
Redactable Proof-of-Stake Blockchain with Fast Confirmation
Jing Xu

xujing@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences

Xinyu Li
xinyu2016@iscas.ac.cn

Institute of Software, Chinese
Academy of Sciences

Lingyuan Yin
yinlingyuan@tca.iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences

Bingyong Guo
guobingyong@tca.iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences

Han Feng
fenghan@tca.iscas.ac.cn

Institute of Software, Chinese
Academy of Sciences

Zhenfeng Zhang
zfzhang@tca.iscas.ac.cn

Institute of Software, Chinese
Academy of Sciences

ABSTRACT
Blockchain technologies have received a considerable amount of
attention, and immutability is essential property of blockchainwhich
is paramount to applications such as cryptocurrency. However, “Right
to be Fogotten" has been imposed in new European Union’s Gen-
eral Data Protection Regulation, making legally incompatible with
immutalbe blockchains. Moveover, illicit data stored in immutable
blockchain poses numerous challenge for law enforcement agen-
cies such as Interpol. Therefore, it is imperative (even legally re-
quired) to design efficient redactable blockchain protocols in a con-
trolled way.

In this paper, we present a redactable proof-of-stake blockchain
protocol in the permissionless setting with fast confirmation. Our
protocol offers public verifiability for redactable chains, and to pre-
vent an adversary from targeted attack, also uses a verifiable ran-
dom function to randomly select voters for redaction on differ-
ent slots in a private and non-interactive way. Compared to pre-
vious solutions in permissionless setting, our redaction operation
can be completed quickly, even only within one block in synchro-
nous network, which is desirable for redacting harmful or sensi-
tive data. Moreover, our protocol is compatible with most current
proof-of-stake blockchains requiring only minimal changes. Fur-
thermore, using simulation techniques, we prove that our proto-
col can achieve the security property of redactable common prefix,
chain quality, and chain growth. Finally, we implement our proto-
col and provide experimental results showing that compared to im-
mutable blockchain, the overhead incurred for different numbers
of redactions in the chain is minimal.

KEYWORDS
Blockchain; Proof-of-Stake; Redactable Blockchain

1 INTRODUCTION
Blockchain protocols have been gaining increasing popularity and
acceptance by awider community, triggered by the first large-scale
application of blockchains, i.e., the cryptocurrency Bitcoin [35]. In
a nutshell, a blockchain is a decentralized, public, immutable and or-
dered ledger of records, which is created by establishing consensus
among the chain’s participants. The consensus component can be
achieved in a number of ways. The most popular is using proof-of-
work such as Bitcoin [22, 35, 40], while proof-of-stake is emerging
as one of the most promising alternative, since it does not rely on
expensive hardware using vast amounts of electricity to compute

mathematical puzzles as Bitcoin. In a proof-of-stake blockchain
protocol [9, 16, 17, 30], roughly speaking, participants randomly
elect one party to produce the next block by running a “leader elec-
tion" process with probability proportional to their current stake
(a virtual resource) held on blockchain.

Immutability of blockchain is paramount to applications such
as cryptocurrency and payments, due to the fact that it ensures
the history of payment transactions cannot be modified. However,
with the adoption of the new European Union’s General Data Pro-
tection Regulation (GDPR) [3] in May 2018, it is no longer legally
compatible with current immutable blockchains such as Bitcoin
and Ethereum [2] to record personal data, since GDPR imposes
the “Right to be Forgotten" (also known as Data Erasure) as a key
Data Subject Right [28]. Moreover, an immutable ledger is not ap-
propriate for some new applications [13] that are being envisaged
for the blockchain such as government and public records [4, 21]
and social media [1, 6]. The data stored on the chain may be ille-
gal, harmful or sensitive, since the malicious user can abuse the
ability of blockchain to post arbitrary transaction messages and
moreover it is infeasible to filter all transaction data. If these illicit
data contents cannot be removed from the blockchains, they may
affect the life of people forever and further hinder future of the
blockchains technology. For instance, Bitcoin blockchain contains
child sexual abuse images [32], leaked private keys [39] andmateri-
als that infringe on intellectual rights [27]. More worse, immutabil-
ity of blockchains facilitates illicit activities of international crim-
inal groups, and brings the numerous challenges for law enforce-
ment agencies such as Interpol [41]. In addition, smart contracts
may not patch vulnerabilities if the blockchain is immutable, for
example, 3,641,694 Ethers (worth of about 79 million of US dollars)
are stolen due to the flaws of Ethereum and DAO contract [29], but
vulnerabilities have to be patched by deploying a hard fork (i.e., a
manual intervention operation performed by Ethereum develop-
ers).

Tomitigate this problem, theremust be a way to redact data con-
tent of blockchain in specific and exceptional circumstances, and
redaction should be performed only under strict constraints, satis-
fying full transparency and accountability. In addition, the fast con-
firmation of redaction is imperative for some applications. In afore-
mentioned examples, harmful or sensitive data should be redacted
promptly, since otherwise the consequences are huge and even it
is harmful for social security. If a redaction on social media rumors
cannot be confirmed until one week later, it may be too late to stop
irreparable damages.

1

1.1 Related Work
A straightforward approach to globally erasing or editing previ-
ously included data from a blockchain is to produce a hard fork
and develop a new blockchain from the edited block. However, it
requires a strong off-chain consensus among participants, which is
notoriously difficult to achieve. To address this challenge, Ateniese
et al. [8] firstly proposed the notion of redacting a blockchain. They
use a chameleon hash function [12] to compute hash pointer, when
redacting a block, a collision for the chameleon hash function can
be computed by trusted entities with access to the chameleon trap-
door key. By this way, the block data can be modified while main-
taining the chain consistency, and this solution has recently been
commercially adopted by a consultancy companyAccenture [7][23].
Recently, in order to support fine-grained and controlled redaction
of blockchain, Derler et al. [18] introduced the novel concept of
policy-based chameleon hash, where anyonewho possesses enough
privileges to satisfy the policy can then find arbitrary collisions
for a given hash. However, their solutions[8][18] using chameleon
hash are rather limited in a permissioned setting. In permission-
less blockchains like Bitcoin, users can join and leave the system
at any time, and their solutions will suffer from scalability issues
when sharing the trapdoor key among some miners and comput-
ing a collision for the chameleon hash function by a multi-party
computation protocol.

Puddu et al. [38] also presented a redactable blockchain, called µ
chain. In µ chain, the sender of a transaction can encrypt some dif-
ferent versions of the transaction, denoted by “mutations", the de-
cryption keys are secretly shared among miners, and unencrypted
version of the transaction is regarded as the active transaction.
When receiving a request for redacting a transaction, miners first
check it according to redaction policy established by the sender of
the transaction, then compute the appropriate decryption key by
running a multi-party computation protocol, and finally decrypt
the appropriate version of the transaction as a new active transac-
tion. However, their solution is still not suitable for permissionless
setting. Concretely, the malicious users who establish redaction
policy can escape redaction, or even break the stability of transac-
tions by the affection among transactions. Moreover, µ chain also
faces scalability problem when reconstructing decryption keys by
the multi-party computation protocol.

Recently, Deuber et al. [19] proposed the first redactable blockchain
protocol in the permissionless setting, which does not rely on heavy
cryptographic primitives or additional trust assumption. Once a
redaction requirement is proposed by any user, the protocol starts
a consensus-based voting period, and only after obtaining enough
votes for approving the redaction, the edition is really performed
on the blockchain. The protocol offers public verifiability and ac-
countability, that is, each user can verify whether a redaction on
the blockchain is approved by checking the number of votes on
the chain. Their solution is very elegant, however, the new joined
user has to check all the blocks within the voting period to verify
a redaction on the blockchain. Moreover, the voting period is very
long, for example, 1024 consecutive blocks are required in their Bit-
coin instantiation, which also means that it will take almost 7 days
to confirm and publish a redaction block. Nevertheless, in practice,
it is inefficient to redact harmful or sensitive data after such a long

time, and it is also difficult to let new joined user in the system
maintain these redactions.

1.2 Our Contributions
In this work, our overall goal is to propose a redactable proof-of-
stake blockchain protocol in the permissionless setting with fast
confirmation. More specifically, our technical contributions are
threefold.
Redactable Proof-of-Stake Blockchain Protocol. We propose
an approach to make the proof-of-stake blockchain redactable. On
a high level, any stakeholder can propose a candidate edited block
B∗j for Bj in the chain chain, and only committee members (in the
new slot sl of chain) can vote for B∗j ; if votes are approved by the
editing policy (e.g., voted by the majority), the leader of the slot
sl adds these votes and corresponding proofs to its block data col-
lected and proposes a new block; and finally Bj is replaced by B∗j .
Specifically, our protocol has the following features.
• The redaction operation can be completed quickly. If the net-

work is synchronous, the voting period is only within one block,
and even in semi-synchronous or asynchronous network, the
proposed redaction can also be performed after several blocks.
Moreover, to validate an edited block, users can find all evidence
only from one block in the chain.

• Whether a certain stakeholder has right to vote for redaction is
decided via a private test that is executed locally using a verifi-
able random function (VRF) on a random seed and the new slot
of the chain. This means that every stakeholder can indepen-
dently determine if they are chosen to be on the voting commit-
tee, by computing a VRF with their own secret key, which pre-
vents an adversary from targeting voting committee members.
Moreover, stakeholders obtain voting rights in proportion to
their stakes in the system, which means the more stakes owned
by a user, the more voting power he or she has.

• Our protocol offers accountability for redaction, where any edited
block in the chain is publicly verified. Moreover, multiple redac-
tions per block can be performed throughout the run of the pro-
tocol.

• The design of our protocol is compatible with current proof-of-
stake blockchain such asOuroboros[9, 17, 30], NXT[15], PPCoin[31],
and Snow White[16], i.e., it can be implemented right now and
requires only minimal changes to the current blockchain, block,
or transaction structures. Our redaction approach considers all
the cases of synchronous, semi-synchronous, and asynchronous
network. We believe compatibility is an important feature that
must be preserved.

