform to this assertion.

2) Optimal selection of n, `: From previous description, we know that k highly influences the values of
∑n−1
i=0 |θi| and∑λ

i=1 |∆i|. If k is fixed, the parameters n, ` can determine the space complexity of our proposal, so that we can obtain the
optimal n and `. Remember that r is smaller than n, ` and usually chosen as a small number. Its influence about the overall
complexity is small. Thus, we do not consider it for simplicity.

If k = 1, then t = 1, t′ = −1,
∑n−1
i=0 |θi| and

∑λ
i=1 |∆i| reach their maximum value, i.e.,

max

n−1∑
i=0

|θi| =
n(n− 1)`

2
+
r(r − 1)

2
− (n− 2),

max

λ∑
i=1

|∆i| = λ2`− λ, (λ =
n

2
or

n− 1

2
).

The magnitude of above subexpressions are both O(n2`). Without loss of generality, we consider the optimal n, ` under such
a condition. In order to minimize both number of AND and XOR gates, we combine the two formulations with respect to
#AND and #XOR, omit the small subexpressions, and define a function pertaining to overall logic gates:

M(n, `) = m2 + (
11n

4
+ `)m,

where ` ≈ m
n . Obviously, if 11n = 4`, M(n, `) achieves its lower bound, which indicates the best asymptotic space complexity

of our proposal. At this time, the space complexity is

AND =
m2

2
+O

(√
11m3/2

4

)
,

XOR =
m2

2
+O

(√
11m3/2

2

)
.

Therefore, the optimal n, ` vary according to k. When k approaches to m/2, we can obtain other optimal n, `, that result in
even better space and time complexities.

In Table V, we give a comparison of several different bit-parallel multipliers for irreducible trinomials. All these multipliers
are using PB representations except particular description. It is clear that our scheme costs fewer logic gates than previous

16

architectures (quadratic or hybrid). The best of our result only costs about m2/2 + O(
√

11m3/2/2) circuit gates. On the
other hand, the time complexity of the proposed multiplier is slightly higher than the fastest result utilizing classic Karatsuba
algorithm. In the following section, we investigate possible speedup strategy for our scheme under special type of trinomials.

V. TIME COMPLEXITY FOR SPECIAL TRINOMIALS xn` + xt` + 1, t > 1

As shown in previous section, the time delay of our proposal is less than TA + (2 + dlog2(`+ 3)e+ dlog2(n+ 2)e)TX . But
we note that

dlog2(`+ 3)e+ dlog2(n+ 2)e ≤ 1 + dlog2(`+ 3)(n+ 2)e
= 1 + dlog2(m+ 2`+ 3n+ 6)e.

The upper bound of the delay of our architecture is bigger than TA + (3 + dlog2me)TX , which at most matches the classic
hybrid Karatsuba multiplier [10]. In order to obtain a better space and time complexity trade-off, we want to apply a speedup
strategy to our architecture, which was proposed in [28]. However, the precondition to apply such a speedup strategy is
that delay of S1x

−2k mod f(x) is lower than that of S2x
−2k mod f(x) by at least one TX . If these delays are equal, no

speedup can achieve. In [28], the authors utilized a special type of trinomial, where f(x) = xm + xk + 1 satisfies m = n · k.
The corresponding S1x

−2k mod f(x) can be performed by a simple matrix-vector that requires a lower time complexity
than ordinary cases. Besides above special type of trinomial, in this section, we show that another type of trinomial, i.e.,
xm + xk + 1,m = n`, k = t`, t > 1 can also provide a better space and time complexity trade-off, and apply speedup strategy
under a certain condition. In this case, we have r = 0. The computations of p0 and p1 are the same as those presented in
(5). Nevertheless, the subexpressions in (8) and (9) now have some common terms, which can save certain logic gates. More
explicitly, since k = t`, we have

E′(x)xi −̀2t` mod f(x) =

n`−1∑
j=(t−i)`

e′jx
j+(i−2t)`

+

(t−i)`−1∑
j=0

e′jx
j+(i+n−2t)` +

(t−i)`−1∑
j=0

e′jx
j+(i−t)`

.

,

(21)

for i = 0, 1, · · · , t− 1, and

E′(x)xi −̀2t` mod f(x) =

(n−i+t)`−1∑
j=0

e′jx
j+(i−2t)`

. .

