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ABSTRACT
Blockchain technologies have received a considerable amount of
attention, and immutability is essential property of blockchainwhich
is paramount to applications such as cryptocurrency. However, “Right
to be Fogotten" has been imposed in new European Union’s Gen-
eral Data Protection Regulation, making legally impossible to use
immutalbe blockchains. Moveover, illicit data stored in immutable
blockchain poses numerous challenge for law enforcement agen-
cies such as Interpol. Therefore, it is imperative (even legally re-
quired) to design efficient redactable blockchain protocols in a con-
trolled way.

In this paper, we present a redactable proof-of-stake blockchain
protocol in the permissionless setting with fast confirmation. Our
protocol uses a novel mechanism based on verifiable random func-
tions to randomly select voters on different slots in a private and
non-interactiveway, and also offers public verifiability for redactable
chains. Compared to previous solutions in permissionless setting,
our redaction operation can be performed quickly, even onlywithin
one block in synchronous network, which is desirable for redact-
ing harmful or sensitive data. Moreover, our protocol is compat-
ible with current proof-of-stake blockchains requiring only mini-
mal changes. Furthermore, we prove that our protocol can achieve
the security property of redactable common prefix, chain quality,
and chain growth. Finally, we implement our protocol and pro-
vide experimental results showing that compared to immutable
blockchain, the overhead incurred for different numbers of redac-
tions in the chain is minimal.
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1 INTRODUCTION
Blockchain protocols have been gaining increasing popularity and
acceptance by awider community, triggered by the first large-scale
application of blockchains, i.e., the cryptocurrency Bitcoin [33]. In
a nutshell, a blockchain is a decentralized, public, immutable and or-
dered ledger of records, which is created by establishing consensus
among the chain’s participants. The consensus component can be
achieved in a number of ways. The most popular is using proof-of-
work such as Bitcoin [22, 33, 37], while proof-of-stake is emerging
as one of the most promising alternative, since it does not rely on
expensive hardware using vast amounts of electricity to compute
mathematical puzzles as Bitcoin. In a proof-of-stake blockchain

protocol [10, 17, 18, 29], roughly speaking, participants randomly
elect one party to produce the next block by running a “leader elec-
tion" process with probability proportional to their current stake
(a virtual resource) held on blockchain.

Immutability of blockchain is paramount to applications such
as cryptocurrency and payments, due to the fact that it ensures
the history of payment transactions cannot be modified. However,
with the adoption of the new European Union’s General Data Pro-
tection Regulation (GDPR) [8] in May 2018, it is no longer legally
possible to use current immutable blockchains such as Bitcoin and
Ethereum [2] to record personal data, since GDPR imposes the
“Right to be Forgotten" (also known as Data Erasure) as a key Data
Subject Right [27]. Moreover, an immutable ledger is not appro-
priate for some new applications [15] that are being envisaged
for the blockchain such as government and public records [3, 7]
and social media [1, 5]. The data stored on the chain may be ille-
gal, harmful or sensitive, since the malicious user can abuse the
ability of blockchain to post arbitrary transaction messages and
moreover it is infeasible to filter all transaction data. If these illicit
data contents cannot be removed from the blockchains, they may
affect the life of people forever and further hinder future of the
blockchains technology. For instance, Bitcoin blockchain contains
child sexual abuse images [30], leaked private keys [36] andmateri-
als that infringe on intellectual rights [26]. More worse, immutabil-
ity of blockchains facilitates illicit activities of international crim-
inal groups, and brings the numerous challenges for law enforce-
ment agencies such as Interpol [38]. In addition, smart contracts
may not patch vulnerabilities if the blockchain is immutable, for
example, 3,641,694 Ethers (worth of about 79 million of US dollars)
are stolen due to the flaws of Ethereum and DAO contract [28], but
vulnerabilities have to be patched by deploying a hard fork (i.e., a
manual intervention operation performed by Ethereum develop-
ers).

Tomitigate this problem, theremust be a way to redact data con-
tent of blockchain in specific and exceptional circumstances, and
redaction should be performed only under strict constraints, satis-
fying full transparency and accountability. In addition, the fast con-
firmation of redaction is imperative for some applications. In afore-
mentioned examples, harmful or sensitive data should be redacted
promptly, since otherwise the consequences are huge and even it
is harmful for social security. If a redaction on social media rumors
can only be confirmed after at least one week, it may be too late to
stop irreparable damages.
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1.1 Related Work
A straightforward approach to globally erasing or editing previ-
ously included data from a blockchain is to produce a hard fork
and develop a new blockchain from the edited block. However, it
requires a strong off-chain consensus among participants, which is
notoriously difficult to achieve. To address this challenge, Ateniese
et al. [9] firstly proposed the notion of redacting a blockchain. They
use a chameleon hash function [14] to compute hash pointer, when
redacting a block, a collision for the chameleon hash function can
be computed by trusted entities with access to the chameleon trap-
door key. By this way, the block data can be modified while main-
taining the chain consistency, and this solution has recently been
commercially adopted by a consultancy companyAccenture [4][6].
Recently, in order to support fine-grained and controlled redaction
of blockchain, Derler et al. [19] introduced the novel concept of
policy-based chameleon hash, where anyonewho possesses enough
privileges to satisfy the policy can then find arbitrary collisions
for a given hash. However, their solutions[9][19] using chameleon
hash are rather limited in a permissioned setting. In permission-
less blockchains like Bitcoin, users can join and leave the system
at any time, and their solutions will suffer from scalability issues
when sharing the trapdoor key among some miners and comput-
ing a collision for the chameleon hash function by a multi-party
computation protocol.

Puddu et al. [35] also presented a redactable blockchain, called µ
chain. In µ chain, the sender of a transaction can encrypt some dif-
ferent versions of the transaction, denoted by “mutations", the de-
cryption keys are secretly shared among miners, and unencrypted
version of the transaction is regarded as the active transaction.
When receiving a request for redacting a transaction, miners first
check it according to redaction policy established by the sender of
the transaction, then compute the appropriate decryption key by
running a multi-party computation protocol, and finally decrypt
the appropriate version of the transaction as a new active transac-
tion. However, their solution is still not suitable for permissionless
setting. Concretely, the malicious users who establish redaction
policy can escape redaction, or even break the stability of transac-
tions by the affection among transactions. Moreover, µ chain also
faces scalability problem when reconstructing decryption keys by
the multi-party computation protocol.

Recently, Deuber et al. [20] proposed the first redactable blockchain
protocol in the permissionless setting, which does not rely on heavy
cryptographic primitives or additional trust assumption. Once a
redaction requirement is proposed by any user, the protocol starts
a consensus-based voting period, and only after obtaining enough
votes for approving the redaction, the edition is really performed
on the blockchain. The protocol offers public verifiability and ac-
countability, that is, each user can verify whether a redaction on
the blockchain is approved by checking the number of votes on
the chain. Their solution is very elegant, however, the new joined
user has to check all the blocks within the voting period to verify
a redaction on the blockchain. Moreover, the voting period is very
long, for example, 1024 consecutive blocks are required in their Bit-
coin instantiation, which also means that it will take almost 7 days
to confirm and publish a redaction block. Nevertheless, in practice,
it is inefficient to redact harmful or sensitive data after such a long

time, and it is also difficult to let new joined user in the system
maintain these redactions.

