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ABSTRACT
Machine Learning (ML) is today commonly employed in the Fi-
nancial Services Sector (FSS) to create various models to predict
a variety of conditions ranging from financial transactions fraud
to outcomes of investments and also targeted upselling and cross-
selling marketing campaigns. The common ML technique used for
the modeling is supervised learning using regression algorithms
and usually involves large amounts of data that needs to be shared
and prepared before the actual learning phase. Compliance with
recent privacy laws and confidentiality regulations requires that
most, if not all, of the data and the computation must be kept in a
secure environment, usually in-house, and not outsourced to cloud
or multi-tenant shared environments. Our work focuses on how
to apply advanced cryptographic schemes such as Homomorphic
Encryption (HE) to protect the privacy and confidentiality of both
the data during the training of ML models as well as the models
themselves, and as a consequence, the prediction task can also be
protected. We de-constructed a typical ML pipeline and applied HE
to two of the important ML tasks, namely the variable selection
phase of the supervised learning and the prediction task. Quality
metrics and performance results demonstrate that HE technology
has reached the inflection point to be useful in a financial business
setting for a full ML pipeline.
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1 INTRODUCTION
Homomorphic encryption (HE) promises to generally transform
and disrupt how business is currently done in many industries such
as, but not limited to, healthcare, medical sciences, and finance. One
particular area of interest and value to apply HE across numerous
industries is in machine learning (ML). The ability to compute
directly on the encrypted data allows that data to be shared in areas
that were once considered impossible or highly undesirable due to
data leaks through single point of failure (individuals or systems
with the authority to see the data) which could be insecure.

Today, organizations make far more use of vast amounts of ag-
gregated data to be able to perform data analytics and ML. Many
organizations find themselves restricted from sharing data, inter-
nally and externally, due to legislation, regulation, and their other
need-to-know policies coming into direct conflict with the need to
collaborate by sharing the data (a.k.a. need-to-share). Approaches
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leveraging homomorphic encryption can overcome these restric-
tions by allowing homomorphic data aggregation intra- and/or
inter-organization; meaning that a computation requiring the ag-
gregated data can be performed without other parties having access
to data shared in the aggregation.

HE as a technology has undergone accelerated progress since
Gentry’s influential work [13] showed how to construct a fully ho-
momorphic encryption scheme based on lattices. Several schemes
and algorithmic improvements have emerged since Gentry such as
the BGV [4] and FV [11] schemes. The community is aware that the
technology is becoming adequately performant to be useful and/or
disrupt several areas [1]. In the last few years, the CKKS scheme [8]
has emerged offering a more natural setting for performing op-
erations on approximate numbers. CKKS is thus generally more
suitable to analytics and ML problems.

The terminology Machine Learning, first introduced by Arthur
Samuel in 1959 [24], today comprises several tasks with the funda-
mental goal of creating a model that can make predictions. Model
generation by learning is the main focus of ML and the motiva-
tion in doing this homomorphically has been around for a few
years. Many solutions have been shown to perform this task with
varying times from minutes to hours using different HE schemes
[3, 7, 9, 16, 19, 20]. However, practitioners are aware that in a typical
ML pipeline this is but one necessary task.

Our work consists of exploring two tasks in the ML pipeline that
HE can aid in the sharing of data. The first is running the prediction
of a generated logistic regression model. This is the task that is the
re-usable part of the typical ML endeavor. Businesses will want to
ensure that only certain parts of the business will have access to the
model and/or data. Although this tends to be inherently performed
in the learning aspect it has had little attention to as a separate
facet and metrics on it seem somewhat limited in the literature.
Moreover, in previous works [5, 14] the speed of prediction was
achieved through having the model itself unencrypted, thus only
providing privacy of the input data. This work explores the concept
of keeping the generated model private in addition to the data. The
second task that we explore is performing variable reduction or
more precisely variable selection (a.k.a. feature selection in the
literature). With real data, this is a very common machine learning
pipeline task and necessary to avoid overfitting of the data and/or
only perform learning with variables of importance thus reducing
resource required.

To achieve our goals, we applied state-of-the-art techniques
in homomorphic encryption and ML. For our homomorphic en-
cryption and computations, we used the homomorphic encryption
library HElib [15], explicitly making use of its CKKS capabilities in
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the work presented. Firstly, we took an existing, encrypted logistic
regression model that constitutes sensitive intellectual property and
demonstrated the feasibility of running a large number of encrypted
prediction operations on real, encrypted financial data while retain-
ing acceptable performance with both 128 and 256 bits of security.
Secondly, we built on work by Bergamaschi et al. [2] by exploring
the feasibility of homomorphic variable selection.

2 BACKGROUND
In this section, we will introduce the key concepts which will be
required throughout this work. All homomorphic computations
were done using HElib’s CKKS capabilities that were introduced to
the library in 2018 [2, 15]. This allows us to code using approximates
of real numbers. To solve both ML tasks of predicting and variable
selection, this is required. The way we determine the importance of
a variable for variable selection is to use the evaluation of a logistic
regression model trained on that variable individually.