+

n`−1∑
j=(n−i+t)`

e′jx
j+(i−2t−n)` +

n`−1∑
j=(n−i+t)`

e′jx
j+(i−n−t)`,

(22)

for i = t, t + 1, · · · , n − 1. Notice that if i = t, the subexpression
∑n`−1
j=(n−i+t)` e

′
jx
j+(i−n−t)` =

∑n`−1
j=n` e

′
jx
j−n` does not

exist.
To find the common terms among above expressions, we let i ∈ {0, 1, · · · , t − 1} and i′ ∈ {t, t + 1, · · · , n − 1}. Also

note that m ≥ 2k ⇒ n ≥ 2t ⇒ n − t ≥ t. The former group has fewer items than the latter. When comparing the
subexpressions in (21) and (22), we found that if i′ − i = t, subexpressions

∑(t−i)`−1
j=0 e′jx

j+(i−t)` have common terms with∑(n−i′+t)`−1
j=0 e′jx

j+(i′−2t)`. In this case,

(t−i)`−1∑
j=0

e′jx
j+(i−t)` +

(n−i′+t)`−1∑
j=0

e′jx
j+(i′−2t)`

=

(2t−i′)`−1∑
j=0

e′jx
j+(i′−2t)` +

(n−i′+t)`−1∑
j=0

e′jx
j+(i′−2t)`

=

(n−i′+t)`−1∑
j=(2t−i′)`

e′jx
j+(i′−2t)`.

17

for i′ = n − t, n − t + 1, · · · , n − 1. Similarly, if i′ − i = n − t, the subexpressions
∑n`−1
j=(t−i)` e

′
jx
j+(i−2t)` have common

terms with
∑n`−1
j=(n−i′+t)` e

′
jx
j+(i′−n−t)` as well:

n`−1∑
j=(t−i)`

e′jx
j+(i−2t)` +

n`−1∑
j=(n−i′+t)`

e′jx
j+(i′−n−t)`

=

n`−1∑
j=(t−i)`

e′jx
j+(i−2t)` +

n`−1∑
j=(2t−i)`

e′jx
j+(i−2t)`

=

(2t−i)`−1∑
j=(t−i)`

e′jx
j+(i−2t)`.

for i = 0, 1, · · · , t − 1. Particularly, we add different styles of underlines to these subexpressions in order to indicate the
overlapped parts. One can check that all the dotted underlined subexpressions in (21) can be eliminated by offsetting related
expressions in (22), but only t solid underlined subexpressions in (22) can be eliminated. After combining the overlapped parts
between (21) and (22), the rest of subexpressions can be rewritten as n+n−t = 2n−t coordinate vectors p0,p1, · · · ,p2n−2t−1,
where

pi =

(2t−i)`−1∑
j=(t−i)`

e′jx
j+(i−2t)` +

(t−i)`−1∑
j=0

e′jx
j+(i+n−2t)`,

for i = 0, 1, · · · , t− 1,

pi =

(n−i+t)`−1∑
j=0

e′jx
j+(i−2t)` +

n`−1∑
j=(n−i+t)`

e′jx
j+(i−2t−n)`,

for i = t, · · · , n− t− 1,

pi =

(n−i+t)`−1∑
j=(2t−i)`

e′jx
j+(i−2t)` +

n`−1∑
j=(n−i+t)`

e′jx
j+(i−2t−n)`,

i = n− t, · · · , n− 1, and

pi =

n`−1∑
j=(2n−i)`

e′jx
j+(i−2n)`,

for i = n, · · · , 2n−2t−1. Specifically, one can easily check that pi, (i = 0, 1, · · · , t−1) have no overlap with pn, · · · ,p2n−2t−1.
Please notice that n ≥ 2t⇒ 2n−2t−1 ≥ 2t−1 ≥ t−1. Thus, some of these vectors as above can be combined and rewritten
as 2n− 3t independent vectors

p0 + pn,p1 + pn+1, · · · ,pt−1 + pn+t−1,

pt, · · · ,pn−1,pn+t, · · · ,p2n−2t−1,

without any logic gates. As a result, the addition between (21) and (22) can be implemented by adding 2n−3t subexpressions
in parallel. Also note that p1(x)h(x)x−k needs to be added. Plus the delay of the computation of p1, p0 + p1 presented in
Table II, the computation of S1x

−2k mod f(x) here requires TA + (dlog2 `e+ dlog2(2n− 3t+ 1)e)TX delays.
Conversely, when we consider the delay of S2x

−2k mod f(x) here, it is easy to check that the computations of Step (i)-(iv)
are the same as that shown in Section 4.2. Please note that m = n`, k = t`, n ≥ 2t, t > 1. The magnitude relations of n, `, k only
satisfy Case 2 and 5. Then, one can check that the time delay of S2x

−2k mod f(x) is TA+(1+dlog2 `e+dlog2(n− t−3
2)e)TX .

Clearly, 1 + dlog2(n − t−3
2)e ≥ dlog2(2n − 3t + 1)e. Therefore, the implementation of S1x

−2k mod f(x) is faster than
S2x

−2k mod f(x). But it is especially interesting if

1 + dlog2(n− t+ 3

2
)e > dlog2(2n− 3t+ 1)e.

