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Abstract. Due to their nature, subliminal channels are mostly regarded as being malicious, but due
to recent legislation efforts users’ perception might change. Such channels can be used to subvert digital
signature protocols without degrading the security of the underlying primitive. Thus, it is natural to
find countermeasures and devise subliminal-free signatures. In this paper we discuss state-of-the-art
countermeasures and introduce a generic method to bypass them.

1 Introduction

As more and more countries require individuals and providers to hand over passwords and decryption keys
[7], we might observe an increase in the usage of subliminal channels. Subliminal channels are secondary
channels of communication hidden inside a potentially compromised communication channel. The concept
was introduced by Simmons [39–41] as a solution to the prisoners’ problem. In the prisoners’ problem Alice
and Bob are incarcerated and wish to communicate confidentially and undetected by their guard Walter
who imposes to read all their communication. Note that Alice and Bob can exchange a secret key before
being incarcerated.

A special case of subliminal channels are secretly embedded trapdoor with universal protection (SETUP)
attacks. By combining subliminal channels with public key cryptography Young and Yung devised a plethora
of mechanisms [45–48] to leak a user’s private key or message. Although the authors assume a black-box
environment3 in [15] is pointed out that these mechanism can also be implemented in open source software
due to the code’s sheer complexity and the small number of experts who review it. SETUP attacks are meant
to capture the situation in which the manufacturer of a black-box device is also an adversary or employed
by an adversary.

According to the classified documents leaked by Snowden [12, 34] the NSA made efforts for subverting
cryptographic standards. More precisely, there are strong indications of the existence of a backdoor in
the Dual-EC generator [13]. This backdoor is a direct application of Young and Yung’s work. Snowden’s
revelations rekindled the study of backdoors. Thus, more examples of backdoor embedding methods were
found [14,22,24,42,43], methods for protecting users against them were developed [11,18,21,26,36,37] and
implementations were exploited in the wild [19,20].

Most subliminal channels or SETUP attacks use random numbers to convey information undetected. In
consequence, all the proposed countermeasures focus on sanitizing the random numbers used by a system.
In the case of digital signatures, a different but laborious method for inserting a subliminal channel in a
system is presented in [44]. Instead of using random numbers as information carriers, Alice uses the hash
of the message to convey the message for Bob. In order to achieve this, Alice makes small changes to the
message until the hash has the desired properties. Note that the method presented in [44] bypasses all the
countermeasures mentioned so far.

This paper studies a generic method that allows the prisoners to communicate through the subliminal-free
signatures found in [11, 18, 21, 26, 36, 37]. To achieve our goal we work in a scenario where all messages are
3 A black-box is a device, process or system, whose inputs and outputs are known, but its internal structure or

working is not known or accessible to the user (e.g. tamper proof devices, closed source software).
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time-stamped before signing. Note that we do not break any of the assumptions made by the subversion-free
proposals. This work is motivated by the fact that most end-users to do not verify the claims made by
manufacturers4. Moreover, users often do not know which should be the outputs of a device [30]. A notable
incident in which users where not aware of the correct outputs and trusted the developers is the Debian
incident [17].

Structure of the paper. We introduce notations and definitions in Section 2. By adapting and improving the
mechanism from [44] we introduce new hash channels in Section 3. A series of experiments is conducted in
Section 4. Applications are provided in Section 5. We conclude in Section 6. Additional definitions are given
in Appendix A.

2 Preliminaries

Notations. Throughout the paper λ and κ will denote security parameters. We let ROM denote the random
oracle model. The number of bits of an element x is denoted by |x| and x∥y represents the concatenation of
the strings x and y. The set {0, 1}ℓ consists of bit strings of length ℓ.

The action of selecting a random element x from a sample space X is represented by x
$←− X. We also

denote by x ← y the assignment of value y to variable x. The encryption of a message m ∈ {0, 1} using
one-time pad is denoted by ω ← m⊕ b, where b is a random bit used only once.

2.1 Diffie-Hellman Assumptions

Definition 1 (Computational Diffie-Hellman - cdh). Let G be a cyclic group of order q, g a generator
of G and let A be a probabilistic polynomial-time algorithm (PPT algorithm) that returns an element from
G. We define the advantage

ADV cdh
G,g (A) = Pr[A(gx, gy) = gxy|x, y

$←− Z∗
q ].