SecurityAnalysis.We provide formal security definition of redactable
blockchain along the lines of the seminal papers of Garay et al. [24]
and Pass et al. [36]. In order to accommodate the edit operation,
we take inspiration from Deuber’s elegant work [19], and give an
extended definition called redactable common prefix. Essentially,
redactable common prefix considers the affect of edited data and
requires that if the property of the common prefix is violated, it
must be the case that there exist edited blocks satisfying the redac-
tion policy RP. Then we prove that our redactable proof-of-stake
blockchain protocol satisfies redactable common prefix, chain qual-
ity and chain growth. Our proof relies on simulation techniques —

2

more specifically, first considers an idealized functionality Ftr ee
that keeps track of all valid chains at any moment of time, and
then shows that any attack that succeeds in real-world protocol
can be turned into an attack in the idealized Ftr ee model.
Performance Evaluation. We develop a proof-of-concept imple-
mentation of our redaction approach on JD Chain [5], evaluating
the overhead of adding our redactionmechanism. The results show
that compared to immutable blockchain, the overhead incurred for
different numbers of redactions in the chain is minimal. Moreover,
independent of the chain size, there is a nearly constant overhead
of about 14 minutes to complete one redaction (from proposing
a redaction request to confirming this redeaction). In addition, all
signatures of voting for an edited block are aggregated a multi-
signature, which drastically reduces the communication complex-
ity for proof-of-stake blockchain.

2 PRELIMINARIES
We say a function neдl(·) : N → (0, 1) is negligible, if for every
constant c ∈ N, neдl(n) < n−c for sufficiently large n. Hereafter,
we use neдl(γ) to refer to a negligible function in the security pa-
rameter γ .

2.1 Verifiable Random Functions
The concept of verifiable random functions is introduced by Micali
et al.[34]. Informally, it is a pseudo-random function that provides
publicly verifiable proofs of its outputs’ correctness.

Definition 2.1 (Verifiable Random Functions)[20]. A function
family F(·)(·) : {0, 1}l → {0, 1}lVRF is a family of VRFs if there ex-
ist algorithms (Gen,VRF,VerifyVRF) such that Gen outputs a pair
of keys (pk, sk); VRFsk (x) outputs a pair (Fsk (x),πsk (x)), where
Fsk (x) is the output value of the function and πsk (x) is the proof
for verifying correctness; andVerifyVRFpk (x ,y,π) verifies thaty =
Fsk (x) using the proof π , return 1 if y is valid and 0 otherwise. For-
mally, we require the following properties:
• Uniqueness: no values (pk , x , y1, y2, π1, π2) can satisfy

VerifyVRFpk (x ,y1,π1) = VerifyVRFpk (x ,y2,π2) unless y1 = y2.
• Provability: if (y,π) = VRFsk (x), then VerifyVRFpk (x ,y,π) = 1.
• Pseudorandomness: for any probabilistic polynomial time algo-

rithmA = (AE ,AJ), which runs for a total of s(γ) steps when its
first input is 1γ , and does not query the oracle on x ,

Pr


b = b′

�����������
(pk, sk) ← Gen(1γ);

(x, st) ← AVRF (.)E (pk);

y0 = VRFsk (x);y1 ← {0, 1}ℓVRF ;

b ← {0, 1};b′ ← AVRF (.)J (yb, st)


≤ 1

2
+ neдl (γ)

Intuitively, the pseudorandomness property states that no func-
tion value can be distinguished from random, even after seeing any
other function values together with corresponding proofs.

2.2 Signature Scheme
Adigital signature scheme SIG = (Sig.Gen, Sig.Sign, Sig.Verify)with
message spaceM(λ) consists of the standard algorithms: key gen-

eration Sig.Gen
(
1λ

) $→(pk, sk), signing Sig.Sign(sk ;m) → σ , and
verification Sig.Verify(pk ;m,σ) → {0, 1}. It is said to be correct if

Sig.Verify(pk ;m, Sig.Sign(sk ;m)) = 1 for all (pk, sk) $← Sig.Gen
(
1λ

)
andm ∈ M(λ).

To define security [26], we consider the following game between
an adversary A and a challenger.

(1) Setup Phase. The challenger chooses (pk, sk) $← Sig.Gen
(
1λ

)
.

(2) Signing Phase. The adversary A sends signature querymi ∈
M and receives σi = Sig.Sign(sk ;mi).

(3) Forgery Phase.A outputs a messagem and its signature σ . Ifm
is not queried during the Signing Phase and Sig.Verify(pk ; m, σ)
= 1, the adversary wins.

Definition 2.2 (EUF-CMA). We say that a signature scheme SIG
is existentially unforgeable under adaptive chosen-message attacks
(EUF-CMA), if for all adversariesA, there exists a negligible func-
tion negl(λ) such that

AdvEUF-CMA
SIG = Pr[A wins] ≤ negl(λ).

2.3 Multi-Signature Scheme
A multi-signature scheme [10, 33] is a protocol that enables the n
signers to jointly generate a short signaturemsiд onm so thatmsiд
convinces a verifier that all n parties signedm.

A multi-signature scheme is defined as algorithms Pg, Kg, Sign,
KAg, and Vf. The system parameters par ← Pg are generated by a

trusted party. Each signer generates a pair of key (pk, sk) $←Kg (par),
and signers can collectively sign a messagem by each running the
interactive algorithm Sign(par , PK , sk ,m), where PK is the set of
the public keys of the signers, and sk is the signer’s individual se-
cret key. In the end, every signer will outputs a signature σ . Algo-
rithm KAg outputs a single aggregate public key apk on inputs a
set of public keys PK . A verifier check the validity of a signature
σ on messagem under an aggregate public key apk by calling the
algorithm Vf (par ,apk,m,σ) which outputs 1 if the signatures is
valid and 0 otherwise.

A multi-signature scheme should satisfy completeness, which
means that for any n, if we have (pki , ski) ← Kg (par) for i =
1, . . . ,n, and for anymessagem, if all signers input Sign (par , ski ,m),
then they will output a signature σ such that
Vf

(
par ,KAg(par , {pki }ni=1),m,σ

)
= 1.

A multi-signature scheme should also satisfy unforgeability. To
define unforeability, we consider the following game between an
adversary A and a challenger.

(1) Setup Phase. The challenger generates the parameters par ←
Pg and a challenge key pair by calling (pk∗, sk∗) $←Kg (par). It
runs the adversary on the public key A (par ,pk∗).

(2) Signing Phase.A can make signature queries on any message
m for any set of signer public keys PK with pk∗ ∈ PK which
means that it has access to oracle OSign(par, ·,sk∗, ·) that will
simulate the honest signer interacting in a signing protocol
with the other signers of PK to signer messagem. Note thatA
is allowed to make any number of such queries concurrently.

(3) Forgery Phase. A outputs a multi-signature forgery σ , a mes-
sage m∗, and a set of public keys PK . The adversary wins if
pk∗ ∈ PK , A made no signing queries on m∗, and
Vf (par ,KAg (par , PK) ,m∗,σ) = 1.

3

Definition 2.3 (Unforgeability). We say that a multi-signature
scheme MSIG is unforgeable, if for all adversaries A, there exists
a negligible function negl(par) such that

AdvMSIG = Pr[A wins] ≤ negl(par).

3 FORMAL ABSTRACTION OF BLOCKCHAIN
In this section, we define the formal abstraction and security prop-
erties of a blockchain. Our definitions are based on the approach
of Garay et al.[24] and Pass et al.[36][37].

3.1 Protocol Execution Model
We assume a protocol specifies a set of instructions for the inter-
active Turing Machines (also called parties) to interact with each
other. The protocol execution is directed by an environment Z,
which activates a number of parties (either honest or corrupt). Hon-
est parties faithfully follow the protocol’s prescription, whereas
corrupt parties are controlled by an adversaryA. We assume that
honest parties can broadcastmessages to each other. The adversary
A cannot modify the content of messages broadcasted by honest
parties, but it can delay or reorder messages arbitrarily as long as
it eventually delivers all messages.

A protocol’s execution proceeds in atomic time units. At the be-
ginning of every time unit, honest parties receive inputs from an
environment Z; while at the end of every time unit, honest par-
ties send outputs to the environment Z. The environment Z can
spawn, corrupt, and kill parties during the execution as follows.

• The environmentZ can spawn new parties that are either hon-
est or corrupt any time during the protocol’s execution.

• The environmentZ can corrupt an honest party and get access
to its local state.

• The environmentZ can kill either an honest or a corrupt party
i , and at this moment, the party i is removed from the protocol
execution.

3.2 Security Properties of Blockchain
We use view ← EXECΠ(A,Z, λ) to denote a randomized execu-
tion of the blockchain protocol Πwith security parameter λ, which
contains the joint view of all parties (i.e., all their inputs, random
coins and all messages sent and received) in the execution. We use
|view| to denote the number of time units in the execution trace
view, and chainti (view) denote the output of party i to the environ-
ment Z at time unit t in view of extracted ideal blockchain chain.
The notation chain[i] denotes i-th block of chain, chain[: l] de-
notes the prefix of chain consisting of the first l blocks, chain[l :]
denotes all blocks at length l or greater, and chain[: −l] denotes
the entire chain except for the trailing l blocks.
Common Prefix. Informally speaking, the common prefix prop-
erty requires that all honest parties’ chains should be identical ex-
cept for roughly O(λ) number of trailing blocks that have not sta-
bilized.

Let prefixk (view) = 1 iff for all times t ≤ t ′, and for all parties
i, j such that i is honest at t and j is honest at t ′ in view, we have
that the prefixes of chainti (view) and chaint

′
j (view) consisting of

the first |chainti (view)| − k records are identical.

Definition 3.1. (Common Prefix). We say that a blockchain pro-
tocol Π satisfies k0-common prefix, if for all (A,Z), there exists a
negligible function negl such that for every sufficiently large λ ∈ N
and every k ≥ k0 the following holds:

Pr[view← EXECΠ(A,Z, λ) : prefixk (view) = 1] ≥ 1 − negl(λ).
Chain Quality. Informally speaking, the chain quality property
requires that the ratio of adversarial blocks in any segment of a
chain held by an honest party is not too large.

We say that a block B = chain[j] is honest w.r.t. view and prefix
chain[: j ′] where j ′ < j, if there exists some honest party i at
some time t < |view| who received B as input, and its local chain
chainti (view) contains the prefix chain[: j ′].