2.1 CKKS in HElib
The CKKS scheme [8] has provided a large change for certain
problems of how we think about applying HE. In HElib’s variant of
the scheme the ciphertext mechanisms are mostly the same as they
are for the BGV scheme [2]. The main difference lies in the CKKS
plaintext space which we can therefore take advantage of.

CKKS has a decryption invariant form of [⟨sk, ct⟩]q = p̃t, where
sk and ct are the secret key and ciphertext vectors, respectively,
[·]q denotes reduction modulo q into the interval (−q/2,q/2], and
p̃t is an element that encodes the plaintext and includes also some
noise. CKKS uses an element p̃t of low norm, |p̃t| ≪ q. Decoding
to a plaintext, pt, is given by p̃t = e + ∆ · pt where ∆ is a scaling
factor and, ideally, after performing our necessary computation we
still have |e| < ∆.

Due to working with approximations of real numbers the scheme
supports varying levels of precision determined by the accuracy
parameter r . The noise, e, introduced during the encoding of the
plaintext causes each operation performed in the CKKS scheme
to be accurate up to an absolute bound on the magnitude of the
additive noise, namely 2−r .

The HElib implementation of the CKKS scheme maps to a plain-
text space that is the integer polynomial ring Z[X ]/⟨Φm (X )⟩ where
Φm (X ) is the mth cyclotomic polynomial with degree given by
Euler’s totient ϕ(m). The scheme provides encode and decode pro-
cedures to map the native plaintext elements to and from plaintext
complex vectors v = Cl where l = ϕ(m)/2 determines the number
of complex numbers that can be packed into a single plaintext. For
our purposes, we only make use of the real part of the numbers.

2.2 Homomorphic predictions
Given a trained ML model, its primary purpose is the generation of
an output estimate of whether a given input has the condition or not.
This is known as prediction. Many types of predictive models can
be considered to be another form of data which can be encrypted
homomorphically.

Depending on the scenario there are choices to be made as
whether the data, the model or both are homomorphically en-
crypted. In all cases, the output will be encrypted as an operation

between a ciphertext or a plaintext with a ciphertext always results
in a ciphertext.

The first proposal of a privacy preserving Encrypted Prediction
as a Service (EPaaS) solution was CryptoNets [14] in 2016. Cryp-
toNets achieved 99% accuracy and a throughput of roughly 59000
predictions per hour.

When applying a prediction model in an HE context, careful
consideration must be taken to find a balance between the accu-
racy and the computational complexity. This is due to the natural
overhead that is introduced by encryption. Previous work has been
carried out to reduce both the limitation on the depth and breadth
of the circuit that can be computed as well as the latency of such
applications.

One such notable work to produce a low latency, homomorphic
neural network known as LoLa [5] presents an application that
achieves considerable speedups without sacrificing on the level
of security provided in previous attempts. This was achieved via
the use of alternative data representations during the computation
process. This application exhibited the feasibility of performing
homomorphic predictions however left the exploration of homo-
morphically performing the training of ML models to further study.

It should be noted that these previous schemes do not perform
the prediction using a homomorphically encrypted model thus
making the prediction less computationally expensive.

2.3 Variable Selection via Logistic Regression
Variable selection is the process of deciding which of the variables
(or features) of a given dataset are important to be kept when gener-
ating a predictive model. This also determines the variables which
are not worth preserving as they have negligible or detrimental
impact on the model’s predictive quality [12, 18].

Homomorphic model generation by learning is a topic of in-
creasing interest due to the ability to generate models with training
data that is encrypted. This is important in scenarios where the
data used for the training is private. In particular medical data is
considered highly confidential and there is focus on applying HE
to this sector. Another key industry in which data privacy and ML
techniques are of particular interest is the financial sector.

Most notably, the work [3, 7, 9, 20] related to the 2017 iDASH
competition [17] as well as [16, 19] explore the use of logistic re-
gression on homomorphically encrypted data to generate models.
These achieve varying computation times for data samples of differ-
ing sizes. Applications range from 6 minutes for over 1500 samples
containing 18 features in [19] to generating a model from over
420000 samples containing over 200 features in approximately 17
hours [16]. These works demonstrate both the reality of generating
a model homomorphically in a feasible amount of time as well as
the scalability of such methods to handle large datasets.

When attempting to predict a binary condition or attribute (also
known as classification) based on other attributes given (not nec-
essarily binary themselves), logistic regression is a standard ML
technique employed.

In this work, we are only dealing with the case where the condi-
tion that we want to predict is binary (i.e. with condition or without
condition). The data, which one can consider to form a matrix, con-
sists of n records or rows of the form (yi , ®xi ) with yi ∈ {0, 1} and
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Figure 1: Homomorphic and plaintext pipelines.

®xi ∈ R
d . The aim is to predict the value of y ∈ {0, 1} given the

attributes ®x , and the logistic regression technique postulates that
the distribution of y given ®x is given by

Pr[y = 1| ®x] =
1

1 + exp
(
−w0 −

∑d
i=1 xiwi

) = 1

1 + exp
(
− ®x ′

T
®w
) ,

where ®w ∈ Rd+1 is a fixed vector of weights and ®x ′i = (1| ®xi ) ∈
Rd+1 is a feature vector. Given the training data {(yi , ®xi )}ni=1, we
can therefore make predictions if we can find the vector ®w that
best matches this data, where the notion of best match is typically
maximum likelihood. Such a weight vector, ®w∗, can be expressed
explicitly as

®w∗ = argmax
®w


∏
yi=1

1

1 + exp
(
− ®x ′i

T
®w
) · ∏

yi=0

1

1 + exp
(
®x ′i
T
®w
) 

where we use the probability postulate given above in conjunction
with the following identity

1 −
1

1 + exp(−z)
=

1
1 + exp(z)

.