1.2 Our Contributions
In this work, our overall goal is to propose a redactable proof-of-
stake blockchain protocol in the permissionless setting with fast
confirmation. In our scheme we assume that the fraction of stakes
held by honest users is above threshold h (a constant greater than
2
3 ). More specifically, our technical contributions are threefold.
Redactable Proof-of-Stake Blockchain Protocol. We propose
an approach to make the proof-of-stake blockchain redactable. On
a high level, any stakeholder can propose a candidate edited block
B∗j for Bj in the chain C, and only committee members (in the new
slot sl of C) can vote for B∗j ; if votes are approved by the editing
policy (e.g., voted by the majority), the leader of sl adds these votes
and corresponding proofs to its block data collected and proposes
a new block, and finally Bj is replaced by B∗j . Specifically, our pro-
tocol has the following features.

• Whether a certain stakeholder has right to vote is decided via
a private test that is executed locally using a verifiable random
function (VRF) on a random seed and the new slot of the chain.
This means that every stakeholder can independently determine
if they are chosen to be on the voting committee, by comput-
ing a VRF with their own secret key, which prevents an ad-
versary from targeting voting committee members. Moreover,
stakeholders obtain voting rights in proportion to their stakes
in the system, which means the more stakes owned by a user,
the more voting power he or she has.

• The redaction operation can be completed quickly. If the net-
work is synchronous, the voting period is only within one block,
and even in semi-synchronous or asynchronous network, the
proposed redaction can also be performed after several blocks.
Moreover, to validate an edited block, users can find all evidence
only from one block in the chain.

• Our protocol offers accountability for redaction, where any edited
block in the chain is publicly verified. Moreover, multiple redac-
tions per block can be performed throughout the run of the pro-
tocol.

• The design of our protocol is compatible with current proof-of-
stake blockchain, i.e., it can be implemented right now and re-
quires onlyminimal changes to the current blockchain, block, or
transaction structures. Our redaction approach is general, and
all the cases of synchronous, semi-synchronous, and asynchro-
nous network are considered. We believe compatibility is an im-
portant feature that must be preserved.

SecurityAnalysis.We provide formal security definition of redactable
blockchain along the lines of the seminal papers of Garay et al. [23]
and Pass et al. [34]. In order to accommodate the edit operation, we
introduce an extended definition called redactable common prefix
considering the affect of edited data. Essentially, redactable com-
mon prefix requires that if the property of the common prefix is
violated, it must be the case that there exist edited blocks satisfy-
ing the editing policy P. Then we prove that our redactable proof-
of-stake blockchain protocol satisfies redactable common prefix,
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chain quality and chain growth. We also explore how various at-
tacks considered in practice can be addressed in our protocol. Specif-
ically, we discuss unapproved editing, denial of service, and con-
sensus delays.
Performance Evaluation. We instantiate VRF primitive, and con-
duct experiments evaluating the overhead of adding our redaction
mechanism to proof-of-stake blockchain at both 128-bit and 192-
bit security levels. The results show that compared to immutable
blockchain, the overhead incurred for different numbers of redac-
tions in the chain is minimal. Moreover, all signatures of voting
for a edited block are aggregated a multi-signature, which dras-
tically reduces the communication complexity for proof-of-stake
blockchain.

2 PRELIMINARIES
We say a function neдl(·) : N → (0, 1) is negligible, if for every
constant c ∈ N, neдl(n) < n−c for sufficiently large n. Hereafter,
we use neдl(γ ) to refer to a negligible function in the security pa-
rameter γ .

2.1 Verifiable Random Functions
The concept of verifiable random functions is introduced by Micali
et al.[32]. Informally, it is a pseudo-random function that provides
publicly verifiable proofs of its outputs’ correctness.

Definition 2.1 (Verifiable Random Functions)[21]. A function
family F(·)(·) : {0, 1}l → {0, 1}lVRF is a family of VRFs if there ex-
ist algorithms (Gen,VRF,VerifyVRF) such that Gen outputs a pair
of keys (pk, sk); VRFsk (x) outputs a pair (Fsk (x),πsk (x)), where
Fsk (x) is the output value of the function and πsk (x) is the proof
for verifying correctness; andVerifyVRFpk (x ,y,π ) verifies thaty =
Fsk (x) using the proof π , return 1 if y is valid and 0 otherwise. For-
mally, we require the following properties:

• Uniqueness: no values (pk,x ,y1,y2,π1,π2) can satisfyVerifyVRFpk (x ,y1,π1)
= VerifyVRFpk (x ,y2,π2) unless y1 = y2.

• Provability: if (y,π ) = VRFsk (x), then VerifyVRFpk (x ,y,π ) = 1.
• Pseudorandomness: for any probabilistic polynomial time algo-

rithmA = (AE ,AJ ), which runs for a total of s(γ ) steps when its
first input is 1γ , and does not query the oracle on x ,

Pr


b = b′

�����������
(pk, sk ) ← Gen(1γ );

(x, st ) ← AVRF (.)E (pk );

y0 = VRFsk (x );y1 ← {0, 1}ℓVRF ;

b ← {0, 1};b′ ← AVRF (.)J (yb, st )


≤ 1

2
+ neдl (γ )

Intuitively, the pseudorandomness property states that no func-
tion value can be distinguished from random, even after seeing any
other function values together with corresponding proofs.

2.2 Signature Scheme
Adigital signature scheme SIG = (Sig.Gen, Sig.Sign, Sig.Verify)with
message spaceM(λ) consists of the standard algorithms: key gen-

eration Sig.Gen
(
1λ

) $→(pk, sk), signing Sig.Sign(sk ;m) → σ , and
verification Sig.Verify(pk ;m,σ ) → {0, 1}. It is said to be correct if

Sig.Verify(pk ;m, Sig.Sign(sk ;m)) = 1 for all (pk, sk) $← Sig.Gen
(
1λ

)
andm ∈ M(λ).

To define security [25], we consider the following game between
an adversary A and a challenger.

(1) Setup Phase. The challenger chooses (pk, sk) $← Sig.Gen
(
1λ

)
.

(2) Signing Phase. The adversary A sends signature querymi ∈
M and receives σi = Sig.Sign(sk ;mi ).

(3) Forgery Phase.A outputs a messagem and its signature σ . Ifm
is not queried during the Signing Phase and Sig.Verify(pk ;m,σ ) =
1, the adversary wins.

Definition 2.2 (EUF-CMA). We say that a signature scheme SIG
is existentially unforgeable under adaptive chosen-message attacks
(EUF-CMA), if for all adversariesA, there exists a negligible func-
tion negl(λ) such that

AdvEUF-CMA
SIG = Pr[A wins] ≤ negl(λ).

2.3 Multi-Signature Scheme
A multi-signature scheme [12, 31] is a protocol that enables the n
signers to jointly generate a short signaturemsiд onm so thatmsiд
convinces a verifier that all n parties signedm.