If ADV cdh
G,g (A) is negligible for any PPT algorithm A, we say that the Computational Diffie-Hellman

problem is hard in G.

Definition 2 (Hash Diffie-Hellman - hdh). Let G be a cyclic group of order q, g a generator of G, Gm

a set and H : G → Gm a hash function. Let A be a PPT algorithm which returns 1 on input (gx, gy, z) if
H(gxy) = z. We define the advantage

ADV hdh
G,g,H(A) = |Pr[A(gx, gy, H(gxy)) = 1|x, y

$←− Z∗
q ]− Pr[A(gx, gy, z) = 1|x, y

$←− Z∗
q , z

$←− Gm]|.

If ADV hdh
G,g,H(A) is negligible for any PPT algorithm A, we say that the Hash Diffie-Hellman problem is

hard in G.

Remark 1. The cdh assumption is standard and we include it for completeness. The hdh assumption was
formally introduced in [8, 9], although it was informally described as a composite assumption in [16, 49].
According to [16], the hdh assumption is equivalent with the cdh assumption in the ROM. Although an
equivalent of the hdh assumption exists in the standard model, in this paper we are working with the Schnorr
signature scheme that is secure in the ROM. Thus, the security in the ROM suffices for our purposes.
4 Manufacturers might implement subversion-free signatures just for marketing purposes, while still backdooring

some of the devices produced.
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Hashed Diffie-Hellman Key Exchange (HKE). Based on the hdh assumption we describe a key
exchange protocol5 in Figure 1. A formal analysis of this design can be found in [8, 9, 23].

Alice Bob

xA
$←− Z∗

q xB
$←− Z∗

q

yA ← gxA yB ← gxB

yA−−−−−−−−−−−→
yB←−−−−−−−−−−−

k ← H(yxA
B ) k ← H(yxB

A )

Fig. 1. The Hashed Diffie-Hellman key exchange protocol.

2.2 Digital Signatures
Definition 3 (Signature Scheme). A Signature Scheme consists of four PPT algorithms: ParamGen,
KeyGen, Sign and Verification. The first one takes as input a security parameter and outputs the system’s
parameters. Using these parameters, the second algorithm generates the public key and the matching secret
key. The secret key together with the Sign algorithm are used to generate a signature σ for a message m.
Using the public key, the last algorithm verifies if a signature σ for a message m is generated using the
matching secret key.
Remark 2. For simplicity, public parameters will further be considered implicit when describing an algorithm.

Schnorr Signature. In [38], Schnorr introduces a digital signature based on the discrete logarithm problem.
Later on, the scheme was proven secure in the ROM by Stern and Pointcheval [35]. We further recall the
Schnorr signature.

ParamGen(λ): Generate two large prime numbers p, q, such that q ≥ 2λ and q|p − 1. Select a cyclic group
G of order p and let g ∈ G be an element of order q. Let h : {0, 1}∗ → Z∗

q be a hash function. Output the
public parameters pp = (p, q, g,G, h).

KeyGen(pp): Choose x
$←− Z∗

q and compute y ← gx. Output the public key pk = y. The secret key is sk = x.

Sign(m, sk): To sign a message m ∈ {0, 1}∗, first generate a random number k
$←− Z∗

q . Then compute the
values r ← gk, e← h(r∥m) and s← k − xe mod q. Output the signature (e, s).

Verification(m, e, s, pk): To verify the signature (e, s) of message m, compute r ← gsye and u ← h(r∥m).
Output true if and only if u = e. Otherwise, output false.

2.3 Subliminal Channels and SETUP attacks
Covert channels [31] have the capability of transporting information through system parameters apparently
not intended for information transfer. Subliminal channels and SETUP attacks are special cases of covert
channels and achieve information transfer by modifying the original specifications of cryptographic primi-
tives6. We further restrict covert channels to two sub-cases: subliminal channels and SETUP attacks.
Definition 4 (Subliminal channel). A Subliminal channel is an algorithm that can be inserted in a system
such that it allows the system’s owner to communicate7 with a recipient without their communication being
5 a high level description of the IKE protocols [27,28]
6 for example, by modifying the way random numbers are generated
7 through the system’s outputs
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detected by a third party8. It is assumed that the prisoners’ communication is encrypted using a secret/public
key encryption scheme and the decryption function is accessible to the recipient.

