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Abstract

In recent years, there has been exciting progress on building two-source extractors for sources
with low min-entropy. Unfortunately, all known explicit constructions of two-source extractors
in the low entropy regime suffer from non-negligible error, and building such extractors with
negligible error remains an open problem. We investigate this problem in the computational
setting, and obtain the following results.

We construct an explicit 2-source extractor, and even an explicit non-malleable extractor,
with negligible error, for sources with low min-entropy, under computational assumptions in
the Common Random String (CRS) model. More specifically, we assume that a CRS is generated
once and for all, and allow the min-entropy sources to depend on the CRS. We obtain our
constructions by using the following transformations.

1. Building on the technique of [BHK11], we show a general transformation for converting any
computational 2-source extractor (in the CRS model) into a computational non-malleable
extractor (in the CRS model), for sources with similar min-entropy.
We emphasize that the resulting computational non-malleable extractor is resilient to
arbitrarily many tampering attacks (a property that is impossible to achieve information
theoretically). This may be of independent interest.
This transformation uses cryptography, and relies on the sub-exponential hardness of the
Decisional Diffie Hellman (DDH) assumption.

2. Next, using the blueprint of [BACD`17], we give a general transformation converting any
computational non-malleable seeded extractor (in the CRS model) into a computational
2-source extractor for sources with low min-entropy (in the CRS model).
This transformation does not incur any additional assumptions. Our analysis makes a
novel use of the leakage lemma of Gentry and Wichs [GW11].
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1 Introduction

Randomness is fundamental for cryptography. It is well known that even the most basic crypto-
graphic primitives, such as semantically secure encryption, commitments and zero-knowledge
proofs, require randomness. Moreover, Dodis et al. [DOPS04] proved that these primitives require
perfect randomness, and cannot be constructed using a weak source of randomness, not even one
that has nearly full min-entropy.1

Unfortunately, in reality, perfect randomness is very hard to come by, and secret randomness is
even harder. Indeed, several attacks on cryptographic systems rely on the fact that the randomness
that was used in the implementation was imperfect. Very recently, this was demonstrated in the
regime of cryptocurrencies by Breitner and Heninger [BH19], who computed hundreds of Bitcoin
private keys by exploiting the fact that the randomness used to generate them was imperfect (other
examples include [HDWH12, BCC`13]).

Randomness Extractors. These attacks give rise to a very natural question: Can we take weak
sources of randomness and “boost" them into perfect random sources? This is the basic question
that underlies the field of randomness extractors. Extractors are algorithms that extract perfect
randomness from weak random sources. As eluded to above, one cannot hope to deterministically
take only a single weak random source and generate perfect randomness from it.

Nevertheless, two common types of randomness extractors were considered in the literature.
The first is a seeded extractor, which uses a uniform seed to extract randomness from any pn, kq
source, for k as small as k “ polylogpnq. This seed is typically very short, often of length Oplog nq.
However, it is paramount that this seed is perfectly random, and independent of the source. In
reality, unfortunately, even generating such short perfectly random strings may be challenging.

The second type of extractor is a 2-source extractor. A 2-source extractor takes as input two
independentweak sources and outputs pure randomness. We stress that a 2-source extractor does
not require perfect randomness at all! It only requires two independent sources with sufficiently
large min-entropy. Such sources may be arguably easier to generate.

Until recently, we had an explicit construction of a 2-source extractor only in the high-entropy
regime, i.e. assuming one of the sources has min-entropy k ě 0.499n [Raz05, Bou05]. Over the last
three years, there has been remarkable and exciting progress [CGL16, CZ16, BADTS16, Coh16c,
Coh16b, Coh16a, Coh16d, CL16, Li17], giving rise to 2-source extractors in the low-entropy regime,
albeit with non-negligible error.