We have checked all the n in the range [3, 100] and found that if n ≥ 20 and t approaches to n/2, the above inequation
holds. In this case, the delay of S1x

−2k mod f(x) is one TX lower that of S2x
−2k mod f(x), which can apply the same

speedup strategy presented in [28]. The key idea of such a strategy is adding the intermediate values in advance during the
computation process of S1 and S2. More explicitly, let q0,q1, · · · ,qn−(t−1)/2 denote coordinate vectors corresponding to the
subexpressions in (14), (15), (19) and (20). Instead of adding S1x

−2k mod f(x) and S2x
−2k mod f(x) to obtain the final

result, we can add qi and pi directly.
From Figure 3, the elements in the dot line box do not cost any logic gates as all the vectors are obtained by reorganized

the intermediate values of former steps. After applying speedup strategy, the circuit for the whole multiplier is

TA + (2 + dlog2 `e+ dlog2(n− t+ 1)e)TX ,

18

As+At
Bs+Bt

p1+p0, p1

g1, g2, ... , gλ

TX

 TA+ TX l2log

TA+ TX

q0
 .
.
.

qn-(t-1)/2

p0+pn, ... ,
pt-1+pn+t-1,
pt, ... ,pn-1,
pn+t, ... ,p2n-2t-2

Final addition
for at most

2n-2t vectors

 TX )22(log2 tn 

S2:

S1:

n-(t-3)/2 vectors

 2/)13( tn vectors

 l2log

[p0+pn]+[p1+pn+1],
.
.
.

p2n-2t-3+p2n-2t-2

TX

Fig. 3. Speedup Strategy for xn` + xt` + 1.

which matches the results of [30]. Furthermore, since some subexpresssions in (21) and (22) can offset, certain number of
XOR gates are saved. But this number is small, which has little effect on the overall space complexity. The study of optimal
n, ` can follow the same line as we did in previous section.

TABLE V
COMPARISON OF SOME BIT-PARALLEL MULTIPLIERS FOR IRREDUCIBLE TRINOMIALS xm + xk + 1,m ≥ 2k

Multiplier # AND # XOR Time delay

Montgomery[25], school-book[24]
m2 m2 − 1 TA + (2 + dlog2 me)TX

Mastrovito [20][21][22]

Mastrovito [23] m2 m2 − 1 TA + (dlog2(2m+ 2k − 3)e)TX
SPB Mastrovito [12]

m2 m2 − 1 TA + dlog2(2m− k − 1)eTX
Montgomery [13]

KA [10]
3m2+2m−1

4
3m2

4
+ 4m+ k − 23

4
(m odd)

TA + (3 + dlog2(m− 1)e)TX
3m2

4
3m2

4
+ 5m

2
+ k − 4 (m even)

Modified KA[14] m2

2
+ (m− k)2 m2

2
+ (m− k)2 + 2k TA + (2 + dlog2(m− 1)e)TX

Modified KA[9] m2 − k2

m2 + k − k2 − 1(1 < k < m
3

)

≤ TA + (2 + dlog2me)TXm2 + 4k − k2 −m− 1(m
3
≤k< m−1

2
)

m2 + 2k − k2(k = m−1
2

)

Montgomery squaring[16]
3m2+2m−1

4
3m2

4
+O(m log2 m) (m odd) ≤ TA + (3 + dlog2me)TX

3m2

4
3m2

4
+O(m log2 m) (m even) TA + (2 + dlog2 me)TX

Chinese Remainder Theorem[26]
∆ ∆ + 3k −m (Type-A) TA + dlog2(Θ)eTX
∆ ∆ + 2k −m+ kW (k) (Type-B) TA + dlog2(3m− 3k − 1)eTX

SPB Mastrovito-KA [17]
3m2+2m−1

4
3m2

4
+m

2
+O(m log2m) (m odd)

TA+ (1+ dlog2(2m−k− 1)e)TX
3m2

4
3m2

4
−m

2
+O(m log2 m) (m even)

SPB Mastrovito n-term KA [28]
m2

2
+ mk

2
m2

2
+ mk

2
+ 5mn

4
+O(m log2 k) TA + (dlog2 ke+ dlog2 3ne)TX

Trinomial of m = nk

SPB Mastrovito n-term KA [30]
m2

2
+O(m`

2
) m2

2
+ m`

2
+ 5mn

4
+O(m log2 `) ≤TA+ (2+ dlog2 `e+ dlog2 ne)TX

m = n`, n`+ 1

This paper (optimal) m2

2
+O

(√
11m3/2

4

)
m2

2
+O

(√
11m3/2

2

) ≤ TA + (2 + dlog2(`+ 3)e
m = n`+ r +dlog2(n+ 2)e)TX

where ∆ = m2 +
(m−k)(m−1−3k)

2
(m−1

3
≤ k < m

2
, 2v−1 < k ≤ 2v), Θ = max(3m−3k−1, 2m−2k+2v)

VI. CONCLUSION

In this paper, we extend the application of a n-term Karatsuba algorithm for general trinomials xm+xk+1, by decomposing
m into m = n` + r. Under such a decomposition, the m-term polynomial multiplication is reorganized in order to apply n-

19

term KA. Then, a new type of hybrid Karatsuba GF (2m) multiplier architecture is proposed. We give the explicit space
and time complexity formulations and evaluate the upper and lower bounds. The optimal choices of the KA parameters
as well as the irreducible trinomial are investigated. Consequently, the space complexity of our proposal can achieve to
m2

2 + O(
√

11m3/2

4), which matches the best result of current hybrid multipliers. Meanwhile, its time complexity is slightly
higher than the counterparts.