Definition 5 (Secretly Embedded Trapdoor with Universal Protection - SETUP). A Secretly
Embedded Trapdoor with Universal Protection (SETUP) is an algorithm that can be inserted in a system
such that it leaks encrypted private key information to an attacker through the system’s outputs. Encryption
of the private key is performed using a public key encryption scheme. It is assumed that the decryption
function is accessible only to the attacker.

Remark 3. Note that SETUP mechanisms are special cases of subliminal channels. In the SETUP case, the
sender is the system, the recipient is the attacker, while the third party is the owner of the system.

Definition 6 (Covert channel indistinguishability - ind-covert). Let C0 be a black-box system that
uses a secret key sk. Let E be the encryption scheme used by a covert channel as defined above, in Definitions 4
and 5. We consider C1 an altered version of C0 that contains a covert channel based on E. Let A be a PPT
algorithm which returns 1 if it detects that C0 is altered. We define the advantage

ADV ind-covert
E,C0,C1

(A) = |Pr[AC1(sk,·)(λ) = 1]− Pr[AC0(sk,·)(λ) = 1]|.

If ADV ind-covert
E,C0,C1

(A) is negligible for any PPT algorithm A, we say that C0 and C1 are polynomially
indistinguishable.

Remark 4. In some cases, if sk is known, the covert channel can be detected by using its description and
parameters. Thus, depending on the context we will specify if A has access to sk or not. If E is a public key
encryption scheme we always assume that A has access to the public key9.

We consider that the covert channels presented from now on are implemented in a device D that digitally
signs messages. In the case of subliminal channels, the prisoners are denoted as Alice (sender) and Bob
(receiver), while Walter is the guard. In the case of SETUP attacks, the owner of the device is referred to
as Charlie and the attacker is usually Mallory. When the secret key sk is not known to the PPT algorithm
A we assume that sk is stored only in D’s volatile memory. Note that Walter and Charlie believe that
D signs messages using the original specifications of the signature scheme implemented in D. When one of
the original signature’s algorithm is not modified by the covert channel, the algorithm will be omitted when
presenting the respective channel.

Throughout the paper, when presenting covert channels, we make use of the following additional algo-
rithms:

– Subliminal/Malicious ParamGen − used by the prisoners/attacker to generate their (his) parameters;
– Subliminal/Malicious KeyGen − used by the prisoners/attacker to generate their (his) keys;
– Extract − used by the recipient to extract the secret message;
– Recovering − used by the attacker to recover Charlie’s secret key.

The algorithms above are not implemented in D. For simplicity, covert parameters will further be implicit
when describing an algorithm.

Trivial Subliminal Channel. The Schnorr signature supports a subliminal channel based on rejection
sampling. We further describe the trivial subliminal channel.

Sign(m, sk): Choose k
$←− Z∗

q and compute r ← gk, until ω ≡ r mod 2. To sign a message m ∈ {0, 1}∗

compute the values e← h(r∥m) and s← k − xe mod q. Output the signature (e, s).

Extract(e, s) : To extract the embedded message ω compute ω ← gsye mod 2.
8 The sender and receiver will further be called prisoners and the third party warden.
9 found by means of reverse engineering the system, for example
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Young-Yung SETUP Attack In [45–48], the authors propose a kleptographic version of Schnorr signatures
and prove it ind-covert secure in the standard model under the hdh assumption. The algorithms of the
SETUP attack are shortly described below. Note that after D signs at least two messages, Mallory can
recover Charlie’s secret key and, thus, impersonate Charlie.

Malicious ParamGen(pp): Let H : G → Z∗
q be a hash function. Output the public parameter spM = H.

Note that H will be stored in D’s volatile memory.

Malicious KeyGen(pp): Choose xM
$←− Z∗

q and compute yM ← gxM . Output the public key pkM = yM . The
public key pkM will be stored in D’s volatile memory. The secret key is skM = xM ; it will only be known by
Mallory and will not be stored in the black-box.