The formula for ®w∗ can be written more compactly by setting
y′i = 2yi − 1 ∈ {±1} and ®zi = y′i · ®x ′i , then our goal is to compute
or approximate

®w∗ = argmax
®w


n∏
i=1

1

1 + exp
(
− ®zi

T
®w
) 

= argmin
®w

{ n∑
i=1

log
(
1 + exp

(
− ®zi

T
®w
))}
.

For a candidate weight vector ®w , we denote the (normalized) loss
function for the given training set by

J ( ®w)
def
=

1
n
·

n∑
i=1

log
(
1 + exp

(
− ®zi

T
®w
))
,

and our goal is to find ®w that minimizes that loss.
Nesterov’s Accelerated Gradient Descent. We use Nesterov’s
accelerated gradient decent [22] which has been used successfully
and applied previously in [2]. It is a variant of the iterative method
used by Kim et al. in [19]. Let σ be the sigmoid function,

σ (x)
def
= 1/(1 + e−x ),

then the gradient of the loss function with respect to ®w can be
expressed as

∇J ( ®w) = −
1
n

n∑
i=1

1

1 + exp
(
®zi
T
®w
) · ®zi

= −
1
n

n∑
i=1

σ
(
− ®zi

T
®w
)
· ®zi .

Nesterov’s method initializes two evolving vectors to the mean
average of the input records. Then each iteration computes

®w(t+1) = ®v(t ) − αt · ∇J
(
®v(t )

)
,

®v(t+1) = (1 − γt ) · ®w(t+1) + γt · ®w(t ),

where αt ,γt are scalar parameters that change from one iteration
to the next. The α parameter is known as the learning rate and γ is
called the moving average smoothing parameter. For how they are
set, see section 3.4.
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3 IMPLEMENTATION
In this section, we will discuss our methodology for performing
homomorphic predictions and homomorphic variable selection. In
the case of the logistic predictions, we provide a description of
the method used to efficiently pack data into CKKS ciphertexts as
well as requisite function approximations employed. In the case of
the variable selection, we provide greater detail of the technique
adopted for obtaining relevant scores for each variable as well as
parameters and configuration of the Nesterov gradient descent algo-
rithm. We present the modular ML pipeline of our experimentation.

3.1 Pipeline Overview
Figure 1 illustrates the basic model of the computation and flow
of data of the implemented system, used for both prediction and
variable selection. In this model, we have several parties with the
trusted parties operating in trusted containers (labeled 1, 2, and
4) and the untrusted party operating in the untrusted container 3.
Typically, this trust model would correspond to a client-server
relationship in which the server is considered to be acting under
the honest-but-curious attacker model.

The trusted container 1, hosted in a hardware security module,
is responsible for key management and generation of the public-
private key pairs, and the key switching matrices required for the
computation, as described in [15]. For the sake of conciseness, we
will henceforth refer to the public key, the context, and the key
switching matrices collectively as simply the public key.

Trusted container 2 is responsible for encrypting the plain data
with the public key. The encrypted data is made available to con-
tainer 3, the honest-but-curious untrusted environment where the
homomorphic computation can be performed. Both containers re-
quire and have access to the public-key.

Trusted container 4 is responsible for decrypting the final results
using the secret key which is accessed through a secure channel.

Considering the flow of data through the system, firstly raw
financial data is sanitized and pre-processed by theData Preparation
module, which then flows into trusted container 2. The data is then
encoded according to the relevantData packingmethod as described
later on, which differs depending on whether prediction or variable
selection is being performed. The encoded data is then encrypted
using the public key and then sent to the untrusted container.

The untrusted container 3 performs whichever homomorphic
computation is required by using the public key and encrypted
data. In the prediction case, this will be an operation between
encrypted data and an existing encrypted model as described in 3.3.
In the variable reduction case, this will be a large number of logistic
regression model trainings followed by a log loss computation as
described in 3.4. In both cases, the encrypted output is passed to the
trusted container 4 for decryption. Trusted container 4 will decrypt
the result with the secret key and then process it directly or pass it
elsewhere for usage.

In addition to this workflow, figure 1 also contains more steps
which would not be used in a typical system, but that we employed
for evaluation purposes. These can be seen in the cells which are
connected with dotted lines. The Clear Computation block performs
analogous computations to the Encrypted Computation block, except
they are performed with standard methods entirely on the plaintext

data. The results of the Clear Computation block and the HE pipeline
are then compared using standard statistical techniques. It is from
this final analysis step that the figures seen in section 4.5 are derived.