A multi-signature scheme is defined as algorithms Pg, Kg, Sign,
KAg, and Vf. The system parameters par ← Pg are generated by a

trusted party. Each signer generates a pair of key (pk, sk) $←Kg (par ),
and signers can collectively sign a messagem by each running the
interactive algorithm Sign(par , PK , sk ,m), where PK is the set of
the public keys of the signers, and sk is the signer’s individual se-
cret key. In the end, every signer will outputs a signature σ . Algo-
rithm KAg outputs a single aggregate public key apk on inputs a
set of public keys PK . A verifier check the validity of a signature
σ on messagem under an aggregate public key apk by calling the
algorithm Vf (par ,apk,m,σ ) which outputs 1 if the signatures is
valid and 0 otherwise.

A multi-signature scheme should satisfy completeness, which
means that for any n, if we have (pki , ski ) ← Kg (par ) for i =
1, . . . ,n, and for anymessagem, if all signers input Sign (par , ski ,m),
then theywill output a signatureσ such thatVf

(
par ,KAg

(
par , {pki }ni=1

)
,m,σ

)
=

1.
A multi-signature scheme should also satisfy unforgeability. To

define unforeability, we consider the following game between an
adversary A and a challenger.

(1) Setup Phase. The challenger generates the parameters par ←
Pg and a challenge key pair by calling (pk∗, sk∗) $←Kg (par ). It
runs the adversary on the public key A (par ,pk∗).

(2) Signing Phase.A can make signature queries on any message
m for any set of signer public keys PK with pk∗ ∈ PK which
means that it has access to oracle OSign(par, ·,sk∗, ·) that will
simulate the honest signer interacting in a signing protocol
with the other signers of PK to signer messagem. Note thatA
is allowed to make any number of such queries concurrently.

(3) Forgery Phase. A outputs a multi-signature forgery σ , a mes-
sage m∗, and a set of public keys PK . The adversary wins if
pk∗ ∈ PK ,Amade no signing queries onm∗, andVf (par ,KAg (par , PK) ,m∗,σ ) =
1.
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Definition 2.3 (Unforgeability). We say that a multi-signature
scheme MSIG is unforgeable, if for all adversaries A, there exists
a negligible function negl(par ) such that

AdvMSIG = Pr[A wins] ≤ negl(par ).

3 REDACTING THE BLOCKCHAIN
In this section we present a generic construction that converts
any existing proof-of-stake blockchain into redactable blockchain.
We start with a brief description of a proof-of-stake blockchain
abstraction Γ, and then describe how to extend Γ to a redactable
blockchain protocol Γ′.

3.1 Proof-of-Stake Blockchain Protocol
We recall basic definitions [18] of proof-of-stake blockchain. There
are n stakeholders U1, . . . ,Un and each stakeholder Ui possesses
si stake and a verification/secret key pair (vki , ski ). Without loss
of generality, we assume that the verification keys vk1, . . . ,vkn
are known by all system users. The protocol execution is divided
in time units, called slots. We denote a block to be of the form
B := (sl , st ,d,Bπ ,σ ), where sl ∈ {sl1, · · · , slR } is the slot number,
st ∈ {0, 1}λ is the hash of the previous block, d ∈ {0, 1}∗ is the
block data, Bπ is a block proof containing information that allows
stakeholders to verify if a block is valid, and σ is a signature on
(sl , st ,d,Bπ ) computed under the secret key of slot leader generat-
ing the block.

A blockchain C relative to the genesis block B0 is a sequence of
blocksB1, · · · ,Bm associatedwith a strictly increasing sequence of
slots, where B0 contains the list of stakeholders identified by their
public-keys, their respective stakes (vk1, s1), . . . , (vkn , sn ) and aux-
iliary information. The length of a chain len(C) =m is its number
of blocks. The block Bm is the head of the chain, denoted Head(C).

The blockchain protocol, denoted by Γ, has a set of global pa-
rameters and a public set of rules for validation, and provides the
nodes with the following functionalities:
• Γ.updateChain(C): returns a longer and valid chain C′ by re-

trieving new valid blocks from the network (if it exists).
• Γ.validateChain(C): returns 1 if the chain is valid according to

a public set of rules and 0 otherwise.
• Γ.validateBlock(B): returns 1 if the block is valid according to a

public set of rules and 0 otherwise.
• Γ.broadcast(x): broadcasts x to all the nodes of the system.

Definition 3.1 (Properties of Blockchain). A blockchain protocol
should satisfy the following three properties.
• Common Prefix. The chains C1 and C2 possessed by two honest

parties at the onset of the slots sl1 < sl2 are such that C ⌈k1 ⪯ C2,
where C ⌈k1 denotes the chain obtained by removing the last k
blocks from C1 and ⪯ denotes the prefix relation.

• Chain Quality. Consider any portion of length at least k of the
chain possessed by an honest party at the onset of a round; the
ratio of blocks originating from the adversary is at most 1 − µ.
We call µ the chain quality coefficient.
• Chain Growth. Consider the chains C1 and C2 possessed by two

honest parties at the onset of two slots sl1, sl2 with sl2 at least
s slots ahead of sl1. Then it holds that len(C2) − len(C1) ≥ τ · s .
We call τ the speed coefficient.

3.2 Redactable Blockchain Protocol
We construct our redactable blockchain protocol Γ′ by modifying
and extending the aforementioned protocol Γ. First, an editing pol-
icy is introduced to determine whether an edit to the blockchain
should be approved or not. Specifically, an edited block B∗ whose
editing proposed in the slot sl is said to satisfy the policy, i.e.,P(C,B∗) =
1, if the number of votes on B∗ is at least 2/3 · T , where votes are
embedded in a block Br , Br ∈ C ⌈k , and T is a parameter that de-
termines the expected number of stake in committee for voting
whose selection will be discussed in Section 3.41.

Next, in order to accommodate editable data, we extend the
above block structure to be of the form B := (sl , st ,d, ib,Bπ ,σ ).
Specifically, if a chain C with Head(C) = (sl , st ,d, ib,Bπ ,σ ) is
updated to a new longer chain C′ = C∥B′, the newly created
block B′ = (sl ′, st ′,d ′, ib ′,B′π ,σ ′) sets st ′ = H (sl ,G(st ,d), ib) and
ib ′ = G(st ′,d ′), where H and G are prescribed collision-resistent
hash functions, σ ′ is a signature on (sl ′,G(st ′,d ′), ib ′,B′π ) com-
puted under the secret key of slot leader generating the block B′.
Notice that in order to maintain the link relationships between
edited block and its neighbouring blocks, we introduce ib to rep-
resent the initial and unedited state of block, i.e., ib = G(st ,d0) if
original block data is d0 in the edited block B = (sl , st ,d, ib,Bπ ,σ ).
Then, validateBlock (Algorithm 1) and validateChain (Algorithm
2) need to be modified accordingly. Roughly speaking, we need to
ensure that for an edited block, its original state before editing still
can be accessible for verification.
ValidatingBlock.To validate a block, the validateBlock algorithm
(Algorithm 1) takes as input a block and first checks the validity of
data included in the block according to the system rules. It then
checks the validity of the leader by Bπ . Finally, it verifies the sig-
nature σ with the verification keyvk of the leader. In particular, for
an edited block, the signature σ is on the “old" state (sl , ib, ib,Bπ ).

procedure validateBlock(B)
Parse B = (sl, st, d, ib, Bπ , σ );
Validate data d , if invalid return 0;
Validate Bπ including the verification key vk of leader,
if invalid return 0;

if the signature σ on (sl, G(st, d ), ib, Bπ ) or on (sl, ib, ib, Bπ )
is verified with vk , then return 1;

else return 0.