In addition, we also investigate possible speedup strategy for special trinomials. A new type of trinomials is considered to
simplify the modular reduction and further speed up related multipliers. The corresponding time complexity now matches the
results of [28], [30]. To find more special types of trinomial that can lead to better space and time complexity trade-off would
be the future work.

APPENDIX A
PROOFS

A. Proof of Lemma 1
Proof The proof of this lemma mainly utilizes the reduction formulation (7). If the parameter 1 ≤ ∆ ≤ m− k − 1, we have

A(x) · x∆ =

m−1∑
i=0

aix
i+∆−k

=

m−∆−1∑
i=0

aix
i+∆−k +

m−1∑
m−∆

aix
i+∆−k

=

m−∆−1∑
i=0

aix
i+∆−k +

m−1∑
m−∆

(aix
i+∆−m + aix

i+∆−m−k)

=

m−1∑
i=0

aix
−k+(i+∆) mod m +

m−1∑
i=m−∆

aix
i+∆−m.

Similarly, if −k ≤ ∆ < 0, then 0 < −∆ ≤ k, we have

A(x) · x∆ =

m−1∑
i=0

aix
i+∆−k

=

m−1∑
i=−∆

aix
i+∆−k +

−∆−1∑
i=0

aix
i+∆−k

=

m−1∑
i=−∆

aix
i+∆−k +

−∆−1∑
i=0

(aix
i+∆+m−k + aix

i+∆)

=

m−1∑
i=0

aix
−k+(i+∆) mod m +

−∆−1∑
i=0

aix
i+∆.

We then directly conclude this lemma. �

B. Proof of Observation 1

Proof Apparently, the modular reductions of g1x
(2λ−1)`−2k, g2x

(2λ−3)`−2k, · · · , gλx`−2k rely on their maximum and minimum
term degrees.

Firstly, according to the explicit form of g1, g2, · · · , gλ, one can check that the degrees of the subexpressions Es,t · xδs,t
are in the range [2` − 2, 2` + 2r − 3], as deg(Es,t) = 2` − 2 (for 0 ≤ t < s < n − r) or 2` (for 0 < t < s, s ≥ n − r) and
max δs,t = (n−1) + (n−2)−2(n− r) = 2r−3. Then, it is easy to see that the term degrees of g1x

(2λ−1)`−2k, · · · , gλx`−2k

are all in the range [`− 2k, 2m− `− 2k − 3]. Apply reducing formulae of (7) to these expressions, we have

x`−2k = xm+`−2k + x`−k,
...

x−k−1 = xm−2k−1 + x−1,
xm−k = x0 + x−k,

xm−k+1 = x1 + x−k+1,
...

x2m−`−2k−3 = xm−`−k−3 + xm−`−2k−3.

The exponents of x in the right side now are all in the range [−k,m− k − 1], no further reduction is needed. �

20

C. Proof of Proposition 3

Proof For simplicity, we combine the proof of case 3 and 6 together.
Case 3 and 6: In these cases, as ` ≥ k and ∆i = (n− 2i+ 1)`− k (n even), ∆i = (n− 2i)`− k (n odd), we have all the
∆is are greater than 0. Therefore, the modular reduction of p(i)

2 x∆i−k is given by:

p
(i)
2 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+

m−1∑
j=m−∆i

h
(i)
j xj+∆i−m,

(23)

for i = 1, 2, · · · , λ, λ = n
2 if n is even, and λ = n−1

2 if m odd.
Meanwhile, it is easy to check that p(i)

1 x∆i , p
(i)
1 x∆i−k needs no reduction any more. We also note that ∆i − ∆i+1 = 2`

for i = 1, 2, · · · , λ− 1 and p(i)
1 s consist of at most `+ r − 2 terms. Thus, there are no overlapped terms among p(i)

1 x∆i and
p

(j)
1 x∆j if i 6= j. Two independent expressions

∑λ
i=1 p

(i)
1 x∆i and

∑λ
i=1 p

(i)
1 x∆i−k can be implemented in parallel. Plus n

expressions in (23), we immediately conclude the proposition.
Case 4: In this case, we note that ` < k, (n− 2)` ≤ k. In fact, one can check that

(n+ 1)` > m = n`+ r ≥ 2k

⇒ (n+1)`
2 > k.

But if n ≥ 5, we have (n− 2)` ≥ (n+1)`
2 > k. Therefore, Case 4 only happens if n = 3. In this case, all the Ds,ts constitute

to an integral g1. Now, we have

S2x
−2k mod f(x) = g1x

`−2k mod f(x)

= (p
(1)
1 + p

(1)
1 x−k + p

(1)
2 x−k)x`−k.