Signing Sessions: The possible signing sessions performed by D are described below. Let i ≥ 1.
Session0(m0, sk): To sign message m0 ∈ G, D does the following

k0
$←− Z∗

q , r0 ← gk0 , e0 ← h(r0∥m0), s0 ← k0 − xe0 mod q.

The value k0 is stored in D’s volatile memory until the end of Session1. Output the signature (r0, s0).
Sessioni(mi, sk, pkM ): To sign message mi ∈ G, D does the following

zi ← y
ki−1
M , ki ← H(zi), ri ← gki , ei ← h(ri∥mi), si ← ki − xei mod q.

The value ki is stored in D’s volatile memory until the end of Sessioni+1. Output the signature (ri, si).

Recovering(mi, ei−1, ei, si, skM ): Compute ri−1 ← gsi−1yei−1 , α ← rxM
i−1 and ki ← H(α). Recover x by

computing x← e−1
i (ki − si) mod q.

3 Hash Channels
In order to be valid, legal documents need a timestamp appended to them before being digitally signed [10,25].
According to [10] the timestamp must include seconds. Note that if the timestamp module is independent
from the Sign module, then Walter or Charlie can inject false timestamps into the signing module. Thus,
we assume that the timestamp module is integrated in the signing module. Using this framework we achieve
a subliminal channel by adapting and simplifying the idea from [44].

Let lim be an upper limit for the number of trials and ut the smallest time unit used by the time stamping
algorithm (e.g. seconds, milliseconds). We further present our proposed subliminal channel.

Time Stamp(ut): Output the current time τ including ut.

Subliminal Sign(m, ω, sk): Generate a random number k
$←− Z∗

q and compute r ← gk. Let counter = 1.
Generate τ using the Time Stamp algorithm and compute e← h(r∥m∥τ) and counter = counter + 1, until
e ≡ ω mod 2 or counter = lim. Compute s← k − xe mod q. Output the signature (e, s).

Extract(m, e, s, pk) : To extract the embedded message compute ω ← e mod 2. Remark that the probability
of event e ≡ ω mod 2 is 1− 1/2lim.

The security of the Schnorr signature scheme is preserved, since we are not modifying the scheme itself,
but the way messages are processed. Let τh be the average time it takes device D to compute h(r∥m∥τ)
for fixed bit-size bitm messages. To avoid detection by Walter or Charlie the manufacturer writes in D’s
specification that for a message of size bitm it takes lim ·τ to sign bitm messages. Thus, D remains consistent
with the specifications (i.e. ind-covert secure). The main restriction when choosing lim is users’ usability.
Due to the hash-rate statistics reported for SHA-256 in [2, 3] we can assume τh < 1 second. Thus, the
bottleneck becomes the time stamp (i.e. D can not output a signature for time t at time t− 1). This can be
mitigated by including finer time units into the timestamp (e.g milliseconds).
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Remark 5. Let z ← gt be the public key of Bob and b a bit Alice wants to send to Bob. Then, we can
easily transition to a public key subliminal channel by using HKE and computing ω ← b ⊕ H(zk), where
Gm = {0, 1}. Since k is fresh for each signature, Alice can continuously leak data to Bob. Note that we
are using HKE to encrypt the message so, ω is indistinguishable from a random bit. Thus, the scheme is
ind-covert secure under the hdh assumption. We further denote this public key subliminal channel by
hashp.

Remark 6. When dealing with longer messages there is a simpler way to transmit them. Thus, let mi be the
ith bit of m and Gm = {0, 1}|m|. The device D can leak m to Bob through |m| signing sessions by computing
c← m⊕H(zk0) and setting ω ← ci for the ith signing session, where 0 ≤ i < |m|. Note that m is successfully
transmitted with a probability of (1− 1/2lim)|m|. This channel is further denoted by hashℓ. Remark that if
we replace Bob with Mallory and set m← x, hashℓ is transformed into a SETUP attack.

Remark 7. If adversary A has access to x, then he can compute all k numbers. Thus, hashp and hashℓ can
be detected if x can be retrieved from D, while the regular hash channel it is not. Hence, in the public key
setting we assume that x is only stored in D’s volatile memory10.