Algorithm 1: The block validation algorithm

Validating Chain. To validate a chain, the validateChain algo-
rithm (Algorithm 2) takes as input a chain C and first validates it
from the head of C. For every block Bj , it first checks the validity
of block Bj , and then checks the relationship to the previous block
Bj−1, which has two cases depending on whether Bj−1 is a edited
block. IfBj−1 has been redacted (i.e., stj , H (slj−1,G(stj−1,dj−1), ibj−1)),
its check additionally depends on whether the editing policy P of
the chain has been satisfied.

Additionally, the protocol Γ′ provides three new functionalities
validCand,checkVote, and collectVote.

1It is required to wait k blocks to confirm a transaction in blockchain protocol.
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procedure validateChain(C)
Parse C = (B1, · · · , Bm );
j =m;
if j = 1 then return Γ′.validateBlock(B1);
while j ≥ 2 do

Bj = (slj , stj , dj , ibj , Bπ , j , σj );
if Γ′.validateBlock(Bj ) = 0 then return 0;
if stj = H (slj−1, G(stj−1, dj−1), ibj−1) then
j = j − 1;

else if stj = H (slj−1, ibj−1, ibj−1) and P(C, Bj−1) = 1
then j = j − 1;
else return 0;

return 1.

Algorithm 2: The chain validation algorithm

Validating candidate editing block. To validate a candidate edit-
ing block B∗j for the j-th block of chain C, the validateCand algo-
rithm (Algorithm 3) takes as inputs B∗j and C, and first checks the
validity of block B∗j . It then checks the link relationship with Bj−1
andBj+1, where the linkwithBj+1 is “old", i.e., stj+1 = H (slj , ibj , ibj ).

procedure validateCand(C, B∗j )
Parse B∗j = (slj , stj , d∗j , ibj , Bπ , j , σj );
if Γ′.validateBlock(B∗j ) = 0 then return 0;
Parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, Bπ , j−1, σj−1);
Parse Bj+1 = (slj+1, stj+1, dj+1, ibj+1, Bπ , j+1, σj+1);
if stj = H (slj−1, ibj−1, ibj−1) and stj+1 = H (slj , ibj , ibj )
then return 1;

else return 0.

Algorithm 3: The candidate block validation algorithm

Checking voting right. The checkVote algorithm (Algorithm 4)
checks a stakeholderUi (with secret key ski and stake si ) whether
having right to vote or not. Inspired by the idea of Algorand [24], it
uses VRFs to randomly select voters in a private and non-interactive
way. Specifically, Ui computes (hash,π ) ← VRFski (seed ∥sl) with
his own secret key ski , where the pseudo-random hash determines
how many votes of Ui are selected. In order to select voters in
proportion to their stakes, we regard each unit of stakes as a dif-
ferent “sub-user". For example, Ui with stakes si owns si units,
each unit is selected with probability p = T

S , and the probabil-
ity that q out of the si sub-users are selected follows the bino-
mial distribution B(q; si ,p) = C(si ,q)pq (1−p)si−q , where S is total
stakes in the system, T is the expected number of stakes in com-
mittee for voting, Σsiq=0B(q; si ,p) = 1 and C(si ,q) = si !

q!(si−q)! . To
determine how many sub-users of si in Ui are selected, the algo-
rithm divides the interval [0,1) into consecutive intervals of the
form Ic = [Σcq=0B(q; si ,p), Σ

c+1
q=0B(q; si ,p)) for c ∈ {0, 1, · · · , si }. If

hash
2hashlen falls in the interval Ic , it means that c sub-users (i.e., c
votes) ofUi are selected, where hashlen is the bit-length of hash.
Collecting votes. The collectVote algorithm (Algorithm 5) col-
lects and validates the votes. The collected votes are stored inmsдs
buffer. To validate a vote, it first verifies the signature onH (B∗j ) un-
der the verification key of the voter, and then verifies a proof π to

procedure checkVote(sl, ski , si , seed, T , S )
(hash, π ) ← VRFski (seed ∥sl );
p ← T

S ;
c ← 0;
while hash

2hashlen
< [Σcq=0B(q; si , p), Σc+1q=0B(q; si , p)) do

c ← c + 1
if c , 0 then return (hash, π )
else return 0.

Algorithm 4: Checking voting right

confirm the voting right of the voter, i.e.,Veri f yVRFvk (hash,π , seed ∥sl)2.
If the voter Ui was chosen k times (i.e., hash

2hashlen falls in the inter-
val Ik ), the number of votes from Ui is k as well. As soon as the
number of votes collected is more than 2/3 ·T , the algorithm gen-
erates a multi-signaturemsiд on all these vote signatures SIG, ag-
gregates corresponding proofs PROOF , and returns them. If not
enough votes are collected within the allocated τt time window,
then the algorithm returns 0.

In a synchronous network, messages are deliveredwithin amax-
imum network delay of ∆ and we can set τt = ∆. While in partially
synchronous or asynchronous network, we can not obtain such ∆.
We firstly sets τt = t , and if the leader in this slot does not ob-
tain enough votes of a honest candidate editing block because of
network delay, then the block will be voted again in the next slot,
where we set τt = 2t . The time window will increase exponen-
tially with slot until the candidate editing block expires. By this
way, it is very likely that an honest candidate editing block will be
approved eventually unless message delays grow faster than the
time window indefinitely, which is unlikely in a real system.

procedure collectVote(msдs, sl, seed, T , S, τt )
star t ← T ime();
votes ← 0;
SIG ← {};
PROOF ← {};
For everym ←msдs .next ()

if T ime() > star t + τt then return 0;
else
(hash, π , siд) ←m;
if the signature siд on H (B∗j ) is not verified
then continue;

if V er if yVRFvk (hash, π , seed ∥sl ) = 0
then continue;

p ← T
S ;

c ← 0;
while hash

2hashlen
< (Σcq=0B(q; si , p), Σc+1q=0B(q; si , p)) do

c ← c + 1;
votes = votes + c ;
SIG = SIG ∪ {siд };
PROOF = PROOF ∪ {(hash, π )};

if votes > 2/3 · T
then compute multi-signaturemsiд on SIG
and return (msiд, PROOF ).

Algorithm 5: Collecting votes

2In this paper, we assume the identifier of the public key would be sent to receivers
associated with the signature and the VRF outputs, such that the corresponding public
key can be located for verification.
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3.3 Protocol Description
Redactable proof-of-stake blockchain protocol Γ′ is described in
Figure 1. In the chain C = (B1, · · · ,Bm ), a block is edited by the
following steps.
(1) If a user wishes to propose an edit to block Bj in the chain
C, he first parses Bj = (slj , stj ,dj , ibj ,Bπ , j ,σj ), replaces dj
with the new data d∗j , and broadcasts the candidate block B

∗
j =

(slj , stj ,d∗j , ibj ,Bπ , j ,σj ) to the network, where d∗j = ε if the
user wants to remove all data from Bj .