Let qualityk (view, µ) = 1 iff for every time t and every party i
such that i is honest at t in view, among any consecutive sequence
of k blocks chain[j+1..j+k] ⊆ chainti (view), the fraction of blocks
that are honest w.r.t. view and prefix chain[: j] is at least µ.

Definition 3.2. (Chain Quality). We say that a blockchain proto-
col Π satisfies (k0, µ)-chain quality, if for all (A,Z), there exists a
negligible function negl such that for every sufficiently large λ ∈ N
and every k ≥ k0 the following holds:

Pr[view← EXECΠ(A,Z, λ) : qualityk (view, µ) = 1] ≥ 1−negl(λ).
ChainGrowth.The chain growth property requires that the chain
grows proportionallywith the number of time slots. Let growthτ (view)
= 1 iff for every time t ≤ |view| − t0 and every two parties i, j
such that in view i is honest at time t and j is honest at t + t0,
|chaint+t0j (view)| − |chainti (view)| ≥ τ · t0.

Definition 3.3. (Chain Growth). We say that a blockchain proto-
col Π satisfies τ -chain growth, if for all (A,Z), there exists a negli-
gible function negl such that for every sufficiently large λ ∈ N the
following holds:

Pr[view← EXECΠ(A,Z, λ) : growthτ (view) = 1] ≥ 1 − negl(λ).

4 REDACTING PROOF-OF-STAKE
BLOCKCHAIN

In this section we present a generic construction that converts
a basic proof-of-stake blockchain into redactable proof-of-stake
blockchain protocol. We also extend the redactable protocol to ac-
commodate multiple redactions for each block in Appendix C.

4.1 Proof-of-Stake Blockchain Protocol
We recall basic definitions [17] of proof-of-stake blockchain. There
are n stakeholders P1, . . . ,Pn and each stakeholder Pi possesses
si stake and a public/secret key pair (pki , ski). Without loss of gen-
erality, we assume that the public keys pk1, . . . ,pkn are known by
all system users. The protocol execution is divided in time units,
called slots. We denote a block to be of the form B := (sl , st ,d,σ),
where sl ∈ {sl1, · · · , slR } is the slot number, st ∈ {0, 1}λ is the
hash of the previous block, d ∈ {0, 1}∗ is the block data, and σ is a
signature on (sl , st ,d) computed under the secret key of slot leader
generating the block.

A valid blockchain chain relative to the genesis block B0 is a
sequence of blocks B1, · · · ,Bm associated with a strictly increas-
ing sequence of slots, where B0 contains auxiliary information and

4

the list of stakeholders identified by their public-keys and their re-
spective stakes (pk1, s1), . . . , (pkn , sn). We use Head(chain) to de-
note the head of chain (i.e., the block Bm). In a basic proof-of-stake
blockchain protocol, the users always update their current chain to
the longest valid chain they have seen so far. Let eligible(Pi , si , sl)
be a function that determines whether a stakeholder Pi with the
stake si is an eligible leader at the time slot sl , and Pi can cre-
ate and broadcast a block at sl if eligible(Pi , si , sl) = 1, where the
leader election can be achieved according to specific proof-of-stake
blockchain protocol.

4.2 Overview of Redactable Proof-of-Stake
Blockchain Protocol

We construct our redactable blockchain protocol Γ by modifying
and extending the basic proof-of-stake blockchain protocol. We
assume that the fraction of stakes held by honest users is above
threshold h (a constant greater than 2

3). First, a redaction policy is
introduced to determine whether an edit to the blockchain should
be approved or not.

Definition 4.1. (Redaction Policy RP). We say that an edited
block B∗ at the slot sl satisfies the redaction policy, i.e.,
RP(chain,B∗, sl) = 1, if the number of votes on B∗ is at least 2

3 ·T ,
where votes are embedded in a block Br , Br ∈ chain[: −k], and
T is a parameter that determines the expected number of stake in
voting committee1.

Next, in order to accommodate editable data, we extend the
above block structure to be of the form B := (sl , st ,d, ib, σ). Specif-
ically, if a blockchain chain with Head(chain) = (sl , st ,d, ib,σ) is
updated to a new longer blockchain chain′ = chain∥B′, the newly
created blockB′ = (sl ′, st ′,d ′, ib ′,σ ′) sets st ′ = H (sl ,G(st ,d), ib,σ)
and ib ′ = G(st ′,d ′), whereH andG are prescribed collision-resistent
hash functions, σ ′ is a signature on (sl ′,G(st ′,d ′), ib ′) computed
under the secret key of slot leader generating the block B′. Notice
that in order to maintain the link relationships between an edited
block and its neighbouring blocks, inspired by the work [19] we
introduce ib to represent the initial and unedited state of block,
i.e., ib = G(st ,d0) if original block data is d0 in the edited block
B = (sl , st ,d, ib,σ).

Generally, a blockchain chain = (B1, · · · ,Bm) can be redacted
by the following steps.
(1) If a user wishes to propose an edit to block Bj in chain, he first

parses Bj = (slj , stj ,dj , ibj ,σj), replaces dj with the new data
d∗j , and then broadcasts the candidate blockB

∗
j = (slj , stj ,d

∗
j , ibj ,σj)

to the network, where d∗j = ε if the user wants to remove all
data from Bj .

(2) Upon receiving B∗j from the network, every stakeholder Pi
first validates whether B∗j is a valid candidate editing block,
and stores it in his own editing pool EPi if it is. Notice that
each candidate editing block in the pool EP has a period of
validity tp .

(3) For each new slot sl , the leader creates a block and broadcasts
chain in exactly the same manner as the basic proof-of-stake
blockchain if his editing pool is empty. Otherwise, the leader

1In blockchain protocol, a transaction can be finally confirmed after k blocks, and the
selection of T will be discussed in Section 4.4.

collects and validates the votes on edited blockB∗j in his editing
pool by using sub-protocol collectVote (Figure 3). If it holds and
returns (msiд, PROOF), the leader replaces Bj with B∗j , adds
(msiд, PROOF) to the data d ′, creates a new block and broad-
casts chain, where d ′ is the new block data collected.

(4) At the beginning of each new slot sl , every stakeholderPi tries
to update his own editing pool EPi . For every candidate edit-
ing block B∗j in EPi , Pi first checks whether B

∗
j has expired or

not, and if it is, Pi removes B∗j from EPi . Then Pi computes
RP(chain,B∗j , slj) to check whether B∗j should be adopted in
the chain, and if it outputs 1, Pi replaces Bj in chain with B∗j
and removes B∗j from EPi . Finally, for every remaining can-
didate editing block B∗j in the EPi , Pi with stake si checks
whether he has voting right for this block in current slot sl by
using sub-protocol checkVote (Figure 2). If it holds, Pi broad-
casts (hash,π) and the signature siд on H (B∗j) with his own
secret key ski .

Redactable proof-of-stake blockchain protocol offers public veri-
fiability. Concretely, to validate a redactable chain, users first check
each block exactly like in the underlying immutable blockchain
protocol. Once a “broken" link between blocks is found, users check
whether the link still holds for the old state information, andwhether
the redaction policy RP is satisfied. By this way, the redaction op-
eration of blockchain can be verified. For example, in the blockchain
chain = (B1,· · · ,Bm), if stj , H (slj−1,G(stj−1,dj−1), ibj−1,σj−1),
chain is valid only under the condition of stj = H (slj−1, ibj−1, ibj−1,σj−1)
and RP(chain,Bj−1, slj−1) = 1.

4.3 Redactable Proof-of-Stake Blockchain
Protocol

Before our protocol is described, we first define the format of valid
blocks, valid blockchains, and valid candidate editing blocks. Roughly
speaking, we need to ensure that for an edited block, its original
state before editing still can be accessible for verification.
Valid Blocks. To validate a block B, the validateBlock algorithm
(Algorithm 1) first checks the validity of data included in B accord-
ing to the system rules. It then checks the validity of the leader by
eligible function. Finally, it verifies the signature σ with the public
keypk of the leader. In particular, for an edited block, the signature
σ is on the “old" state (sl , ib, ib). We say that B is a valid block iff
validateBlock(B) outputs 1.

procedure validateBlock(B)
Parse B = (sl, st, d, ib, σ);
Validate data d , if invalid return 0;
Validate the leader, if invalid return 0;
if the signature σ on (sl, G(st, d), ib) or on (sl, ib, ib)
is verified with pk , then return 1;

else return 0.

Algorithm 1: The block validation algorithm

ValidBlockchains.To validate a blockchain chain, the validateChain
algorithm (Algorithm 2) first checks the validity of every block Bj ,
and then checks its relationship to the previous block Bj−1, which
has two cases depending onwhetherBj−1 is an edited block. IfBj−1

5

has been redacted (i.e., stj , H (slj−1,G(stj−1,dj−1), ibj−1,σj−1)),
its check additionally depends onwhether the redaction policyRP
of the blockchain has been satisfied. We say that chain is a valid
blockchain iff validateChain(chain) outputs 1.

procedure validateChain(chain)
Parse chain = (B1, · · · , Bm);
ifm = 1 then return validateBlock(B1);
otherwise, return 1 if for all j ∈ [2..m], Bj = (slj , stj , dj , ibj , σj):
1. validateBlock(Bj) = 1;
2. stj = H (slj−1, G(stj−1, dj−1), ibj−1, σj−1) or
3. stj = H (slj−1, ibj−1, ibj−1, σj−1) and RP(chain, Bj−1, slj−1) = 1

Algorithm 2: The blockchain validation algorithm

Valid Candidate Editing Blocks. To validate a candidate editing
block B∗j for the j-th block of blockchain chain, the validateCand
algorithm (Algorithm 3) first checks the validity of block B∗j . It then
checks the link relationship with Bj−1 and Bj+1, where the link
with Bj+1 is “old", i.e., stj+1 = H (slj , ibj , ibj ,σj). We say that B∗j is
a valid candidate editing block iff validateCand(chain,B∗j) outputs
1.

procedure validateCand(C, B∗j)
Parse B∗j = (slj , stj , d∗j , ibj , σj);
if validateBlock(B∗j) = 0 then return 0;
Parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, σj−1);
Parse Bj+1 = (slj+1, stj+1, dj+1, ibj+1, σj+1);
if stj = H (slj−1, ibj−1, ibj−1, σj−1) and stj+1 = H (slj , ibj , ibj , σj)
then return 1;

else return 0.