Obviously, the modular reduction of above subexpressions are given by:

p
(1)
2 x`−2k mod f(x) =

m−1∑
j=0

h
(1)
j x−k+(j+`−k) mod m

+

k−`−1∑
j=0

h
(1)
j xj+`−k,

(24)

and
p

(1)
1 x`−2k mod f(x)

=
(
p

(1)
1,1x

k−` + p
(1)
1,2

)
x`−2k mod f(x)

= p
(1)
1,1x

−k + p
(1)
1,2(xm+`−2k + x`−k).

(25)

Specifically, no reduction is needed for p(1)
1 x`−k, as all its term degrees are in the range [−k,m− k − 1]. Combining it with

(25), we have

p
(1)
1 x`−k + p

(1)
1,1x

−k + p
(1)
1,2(xm+`−2k + x`−k)

= p
(1)
1,2x

m+`−2k + p
(1)
1,1(1 + x−k). (26)

We directly know that (26) and (24) contains five subexpressions, which cost at most dlog2(3 + 2)e = dlog2 5eTX in parallel.
Case 5: The proof of this case is analogous with that of Case 2. Recall that in this case ∆i = (n−2i)`−k, i = 1, 2, · · · , n−1

2 .
Let an odd integer t ≥ 1 satisfy that t` ≤ k, (t + 2)` > k. Then, we have ∆i > 0, for i = 1, 2, · · · , n−t2 − 1 and ∆i ≤ 0

for i = n−t
2 , · · · , n−1

2 . Thus, if i = 1, 2, · · · , n−t2 − 1, the modular reduction of p(i)
2 x∆i−k is the same as (14), while if

i = n−t
2 , · · · , n−1

2 , its modular reduction is the same as (15).
Note that p(i)

1 =
∑`+r−3
j=0 h

(i)
m+jx

j . It is clear that the degrees of p(i)
1 x∆i are all in the range [−k,m− k − 1], which need

no reduction. On top of that, the explicit reduction of p(i)
1 x∆i−k are given by

p
(i)
1 x∆i−k mod f(x) = p

(i)
1 xm+∆i−k + p

(i)
1 x∆i ,

21

for i = n−t
2 + 1, · · · , n−1

2 . Meanwhile,

p
(n−t2)
1 xt`−2k mod f(x)

=
(
p

(n−t2)
1,1 xk−t` + p

(n−t2)
1,2

)
xt`−2k mod f(x)

= p
(n−t2)
1,1 x−k + p

(n−t2)
1,2 (xm+t`−2k + xt`−k).

Here, p(n−t2)
1,1 consists of at most `+ r − 2− (k − t`) bits and p(n−t+1

2)
1,2 consists of at most k − t` bits.

As a result, the modular reduction related to
∑n−1

2
i=1 (p

(i)
1 + p

(i)
1 x−k)x∆i can be rewritten as two parts:

n−1
2∑
i=1

p
(i)
1 x∆i +

n−1
2∑

i=n−t
2

p
(i)
1 x∆i + p

(n−t2)
1,1 x−k + p

(n−t2)
1,2 xt`−k

=

n−t
2 −1∑
i=1

p
(i)
1 x∆i + p

(n−t2)
1,1 (1 + x−k),

(27)

n−1
2∑

i=n−t
2 +1

p
(i)
1 xm+∆i−k+

n−t
2 −1∑
i=1

p
(i)
1 x∆i−k+p

(n−t2)
1,2 xm+t`−2k, (28)

Similar with Case 2, one can easily check that the subexpressions of (28) have no overlapped terms with each other.
However, if t = 1, it is possible here ` + r − 2 − (k − t`) > k and p(n−t2)

1,1 is overlapped with p(n−t2)
1,1 x−k, which can not be

concatenated together. Thus, adding (27) and (28) can be implemented as a sum of at most three independent subexpressions.
But

∑n−1
2

i=1 p
(2)
1 x∆i−k mod f(x) consists of at most 2 · n−1

2 = n−1 subexpressions. Meanwhile, some of these subexpressions
have no overlapped term with each other. It totally requires dlog2(n−1