3.2 Function Approximations
Our homomorphic computations necessitate the evaluation of sev-
eral higher-order functions such as sigmoid and logarithm. Despite
the fact that addition and multiplication are the only operations na-
tive to the CKKS scheme employed, we are able to use polynomial
approximations of arbitrary continuous functions as guaranteed
by the Weierstrass approximation theorem. It was important to
strike a balance between degree of polynomial approximation with
higher degrees increasing the depth of the calculation and accuracy
of approximation which is harmed by lower-degree approxima-
tions. Due to the significant disadvantages inherent to high-degree
polynomials, in terms of both computation time and noise growth,
we use the lowest-degree approximations possible which still yield
good results.
Sigmoid approximation. For sigmoid function approximation,
we use the same low-degree polynomial function in a bounded
symmetrical range around zero as in [2, 19], namely with degree-3
and degree-7 approximation polynomials in the interval [−8, 8]

SIG3(x) def
= 0.5 − 1.2

(x
8

)
+ 0.81562

(x
8

)3
and (1)

SIG7(x) def
= 0.5 − 1.734

(x
8

)
+ 4.19407

(x
8

)3
(2)

−5.43402
(x
8

)5
+ 2.50739

(x
8

)7
Logarithm approximation. We apply the same technique to de-
rive a quartic polynomial approximation function for the composi-
tion log ◦σ directly rather than composing approximations for both
logarithm and sigmoid, since this allows us to perform the required
computation with minimal computational depth. We again use an
approximation minimizing mean squared difference in [−8, 8]:

LOGSIG4(x) def= 0.000527x4 − 0.0822x2 + 0.5x − 0.78 (3)

3.3 HE logistic regression predictions
In this section, we describe a general implementation to perform
logistic regression predictions. This is achieved by encoding and
encrypting both model and data. More precisely, taking data that
was segregated for testing from a real financial dataset, the data was
encoded and encrypted then passed to the predictor. The predictor
loads the required model and performs the prediction algorithm.
Essentially a inner product that is the input to a sigmoid function.
Data packing. To perform homomorphic logistic regression pre-
dictions, we require an encrypted model and encrypted data. The
model consists of a vector of weights β ∈ R17, where the 0th entry
of β is the bias term. In order to fit best with our homomorphic
implementation, we simply replicate each entry βi , 0 ≤ i ≤ 16, into
its own ciphertext. That is to say, we let mi be an encryption of the
vector ui ∈ Cl where each entry of ui is equal to βi . For packing
of the data, we describe first the case where we have l predictions
to perform, i.e. a set D of data where |D | = l . We pack all l vectors
{®xi }

l
i=1 ∈ R

16 into 16 ciphertexts by mapping the first entry of
4
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each ®x into one ciphertext, the second entry of every ®x into another
ciphertext, and so on.
Prediction. If we denote the resulting ciphertexts {ci }16i=1, we can
perform l predictions by computing

σ

(
m0 +

16∑
i=1
ci ⊙ mi

)
where ⊙ is the entrywise product and σ is the sigmoid function
(also computed entrywise in this case). This amounts to an inner
product operation on a vector of ciphertexts. See algorithm 1 for
pseudocode for how this can be implemented in practice.

The resulting predictions will be one ciphertext which decrypts
to a vector in Cl corresponding to l predictions. In order to perform
n > l predictions, we simply partition the n data vectors into ⌈nl ⌉
blocks, perform the prediction on each block, then concatenate the
⌈nl ⌉ vectors of size l at the end. This can be performed completely
in parallel for a large n.

The inner product computation can be performed natively due
to our ability to perform additions and multiplications. However,
subsequent to the inner product computation a sigmoid approxima-
tion is applied to its result. As previously mentioned, the sigmoid
function is approximated with a degree-3 polynomial and evalu-
ated on the output of the previous step depending on the level of
accuracy desired.

Input: A vector ®D of ciphertexts of size d .
A vector ®M of ciphertexts of size d + 1
Output: A single ciphertext

1 for i ← 0 to d do
2 P[i] := D[i] ×M[i + 1]
3 end
4 V := M[0] // Add the bias term
5 for j ← 0 to d do
6 V := V + P[j] // Aggregate the vector of products
7 end
8 output SIG(V)

Algorithm 1: Homomorphic prediction

Note that line 8 of algorithm 1 returns the sigmoid approximation
of V of degree-3 as described previously in equation 1.

3.4 Homomorphic variable selection
Our variable selection method is to train a single-variable model
for each of the variables in the dataset then evaluate the quality of
each model via a statistical score returning the scores to a client.
These scores are then used to sort the variables resulting in an or-
dering which should roughly correspond to importance or predictive
capability.

To perform this variable selection method homomorphically,
we generate logistic regression models and corresponding log loss
scores for each of the variables in our dataset individually. In the
language of our logistic regression discussion in section 2.3, for
each j with 1 ≤ j ≤ d we generate a data set consisting solely of
projections onto the jth variable. That is to say, we map each da-
tum (y, ®x) to (y,x j ), then perform the logistic regression algorithm
including log loss calculation on the resulting data set for each j.