Algorithm 3: The candidate block validation algorithm

We now present redactable proof-of-stake blockchain protocol
Γ in Figure 1. Γ is parameterized by redaction policyRP, corrupted
stakes ratio ρ, and expected number of stakes in voters commit-
tee T , where ρ = 1 − h < 1/3. The subroutines checkVote and
collectVote are used to check stakeholder’s voting right and col-
lect the votes, respectively.
Checking voting right.The subroutine checkVote (Figure 2) checks
a stakeholder Pi (with secret key ski and stake si) whether having
right to vote. Inspired by the idea of Algorand [25], checkVote uses
VRFs to randomly select voters in a private and non-interactive
way. Specifically, Pi computes (hash,π) ← VRFski (seed ∥sl) with
his own secret key ski , where the pseudo-random hash determines
how many votes of Pi are selected. In order to select voters in pro-
portion to their stakes, we regard each unit of stakes as a differ-
ent “sub-user". For example, Pi with stakes si owns si units, each
unit is selected with probability p = T

S , and the probability that
q out of the si sub-users are selected follows the binomial distri-
bution B(q; si ,p) = C(si ,q)pq (1 − p)si−q , where S is total stakes
in the system, T is the expected number of stakes in committee
for voting, C(si ,q) = si !

q!(si−q)! , and Σsiq=0B(q; si ,p) = 1. To deter-
mine how many sub-users of si in Pi are selected, the algorithm
divides the interval [0,1) into consecutive intervals of the form
Ic = [Σcq=0B(q; si ,p), Σ

c+1
q=0B(q; si ,p)) for c ∈ {0, 1, · · · , si−1}. If

Redactable Proof-of-Stake Blockchain Protocol Γ

On input initialization request init() from Z:
Let (pk, sk) := Sig.Gen(1λ)
Let chain be genesis block B0, chain := B0

On receive chain′:
Assert |chain′ | > |chain | and validateChain(chain′)= 1;
Let chain := chain′ and broadcast chain

For every slot sl ′:
• On receive input transactions(d ′) from Z:

- If eligible(P, s, sl ′)= 1 and the editing pool EP is empty, where P
is the current node with the stake s :
Let B := (sl ′, st ′, d ′, ib′, σ ′), such that st ′ =

H (sl, G(st, d), ib, σ) and σ ′ = Sig.Sign(skP ; sl ′, G(st ′, d ′), ib′)
for Head(chain) = (sl, st, d, ib, σ);
Let chain := chain ∥B and broadcast chain

• On receive input transactions(d ′) from Z:
- If eligible(P, s, sl ′)= 1 and the editing pool EP is not empty, where
P is the current node with the stake s :
Collect the votes for every candidate editing block B∗j by calling
collectVote;
Let d ′ := d ′ ∥msiд ∥PROOF and chain[j] := B∗j if collectVote
returns (B∗j ,msiд, PROOF);
Let B := (sl ′, st ′, d ′, ib′, σ ′), such that st ′ =

H (sl, G(st, d), ib, σ) and σ ′ = Sig.Sign(skP ; sl ′, G(st ′, d ′), ib′)
for Head(chain) = (sl, st, d, ib, σ);
Let chain := chain ∥B and broadcast chain

• On receive input edit(B∗j) from Z and if the current node is P:
Assert B∗j is a valid candidate editing block;
Add B∗j to the editing pool EP of P and remove expired blocks in
EP

• If the current node is P:
For every candidate editing block B∗j in the editing pool EP
of P, let chain[j] := B∗j and remove B∗j from EP if
RP(chain, B∗j , slj) = 1;
Check the voting right by calling checkVote;
For every remaining candidate editing block B∗j in the EP
of P, broadcast the voting information (hash, π) and siд =

Sig.Sign(skP ;H (B∗j)) if checkVote returns (hash, π)
• Output extract(chain) to Z, where extract outputs an ordered list of

each block in chain

Figure 1. Redactable Proof-of-Stake Blockchain Protocol Γ

hash
2hashlen falls in the interval Ic , it means that c sub-users (i.e., c
votes) of Pi are selected, where hashlen is the bit-length of hash.

subroutine checkVote(sl, ski , si , seed, T , S)
(hash, π) ← VRFski (seed ∥sl);
p ← T

S ;
c ← 0;
while hash

2hashlen
< [Σcq=0B(q; si , p), Σc+1q=0B(q; si , p)) do

c ← c + 1
if c , 0 then return (hash, π)
else return 0.

Figure 2. Checking Voting Right

Collecting votes. The subroutine collectVote (Figure 3) collects
and validates the votes. The collected votes are stored in msдs

6

buffer. To validate a vote, it first verifies the signature onH (B∗j) un-
der the public key of the voter, and then verifies a proof (hash,π) to
confirm the voting right of the voter, i.e.,VerifyVRFpk (hash,π , seed ∥sl)2.
If the voter Pi was chosen c times (i.e., hash

2hashlen falls in the inter-
val Ic), the number of votes from Pi is c as well. As soon as the
number of votes collected is more than 2

3 · T , the algorithm gen-
erates a multi-signaturemsiд on all these vote signatures SIG, ag-
gregates corresponding proofs PROOF , and returns them, where
multi-signature can reduces the communication complexity and
storage overhead for proof-of-stake blockchain. If not enough votes
are collected within the allocated τt time window, then the algo-
rithm returns 0.

Observe that in a synchronous network, messages are delivered
within a maximum network delay of ∆ and we can set τt = ∆.
While in partially synchronous or asynchronous network, we can
not obtain such ∆. We firstly set τt = t , and if the leader in this
slot does not obtain enough votes of a candidate editing block be-
cause of network delay, then the block will be voted again in the
next slot, where we set τt = 2t . The time window will increase
exponentially with slot until the candidate editing block expires.
By this way, it is very likely that a candidate editing block will be
approved eventually unless message delays grow faster than the
time window indefinitely, which is unlikely in a real system.

subroutine collectVote(msдs, sl, seed, T , S, τt)
star t ← T ime();
votes ← 0;
SIG ← {};
PROOF ← {};
For everym ←msдs .next ()

if T ime() > star t + τt then return 0;
else
(hash, π , siд) ←m;
if the signature siд on H (B∗j) is verified
then continue;

if VerifyVRFpk (hash, π , seed ∥sl) = 1
then continue;

p ← T
S ;

c ← 0;
while hash

2hashlen
< (Σcq=0B(q; si , p), Σc+1q=0B(q; si , p)) do

c ← c + 1;
votes = votes + c ;
SIG = SIG ∪ {siд };
PROOF = PROOF ∪ {(hash, π)};

if votes > 2
3 · T

then compute multi-signaturemsiд on SIG
and return (B∗j ,msiд, PROOF).

Figure 3. Collecting Votes

4.4 The Number of Voting Committee
As mentioned earlier, we consider each unit of stakes as a different
“sub-user", for example, if userUi with si stakes owns si units, then
Ui is regarded as si different “sub-users". Let S be the total number
2In this paper, we assume the identifier of the public key would be sent to receivers
associated with the signature and the VRF outputs, such that the corresponding public
key can be located for verification.

of stakes in the system (S is arbitrarily large). When a redaction
is proposed, a committee for voting will be selected from all sub-
users. The expected number of committee,T , is fixed, and thus the
probability ρs of a sub-user to be selected is T

S . Then the probabil-
ity that exactly K sub-users are sampled is(

S

K

)
ρKs (1 − ρs)S−K =

S!
K !(S − K)! (

T

S
)K (1 − T

S
)(S−K)

=
S · · · (S − K + 1)

SK
TK

K !
(1 − T

S
)(S−K)

If K is fixed, we have
lim
S→∞

S · · ·(S−K+1)
SK = 1

and

lim
S→∞

(1 − T
S)(S−K) = lim

S→∞
(1−TS)S

(1−TS)K
= e−T

1 = e−T

Then the probability of sampling exactlyK sub-user approaches:

TK

K !
e−T (1)

When we select the value of T, we want the number of honest
committee members is more than ls ·T , where ls ·T are some pre-
determined threshold. The condition is violated when the number
of honest committee members is not more than ls ·T . From formula
(1), the probability that we have exactly K honest committee mem-
bers is (h ·T)

K

K ! e−h ·T , where honest stakes ratio in the system is at
least h (h > 2

3). Thus, the probability that the condition is violated
is given by the formula

ls ·T∑
K=0

(hT)K
K !

e−hT .

F is a parameter which marks a negligible probability that the
condition fails, and our experience sets F = 5×10−9. Our goal is to
minimize T , while maintaining the probability that the condition
fails to be at most F . If some value ofT satisfies the condition with
probability 1− F , then any larger value ofT also does for the same
ls with probability at least 1 − F . Based on the above observation,
to find the optimalT , we firstly letT be an arbitrary large value, for
example 104, and then see if we can find a ls ∈ (23 , 1] that satisfies
the condition. If such ls exists, then we decrease T and see if we
also can find a good ls . We continue this process until finding the
optimal number of committee and corresponding threshold ls . In
this way, we can get Figure 4, plotting the expected committee size
T satisfying the condition, as a function of h, with a probability of
violation of 5× 10−9. A similar approach to compute the threshold
of committee size can be referred to [25].