2 + 3 + max{n−t2 − 1, t+1
2 })e ≤ dlog(n+ 2)eTX delay

in parallel. �

22

APPENDIX B
FORMULATIONS OF THE EXAMPLE

Here, we give the explicit formulations with respect to p1 + p0 =
∑13
i=0 e

′
ix
i, g1 =

∑13
i=0 h

(1)
i xi and g2 =

∑13
i=0 h

(2)
i xi of ,

i.e., 

h(0) = 0,

h
(1)
1 = u

(3,0)
0 v

(3,0)
0 ,

h
(1)
2 = u

(3,0)
1 v

(3,0)
0 +u

(3,0)
0 v

(3,0)
1 ,

h
(1)
3 = u

(3,0)
0 v

(3,0)
2 +u

(3,0)
2 v

(3,0)
0 +u

(3,0)
1 v

(3,0)
1 ,

h
(1)
4 = u

(3,0)
0 v

(3,0)
3 +u

(3,0)
3 v

(3,0)
0 +u

(3,0)
2 v

(3,0)
1 ,

+u
(3,0)
1 v

(3,0)
2 +u

(3,1)
0 v

(3,1)
0 ,

h
(1)
5 = u

(3,0)
1 v

(3,0)
3 +u

(3,0)
3 v

(3,0)
1 +u

(3,0)
2 v

(3,0)
2

+u
(3,1)
0 v

(3,1)
1 +u

(3,1)
1 v

(3,1)
0 ,

h
(1)
6 = u

(3,0)
2 v

(3,0)
3 +u

(3,0)
3 v

(3,0)
2 +u

(3,1)
0 v

(3,1)
2

+u
(3,1)
2 v

(3,1)
0 +u

(3,1)
1 v

(3,1)
1 ,

h
(1)
7 = u

(3,0)
3 v

(3,0)
3 +u

(3,1)
0 v

(3,1)
3 +u

(3,1)
3 v

(3,1)
0

+u
(3,1)
2 v

(3,1)
1 +u

(3,1)
1 v

(3,1)
2 +u

(3,2)
0 v

(3,2)
0 ,

h
(1)
8 = u

(3,1)
3 v

(3,1)
1 +u

(3,1)
1 v

(3,1)
3 +u

(3,1)
2 v

(3,1)
2

+u
(3,2)
0 v

(3,2)
1 +u

(3,2)
1 v

(3,2)
0 ,

h
(1)
9 = u

(3,1)
3 v

(3,1)
2 +u

(3,1)
2 v

(3,1)
3 +u

(3,2)
2 v

(3,2)
0

+u
(3,2)
0 v

(3,2)
2 +u

(3,2)
1 v

(3,2)
1 ,

h
(1)
10 = u

(3,1)
3 v

(3,1)
3 +u

(3,2)
3 v

(3,2)
0 +u

(3,2)
0 v

(3,2)
3

+u
(3,2)
1 v

(3,2)
2 +u

(3,2)
2 v

(3,2)
1 ,

h
(1)
11 = u

(3,2)
3 v

(3,2)
1 +u

(3,2)
1 v

(3,2)
3 +u

(3,2)
2 v

(3,2)
2 ,

h
(1)
12 = u

(3,2)
3 v

(3,2)
2 +u

(3,2)
2 v

(3,2)
3 ,

h
(1)
13 = u

(3,2)
3 v

(3,2)
3 ,

h
(2)
0 = u

(1,0)
0 v

(1,0)
0 ,

h
(2)
1 = u

(1,0)
1 v

(1,0)
0 +u

(1,0)
0 v

(1,0)
1 ,

h
(2)
2 = u

(1,0)
0 v

(1,0)
2 +u

(1,0)
2 v

(1,0)
0 +u

(1,0)
1 v

(1,0)
1 ,

h
(2)
3 = u

(1,0)
0 v

(1,0)
3 +u

(1,0)
3 v

(1,0)
0 +u

(1,0)
2 v

(1,0)
1

+u
(1,0)
1 v

(1,0)
2 +u

(2,0)
0 v

(2,0)
0 ,

h
(2)
4 = u

(1,0)
1 v

(1,0)
3 +u

(1,0)
3 v

(1,0)
1 +u

(1,0)
2 v

(1,0)
2

+u
(2,0)
0 v

(2,0)
1 +u

(2,0)
1 v

(2,0)
0 ,

h
(2)
5 = u

(2,0)
0 v

(2,0)
2 +u

(2,0)
2 v

(2,0)
0 +u

(2,0)
1 v

(2,0)
1 ,

h
(2)
6 = u

(2,0)
0 v

(2,0)
3 +u

(2,0)
3 v

(2,0)
0 +u

(2,0)
2 v

(2,0)
1

+u
(2,0)
1 v

(2,0)
2 +u

(2,1)
0 v

(2,1)
0 ,

h
(2)
7 = u

(2,0)
3 v

(2,0)
1 +u

(2,0)
1 v

(2,0)
3 +u

(2,0)
2 v

(2,0)
2

+u
(2,1)
0 v

(2,1)
1 +u

(2,1)
1 v

(2,1)
0 ,

h
(2)
8 = u

(2,0)
3 v

(2,0)
2 +u

(2,0)
2 v

(2,0)
3 +u

(2,1)
2 v

(2,1)
0

+u
(2,1)
0 v

(2,1)
2 +u

(2,1)
1 v

(2,1)
1 ,

h
(2)
9 = u

(2,0)
3 v

(2,0)
3 +u

(2,1)
3 v

(2,1)
0 +u

(2,1)
0 v

(2,1)
3

+u
(2,1)
1 v

(2,1)
2 +u

(2,1)
2 v

(2,1)
1 ,

h
(2)
10 = u

(2,1)
3 v

(2,1)
1 +u

(2,1)
1 v

(2,1)
3 +u

(2,1)
2 v

(2,1)
2 ,

h
(2)
11 = u

(2,1)
3 v

(2,1)
2 +u

(2,1)
2 v

(2,1)
3 ,

h
(2)
12 = u

(2,1)
3 v

(2,1)
3 ,

h
(2)
13 = 0,

23



e′0 = a0b0 + a13b11 + a12b12 + a12b13,

e′1 = a1b0+a0b1 + a13b12 + a12b13,

e′2 = a13b13 + a2b0+a1b1+a0b2,

e′3 = a3b3+a2b1+a1b2,

e′4 = a4b3+a3b4+a2b2,

e′5 = a5b3+a4b4+a3b5,

e′6 = a6b6+a5b4+a4b5,

e′7 = a7b6+a6b7+a5b5,

e′8 = a8b6+a7b7+a6b8,