Data packing. A naïve implementation of this might result in a
large, albeit parallelizable, computational requirement. However,
we are able to take advantage of the slotwise vector operations that
the CKKS scheme gives us, packing each variable into an entry of a
Cl -vector, as discussed in section 2.1. More explicitly, we perform
the following transformation. For a dataset of size n, (yi , ®xi )ni=1,
with each ®xi ∈ Rd , d ≤ l , and yi ∈ {0, 1}, we create 2n vectors in
Cl in the following way:

For each datum (y, ®x), compute y′ = 2y − 1 as before, then create
a ∈ Cl by setting ai = y′1i≤d , which is a repetition of y′ in the
first d entries, padded with zeroes to the end of the ciphertext.
Next, generate the vector b ∈ Cl by setting bi = y′xi1i≤d , which
is a zero-padded version of x with y′ multiplied in. Now, we can

use (a,b) ∈
(
Cl

)2
in the same way as the ®z vectors are used in

section 2.3, thinking of d as 1 and exploiting the independence of
entries of a CKKS ciphertext. We henceforth refer to such vectors
(a,b) as ®z with the understanding that all operations between a and
b are performed entrywise.
Initializing the algorithm. Since we need to use a small number
of iterations, the initial values of ®v, ®w are important to the conver-
gence of the weights. We set them as the average of the inputs,

®v(0) = ®w(0) =
1
n

n∑
i=1
®zi

as this yields better results than choosing them at random [2].
The number of iterations. The number of iterations, τ , that
can be performed is very limited as we are using a somewhat-
homomorphic encryption scheme to implement the procedure on
encrypted data. For our implementation and tests, we used τ = 5
and τ = 6 iterations.
The α and γ parameters. The learning-rate parameter α was set
just as in [19], namely in iteration t = 1, . . . ,τ we used αt =
10/(t + 1).

For setting the moving average smoothing parameter γ at each
iteration, we used negative values for gamma as suggested in [6].
Setting λ0 = 0, we can compute for t = 1, . . . ,τ

λt =
1 +

√
1 + 4λ2t−1
2

and γt =
1 − λt
λt+1

.

The values ofγ for the first 6 iterations areγ ≈ (0,−0.28,−0.43,−0.53,
−0.6,−0.65)
Log loss. Logarithmic loss is a statistical measure commonly used
in ML for evaluating the quality of a classification model which
outputs probabilities. A log loss closer to zero implies a model with
greater predictive quality. This technique takes into account the
level of certainty of the prediction and compares it to the true value.
For example, a probability prediction close to one will be rewarded
heavily if correct, but heavily penalized if incorrect.

In our logistic regression case with weights vector ®w and input
data vectors ®zi , 1 ≤ i ≤ n, the log loss function l is given by

l( ®w) = −
1
n

n∑
i=1

log
(
σ

(
®zTi ®w

))
5
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In this work, we make extensive use of the log loss function
for two reasons: as a cost function of ®w to minimize during our
logistic regression model fitting; and as a score by which to order
variables. In order to compute this homomorphically, we use the
LOGSIG4 approximation (equation 3) described in section 3.2 to
give our (unscaled) log loss approximation function. We omit the
1
n term for ease of calculation since we are only concerned with
the ordering resulting from these values.

LOGLOSS( ®w)
def
= −

n∑
i=1

LOGSIG4
(
®zTi ®w

)
(4)

Note that we also make use of the exact version of the log loss
function in section 4 for assessing the quality of models.

Decorrelation. In order to improve the quality of models obtained
homomorphically or otherwise, we apply decorrelation to the vari-
ables which is a standard technique in data analytics to improve
model stability and mitigate overfitting [18]. However, rather than
blindly applying a decorrelation policy during the data preparation
phase (i.e. on the unordered set of variables), we delay the decor-
relation until after the variable ordering has been obtained. This
post-processing phase is advantageous to the resulting model as
we are able to preferentially drop variables which are considered
by the ordering to have lower predictive capability.

The precisemethod that we use for removing correlated variables
is as follows: given an ordering of variables (V1, . . . ,Vd ) where
d is the number of variables, we consider the matrix M defined
by Mi j =

��ρ(Vi ,Vj )��, where ρ(X ,Y ) is the Pearson’s correlation
coefficient between two variables X and Y . We drop the variableVj
if and only if there exists an entry in the jth column of the upper
triangle of M with value greater than or equal to 0.75, i.e. if and
only if there exists i ∈ N, 1 ≤ i < j such thatMi j ≥ 0.75.

Upon first glance this might appear to go against the spirit of a
homomorphic variable selection pipeline since the ρ values require
the original data to be computed, however this is not the case. No-
tice that for any variable ordering, the utility matrixM is formed
simply by rearranging the values of any other such matrix of corre-
lation values. Thus, pre-computing the d (d−1)

2 real numbers in the
upper triangle ofM before performing the variable ordering gives
us enough information to perform our decorrelation procedure
without needing access to the data again.

Note that performing decorrelation before the variable selection
phase would not result in any performance optimization, since the
way in which we pack data into Cl vectors means that we can treat
up to l variables without any slowdown. As can be seen in table 1,
we always have l ≫ d .

4 EXPERIMENTAL EVALUATION
The results from executing our pipeline are presented in this section.
We primarily evaluate and compare quality of predictions as well
as quality of the variable selection process.

Firstly, we will discuss the various metrics and methods we chose
to evaluate the quality of predictions as well as those used to evalu-
ate our method of performing variable selection. Next, we describe
the configuration of our pipelines including hardware specifica-
tions and HE scheme parameters. Finally, we discuss and analyze

the results of the implemented methodology with comparisons to
plaintext equivalents.