(2) Upon receiving B∗j from the network, every stakeholderUi first
validates it by using Γ′.validateCand(C,B∗j ) (Algorithm 3), and
stores it in his own editing pool EP if B∗j is a valid candidate
editing block. In the pool EP, each candidate editing block has
a period of validity tp .

(3) At the beginning of each new slot sl , every stakeholderUi tries
to extend their local chain by using Γ′.validateCand(C) to re-
trieve new valid blocks from the network. For every candidate
editing block B∗j in his own editing pool EP, Ui first checks
whether B∗j has expired or not, and if it is,Ui removes B∗j from
EP. Then Ui computes P(C,B∗j ) to check whether B∗j should
be adopted in the chain, and if it outputs 1, Ui replaces Bj in
the chain with B∗j and removes B∗j from EP. Finally, for ev-
ery remaining candidate editing block B∗j in the EP, Ui with
stake si checks whether he has voting right for this block in
current slot sl by using Γ′.checkVote(sl , ski , si , seed,T , S) (Al-
gorithm 4), where seed is a nonce generated for the slot sl3, T
is a threshold that determines the expected number of stakes
in committee for voting, and S = Σisi is all the stakes in the
system. If it holds, Ui broadcasts (hash,π ) and the signature
siд on H (B∗j ) with his own secret key ski .

(4) The leader of new slot sl collects and validates the votes by us-
ing Γ′.collectVote(msдs, sl , seed,T , S,τt ) (Algorithm 5), where
τt is the allowed maximum time of collecting votes in one slot.
If it holds and returns (msiд, PROOF ), the leader adds them to
the data d ′ and proposes a new block B′, where d ′ is new block
data collected.

Redactable proof-of-stake blockchain protocol Γ′ offers public
verifiability. Concretely, to validate a redactable chain, users first
check each block exactly like in the underlying immutable blockchain
protocol Γ. If a “broken" link between blocks is found, then users
check whether the link still holds for the old state information. In
the approving case, users verify whether the edited block satisfies
the editing policyP by checking the following blocks. For example,
in the chainC = (B1, · · · ,Bm ), if stj , H (slj−1,G(stj−1,dj−1), ibj−1),
the chain is valid only under the condition of stj = H (slj−1, ibj−1, ibj−1)
and P(C,Bj−1) = 1.

3.4 The Number of Committee for Redaction
voting

As mentioned earlier, we consider each unit of stakes as a different
“sub-user", for example, if userUi with si stakes owns si units, then
Ui is regarded as si different “sub-users". Let S be the total number
3In proof-of-stake blockchain protocol, in order to guarantee the adversary cannot
control the selection of the leader, random seed needs to be introduced by different
ways.

The protocol Γ′ is run by stakeholders over a sequence of slots sl , and is
parameterized by editing policy P, corrupted stakes ratio ρ , and expected
number of stakes in voters committee T , where ρ = 1 − h < 1/3.

Initialization. Set the chain C be genesis block B0.
Chain update. At the beginning of a new slot sl , the nodes try to update
their local chain by calling C ← Γ′.updateChain.
Editing pool update. Collect all candidate editing blocks B∗j from the net-
work, and add B∗j to the editing pool EP iff Γ′.validateCand(C, B∗j ) = 1;
otherwise discard B∗j . Remove every candidate editing block in EP which
has expired.
Editing the chain. For every candidate block B∗j in EP, if P(C, B∗j ) = 1,
the block Bj in C is replaced by B∗j .
Creating a new block. The leader in a new slot sl performs the following
steps:
• Collect all the transaction data d ′ from the network.
• Collect the votes for candidate editing block H (B∗j )(if exists) by calling

Γ′.collectVote, and add votes and proofs to d ′ provided that the number
of votes is more than 2/3 · T .

• Create a new block B = (sl ′, st ′, d ′, ib′, B′π , σ ′), such that st ′ =
H (sl, G(st, d), ib) for Head(C) = (sl, st, d, ib, Bπ , σ ).

• Extend its local chain C ← C∥B and then broadcast C to the network.
Proposing an edit. The stakeholder creates a candidate block B∗j using
new data d∗, and broadcasts it to the network.
Voting for candidate editing blocks. For every candidate block B∗j in
EP, the stakeholder checks his own voting right by calling Γ′.checkVote,
then votes for B∗j and broadcasts voting information to the network.

Figure 1. Redactable Proof-of-Stake Blockchain Protocol Γ′

of stakes in the system (S is arbitrarily large). When a redaction
is proposed, a committee for voting will be selected from all sub-
users. The expected number of committee,T , is fixed, and thus the
probability ρs of a sub-user to be selected is T

S . Then the probabil-
ity that exactly K sub-users are sampled is(

S

K

)
ρKs (1 − ρs )S−K =

S!
K !(S − K)! (

T

S
)K (1 − T

S
)(S−K )

=
S · · · (S − K + 1)

SK
TK

K !
(1 − T

S
)(S−K )

If K is fixed, we have
lim
S→∞

S · · ·(S−K+1)
SK = 1

and

lim
S→∞

(1 − T
S )(S−K ) = lim

S→∞
(1−TS )S

(1−TS )K
= e−T

1 = e−T

Then the probability of sampling exactlyK sub-user approaches:

TK

K !
e−T (1)

When we select the value of T, we want the number of honest
committee members is more than ls ·T , where ls ·T are some pre-
determined threshold. The condition is violated when the number
of honest committee members is not more than łs · T . From for-
mula (1), the probability that we have exactly K honest committee
members is (h ·T )

K

K ! e−h ·T , where honest stakes ratio in the system
is at least h (h > 2/3). Thus, the probability that the condition is
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Figure 2. The x-axis specifies h, the stakes fraction of honest
users. The committee size, T , is sufficient to limit the probability
of violating safety to 5 × 10−9.

violated is given by the formula

ls ·T∑
K=0

(hT )K
K !

e−hT

F is a parameter which marks a negligible probability that the
condition fails, and our experience sets F = 5×10−9. Our goal is to
minimize T , while maintaining the probability that the condition
fails to be at most F . If some value ofT satisfies the condition with
probability 1− F , then any larger value ofT also does for the same
ls with probability at least 1 − F . Based on the above observation,
to find the optimalT , we firstly letT be an arbitrary large value, for
example 104, and then see if we can find a ls ∈ ( 23 , 1] that satisfies
the condition. If such ls exists, then we decrease T and see if we
also can find a good ls . We continue this process until finding the
optimal number of committee and corresponding threshold ls . In
this way, we can get Figure 2, plotting the expected committee size
T satisfying the condition, as a function of h, with a probability of
violation of 5× 10−9. A similar approach to compute the threshold
of committee size can be referred to [24].

In the implementation of our system, we assume the fraction of
honest stakes is 0.75, so we select T = 1000 according to Figure 2.
From Algorithm 5, a validate editing block is approved only after
it obtains more than 2

3 ·T votes.
We stress that the number of votes from malicious stakeholders

cannot reach 2/3 · T with non-negligible probability. Specifically,
when the size n of selected committee members satisfies n > T ,
the number of honest committee members is more than 2/3 · n
with probability at least 1 − F according to the above discussion,
while the malicious committee members can only reach 2/3 · T
unless 1/3 · n > 2/3 · T (i.e., n > 2T ), which occurs with a neg-
ligible probability since T is the expected value of the committee
size following the binomial distribution. Similarly, when n < T ,
the malicious members can only obtain more than 2/3 · T votes
unless ρ ′ · n > 2/3 · T (i .e ., ρ ′ > 2/3), where ρ ′ denotes the frac-
tion of malicious committee members. This, however, only occurs
with a negligible probability, since n cannot deviate fromT too far

as discussed above, that is, the fraction of malicious members can-
not exceed 1/3 too much. This result keeps consistent with that in
Algorand [24].