e′9 = a9b6+a8b7+a7b8+a6b9,

e′10 = a10b10+a9b7+a8b8+a7b9,

e′11 = a11b10 + a10b11+a9b8+a8b9,

e′12 = a12b10+a11b11+a10b12+a9b9,

e′13 = a13b10+a12b11+a11b12+a10b13,

Obviously, in parallel implementation, e′is can be obtained using 2TX , h(2)
i and h(1)

i can be obtained using dlog2 5eTX and
dlog2 6eTX , respectively. These delays meet proposition 3 and the complexity analysis in Section 4.1.

After obtaining the coefficients of p1 + p0, g1 and g2, we can perform the SPB modular reduction related to E′(x)(x10 +
x6 + x3 + 1)x−10, g1x

9−10 and g2x
3−10. Please note that in this case, g1, g2 contain at most 12 nonzero terms, which do not

need to split into two parts. More explicitly,

E′(x)x10−10 =

13∑
j=0

e′jx
(j+5) mod 14 +

4∑
j=0

e′j+9x
j ;

E′(x)x6−10 =

13∑
j=0

e′jx
(j+1) mod 14 + e′13;

E′(x)x3−10 =

13∑
j=0

e′jx
(j−2) mod 14 + e′1x

−1 + e′0x
−2;

E′(x)x0−10 =

13∑
j=0

e′jx
(j−5) mod 14 +

4∑
j=0

e′jx
j−5;

g1x
9−10 =

13∑
j=0

h
(1)
j x(j+4) mod 14 +

3∑
j=0

h
(1)
j+9x

j ;

g2x
3−10 =

13∑
j=0

h
(2)
j x(j−2) mod 14 + h

(2)
0 x−2 + h

(2)
1 x−1;

where h(1)
0 = 0, h

(2)
13 = 0. Therefore, it is clear that both S1x

−10 and S2x
−10 can be obtained in less than dlog2 6e = 3TX

delay, which meets the delay assertions presented in 3.2, and Proposition 3.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China (Grant no. 61402393, 61601396).

REFERENCES

[1] Rudolf Lidl and Harald Niederreiter. Finite Fields, Cambridge University Press, New York, NY, USA, 1996.
[2] A. Karatsuba and Yu. Ofman. “Multiplication of Multidigit Numbers on Automata,” Soviet Physics-Doklady (English translation), vol. 7, no. 7, pp. 595–

596, 1963.
[3] J. Von Zur Gathen and J. Gerhard. 2003. Modern Computer Algebra (2 ed.). Cambridge University Press, New York, NY, USA.
[4] P.L. Montgomery, “Five, six, and seven-term Karatsuba-like formulae,” IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369, March 2005. doi:

10.1109/TC.2005.4
[5] H. Fan, J. Sun, M. Gu, and K.-Y. Lam. “Overlap-free Karatsuba-Ofman polynomial multiplication algorithms,” Information Security, IET, vol. 4, no. 1,

pp. 8–14, March 2010.
[6] A. Weimerskirch, and C. Paar, “Generalizations of the Karatsuba Algorithm for Efficient Implementations,” Cryptology ePrint Archive, Report 2006/224,

http://eprint.iacr.org/
[7] H. Fan, M. Gu, J. Sun and K.Y. Lam, “Obtaining more Karatsuba-like formulae over the binary field,” IET Information Security, vol. 6, no. 1, pp. 14-19,

March 2012.
[8] Ku-Young Chang, Dowon Hong and Hyun-Sook Cho. “Low complexity bit-parallel multiplier for GF (2m) defined by all-one polynomials using

redundant representation,” IEEE Trans. Comput., vol. 54, no. 12, pp. 1628–1630, 2005.

24

[9] Young In Cho, Nam Su Chang, Chang Han Kim, Young-Ho Park and Seokhie Hong. “New bit parallel multiplier with low space complexity for all
irreducible trinomials over GF (2n),” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 20, no. 10, pp. 1903–1908, Oct 2012.