In the implementation of our system, we assume the fraction
of honest stakes is 3

4 , so we select T = 1000 according to Figure 4.
From the subroutine collectVote (Figure 3), a validate editing block
is approved only after it obtains more than 2

3 ·T votes.
We stress that the number of votes from malicious stakehold-

ers cannot reach 2
3 ·T with non-negligible probability. Specifically,

when the size n of selected committee members satisfies n > T , the
number of honest committee members is more than 2

3 ·nwith prob-
ability at least 1−F according to the above discussion, while thema-
licious committee members can only reach 2

3 ·T unless 1
3 ·n >

2
3 ·T

(i.e., n > 2T), which occurs with a negligible probability since T
7

Figure 4. The x-axis specifies h, the stakes fraction of honest
users. The committee size, T , is sufficient to limit the probability
of violating safety to 5 × 10−9.

is the expected value of the committee size following the binomial
distribution. Similarly, when n < T , the malicious members can
only obtain more than 2

3 ·T votes unless ρ ′ ·n > 2
3 ·T (i .e ., ρ ′ >

2
3),

where ρ ′ denotes the fraction of malicious committee members.
This, however, only occurs with a negligible probability, since n
cannot deviate from T too far as discussed above, that is, the frac-
tion of malicious members cannot exceed 1

3 too much. This result
keeps consistent with that in Algorand [25].

5 SECURITY ANALYSIS
In this section, we analyze the security of redactable proof-of-stake
blockchain protocol Γ as depicted in Figure 1. The security proper-
ties of redactable blockchain are same as that of basic blockchain,
except for the common prefix property.

RedactableCommonPrefix.Weobserve that redactable proof-
of-stake protocol Γ inherently does not satisfy the original defini-
tion of common prefix due to the (possible) edit operation. In detail,
consider the case where the party P1 is honest at time slot sl1 and
the party P2 is honest at time slot sl2 in view, such that sl1 < sl2.
For a candidate block B∗j to replace the original Bj , whose votes
are published at slot sl such that sl1 < sl < sl2, the edit request
has not been proposed in chainsl1P1 (view) but may have taken effect

in chainsl2P2 (view). As a result, the original block Bj remains un-

changed in chainsl1P1 (view) while it is replaced with the candidate

B∗j in chainsl2P2 (view). Therefore, prefix
k (view) , 1, which violates

Definition 3.1.
The main reason lies in the fact that the original definition of

common prefix does not account for edits in the chain, while any
edit may break the consistency property. To address this issue, we
introduce an extended definition called redactable common pre-
fix and consider the effect of each edit operation, which is suit-
able for redactable blockchains. Roughly speaking, the property of
redactable common prefix states that if the common prefix prop-
erty is violated, it must be the case that there exist edited blocks
satisfying the editing policy RP.

Let redactprefixk (view) = 1 if for all times t ≤ t ′, and for all
parties Pi , Pi′ such that Pi is honest at t and Pi′ is honest at t ′ in
view, one of the following conditions is satisfied:
(1) the prefixes of chaintPi (view) and chain

t ′
Pi′ (view) consisting of

the first |chaintPi (view)| − k records are identical, or
(2) for each B∗j in the prefix of chaint

′
Pi′ (view) but not in the pre-

fix of chaintPi (view) consisting of the first |chain
t
Pi (view)| − k

records, it must be the case that RP(chain,B∗j , tj) = 1 where
tj < t < t ′.

Definition 5.1. (Redactable CommonPrefix).We say a blockchain
protocol Π satisfies k0-redactable common prefix, if for all (A,Z),
there exists a negligible function negl such that for every suffi-
ciently large λ ∈ N and every k ≥ k0 the following holds:

Pr[view← EXECΠ(A,Z, λ) : redactprefixk (view) = 1] ≥ 1−negl(λ).

Essentially, Γ behaves just like the underlying immutable proof-
of-stake blockchain protocol in Appendix A if there is no edit in the
chain, and otherwise each edit must be approved by the redaction
policy RP. Therefore, we prove Γ preserves the same properties
(or a variation of the property) of the underlying immutable proof-
of-stake blockchain protocol under the redaction policy EP.

Theorem 5.2. (Security of Γ).Assume that the signature scheme
SIG is EUF-CMA secure, the multi-signature scheme MSIG is un-
forgeable, VRF satisfies the properties of Definiton 2.1, and the un-
derlying immutable blockchain protocol in Appendix A satisfies k0-
common prefix, (k0, µ)-chain quality, andτ -chain growth. Then, redactable
proof-of-stake blockchain protocol Γ satisfies the k0-redactable com-
mon prefix, (k0, µ)-chain quality, and τ -chain growth.

Proof roadmap.We first consider a simple ideal-world protocol de-
notedΠideal having access to an ideal functionalityFtr ee , and prove
that Πideal satisfies redactable common prefix, chain quality, and
chain growth. Then we show that the real-world protocol Γ se-
curely emulates the ideal-world protocol Πideal. We prove the the-
orem in the following two subsections.

5.1 Security of Ideal Protocol Πideal

We first define an ideal functionality Ftr ee (Figure 5) and analyze
an ideal-world protocol Πideal (Figure 6) parameterized with Ftr ee .

The ideal functionality Ftr ee keeps track of the set (denoted
tree) of all abstract blockchains mined so far. Initially, the only
blockchain in the set tree is genesis. Ftr ee decides whether a party
P is the elected leader (or committee member, resp.) for every time
step with probability φ(s,p) (or φ(s,p′), resp.), where φ is a gen-
eral function whose output is proportional to the stake s of P, and
the parameter p (or p′, resp.) provides the randomness. An adver-
sary A can know which party is elected as the leader (or voting
committee member, resp.) in time t through the Ftr ee .leader (or
Ftr ee .committee, resp.) query. Further, honest and corrupt parties
can extend known chains with new block by calling Ftr ee .extend,
if they are elected as leader for a specific time step. Specifically,
honest parties always extend chains in the current time, while cor-
rupt parties are allowed to extend a malicious chain in a past time
step t ′ as long as t ′ complies with the strictly increasing rule. In
addition, the voting committee member can call Ftr ee .redact and

8

redact the blockchain, if the votes are more than the number of
corrupt committee members. Finally, Ftr ee keeps track of all valid
chains, and parties can check if any chain they received is valid by
calling Ftr ee .verify.

Ftr ee (p, p′)
On init: tree := genesis, time(genesis) := 0
On receive leader(P, t) from A or internally:
let s be the stake of P at time t

if Γ[P, t] has not been set, let Γ[P, t] =
{1 with probability φ(s, p)
0 otherwise

return Γ[P, t]
On receive extend(chain, B) from honest party P:
let t be the current time
assert chain ∈ tree, chain∥B < tree, and leader(P, t) = 1
append B to chain in tree, record time(chain∥B) := t
return “succ"

On receive extend(chain, B, t ′) from corrupt party P∗:
let t be the current time
assert chain ∈ tree, chain∥B < tree, leader(P, t) = 1, and
time(chain) < t ′ < t
append B to chain in tree, record time(chain∥B) := t ′
return “succ"

On receive committee(P, t) from A or internally:
let s be the stake of P at time t

if Γ′[P, t] has not been set, let Γ′[P, t]=
{1 with probability φ(s, p′)
0 otherwise

return Γ′[P, t]
On receive redact(chain, i, B∗) from λ distinct parties Pj :
let t be the current time
assert chain ∈ tree and committee(Pj , t) = 1 for every Pj
assert λ is more than the number of corrupt parties Pj with
committee(Pj , t) = 1

redact chain[i] := B∗ and return “succ"
On receive verify(chain) from P: return (chain ∈ tree)

Figure 5. Ideal Functionality Ftr ee

Ideal Protocol Πideal
On init: chain := genesis
On receive chain′:
if |chain′ | > |chain | and Ftr ee .verify(chain′) = 1
chain := chain′ and broadcast chain
For every slot:
–receive input B (or B∗) from Z
–if Ftr ee .extend(chain, B) outputs “succ", then let chain := chain∥B
–if Ftr ee .redact(chain, i, B∗) outputs “succ", then let chain[i] := B∗

–output chain to Z

Figure 6. Ideal Protocol Πideal

Theorem 5.3. (Security of Πideal). If the underlying immutable
ideal protocol in Appendix B satisfiesk0-common prefix, (k0, µ)-chain
quality, and τ -chain growth, then Πideal satisfies the k0-redactable
common prefix, (k0, µ)-chain quality, and τ -chain growth.

Proof. Note that if there is no edit in chain, then Πideal behaves
exactly like the underlying immutable iedal protocol in Appendix
B, and thus k0-common prefix, (k0, µ)-chain quality, and τ -chain
growth can be preserved directly.

Redactalble common prefix. Assume that there exists B∗j in the
prefix of chaint

′
Pi′ (view) but not in the prefix of chain

t
Pi (view) con-

sisting of the first |chaintPi (view)| − k0 records, where t ≤ t ′, and
a party Pi is honest at t and a party Pi′ is honest at t ′ in view,
which means Bj is redacted with B∗j in chaint

′
Pi′ (view) but not in

chaintPi (view). Then it must be the case that the party Pi′ receives
enough votes (more than the number of corrupt committee mem-
bers) for B∗j according to the ideal protocol specification. Therefore,
the redaction policy RP is satisfied, and we conclude Πideal satis-
fies the k0-redactable common prefix.
Chain quality. In case of an edit, the adversary A can increase
the proportion of adversarial blocks in chain and finally break the
chain quality property, if an honest block Bj is replaced with a ma-
licious block B∗j (e.g., containing illegal or harmful data). However,
according to the ideal protocol specification, an edited block can
only be adoptedwhen the votes aremore than the number of adver-
sarial committee members. Since only those adversarial committee
members would vote for the malicious block B∗j , chain cannot be
redacted. Therefore, we conclude Πideal satisfies the (k0, µ)-chain
quality.
Chain growth. Note that any edit operation would not alter the
length of chain, since it is not possible to remove any blocks from
chain according to the ideal protocol specification. Moreover, the
new block issue process in current time slot is not influenced by
votes for any edit request. No matter whether a party P has re-
ceived enough votes within pre-defined time window, P always
extends chain at time slot t as long as leader(P, t) = 1. Therefore,
we conclude Πideal satisfies the τ -chain growth. □

5.2 Real-world Emulates Ideal-world
So far, we have proved that the ideal-world protocol Πideal satisfies
thek0-redactable common prefix, (k0, µ)-chain quality, and τ -chain
growth.We next show that the real-world protocol Γ as depicted in
Figure 1 emulates the ideal-world protocol Πideal, and thus Γ also
satisfies the same three security properties.