4.1 Metrics
In section 3.4, we introduced and selected log loss as the metric for
the ordering as it is a relatively simple-to-compute measure that
can be calculated homomorphically. To demonstrate its benefits as
a good common metric, we compared log loss to two other common
metrics used to evaluate machine learning models.
Area under curve. The receiver operating characteristic (ROC)
curve is a standard tool in evaluating the performance of predictive
models. The ROC space is typically defined as [0, 1]2 where a point
(a,b) ∈ [0, 1]2 has the false positive rate a and the true positive
rate b of a given set of binary predictions. For a set of probability
predictions, it is typical to trace out the curve in the ROC space
parameterized by a threshold value. Attributes of the ROC curve,
including the area under the curve (AUC) are considered to be su-
perior measures of the quality of a set of predictions compared to a
single accuracy value [23, 26].
Average precision. Precision-recall (PR) curves are another tool
similar in use to ROC curves, but are more frequently used in
information retrieval or situations in which the two classes are
imbalanced in the dataset. With PR curves, a similar parameteriza-
tion on threshold value is performed, but the points in [0, 1]2 are
(precision, recall) pairs instead of (false positive rate, true positive
rate) pairs. The method of taking the area under this curve as a
metric, known as the average precision (AP), is also a common prac-
tice. PR and ROC curves have been shown to have strong links to
each other for a given predictor [10] as well as a direct relationship
shown by Su et al. [25] between the AP and AUC scores.

In this work, we experimented with using AUC, AP, and log
loss for selecting models and evaluating quality of derived models.
However, we do not compute AUC or AP homomorphically for the
purpose of variable ordering as this would require the application
of a large number of threshold function approximations; likely
requiring an extremely high-depth computation in comparison to
our fourth-order log loss approximation in equation (4).

4.2 Testing Environment
Our approach has been tested on a hardware and software envi-
ronment commonly available in the finance industry data centers
and/or cloud settings, capable of high volume shared and multi-
tenant workloads. The hardware used for our tests support 64 si-
multaneous threads over 64 cores, 1 TB RAM, and 1.2 TB HDD,
running Linux Ubuntu 18.04 LTS.

4.3 CKKS Parameters
Parameters for the algebra used for CKKS were chosen to give at
least 128 bit security while having enough qbits to support our
required computational depth. Unlike the BGV scheme, parameters
for the CKKS plaintext space inHElib are easier to find because there
is no plaintext prime to consider. Moreover,m as a power of two
works better for the deep circuit of the variable selection because
the ciphertext sizes are a power of two, thus making the inherent
FFTs that must be performed by HElib more efficient. Although not
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recorded in this work, we found that non-power-of-two algebras
slowed the computation down considerably.

The parameters selected for the experiments, in particular the
variable selection, differ from those used by Bergamaschi et al. [2]
because the security estimation in the newer version of HElib (com-
mit 67abcebf1f8c1bae9d51c9352e6fef7d5b8d71a3) is more conser-
vative. The initial parameter value to select is themth cyclotomic
polynomial to use as this is the main factor on the security level λ
and on the number of slots in each ciphertext. As mentioned previ-
ously, it is easier to select the value for this parameter in CKKS as
the lack of a plaintext prime means that the number of slots will
always be l = ϕ(m)/2 as seen in table 1.

The value of the precision parameter r was set to 50 so as to
ensure the highest level of precision with the aim to generate a
model of a greater predictive quality. We conducted some prelimi-
nary investigations to determine a high value of r that we could
use and not lead to decryption issues.

The next parameter to consider is qbits, the bitsize of the modulus
of a freshly encrypted ciphertext. Since we are using a somewhat
HE scheme this needs to be larger for evaluation of deeper circuits
such as the variable selection, not so for homomorphic prediction.
As seen in table 1, the number of bits used for prediction is 360
yet for the deeper circuit of variable selection we must select qbits
to be over 2000. As operations are performed upon a ciphertext,
the noise increases and this consumes the bits of modulus chain.
It is important to ensure there are enough bits left of the modulus
chain to allow for decryption of the result without any wraparound
occurring.

The final parameter shown in table 1 is c . This parameter de-
termines the number of columns of our key switching matrices.
The key switching is used to relinearize the ciphertext after each
multiplication operation. This was selected to be 2 so as to mini-
mize the size of the key switching matrices which reduces the size
of the files being sent across the pipeline as well as reducing the
computation time of the relinearization process.

4.4 Dataset preparation
Table 1 specifies the parameters selected for the homomorphic pre-
diction and homomorphic variable selection experiments. The raw
datasets used in the experiments represent real financial transac-
tions over a 24-month period comprising a table of 360000 entries
with 564 features. Although a large data set, the data is very sparse
and the condition to be modeled is a rare event in the dataset (only
∼ 1%) where it would lead to a biased model that would under-
estimate the condition and overestimate the non-condition [21].
During data preparation the input data was diligently sanitized
for missing values, categorical variable processing performed, and
the data balanced; resulting in a balanced set with approximately
7500 entries with 546 explanatory features. The plaintext refer-
ence model for the prediction experiment was generated using the
Python scikit-learn library.