[10] M. Elia, M. Leone and C. Visentin. “Low complexity bit-parallel multipliers for GF (2m) with generator polynomial xm +xk + 1,” Electronic Letters,
vol. 35, no. 7, pp. 551–552, 1999.

[11] H. Fan and Y. Dai. “Fast bit-parallel GF (2n) multiplier for all trinomials,” IEEE Trans. Comput., vol. 54, no. 4, pp. 485–490, 2005.
[12] H. Fan and M.A. Hasan. “Fast bit parallel-shifted polynomial basis multipliers in GF (2n),” Circuits and Systems I: Regular Papers, IEEE Transactions

on, vol. 53, no. 12, pp. 2606–2615, Dec 2006.
[13] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel montgomery multiplication and squaring over GF (2m),” IEEE Transactions on Computers,

vol. 58, no. 10, pp. 1332–1345, 2009.
[14] Y. Li, G. Chen, and J. Li. “Speedup of bit-parallel karatsuba multiplier in GF (2m) generated by trinomials,” Information Processing Letters, vol. 111,

no. 8, pp. 390–394, 2011.
[15] H. Fan and M.A. Hasan, “A survey of some recent bit-parallel multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5–43, 2015.
[16] Yin Li, Yiyang Chen. “New bit-parallel Montgomery multiplier for trinomials using squaring operation,” Integration, the VLSI Journal, vol. 52, pp.142–

155, January 2016.
[17] Y. Li, X. Ma, Y. Zhang and C. Qi, “Mastrovito Form of Non-recursive Karatsuba Multiplier for All Trinomials,” IEEE Trans. Comput., vol. 66, no.9,

pp.1573–1584, Sept. 2017.
[18] Christophe Negre. “Efficient parallel multiplier in shifted polynomial basis,” J. Syst. Archit., vol. 53, no. 2-3, pp. 109–116, 2007.
[19] H. Shen and Y. Jin. “Low complexity bit parallel multiplier for GF (2m) generated by equally-spaced trinomials,” Inf. Process. Lett., vol. 107, no. 6,

pp. 211–215, 2008.
[20] B. Sunar and Ç.K. Koç, “Mastrovito multiplier for all trinomials,” IEEE Trans. Comput., vol. 48,no. 5, pp. 522–527, 1999.
[21] A. Halbutogullari and Ç.K. Koç, “Mastrovito multiplier for general irreducible polynomials,” IEEE Trans. Comput., vol. 49, no. 5, pp. 503–518, May

2000.
[22] T. Zhang and K.K. Parhi, “Systematic design of original and modified mastrovito multipliers for general irreducible polynomials,” IEEE Trans. Comput.,

vol. 50, no. 7, pp. 734–749, July 2001.
[23] N. Petra, D. De Caro, and A.G.M. Strollo, “A novel architecture for galois fields GF (2m) multipliers based on mastrovito scheme,” IEEE Trans.

Computers, vol. 56, no. 11, pp. 1470–1483, November 2007.
[24] H. Wu. “Bit-parallel finite field multiplier and squarer using polynomial basis,” IEEE Trans. Comput., vol. 51, no. 7, pp. 750–758, 2002.
[25] H. Wu. “Montgomery multiplier and squarer for a class of finite fields,” IEEE Trans. Comput., vol. 51, no. 5, pp. 521–529, 2002.
[26] H. Fan, “A Chinese Remainder Theorem Approach to Bit-Parallel GF (2n) Polynomial Basis Multipliers for Irreducible Trinomials”, IEEE Trans.

Comput., vol. 65, no. 2, pp. 343–352, February 2016.
[27] X. Xie, G. Chen, Y. Li, “Novel bit-parallel multiplierfor GF (2m) defined by all-one polynomial using generalized Karatsuba algorithm”, Information

Processing Letters, Volume 114, Issue 3, pp.140–146, 2014.
[28] Y. Li, Y. Zhang, X. Guo and C. Qi, “N-Term Karatsuba Algorithm and Its Application to Multiplier Designs for Special Trinomials,” IEEE Access,

vol. 6, pp.43056–43069, Jul. 2018.
[29] Y. Li, Y. Zhang, and X. Guo, “Efficient Nonrecursive Bit-Parallel Karatsuba Multiplier for a Special Class of Trinomials,” VLSI Design, vol. 2018,

Article ID 9269157, 7 pages, 2018. https://doi.org/10.1155/2018/9269157.
[30] S. Park, K. Chang, D. Hong and C. Seo, “Low Space Complexity GF (2m) Multiplier for Trinomials Using n -Term Karatsuba Algorithm,” in IEEE

Access, vol. 7, pp. 27047-27064, 2019. doi: 10.1109/ACCESS.2019.2901242
[31] Haining Fan and M. A. Hasan, “Relationship betweenGF (2m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms,” IEEE Transactions

on Computers, vol. 55, no. 9, pp. 1202-1206, Sept. 2006.