4 SECURITY ANALYSIS
In this section, we analyze the security of redactable proof-of-stake
blockchain protocol Γ′ as depicted in Figure. 1.

Essentially, Γ′ behaves just like the underlying immutable proof-
of-stake blockchain protocol Γ if there is no edit in the chain, and
otherwise each edit must be approved by the policy P. Therefore,
we prove Γ′ preserves the same properties (or a variation of the
property) of the underlying immutable PoS blockchain protocol Γ
under the editing policy P, that is, Γ′ satisfies the properties of
redactable common prefix, chain quality and chain growth.

Common Prefix. We observe that redactable proof-of-stake
protocol Γ′ inherently does not satisfy the original definition of
common prefix due to the (possible) edit operation. In detail, con-
sider the case where two chains C1 and C2 are held by two honest
parties P1 and P2 at slot sl1 and sl2 respectively, such that sl1 < sl2.
For a candidate block B∗j to replace the original Bj , whose votes
are published at slot sl such that sl1 < sl < sl2, the edit request
has not been proposed in C1 but may have taken effect in C2. As
a result, the original block Bj remains unchanged in C1 while it is
replaced with the candidate B∗j in C2. Therefore, C

⌈k
1 ⊀ C2, which

violates Definition 3.1.
The main reason lies in the fact that the original definition of

common prefix does not account for edits in the chain, while any
edit may break the common prefix property. To address this issue,
we introduce an extended definition called redactable common pre-
fix, which is suitable for redactable blockchains and considers the
affect of each edit. Roughly speaking, the property of redactable
common prefix states that if the common prefix property is vio-
lated, it must be the case that there exist edited blocks satisfying
the editing policy P.

Definition 4.1. (Redactable Common Prefix). The chains C1 and
C2 of length l1 and l2, respectively, possessed by two honest parties
at the onset of the slots sl1 < sl2 satisfy one of the following:

(1) C ⌈k1 ⪯ C2, or
(2) for each B∗j ∈ C

⌈(l2−l1)+k
2 such that B∗j < C

⌈k
1 , then it must

be the case that P(C2,B∗j ) = accept, for j ∈ [l1 − k], where
C ⌈(l2−l1)+k2 denotes the chain obtained by removing the last
(l2 − l1) + k blocks from C2, namely the first l1 − k blocks of
C2, P denotes the editing policy, and k denotes the common
prefix parameter.

Now we prove the redactable PoS blockchain protocol Γ′ satis-
fies the redactable common prefix property.

Theorem 4.2. If the hash functionH is collision resistant, and the
immutable blockchain protocol Γ satisfies common prefix property,
then Γ′ satisfies the redactable common prefix property.

Proof.Note that if there is no edit in the chain C, then Γ′ behaves ex-
actly like the immutable blockchain protocol Γ, and thus the com-
mon prefix property (cf. Definition 3.1) can be preserved directly.
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In case of an edit, we consider a new candidate block B∗j for the
original block Bj in chain C2, which is later edited by honest P2. We
can observe that the adversary cannot propose another candidate
B̃∗j , B∗j such that H (B̃∗j ) = H (B∗j ), since this would break the
collision resistance property of the hash function H . Therefore, if
the honest P2 eventually replaces Bj with B∗j , then it must be the
case that P2 receives enough votes for B∗j according to the protocol
specification. This concludes the proof. □

Chain Quality. The chain quality property restricts the ratio of
adversarial blocks to a fraction µ, where µ denotes the fraction of
stakes controlled by the adversary. We prove that Γ′ satisfies the
chain quality property as follows.

Theorem 4.3. If the hash functionH is collision resistant, the sig-
nature scheme Siд is EUF-CMA secure, the multi-signature scheme
Msiд is MEUF-CMA secure, and the immutable blockchain protocol
Γ satisfies the chain quality property with parameters (k, µ), then Γ′

satisfies the chain quality property with parameters (k, µ).

Proof. Note that if there is no edit in the chain, then Γ′ behaves ex-
actly like the immutable blockchain protocol Γ, and thus the chain
quality property (cf. Definition 3.1) can be preserved directly.

In case of an edit, the adversaryA can propose an edit request to
replace an honest block Bj with a malicious block B∗j (e.g., contain-
ing illegal or harmful dada), and by this way, A can increase the
proportion of adversarial blocks in the chain and finally break the
chain quality property. We will show A can break the chain qual-
ity property only with a negligible probability, if the hash function
H is collision resistant, the signature signature scheme Siд is EUF-
CMA secure and the multi-signature scheme Msiд is MEUF-CMA
secure.

Case-I: If A wants to edit an honest block Bj into adversar-
ial block B∗j , he will try to build and propose an “honest looking"
candidate block B∗ to replace Bj such that H (B∗) = H (B∗j ). The
honest nodes could endorse the honest candidate block B∗ during
the voting process, however, A just maliciously edits the Bj into
B∗j rather than the adopted B∗. Note that, the edit by the adversary
A is valid according to the protocol specification. However,A has
only a negligible probability to generate such a candidate block
B∗ such that H (B∗) = H (B∗j ), since this would break the collision
resistance property of the hash function H .

Case-II:Wewill show thatA cannot employ the ability of adap-
tive corruption during the voting process to vote for his adversarial
request. The adversarial edit request (e.g., editing Bj into B∗j ) can
only be adopted when the number of votes reaches 2/3 ·T , whileA
himself has no enough votes. If A can “presciently" ensure which
user would become the member of the voting committee, he can
adaptively corrupt and impersonate this user to vote for his re-
quest, such that the votes for the adversarial request exceed 2/3 ·T
and the edit request is adopted. However, according to the unique-
ness property of the underlying VRF, the adversary has only a neg-
ligible probability 1/2hashlen to win. In detail, the function value
hash of VRF is random and unpredictable, the adversary without
the secret key can only predict whether an honest user is chosen as
the committee member with a negligible probability 1/2hashlen .

Case-III: As described above, the adversarial edit request (e.g.,
edit Bj into B∗j ) can only be adopted when the number of votes
exceeds 2/3 ·T , however the adversary has no enough votes.

During the voting for some honest candidate block in current
slot, the adversary A can confirm that Ui belongs to the voting
committee by eavesdropping, and further obtain the valid PROOF
of the honest userUi from the channel. IfA can forge the signature
of Ui to vote the adversarial edit request, he may obtain enough
votes by adding the vote ofUi . Then he can propose an adversarial
edit block by broadcasting 2/3 ·T votes, and finally this adversarial
edit would be adopted with enough votes.