4.5 Results and discussion
We now present the results of the pipeline described in section 3
applied to both homomorphic prediction and homomorphic variable

Table 1: CKKSparameters used for homomorphic prediction
and homomorphic variable selection.

Prediction Variable Selection
128 bit 256 bit sig3 sig3
security security 5 steps 6 steps

m 21491 33689 262144(=218) 262144(=218)
r 50 50 50 50

qbits 360 360 2000 2400
c 2 2 2 2

ϕ(m) 21490 33060 131072(=217) 131072(=217)
l 10745 16530 65536(=216) 65536(=216)
λ 128 256 193 140

Table 2: CPU time and RAM usage of prediction.

Prediction Security
128 bit 256 bit

# Predictions per thread 10745 16530
# Threads 1 1

Encrypted Model size 40 MB 61 MB
Model input time 1 sec 1.3 sec

Encrypted Data size 37 MB 57 MB
Data input time 0.8 sec 1.2 sec
Prediction time 5.4 sec 9.4 sec

reduction. These experiments were performed using the parameters
given in table 1.
Homomorphic predictions. We evaluated the pipeline for homo-
morphic predictions with several configurations. In terms of CKKS
parameters, we performed predictions with parameters which re-
sult in 128 and 256 bits of security. The prediction computation
consisted of an inner product followed by application of an ap-
proximated sigmoid function. In order to approximate the sigmoid
function while still minimizing the computation depth of perform-
ing predictions. Then we experimented with our degree-3 sigmoid
approximation, SIG3. The results of these prediction operations
were then analyzed by means of comparison with predictions run
entirely in plaintext against the same model.

Figure 2 depicts the comparison between the predictions per-
formed in plaintext and homomorphically. This is done by means
of a ROC curve using a size 2271 sample with known condition
to test against. Both ROC curves are practically indistinguishable,
demonstrating that any inaccuracies resulting from performing
the predictions homomorphically do not significantly impact the
quality of the predictions. Table 2 shows performance informa-
tion including memory usage for the aforementioned prediction
pipeline. Due to the low depth of computation required for per-
forming a logistic regression prediction operation, our solution
achieves acceptable performance even in the case of 256 bit secu-
rity. Based on these results, selecting SIG3 provides the solution
with the adequate balance of accuracy and performance.
Homomorphic variable selection. We performed extensive ex-
perimentation in order to determine the quality of the homomor-
phic log loss calculations (section 3.4) compared to a fully-plaintext
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Figure 2: ROC curve for plaintext and homomorphic predic-
tion.

pipeline which performs similar calculations. In this experimen-
tation, we consider not the log loss values themselves, but the
quality of relative ordering which results from sorting based on
these values. Once an adequate set of parameters were derived for
homomorphic log loss calculations, we compared the results with
various different plaintext-based orderings, namely ordering by
AUC and by AP.

Our method for evaluating the quality of the selected ordering
was as follows. We took the first k variables ordered by score, then
used only these k variables to create a penalized logistic regression
model. We then evaluated the quality of the resultant model using
10-fold cross-validation to derive a value for the typical scores:
AUC, AP, and log loss. This procedure was carried out for each k
between 1 and 200. The results were then plotted on a scatter to
evaluate any trends of differing performance.

The convention used for the curves with four-letter labels (e.g.
HCHL) in the graphs below is the following. The first two letters
indicate how the variable selection was computed; either HC or PC
for homomorphically computed or plaintext computed, respectively.
The third letter H or P indicate how ordering score was calculated,
namely, homomorphically or in the plain. The fourth and last letter
indicates which metric was used for ordering (computing a score).
The last letter can take L, A or P for ordering by log loss, AUC, or
AP, respectively. Thus in combination, the last two letters should
be read as how the variable ordering was performed, e.g. HL for
homomorphic log loss or PL for plaintext log loss.

The first step in our assessment was to compare how homomor-
phic variable selection by logistic regression ordered by homomor-
phic log loss (HCHL) really compares with the plaintext version
of variable selection by logistic regression ordered by plaintext-
computed log loss (PCPL). This comparison is illustrated in figure 3.
Furthermore, we compared variations of the different HCHL con-
figurations, as described in section 4.3. The figure shows the com-
parison between different numbers of Nesterov steps and different
degrees of sigmoid approximations, alongside PCPL as a baseline
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Figure 3: Log loss for several homomorphic parameters.
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Figure 4: Log loss for HE and plain.

for comparison. It is clearly shown that ordering by log loss homo-
morphically is comparable to computing it in the plain. We can also
see that the HCHL configurations have negligible difference. This is
significant because of the consequences of requiring a higher depth
of computation; namely its considerable effect on computation time
and the adverse impact that the requisite increase in qbits has on
security. Nonetheless, for all remaining evaluations, we used the
degree-7 sigmoid and 6 Nesterov steps.