Theorem 5.4. (Γ emulatesΠideal). For any probabilistic polynomial-
time (p.p.t.) adversary A of the real-word protocol Γ, there exists a
p.p.t. simulator S of the ideal protocol Πideal, such that for any p.p.t.
environmentZ, for any λ ∈ N, we have:

view(EXECΠideal (S,Z, λ)) c≡ view(EXECΓ(A,Z, λ)),

where
c≡ denotes computational indistinguishability.

Proof. Consider some p.p.t. adversary A in the real-world proto-
col Γ. We construct the simulator S in the ideal protocol Πideal as
follows:
(1) At the beginning of the protocol execution, S generates pub-

lic/secret key pair (pkP , skP) for each honest party P, and
stores the party P and public key pkP mapping.

(2) For the leader selection process, we consider two common cases.
• The leader selection function eligible is modeled as the ran-
dom oracleH (·). WheneverA sends a hash queryH (P, s, t), S
checks whether this query has been asked before and returns
the same answer as before if so. Otherwise, S checks whether
the identifier P corresponds to this protocol instance. If not, S

9

samples a random number of the length |H (·)| and returns it to
A. Else if the check succeeds, S calls b ← Ftr ee .leader(P, t).
If b = 1 (or b = 0, resp.), S picks h uniformly at random from
{0, 1} |H (·) | with rejection sampling untilh satisfies eligible = 1
(or eligible = 0, resp.), and then returns h.
• The random oracle is replaced with normal function such as
PRFk (·). In this case, PRFk (·) is used by both S and A. Most
of the simulation proof is identical to the random oracle case
presented above, except that when S learns k from Ftr ee , it
simply givesk toA, andS no longer needs to simulate random
oracle queries for A.

(3) S keeps track of the real-world chain for every honest partyPi .
Whenever it sends chain to A on behalf of Pi , it updates this
state for Pi . Whenever A sends chain to honest party Pi , S
checks the simulation validity of chain. If it is valid and more-
over chain is longer than the current real-world chain for Pi ,
S also saves chain as the new real-world chain for Pi .

(4) Whenever an honest stakeholder P sends chain to S, S looks
up the current real-world state chain for P.
• If the editing pool EP is empty,S computes a new chain′ us-
ing the real-world algorithm. Specifically, let sl be the current
slot, and if eligible(P, s, sl) = 1, thenS setsB := (sl ′, st ′,d ′, ib ′,σ ′),
such that st ′ = H (sl ,G(st ,d), ib,σ) and σ ′ = Sig.Sign(skP ; sl ′,
G(st ′,d ′), ib ′) forHead(chain) = (sl , st ,d, ib,σ). Finally, S sets
chain′ := chain∥B and sends chain′ to A.
• If the editing pool EP is not empty (e.g., one candidate edited
block B∗j for Bj is included in EP), and eligible(P, s, sl) = 1,
S starts to collect the votes for B∗j and simulate the vote pro-
cess using the real-world algorithm. Specifically, for any stake-
holder Pi who sends the candidate B∗j to S in the current slot
sl , if checkVote(sl , ski , ·) return (hashi ,πi), S votes for B∗j in
the name of Pi by computing the pair (vi , ci), where vi =
Sig.Sign(ski ,H (B∗j)) and ci is computed as in Figure 2, and then
sendsvi toA. If in the current slotS receives at least λ+1 votes
for B∗j , S computes (msiд, PROOF) for B∗j by the aggregation
of vi and (hashi ,πi). Finally, S sets d ′ := d ′∥msiд∥PROOF ,
B := (sl ′, st ′,d ′, ib ′,σ ′), such that st ′ = H (sl ,G(st ,d), ib,σ)
and σ ′ = Sig.Sign(skP ; sl ′,G(st ′,d ′), ib ′) for Head(chain) =
(sl , st ,d, ib,σ), sets chain′ := chain∥B, and sends chain′ to A.

(5) Whenever A sends a protocol message chain to an honest
stakeholder P, S intercepts the message and checks the valid-
ity of chain by running the real-world protocol’s checks (i.e.,
validateChain(.)). If the checks do not pass, S ignores the mes-
sage. Otherwise,
• For the candidate edited block B∗j , S abort outputting vote-
failure if RP(chain,B∗j , sl) = 1 for some slot sl however S has
never received enough votes for B∗j .
• Else, let chain := extract(chain), and let chain[: l] be the
longest prefix of chain such that Ftr ee .verify(chain[: l]) = 1.
If any block in chain[l + 1 :] is signed by an honest stake-
holder P, S aborts outputting sig-failure. Else, for each l ′ ∈
[l+1, |chain|],S calls Ftr ee .extend(chain[: l ′−1], chain[l ′], t ′)
acting as the corrupt stakeholder P∗, where t ′ = time(chain).
Then S forwards chain to P.

Lemma 5.5. If the signature scheme SIG is EUF-CMA secure, the
simulated execution never aborts with sig-failure except with negli-
gible probability.

Proof. Note that if sig-failure ever happens, the adversary A must
have forged a signature on a new message that S never signed.
Thus we can immediately construct a reduction that breaks the
EUF-CMA security of the underlying signature scheme SIG. Specif-
ically, S simulates for A the protocol running just as the above
specification, and guesses a random stakeholder Pi whose signa-
ture security is broken. S generates the public/secret key pair for
all other parties and produces the corresponding signatures.S also
calls the signing oracle to generate signatures for Pi . Eventually, if
A outputs a valid signature σ and σ has never been previously out-
put by the signing oracle, σ can be used as a forgery and EUF-CMA
security of SIG is broken. □

Lemma 5.6. If the multi-signature scheme MSIG is unforgeable,
VRF satisfies the properties of Definiton 2.1, the simulated execution
never aborts with vote-failure except with negligible probability.

Proof. If vote-failure ever happens, the adversary S under static
corruption must have forged a multi-signaturemsiд on a message
in the name of the 2/3 · T stakeholders, among which there is at
least one honest stakeholder. Then we can construct a reduction
that breaks the security of the underlying multi-signature scheme
MSIG. Specifically, S simulates the protocol running for A as the
above specification, and guesses a random stakeholder Pi as the
honest stakeholder among the 2/3 · T stakeholders. S generates
the public/secret key pair for all other parties and produces the
corresponding signatures. S also calls the signing oracle of Pi for
any signature to generate for Pi as specified in the security ex-
periment. Eventually, ifA outputs a valid multi-signaturemsiд on
some messagem andm has never been queried to the singing ora-
cle of Pi ,msiд can be used as a forgery and the security of MSIG
is broken.

For the adversaryA under adaptive corruption, he can employ
the ability of adaptive corruption during the voting process to vote
for his adversarial request, which leads to vote-failure. If A can
“presciently" ensure which user would become the member of the
voting committee, he can adaptively corrupt and impersonate this
user to vote for his request, such that the votes for the adversar-
ial request exceed 2

3 · T and the edit request is adopted. However,
according to the uniqueness property of the underlying VRF, the
adversary has only a negligible probability 1/2hashlen to win. In
detail, the function valuehash of VRF is random and unpredictable,
the adversary without the secret key can only predict whether an
honest user is chosen as the committee member with a negligible
probability 1/2hashlen . □

Conditioned on the fact that all of the above failure events do not
happen, the simulated execution is identically distributed as the
real-world execution from the perspective ofZ. We thus complete
the proof of theorem. □

6 IMPLEMENTATION AND EVALUATION
In this section we develop a proof-of-concept implementation of
our redaction approach on JD Chain[5], evaluating the additional

10

500 1000 1500 2000

Transactions per block

0

1

2

A
v
e
ra

g
e
 t
im

e
 (

s
e
c
o
n
d
s
)

(a)

5 10 15 20

Number of redactions

0

0.5%

1%

1.5%

2%

2.5%

O
v
e

rh
e

a
d

(b)

1000 2000 3000 4000

Chain size (in number of blocks)

0

1%

2%

3%

4%

5%

O
v
e
rh

e
a
d

(c)

1000 2000 3000 4000

Chain size (in number of blocks)

0

5

10

15

20

A
v
e

ra
g

e
 t

im
e

 (
m

in
u

te
s
)

(d)

Figure 7: The above figure shows the overhead of our redactable approach through a proof-of-concept implementation on JD
Chain. The figure in (a) shows the time overhead of issuing a new block with one redaction compared to an immutable chain;
the figure in (b) shows the validation time overhead (in percentage) required to validate a chain for an increasing number of
redactions compared to an immutable chain; the figure in (c) shows the validation time overhead (in percentage) required to
validate an increasing chain with 10 redactions compared to an immutable chain; and finally the figure in (d) shows the time
overhead of completing one redaction.

cost over the underlying immutable blockchain protocol. Specifi-
cally, we adopt the pairing-based multi-signature scheme in [10],
and the general VRF scheme in [14] built from the unique signa-
ture which is instantiated with the unique BLS signature [11]. In
the implementation we choose the security parameters for VRF
and multi-signature to satisfy the 128-bit security level. The pro-
gramme runs on a Lenovo Think-Station P318 computerwithUbuntu
16.04.10 (64bits) system, equipped with a 3.60 GHz Intel Core i7-
7700 CPU with 8 cores and 32GB memory. Additionally, to evalu-
ate the performance, we set h = 0.75, which means the adversary
would control at most 25% of the stakes of the system, then the
corresponding expected committee size is T = 1000 according to
Figure 4.
Overhead of issuing new blocks with one redaction. In the
first experiment, to evaluate the time overhead of the block is-
sue process brought by one redaction, we generate the redactable
blockchain and immutable blockchainwith block size ranging from
500 up to 2000 transactions. The results in Figure 7a show that in-
dependent of the block size (or the number of transactions), there
is an overhead of about 2 seconds on the block issue, including the
overhead of checking voting right, voting for a redaction, and col-
lecting votes. Intuitively, it is a non-negligible cost for block issue,
however, it is acceptable in practice. On one hand, compared to the
interval between two blocks (e.g., it takes about 60 seconds to pro-
duce a new block in JD Chain, and 10 minutes in Bitcoin), the issue
of new block is not affected by 2 seconds; on the other hand, the
redaction operation just occurs in particular and emergent cases
under strict constraints rather than a frequent event, and thus the
total overhead is minimal.
Overhead of validating a chain by the number of redactions.
In the second experiment, we intend to evaluate the time overhead
(in percentage) required to validate a redactable chain with respect
to the number of redactions compared to an immutable chain. We
generate the redactable chain consisting of 5000 blocks and each
block contains 1000 transactions. The results in Figure 7b show
that the overhead tends to be linear in the number of redactions,