4 Stochastic Detection

In [29], the authors show that the execution time of the Young-Yung attack can be used to distinguish honest
devices from backdoored devices. Using Kucner et. al. observations as a starting point, we run a series of
experiments to see if our proposed methods can be detected by measuring their execution time.

We implemented in C using the GMP library [6] the Schnorr signature (normal), the trivial channel
(trivial), the Young-Yung attack (yy), the hash channel (hash), the public key hash channel (hashp) and
hashp’s extension to long messages (hashℓ). The programs were run on a CPU Intel i7-4790 4.00 GHz and
compiled with GCC with the O3 flag activated. In our experiments for each prime size of 2048, 3072, 4096
and 8192 bits, we ran the algorithms with 100 safe prime numbers from [5]. For each prime we measured
the average running time for 128 random 2040 byte messages11 using the function omp_get_wtime() [4].
Before signing each message we added a 8 byte timestamp with the current system time in milliseconds
(clock_gettime()). The hash function used internally by the algorithms is either SHA256 or SHA512 [1].

When we implemented the hash channels we took advantage of the Merkle-Damgard structure of SHA256
or SHA512. Thus, we computed and stored the intermediary value hit obtained after processing 1984
(SHA256) or 1920 (SHA512) bytes. Then for each trial we used hit to process the last block of the mes-
sage. Note that the size of the messages was selected such that after hit the SHA functions must process
one full message block and a full padding block (worst case scenario). Also, in our experiments lim tends
towards infinity.

The results of our experiments are presented in Figures 2 to 9. We can see from the plots that the Schnorr
signature and the hash channel have similar execution times. We further investigated this by computing the
absolute time difference between a normal execution (tn1) and a hash channel execution (th) or another
normal execution (tn2). The results are presented in Table 1. Note that the empirical evidence suggests
that the normal and hash channel executions are indistinguishable due to the noise added by the operating
system.

When we implemented hashℓ we distributed the HKE protocol execution over 128 Schnorr signature
computations. The downside of this method is that first we need to use 128 Schnorr signatures for masking
the HKE and then 128 hash channel signatures for leaking the message. The results presented in this section
are only for the first part, since experimental data for hash channels is already presented. Note that the
first part of hashℓ is indistinguishable from the normal execution. As in the case of the hash channel, we
10 The same assumption is make in Young-Yung’s attack, since their mechanism can also be detected when x is known

to the attacker.
11 By choosing 128 messages we simulated the following scenario: the secret key x is generated using a PRNG with

a seed of 128 bits and D leaks the seed.
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Fig. 2. Prime’s size 2048 bits with SHA256
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Fig. 3. Prime’s size 2048 bits with SHA512
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Fig. 4. Prime’s size 3072 bits with SHA256
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Fig. 5. Prime’s size 3072 bits with SHA512

Prime’s size SHA |tn1 − tn2 | |tn1 − th| |tn1 − tℓ|

2048 256 0.185621 0.138921 0.149650
512 0.122050 0.097460 0.101445

3072 256 0.462406 0.105996 0.150646
512 0.156232 0.156667 0.160375

4096 256 0.523229 0.354953 0.358049
512 0.118666 0.134868 0.085795

8192 256 1.381028 1.548863 1.586020
512 0.483661 0.629464 0.468742
Table 1. Time comparison

further investigated the indistinguishability claim by computing the absolute time difference between a
normal execution (tn1) and a hashℓ channel execution (tℓ). The results are presented in Table 1. Note that
the empirical evidence suggests that the normal and hashℓ channel executions are indistinguishable due to
the noise added by the operating system.
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Fig. 6. Prime’s size 4096 bits with SHA256
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Fig. 7. Prime’s size 4096 bits with SHA512
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Fig. 8. Prime’s size 8192 bits with SHA256
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Fig. 9. Prime’s size 8192 bits with SHA512

Another remark is that the rest of the channels can be easily detected by measuring their execution
time. Thus, noise must be added to the Young-Yung attack or to the Schnorr signature in order to make
the subliminal channels undetectable. Note that the trivial channel and the public key hash channel have
similar execution times. Thus, any technique used to mask the execution time of the trivial channel can also
be used for the public key hash channel.