Contemporary metrics commonly used for evaluation are AUC
and AP. As discussed in section 4.1, these are considered computa-
tionally heavy to implement homomorphically. However, we com-
pare the performance of ordering with these metrics in plaintext
only. This comparison is performed by measuring against all three
of the aforementioned evaluation scoring methods. Evaluation by
log loss can be seen in figure 4, AUC in figure 5, and AP in figure 6.
All three of these figures support the same conclusion: there is not
significant difference between the different methods of ordering,
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Figure 5: Evaluation by AUC.
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Figure 6: Evaluation by average precision.

including the homomorphic methodology. One can read from any
of the figures that by around the time the 50 best-scoring variables
have been included the model quality stabilizes at around the same
level.

Table 3 depicts the performance of the homomorphic variable
selection with log loss ordering comparing 5 and 6 Nesterov steps
with degree-3 sigmoid approximation. These were run with the
algebras given in table 1. The 6 step version requires deeper com-
putation, thus requiring an algebra with a larger value for qbits .
Consequently the ciphertexts are larger resulting in higher memory
usage than the 5 steps version. In both cases, increasing the number
of threads decreases the running time. However, in the shared and
multi-tenant environment we observed that using more than 48
threads for computation did not further decrease the running time
of the training phase, which is a deep computation. This behavior
is likely to be caused by memory locality issues resulting from the
large ciphertexts required. Since there is negligible difference in the
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Figure 7: Computation speed-up of training and log loss ver-
sus the number of threads.

quality of the results for 5 and 6 Nesterov steps as seen in figure 3,
we choose 5 steps as a good compromise between memory usage,
performance, and quality of the results.

5 CONCLUSION
To progress towards a real-world ML pipeline, we investigated two
common pipeline tasks. These tasks need to be further considered
when assessing if HE can be utilized to address whether data can
be aggregated. We have demonstrated that predictions can be per-
formed in a typical business setting with a powerful architecture
in a reasonable amount of time for realistic workloads using real
financial data.

Prediction on the encrypted reference model took less than 10
seconds with a security level of 256 bits. It was shown that over
16500 predictions can be performed in this time. Variable selection,
while preserving the privacy and confidentiality of the input data,
took 1 hour and 43 minutes to perform for a security level above 128
bits, which is adequate considering that most training tasks run as
batch processes. To achieve these levels of security, we used algebras
not previously used in related work [2] with m = 218 allowing
for variable selection to be performed for the depth required. The
CKKS scheme has demonstrated to be invaluable to achieving good
accuracy despite its approximate nature, and with HElib it is now
possible to have high accuracy by having the r parameter set as
high as 50.

Moreover, we have shown through comparison that log loss is
an adequate metric for ordering during the homomorphic variable
selection. The experimentation demonstrated comparable results to
ordering by common ML metrics such as AUC or AP. This is a good
result as log loss is considered to be of low depth computationally
as opposed to homomorphically calculating the other metrics.

6 FURTHERWORK
Due to time constraints, we were not able to explore performing the
decorrelation homomorphically. This would be of interest and the
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Table 3: CPU time and RAM usage of the degree-3 sigmoid with 5-6 Nesterov iterations vs. number of threads.

# Nesterov Data input # Threads Data input Data input Training Training LogLoss LogLoss RAM
iterations ciphertext time speedup time speedup time speedup usage

5 64 GB

64 30 sec 6.00 × 6062 sec 1.57 × 217 sec 3.61 × 228 GB
48 37 sec 4.86 × 6000 sec 1.58 × 205 sec 3.82 × 220 GB
32 47 sec 3.83 × 6186 sec 1.53 × 231 sec 3.39 × 217 GB
24 62 sec 2.90 × 6467 sec 1.47 × 280 sec 2.80 × 210 GB
16 92 sec 1.96 × 7255 sec 1.31 × 388 sec 2.02 × 206 GB
8 180 sec 1.00 × 9491 sec 1.00 × 784 sec 1.00 × 200 GB

6 80 GB

64 32 sec 6.81 × 9584 sec 1.58 × 295 sec 3.35 × 284 GB
48 58 sec 3.76 × 9481 sec 1.59 × 273 sec 3.62 × 271 GB
32 58 sec 3.76 × 9658 sec 1.57 × 303 sec 3.26 × 260 GB
24 75 sec 2.91 × 9920 sec 1.52 × 349 sec 2.83 × 257 GB
16 113 sec 1.93 × 11349 sec 1.33 × 502 sec 1.97 × 252 GB
8 218 sec 1.00 × 15119 sec 1.00 × 987 sec 1.00 × 243 GB

Note: The timings in this table are for reference only as the HE code implementation was focused on achieving numerical fidelity and adequate security.

next logical step to attempt to tie together a more complete machine
learning pipeline. This might involve homomorphic calculations of
correlation coefficients such as the Pearson correlation coefficient
used in this work, then elimination of variables with a sufficiently
high correlation. At the time of writing, the authors are unaware
of any works which attempt to achieve this and any such scheme
would certainly push the depth of computation beyond what this
work performed.

Other future works may include attempting to calculate other
model scores such as AUC or AP in a novel homomorphic way, the
latter of which might be of particular interest for heavily imbal-
anced datasets. However, the homomorphic application of various
threshold values may prove problematic and high-depth in the
absence of any innovative scheme for efficiently doing so.

It is reasonable to expect that more complete ML pipelines would
require higher depth of computation thus necessitating the require-
ment for bootstrapping. This would need to be taken into consider-
ation in implementation.
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