where the overhead mainly contains the validation time of the cor-
responding proofs for redactions.
Overhead of validating a chain by the chain size. In the third
experiment, we intend to evaluate the time overhead (in percent-
age) required to validate a redactable chain with constant number
of redactions and increasing chain size compared to an immutable
chain. We set 10 redactions and each block contains 1000 trans-
actions. The results in Figure 7c show that the overhead tends to
be smaller with the increasing chain size, since the vote for one
redaction can be validated by any user within just one block inde-
pendent of subsequent blocks.
Overhead of completing one redaction by the chain size. In
the last experiment, we intend to evaluate the time overhead re-
quired for one user to complete one redactionwith increasing chain
size, where each block contains 1000 transactions. The results in
Figure 7d show that independent of the chain size, there is a nearly
constant overhead of about 14 minutes to complete one redaction,
including the time cost from the proposal to the final confirmation
of the redaction. However, in [19], the voting period is required
to be about 1024 consecutive blocks, which means about 17 hours
to complete one redaction in JD Chain and about 7 days in Bit-
coin. Therefore, our construction achieves significant efficiency im-
provement in fast confirmation.
Storage overhead compared to immutable blockchain. Com-
pared to the immutable blockchain, for each block of our scheme,
we store both of the initial and updated state of the block data,
and thus one additional hash storage is needed. In addition, if one
leader collects enough votes (i.e., 23 ·T) for an honest edit request
in a slot, he/she would add the data (msiд, PROOF) to the new
block, and the incremental storage of this block is at most |msiд | +
|PROOF | = |msiд | + 2

3 ·T (|H | + |π |), while the size of other blocks
remains unchanged. According to the experiment results, the in-
cremental storage is about 53.1 KB. Note that unless the leader
handles more than one edit requests (e.g., l requests) in one slot,

11

where the needed storage tends to be at most linear in l , the stor-
age for several edits would be amortized among multiple blocks.
Moreover, note that each VRF output from the stakeholder may
represent several votes, which is determined by its stake weight,
and thus the incremental storage cost may be much less than the
above results.
Network delays. Recall that in our scheme, we set two time-out
parameters, one for waiting time τt of the leader, and the other
for the period tp of validity of one edit request, to model various
network environments.

The edit request would be invalid after a period of tp from the
beginning of being proposed, which may be due to the fact that the
edit is adversarial and disapproved by honest users or the network
environment is terrible and enough votes cannot be received. As a
result, tp should be set according to specific network environments.
Specifically, tp can be set to be a relatively small value in good
environment with low latency, while for long-delay networks, it
should be set appropriately larger to guarantee enough votes to a
great extent.

The time window τt is set to guarantee the normal issue of new
blocks. If the waiting time of the leader reaches τt , however re-
ceived votes are not enough, then the leader would issue the new
block as usual, leaving the edit request to next slot with double
waiting time. Note that if the network environment is well enough,
for example in full synchronous environment, then τt can be set to
be a small value and the edit request can be approved within just
a few slots (even only one slot). While in a relatively bad environ-
ment, it may cost more slots for one edit request to be approved
until the request is invalid and revoked after a period of tp .

In general, both tp and τt are set based on the specific network
environment and protocol instance. The system can be run nor-
mally under the cooperation of tp and τt . Specifically, τt is initially
set to be a small value and increased exponentially to ensure an
honest edit request would be approved eventually even in the bad
environment, while tp restricts the maximumwaiting time to guar-
antee the release of new blocks unaffected.

REFERENCES
[1] Akasha. https://akasha.world.
[2] Ethereum project. https://www.ethereum.org/.
[3] The EU general data protection regulation. https://gdpr-info.eu/.
[4] The illinois blockchain initiative. https://illinoisblockchain.tech.
[5] JD Chain. https://ledger.jd.com/.
[6] Steem. https://steem.
[7] Giuseppe Ateniese, Michael T Chiaramonte, David Treat, Bernardo Magri, and

Daniele Venturi. 2018. Rewritable blockchain. uS Patent 9,967,096.
[8] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton Andrade.

2017. Redactable blockchain - or - rewriting history in bitcoin and friends. In
IEEE European Symposium on Security and Privacy, EuroS&P 2017. 111–126.

[9] Christian Badertscher, Peter Gazi, Aggelos Kiayias, and Zikas Vassilis Russell,
Alexander. 2018. Ouroboros Genesis: composable proof-of-stake blockchains
with dynamic availability. In Proceedings of ACM conference on Computer and
communications security. ACM, 913–930.

[10] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-
signatures for Smaller Blockchains. In ASIACRYPT 2018, Vol. 11273. Springer,
435–464.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the
Weil Pairing. ASIACRYPT (2001), 514–532.

[12] Jan Camenisch, David Derler, Stephan Krenn, Henrich C.Pohls, Kai Samelin, and
Daniel Slamanig. 2017. Chameleon-hashes with ephemeral trapdoors. In IACR
International Workshop on Public Key Cryptography. Springer, 152–182.

[13] CBinsights. 2018. Banking is only the beginning: 50 big industries blockchain
could transform. https://www.cbinsights.com/research/ industries-disrupted-
blockchain/.

[14] Jing Chen and Silvio Micali. 2017. Algorand. In arXiv:1607.01341v9.
[15] The NXT Community. 2014. NXT whitepaper.

https://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf.
[16] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: robustly reconfig-

urable consensus and applications to provably secure proof of stake. In Proceed-
ings of FC 2019. Springer, 23–41.

[17] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Proceedings of EUROCRYPT 2018. Springer.

[18] David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. 2019.
Fine-grained and controlled rewriting in blockchains: chameleon-hashing gone
attribute-based. In Network and Distributed Systems Security (NDSS) Symposium
2019.

[19] Dominic Deuber, Bernardo Magriy, Sri Aravinda, and Thyagarajan Krishnan.
2019. Redactable blockchain in the permissionless setting. In IEEE Symposium
on Security and Privacy 2019.

[20] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Func-
tion With Short Proofs and Keys. In 8th International Workshop on Theory and
Practice in Public Key Cryptography. 416–431.

[21] The Economist. 2017. Governments may be big backers of the blockchain.
https://goo.gl/uEjckp.

[22] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert van Renesse. 2016.
Bitcoin-NG: a scalable blockchain protocol. In Proceedings of the 13th Symposium
on Networked Systems Design and Implementation. 45–59.

[23] Accenture files patent for editable blockchain. 2016. Business Insider Deutsch-
land. https://tinyurl.com/yblq9zdp.

[24] Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin back-
bone protocol: Analysis and applications. 9057 (2015), 281–310.

[25] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[26] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. 1988. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17
(1988), 281–308.

[27] Steve Hargreaves and Stacy Cowley. 2013. How
porn links and ben bernanke snuck into bitcoin’s code.
http://money.cnn.com/2013/05/02/technology/security/bitcoin-porn/index.html

[28] O’Hara Kieron Ibanez, Luis-Daniel and Elena Simperl. 2018. On blockchains
and the general data protection regulation. In Network and Distributed Systems
Security (NDSS) Symposium 2019. https://eprints.soton.ac.uk/422879/.

[29] Christoph Jentzsch. Decentralized autonomous organization to automate gov-
ernance. https://download.slock.it/public/DAO/WhitePaper.pdf.

[30] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Pro-
ceedings of CRYPTO 2017. Springer, 357–388.

[31] Sunny King and Scott Nadal. 2012. PPcoin: Peer-to-peer crypto-currency with
proof-of-stake. https://peercoin.net/assets/paper/peercoin-paper.pdf.

[32] Jerin Mathew. 2015. Bitcoin: Blockchain could become ‘safe haven’ for host-
ing child sexual abuse images. http://www.dailydot.com/business/bitcoinchild-
porn-transaction-code/.

[33] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. 2001. Accountable-subgroup mul-
tisignatures: Extended abstract. In 8th Conference on Computer and Communica-
tions Security. ACM, 245–254.

[34] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random func-
tions. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS). 120–130.

[35] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf.

[36] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain
protocol in asynchronous networks. In EUROCRYPT 2017, Vol. 10211. Springer,
643–673.

[37] Rafael Pass and Elaine Shi. 2017. The sleepy model of consensus. In ASIACRYPT
2017, Vol. 10625. Springer, 380–409.

[38] Ivan Puddu, Alexandra Dmitrienko, and Srdjan Capkun. 2017. µ chain: How to
forget without hard forks. In IACR Cryptology ePrint Archive, 2017/106.

[39] Ken Shirriff. 2014. Hidden surprises in the bitcoin blockchain and how
they are stored: Nelson mandela, wikileaks, photos, and python software.
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photog raphs.html.

[40] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure high-rate transaction pro-
cessing in bitcoin. In Proceedings of the 2015 Financial Cryptography and Data
Security Conference. Springer, 507–527.

[41] Giannis Tziakouris. 2018. Cryptocurrencies-A Forensic Challenge or Opportu-
nity for Law Enforcement? An INTERPOL Perspective. IEEE Security & Privacy
16 (2018), 92–94.

12

A IMMUTABLE PROOF-OF-STAKE
BLOCKCHAIN PROTOCOL

We now recall the immutable proof-of-stake blockchain protocol
Γ′ in Figure 8. Comparedwith the redactable protocol Γ as depicted
in Figure 1, the redaction operations are pruned and the original
block structure is adopted.