However, the advantage ofA is negligible due to the EUF-CMA
security property of the underlying signature scheme Siд. IfA suc-
ceeds by this way, then we can construct another algorithm B to
break the EUF-CMA security of Siд. Generally this is achieved by
a reduction, that is, B simulates forA the protocol running just as
the protocol specification. For any signature to generate for userUi
in honest sessions, B calls its signing oracle in its own EUF-CMA
experiment. Eventually, if A outputs a valid signature σ from Ui
and σ has never been previously output by the signing oracle, σ
can be used as a forgery and EUF-CMA security of Siд is broken.

Case-IV: We consider the case where one of users controlled
by the adversary A is selected as the leader in the current slot. In
order to make an adversarial candidate block adopted,A needs to
produce a validmulti-signature from 2/3·T users on the adversarial
edit request message, however, among the 2/3 ·T users at least one
is honest according to the protocol specification.

To achieve this goal, A first collects the votes and the corre-
sponding proof for some honest edit, then he can confirm that
some honest users such as Ui belong to the voters committee and
have the voting right in current slot. Then A tries to produce a
multi-signature msiд on the adversarial edit request from 2/3 · T
users including honest users such asUi and adversarial users, and
adds themsiд as well as the corresponding proof PROOF into the
new block. It is easy to see that both msiд and PROOF are valid
and thus the adversarial edit request would be adopted.

However, the probability ofA to produce amulti-signaturemsiд
from 2/3 · T users one of which is at least honest is negligible,
due to the MEUF-CMA security of the underlying multi-signature
schemeMsiд. Specifically, if A successfully produces such a valid
msiд, then we can construct another algorithm B to break the
MEUF-CMA security of Msiд. During the reduction, B simulates
the protocol running for A just as the protocol specification. For
any signature to generate for user Ui in honest sessions, B calls
the signing oracle of Ui as specified in the MEUF-CMA security
experiment. Eventually, if A outputs a valid multi-signaturemsiд
on some messagem andm has never been queried to the singing
oracle of Ui ,msiд can be used as a forgery and MEUF-CMA secu-
rity ofMsiд is broken. This concludes the proof. □

Chain Growth. This property requires the chain grows propor-
tionally with the number of rounds of the protocol.

Theorem 4.4. If Γ satisfies the chain growth property with pa-
rameters (τ , s), then Γ′ also satisfies the chain growth property with
parameters (τ , s) under the editing policy P.
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Proof. Note that any edit operation in Γ′ would not reduce the
length of the chain since it is not possible to remove any blocks
from the chain according to the protocol specification. Moreover,
the new block issue process in current slot is not influenced by
votes for any edit request, since the leader would always issue
new blocks in current slot no matter whether he/she has received
enough votes within pre-defined time window. Therefore, we con-
clude Γ′ preserve the chain growth property of Γ. □

5 IMPLEMENTATION AND EVALUATION
We make an evaluation of our redactable blockchain protocol, in
terms of additional cost over the underlying immutable blockchain
protocol. Specifically, we implement the new added cryptographic
primitives, including VRF scheme and multi-signature scheme, to
evaluate the additional storage cost for a block and the additional
computation time over the system.

We adopt the pairing-basedmulti-signature scheme in [12], while
for VRF, we adopt the general scheme [16] built from the unique
signature which is instantiated in this paper with the unique BLS
signature [13]. The corresponding implementations are written in
C using version 3 of AMCL and compiled using gcc 5.4.0, and the
programme runs on a Lenovo Think-Station P318 computer with
Ubuntu 16.04.10 (64bits) system, equipped with a 3.60 GHz Intel
Core i7-7700 CPUwith 8 cores and 32GBmemory. Particularly, the
AMCL library recommends two types of BLS curves (i.e., BLS12
and BLS24) to support bilinear pairings, and the curves have the
form y2 = x3 + b defined over a finite field Fq , with b = 15 and
|q | = 383 for BLS12, while b = 19 and |q | = 479 for BLS24, where q
is a prime. According to the analysis [11], BLS12 and BLS24 curves
can provide 128-bit and 192-bit security levels, respectively.

Table 1 and Table 2 summarize the experiment cost/size of each
basic operation and each element over recommended groups at dif-
ferent security levels, where we use tpr , tvr , ts , tv and ta to denote
the time for VRF computation, VRF validation, generating a signa-
ture, verifying a signature and aggregating two signatures, respec-
tively. We also denote |H |, |π | and |msiд | as the bit-length of hash
function, the output proof of VRF and an aggregated signature.

To evaluate the performance, we set h = 0.75, which means the
adversary would control 25% of the stakes of the system, then the
corresponding expected committee size is T = 1000 according to
Figure 2.

Table 1: Experimental cost of each operation (ms)

tpr tvr ts tv ta
128-bit 0.46 1.52 0.49 1.52 0.002
192-bit 0.68 5.29 0.85 5.29 0.003

Table 2: Experimental size of each element (bits)

|H | |π | |msiд |
128-bit 256 381 381
192-bit 384 478 478

Storage overhead for one block. Compared to the immutable
blockchain, in each block of our scheme, we store both of the ini-
tial and updated state of the block data, and thus one additional
hash storage is needed. In addition, if one leader collects enough
votes (i.e., 2/3 ·T ) for an honest edit request in a slot, then he/she
would add the data (msiд, PROOF ) to the new block, and the in-
cremental storage of this block is at most |msiд | + |PROOF | =
|msiд | + 2/3 · T (|H | + |π |), while the size of other blocks remains
unchanged. According to the experiment results, the incremental
storage is about 53.1 KB and 71.9 KB for 128-bit and 192-bit security,
respectively. Note that unless the the leader handles more than one
edit requests (e.g., l requests) in one slot, where the needed storage
tends to be at most linear in l , the storage for several edits would
be amortized amongmultiple blocks. Moreover, note that each VRF
output from the stakeholder may denote several votes, which is de-
termined by its stake weight, as a result, there are no more than
2/3 · T VRF outputs in the new slot, and the incremental storage
cost may be much less than the above results.
Computation overhead for the system. Upon receiving an hon-
est request, each user would check whether having right to vote
or not in the current slot by running the checkVote algorithm in
a parallel way, which leads to an additional time cost tpr for VRF
evaluation and ts for signing to vote. For the leader that receives
2/3 ·T votes, he/she would check the vote right of each user, verify
at most 2/3 ·T signatures, and aggregate the individual signatures
into a single onemisд, which costs about 2/3 ·T · tvr, 2/3 ·T · tv and
2/3 · T · ta, respectively. Thus, the incremental computation cost
t for one edit is about 2.03s and 7.06s for 128-bit and 192-bit se-
curity respectively. As mentioned above, each signature and each
VRF proof from the stakeholder may denotes several votes, there-
fore, the leader would verify at most 2/3 · T signatures and VRF
outputs, which means in practice the incremental time cost may
be much less than the above results. In addition, the incremental
computation cost only exists in slots where edit request is being
managed while other slots remain unaffected.
Network delays. Recall that in our scheme, we set two time-out
parameters, one for waiting time τt of the leader, and the other
for the period tp of validity of one edit request, to model various
network environments.

The edit request would be invalid after a period of tp from the
beginning of being proposed, which may be due to the fact that the
edit is adversarial and disapproved by honest users or the network
environment is terrible and enough votes cannot be received. As a
result, tp should be set according to specific network environments.
Specifically, tp can be set to be a relatively small value in good
environment with low latency, while for long-delay networks, it
should be set appropriately larger to guarantee enough votes to a
great extent.