Let T be the computation time for one signature. We denote by E[T ] and σ[T ] the expected value and the
standard deviation of T . Kucner et. al. introduce the R[T ] = σ[T ]/E[T ] characteristic in order to measure
computation time independently of the actual speed of the processor. We computed R[T ] for all channels
and the results are presented in Table 2. We can observe from our experiments that the R[T ] characteristic
fluctuates in practice. Also, from Table 2, it is easy to observe that the R[T ] characteristic for the Schnorr
signature is always smaller than the one for the trivial channel and the Young-Yung attack. Thus, we can
distinguish these two channels from an honest execution. Unfortunately, the results are inconclusive for the
rest of the channels.
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Prime’s size SHA normal trivial yy hash hashp hashℓ

2048 256 0.128196 0.722334 0.322048 0.076789 0.138364 0.147544
512 0.035308 0.695684 0.131866 0.017010 0.033390 0.094461

3072 256 0.094644 0.751065 0.430531 0.044940 0.063633 0.095584
512 0.024800 0.718313 0.207609 0.024917 0.044754 0.092278

4096 256 0.131263 0.700937 0.582434 0.043187 0.045583 0.101174
512 0.051705 0.691449 0.326993 0.125705 0.089238 0.140214

8192 256 0.116920 0.704363 1.156188 0.172762 0.101328 0.132343
512 0.056456 0.708207 0.594154 0.057846 0.086518 0.121710

Table 2. R[T ] characteristic

5 Marketing Backdoors

In this section we provide the reader with state-of-the-art countermeasures used to obtain subliminal-free
signatures and show that three proposals are vulnerable to the hash and hashℓ channels without masking
the channels’ execution time, while for the rest the channels must be masked. Thus, a manufacturer can
market a product as being subliminal free12, while in reality it is not. Note that our proposed scenario does
not violate the assumptions made by the subversion-free protocols.

5.1 Russel et al. Subversion-Free Proposal

The authors of [36, 37] assume that all the random numbers used by a signature scheme are generated by
a malicious RNG (including the key generation step). Based on this assumption, the authors describe and
prove secure a generic method for protecting users. Note that both the trivial channel and the Young-Yung
attack can be modeled as malicious RNGs. Unfortunately, in the hash channel scenario the security of their
method breaks down.

The philosophy behind Russel et al. method is to split every generation algorithm into two parts: a
random string generation part RG and a deterministic part DG. By extensively testing DG the user can be
ensured that the deterministic part is almost consistent with the specifications. By using two independent
RNG modules Source1, Source2 and hashing their concatenated outputs, any backdoors implemented in the
RNGs will not propagate into DG. We further describe an instantiation of [37] using the Schnorr signature
scheme.

Random(Source1, Source2): Generate s1
$←− Source1 and s2

$←− Source2. Output h(s1∥s2).

KeyGen(pp): Generate x using the Random algorithm and compute y ← gx. Output the public key pk = y.
The secret key is sk = x.

Sign(m, sk): To sign a message m ∈ {0, 1}∗, first generate k using the Random algorithm. Then, compute
the values r ← gk, e← h(r∥m) and s← k − xe mod q. Output the signature (e, s).

5.2 Hanzlik et al. Controlled Randomness Proposal

A method for controlling the quality of k is proposed in [26]. In order to do this, the authors use a blinding
factor U ← gu that is installed by the owner of the device and a counter i. The owner accepts a signature
produced by D if and only if Check returns true. Note that the Young-Yung SETUP attack is not possible
due to the blinding factor. We further present their modifications on the Sign algorithm.
12 by implementing one of these countermeasures
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Sign(m, U, i, sk): To sign a message m ∈ {0, 1}∗, first generate k0
$←− Z∗

q , compute r′ ← gk0 , k1 ← H(Uk0 , i)
and increment i. Let k ← k0k1. Compute the values r ← gk, e ← h(r∥m) and s ← k − xe mod q. Output
the signature (e, s) and the control data (r′, i).

Check(e, s, r′, u): Compute r ← gsye and α← H(r′u, i). Output true only if and only if r = r′α. Otherwise,
output false.

The authors underline that a subliminal channel13 exists, but due to the limited memory of the signing
device, hiding the time needed to implement their proposed channel is difficult. Note that our timestamp
method proposed in Section 3 is much faster14 and, thus, in some cases is feasible for bypassing Hanzlik et
al. mechanism.