Immutable Proof-of-Stake Blockchain Protocol Γ′

On input initialization request init() from Z:
Let (pk, sk) := Sig.Gen(1λ)
Let chain be genesis block B0, chain := B0

On receive chain′:
Assert |chain′ | > |chain | and chain′ is valid;
Let chain := chain′ and broadcast chain

For every slot sl ′:
• On receive input transactions(d ′) from Z:

- If eligible(P, s, sl ′)= 1, where P is the current node with the
stake s :
Let B := (sl ′, st ′, d ′, σ ′), such that st ′ = H (sl, G(st, d), σ)
for Head(chain) = (sl, st, d, σ) and σ ′ =

Sig.Sign(skP ; sl ′, G(st ′, d ′));
Let chain := chain ∥B and broadcast chain

• Output extract(chain) to Z, where extract outputs an ordered list
of each block in chain

Figure 8. Immutable Proof-of-Stake Blockchain Protocol

B IDEAL IMMUTABLE PROOF-OF-STAKE
BLOCKCHAIN PROTOCOL

We present the corresponding ideal functionality F ′tr ee (Figure 9)
and the ideal immutable proof-of-stake protocol Π′ideal (Figure 10)
for Γ′, by pruning the redaction operations from Ftr ee (c.f. Figure
5) and Πideal (c.f. Figure 6), respectively.

F′tr ee (p, p′, λ)
On init: tree := genesis, time(genesis) := 0
On receive leader(P, t) from A or internally:
let s be the stake of P at time t

if Γ[P, t] has not been set, let Γ[P, t] =
{1 with probability φ(s, p)
0 otherwise

return Γ[P, t]
On receive extend(chain, B) from honest party P:
let t be the current time
assert chain ∈ tree, chain∥B < tree, and leader(P, t) outputs 1
append B to chain in tree, record time(chain∥B) := t
return “succ"

On receive extend(chain, B, t ′) from corrupt party P∗:
let t be the current time
assert chain ∈ tree, chain∥B < tree, leader(P, t) outputs 1, and
time(chain) < t ′ < t
append B to chain in tree, record time(chain∥B) := t ′
return “succ"

On receive verify(chain) from P: return (chain ∈ tree)

Figure 9. Ideal functionality F′tr ee

Ideal Protocol Π′ideal
On init : chain := genesis
On receive chain′:
Assert |chain′ | > |chain | and F′tr ee .verify(chain′) = 1
For every slot:
–receive input B from Z
–if F′tr ee .extend(chain, i, B∗) outputs “succ", then let chain[i] := B∗

and broadcast chain
–output chain to Z

Figure 10. Ideal Proof-of-Stake Blockchain Protocol

C EXTENSION FOR MULTIPLE REDACTIONS
We extend the redactable protocol of Figure 1 to accommodatemul-
tiple redactions for each block. Intuitively, each redaction of one
blockmust contain the entire history of previous redactions of that
block, and can only be approved if all previous redactions (includ-
ing the current one) are approved. In this extension, the history
information is stored in the initial state component ib. We now
sketch the main protocol changes.

Proposing an edit. To propose a redaction for block Bj =
(slj , stj ,dj , ibj ,σj), the user replaces dj with the new data d∗j and
replaces ibj with ib∗j = ibj | |G(stj ,dj) if ibj , G(stj ,dj). It then
generates a candidate block B∗j = (slj , stj ,d

∗
j , ib
∗
j ,σj). Note that, if

Bj has never been redacted before, then ibj = G(stj ,dj) and thus
ib∗j = G(stj ,dj).

ValidBlocks.To validate a block, the users run the validateBlockExt
algorithm (Algorithm 4). Intuitively, the validateBlockExt algorithm
performs the same operations as the validateBlock algorithm (Al-
gorithm 1), except that it consider the case where the block can
be redacted multiple times. Note that ib stores the history infor-
mation of the previous redactions, and thus can be parsed as ib =
ib(1) | |...| |ib(l) if the block has been redacted l times, where ib(1)
denotes the original state information of the unredacted block ver-
sion.

procedure validateBlockExt(B)
Parse B = (sl, st, d, ib, σ);
Parse ib = ib (1) | |... | |ib (l), where ib (i) ∈ {0, 1}∗ ∀i ∈ [l];
Validate data d , if invalid return 0;
Validate the leader, if invalid return 0;
if the signature σ on (sl, G(st, d), ib) or

on (sl, ib (1), ib (1)) is verified with vk
then return 1;

else return 0.

Algorithm 4: The extended block validation algorithm

Valid Blockchains. To validate a chain, the users run the
validateChainExt algorithm (Algorithm 5). The only difference be-
tween Algorithm 5 and the original Algorithm 2 is that now ib =

ib(1) | |...| |ib(l) where ib(1) denotes the original state information of
the unredacted block version.

Valid Candidate Editing Blocks. To validate a candidate edit-
ing block, the users run validateCandExt algorithm (Algorithm 6).
If a block Bj has been redacted more than once, then validation of
a candidate block B∗j should account for the previous redactions.
That is, the proof of each redaction must exist in the chain.

13

procedure validateChainExt(C)
Parse C = (B1, · · · , Bm);
j =m;
if j = 1 then return Γ′.validateBlockExt(B1);
while j ≥ 2 do

parse Bj = (slj , stj , dj , ibj , σj);
parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, σj−1);
Parse ibj = ib

(1)
j | |... | |ib

(l)
j , where ib (i)j ∈ {0, 1}∗;

Parse ibj−1 = ib
(1)
j−1 | |... | |ib

(l ′)
j−1, where ib

(i)
j−1 ∈ {0, 1}∗;

if Γ′.validateBlock(Bj) = 0 then return 0;
if stj = H (slj−1, G(stj−1, dj−1), ibj−1, σj−1) then
j = j − 1;

else if stj = H (slj−1, ib (1)j−1, ib
(1)
j−1, σj−1) and P(C, Bj−1) = 1

then j = j − 1;
else return 0;

return 1.

Algorithm 5: The extended blockchain validation algorithm

procedure validateCandExt(C, B∗j)
Parse B∗j = (slj , stj , d∗j , ibj , σj);
Parse ibj = ib

(1)
j | |... | |ib

(l)
j , where ib (i)j ∈ {0, 1}∗ ∀i ∈ [l];

if Γ′.validateBlock(B∗j) = 0 then return 0;
Parse Bj−1 = (slj−1, stj−1, dj−1, ibj−1, σj−1);
Parse ibj−1 = ib

(1)
j−1 | |... | |ib

(l ′)
j−1, where ib

(i)
j−1 ∈ {0, 1}∗ ∀i ∈ [l ′];

Parse Bj+1 = (slj+1, stj+1, dj+1, ibj+1, σj+1);
if stj , H (slj−1, ib (1)j−1, ib

(1)
j−1, σj−1) or stj+1 , H (slj , ib

(1)
j , ib (1)j , σj−1)

then return 0;
for i ∈ {2, ..., l } do

if there is no valid (msiд, PROOF) for hash of the
candidate block H (slj , ib (i)j , ib (1)j | |... | |ib

(i−1)
j) in the chain

then return 0
return 1.

Algorithm 6: The extended candidate block validation algorithm

D REVIEWS FROM ACM CCS’19 AND
IMPROVEMENT

We would like to thank the anonymous reviewers from CCS’19
for their very valuable comments. In this resubmission, our manu-
script has been improved in the following ways.
(1) “The paper talks about a policy P which seems to have been di-

rectly borrowed from [19] but no definition is given."
A formal definition of the redaction policy RP (c.f. Definition
4.1) has been added. Different from [19], we consider the num-
ber of votes embedded in a block.

(2) “The collectVote procedure seems to wrong. why would you con-
tinue if the verification fails? What is the necessity of computing
amultisig? The intuition paragraph just reads out the algorithms
rather than give any real intuition for the running of the algo-
rithms."
We have corrected the error in collectVote procedure. We have
added the description on the necessity of computing multi-
signature, that is, multi-signature can reduces the communica-
tion complexity and storage overhead for proof-of-stake blockchain.

(3) “The paper goes on to use the same technique as in [19]."

In our paper, to design a redactable proof-of-stake blockchain
protocol, we utilize the idea in [19] to add a new entry. i.e. the
initial state ib representing the initial and unedited state of
block, to keep the link relation between two adjacent blocks
no matter whether there exists any redaction. However, differ-
ent from [19], in our work:
(a) We introduce new methods for redaction process;
(b) We adopt the simulation approach and define ideal func-

tionality during the security analysis, which is more for-
mal for the analysis of blockchain protocols;

(c) By our approach, redaction can be confirmed faster, which
ismore attractive for the supervision of blockchain in prac-
tice.

(4) “Thanks for this interesting work addressing the “right to be for-
gotten" issue with PoS-based blockchain. The protocol design, es-
pecially the utilization of staked “cryptographic sortition" is re-
freshing. But the claim that the proposed scheme works for all
existing PoS blockchains is too hasty. "
We have corrected the statement. The design of our protocol
is compatible with current proof-of-stake blockchain such as
Ouroboros[9, 17, 30], NXT[15], PPCoin[31], and SnowWhite[16],
i.e., it can be implemented right now and requires onlyminimal
changes to the current blockchain, block, or transaction struc-
tures. Actually, we tend to propose a solution for most current
proof-of-stake blockchain protocols. This is achieved by adopt-
ing the general immutable proof-of-stake protocol (c.f. Appen-
dix A) to capture the fundamental features without any spe-
cific restrictions. Based on this general abstract, our redactable
protocol is also general. Of course, whether one proof-of-stake
protocol is suitable for our approach may depend on the partic-
ular circumstance, e.g., whether the protocol accepts an over-
head stemming our approach on the block size, the block issue
and chain validation.

(5) “The evaluation is insufficient. The best evaluation strategy is
to evaluate a prototype system in a simulated PoS blockchain
network."
We thank reviewers for the good advice. We have developed
a proof-of-concept implementation of our redaction approach
on JD Chain[5], evaluating the additional cost over the under-
lying immutable blockchain protocol. Specifically, we evaluate
the overhead of issuing new blocks with one redaction, the
overhead of validating a chain by the number of redactions,
the overhead of validating a chain by the chain size, the over-
head of completing one redaction by the chain size, the storage
overhead compared to immutable blockchain, and network de-
lays.

(6) “The original proof is largely in a holistic fashion and not very
rigorous."
We have adopted simulation approach and conducted a com-
prehensive security analysis instead of a “descriptive" analysis
in the original paper. Specifically, first considers an idealized
functionality Ftr ee that keeps track of all valid chains at any
moment of time, and then shows that any attack that succeeds
in real-world protocol can be turned into an attack in the ide-
alized Ftr ee model.

14