The time window τt is set to guarantee the normal issue of new
blocks. If the waiting time of the leader reaches τt , however re-
ceived votes are not enough, then the leader would issue the new
block as usual, leaving the edit request to next slot with double
waiting time. Note that if the network environment is well enough,
for example in full synchronous environment, then τt can be set to
be a small value and the edit request can be approved within just
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a few slots (even only one slot). While in a relatively bad environ-
ment, it may cost more slots for one edit request to be approved
until the request is invalid and revoked after a period of tp .

In general, both tp and τt are set based on the specific network
environment and protocol instance. The system can be run nor-
mally under the cooperation of tp and τt . Specifically, τt is initially
set to be a small value and increased exponentially to ensure an
honest edit request would be approved eventually even in the bad
environment, while tp restricts the maximumwaiting time to guar-
antee the release of new blocks unaffected.

6 DISCUSSION AND MULTIPLE REDACTIONS
In the section, we discuss some possible attacks in practice and
demonstrate how these attacks can be avoided in our protocol. We
also extend our protocol to support multiple redactions per block.

6.1 Discussion on Attacks in Practice
Unapproved editing. If leaders of some slots are malicious, they
may edit the blockchainwith some invalid candidate blocks that do
not satisfy the editing policyP. For example, malicious leaders edit
the blockchain with candidate blocks that have gathered insuffi-
cient votes. However, other honest users will verify the blockchain
and check whether every edit is approved or not. So honest users
will reject the blockchain with unapproved edits.
Denial of service. Malicious users may launch denial of service
attack by flooding the network with many edit requests. However,
users need to spend a transaction fee for each edit request similar
to other standard transactions. So we can immune to suck attack
by making a higher transaction fee for each edit request.
Consensus delays. If two different miners maintain chains with a
different set of redacted blocks, have been approved by the policy,
which may result in consensus delays. However, this would violate
the redactable common prefix property in our protocol.
Increasing the time window indefinitely. In our system, a can-
didate editing block which does not obtain enough votes will be
voted again in the next slot, but the time window increase expo-
nentially with slot. Malicious users can make the time window
very long by proposing some invalid candidate editing blocks that
can not obtain sufficient votes, which slows down the efficiency of
the system. However, each candidate editing block has a period of
validity in our system. Therefore, when the time window is more
than the period of validity, we reset the time window as t to pre-
vent it from increasing indefinitely.

6.2 Extension for multiple redactions
We extend the redactable protocol of Figure 1 to accommodatemul-
tiple redactions for each block. Intuitively, each redaction of one
blockmust contain the entire history of previous redactions of that
block, and can only be approved if all previous redactions (includ-
ing the current one) are approved. In this extension, the history
information is stored in the initial state component ib. We now
sketch the main protocol changes.

Proposing an edit.To propose a redaction for blockBj = (sjj , stj ,dj , ibj ,Bπ , j ,σj ),
the user replaces dj with the new data d∗j and replaces ibj with
ib∗j = ibj | |G(stj ,dj ) if ibj , G(stj ,dj ). It then generates a candidate

blockB∗j = (sjj , stj ,d
∗
j , ib
∗
j ,Bπ , j ,σj ). Note that, ifBj has never been

redacted before, then ibj = G(stj ,dj ) and thus ib∗j = G(stj ,dj ).
Validating block.To validate a block, the users run the validateBlockExt

algorithm (Algorithm 6). Intuitively, the validateBlockExt algorithm
performs the same operations as the validateBlock algorithm (Al-
gorithm 1), except that it consider the case where the block can
be redacted multiple times. Note that ib stores the history infor-
mation of the previous redactions, and thus can be parsed as ib =
ib(1) | |...| |ib(l ) if the block has been redacted l times, where ib(1)
denotes the original state information of the unredacted block ver-
sion.

procedure validateBlockExt(B)
Parse B = (sl, st, d, ib, Bπ , σ );
Parse ib = ib (1) | |... | |ib (l ), where ib (i ) ∈ {0, 1}∗ ∀i ∈ [l ];
Validate data d , if invalid return 0;
Validate Bπ including the verification key vk of leader,
if invalid return 0;

if the signature σ on (sl, G(st, d), ib, Bπ ) or
on (sl, ib (1), ib (1), Bπ ) is verified with vk

then return 1;
else return 0.

Algorithm 6: The extended block validation algorithm

Validating chain.To validate a chain, the users run the validateChainExt
algorithm (Algorithm 7). The only difference between Algorithm 7
and the original Algorithm 2 is that now ib = ib(1) | |...| |ib(l ) where
ib(1) denotes the original state information of the unredacted block
version.

procedure validateChainExt(C)
Parse C = (B1, · · · , Bm );
j =m;
if j = 1 then return Γ′.validateBlockExt(B1);
while j ≥ 2 do

parse Bj = (slj , stj , dj , ibj , Bπ , j , σj );
parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, Bπ , j−1, σj−1);
Parse ibj = ib

(1)
j | |... | |ib

(l )
j , where ib (i )j ∈ {0, 1}∗;

Parse ibj−1 = ib
(1)
j−1 | |... | |ib

(l ′)
j−1, where ib

(i )
j−1 ∈ {0, 1}∗;

if Γ′.validateBlock(Bj ) = 0 then return 0;
if stj = H (slj−1, G(stj−1, dj−1), ibj−1) then
j = j − 1;

else if stj = H (slj−1, ib (1)j−1, ib
(1)
j−1) and P(C, Bj−1) = 1

then j = j − 1;
else return 0;

return 1.

Algorithm 7: The extended chain validation algorithm

Validating candidate editing block. To validate a candidate
editing block, the users run validateCandExt algorithm (Algorithm
8). If a block Bj has been redacted more than once, then validation
of a candidate block B∗j should account for the previous redactions.
That is, the proof of each redaction must exist in the chain.

The checkVote algorithm (Algorithm 4) for checking voting right
and collectVote algorithm (Algorithm 5) for collecting votes re-
main unchanged.
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procedure validateCandExt(C, B∗j )
Parse B∗j = (slj , stj , d∗j , ibj , Bπ , j , σj );
Parse ibj = ib

(1)
j | |... | |ib

(l )
j , where ib (i )j ∈ {0, 1}∗ ∀i ∈ [l ];

if Γ′.validateBlock(B∗j ) = 0 then return 0;
Parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, Bπ , j−1, σj−1);
Parse ibj−1 = ib

(1)
j−1 | |... | |ib

(l ′)
j−1, where ib

(i )
j−1 ∈ {0, 1}∗ ∀i ∈ [l ′];

Parse Bj+1 = (slj+1, stj+1, dj+1, ibj+1, Bπ , j+1, σj+1);
if stj , H (slj−1, ib (1)j−1, ib

(1)
j−1) or stj+1 , H (slj , ib

(1)
j , ib (1)j )

then return 0;
for i ∈ {2, ..., l } do

if there is no valid (msiд, PROOF ) for hash of the
candidate block H (slj , ib (i )j , ib (1)j | |... | |ib

(i−1)
j ) in the chain

then return 0
return 1.

Algorithm 8: The extended candidate block validation algorithm
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