5.3 Choi et al. Tamper-Evident Digital Signatures

Choi et al. [21] introduce the notion of tamper-evidence for digital signatures in order to prevent corrupted
nodes to covertly leak secret information. We further provide the tamper-evident Schnorr signature.

ParamGen(λ): Generate two large prime numbers p, q, such that q ≥ 2λ and q|p − 1. Select a cyclic group
G of order p and let g ∈ G be an element of order q. Let h : {0, 1}∗ → Z∗

q be a hash function and let ℓ be
the number of permitted signatures. Output the public parameters pp = (p, q, g,G, h, ℓ).

KeyGen(pp, κ): Choose x
$←− Z∗

q and compute y ← gx. Also, choose ωℓ
$←− {0, 1}κ. For 1 ≤ i ≤ ℓ, generate

ki
$←− Z∗

q and compute ωi−1 ← h(gki∥ωi). Output the public key pk = (y, ω0). The secret key is sk =
(x, k1, . . . , kℓ, ω1, . . . , ωℓ).

Sign(mi, sk): To sign the ith message mi ∈ {0, 1}∗, compute the values ri ← gki , ei ← h(ri∥ωi∥mi) and
si ← ki − xei mod q. Output the signature (ei, si, ωi).

Verification(mi, ei, si, ωi, pk): To verify the signature (ei, si, ωi) of message mi, compute ri ← gsiyei and
u← h(ri∥ωi∥mi). Output true if and only if u = ei and ωi−1 ← h(ri∥ωi). Otherwise, output false.

The authors work in the honest key generation model. Thus, the nodes can not manipulate the kis in
any way. Fortunately, our hash channels use messages to leak confidential data. Thus, the nodes can still
subliminally transmit data by using our proposed channels.

5.4 Ateniese et al. and Bohli et al. Subversion-Free proposals

The authors of [11] propose the usage of re-randomizable signatures15 and unique signatures15 as counter-
measures to backdoors induced by malicious RNGs. These proposals are secure according to their security
model [11]. A similar approach can be found in [18], where the authors convert the Digital Signature Algo-
rithm into a deterministic signature. Note that both approaches assume honest key generation.

All these signature schemes work on fixed length messages and internally use a number theoretic hash
function16. In order to work on variable length messages a standard hash function is used to process the
message and the resulting hash is used as input for the Naor-Reingold function. Thus, for each small change
in the message we have to recompute the hash h(m), multiply |h(m)/2| integers from Z∗

q and perform an
exponentiation in G. So, our proposed hash channel on average doubles the time necessary to process a
message. In this case, the execution time of a hash channel is no longer similar to an honest implementation
and, thus, noise must be added to mask the backdoor.
13 similar to the trivial channel described in Section 2.3
14 i.e. computing a hash is faster than computing a modular exponentiation
15 See Appendix A for a definition of the concept.
16 more precisely, the Naor-Reingold pseudo-random function [32,33]
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6 Conclusions

In this paper we introduced a scenario in which the security of the subliminal-free methods presented in
[21,26,36,37] degrades. We also conducted a series of experiments to show that the hash and hashℓ channels’
executions are indistinguishable from the normal signature executions due to the noise produced by the
operating system. Hence, we proved that users must request justifications for every security choice made by
the manufacturer and that testing centers must never let the DG modules to modify inputs.
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A Additional Preliminaries
Definition 7 (Unique Signature Scheme). Let S be a signature scheme and pk be a public key generated
by the KeyGen algorithm of S. We say that S is a Unique Signature Scheme if for any message m and any
signatures of m, σ1 ̸= σ2

Pr[Verification(m, σ1, pk) = Verification(m, σ2, pk) = true]

is negligible.
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Definition 8 (Re-Randomizable Signature Scheme). Let S be a signature scheme and (pk, sk) be a
public/secret key pair generated by the KeyGen algorithm of S. We say that S is a Re-Randomizable Signature
Scheme if there exists a PPT algorithm ReRand such that for all messages m the output of ReRand(m, σ, pk)
is statistically indistinguishable from Sign(m, sk).
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