More formally, an pn1, n2, k1, k2, εq 2-source extractor is a functionE : t0, 1un1ˆt0, 1un2 Ñ t0, 1um

such that for any independent sources X and Y , with min-entropy at least k1 and k2 respectively,
EpX,Y q is ε-close (in statistical distance) to the uniform distribution over t0, 1um. The line of recent
breakthroughs discussed above can support min-entropy as small as Oplogpnq logplogpnqqq in the
balanced regime n1 “ n2 “ n. However, in all the above constructions, the running time of the extractor is
proportional to polyp1{εq!

This state-of-the-art is far from ideal for cryptographic applications, where typically the error is
required to be negligible in the security parameter. Unfortunately, in the negligible error regime,
the extractors mentioned above run in super-polynomial time. The question of whether one can

1A weak source is modeled as an pn, kq-source, which is a distribution that generates elements in t0, 1un with
min-entropy k. A distribtionX Ď t0, 1un is said to have min-entropy k if for every x P t0, 1un, PrrX “ xs ď 2´k.
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obtain a 2-source extractor with negligible error, even for sources with min-entropy δn, for a small
constant δ ą 0, is one of the most important open problems in the area of randomness extractors.

In this work, we explore this problem in the computational setting. We note that solving this
problem, even in the computational setting, may facilitate generating useful randomness for many
cryptographic applications.

1.1 Prior work on Computational extractors

There has been some prior work [KLRZ08, KLR09] on building computational extractors. However,
these works rely on extremely strong computational assumptions. Loosely speaking, the assumption
is (slightly stronger than) assuming the existence of an "optimally exponentially hard" one-way
permutation f : t0, 1un Ñ t0, 1un, that is hard to invert even with probability 2´p1´δqn (this gives
extractors for sources with min-entropy roughly δn).

Intuitively, such a strong assumption seems to be necessary. This is the case since to prove
security we need to construct a reduction that uses an adversaryA, that breaks the 2-source extractor,
to break the underlying assumption. If this assumption is a standard one, then the challenge
provided by the assumption comes from a specific distribution (often the uniform distribution). On
the other hand, the adversary A may break the extractor w.r.t. arbitrary independent sources X and
Y with sufficient min-entropy. It is completely unclear how one could possibly use pX,Y,Aq to break
this challenge, since A only helps to distinguish the specific distribution EpX,Y q from uniform
(where E is the 2-source extractor). Since X and Y are arbitrary low min-entropy distributions, it is
unclear how one could embed the challenge in X or Y , or in EpX,Y q.

1.2 Our Results

In this paper, we get around this barrier by resorting to the Common Random String (CRS) model.2
As a result, under the sub-exponential hardness of DDH (which is a comparitively mild assumption),
we obtain a computational 2-source extractor, and a computational non-malleable extractor, both
with negligible error, for low min-entropy sources (in the CRS model).

At first one may think that constructing such extractors in the CRS model is trivial since the
CRS can be used a seed. However, as mentioned above, we emphasize that this is not the case, since
the CRS is fixed once and for all, and the sources can depend on this CRS. Indeed, constructing an
information theoretic 2-source extractor in the CRS model is an interesting open problem.

Secondly, one can argue that assuming the existence of a CRS is unreasonable, since our starting
point is the belief that fresh randomness is hard to generate, and thus in a sense assuming a CRS
brings us back to square one. However, as emphasized above, this CRS is generated once and for
all, and can be reused over and over again. Indeed, we believe that true randomness is hard, yet not
impossible, to generate. Thus, reducing the need for true randomness to a single one-time need,
is significant progress. Importantly, we emphasize that in cryptography, there are many natural
applications where a CRS is assumed to exist, and in such applications this same CRS can be used
to extract randomness from weak sources.

The computational CRS model. In our constructions, we assume that a CRS is (efficiently)
generated once and for all. We consider any two weak sources X and Y . These sources can each

2Jumping ahead, we note that in the proof we break the assumption by embedding the challenge in the CRS.
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depend on the CRS,3 but are required to be independent from each other, and each have sufficient
min-entropy, conditioned on the CRS. We require thatX and Y are efficiently sampleable given the
CRS. This is needed since we are in the computational setting, and in particular, security breaks
down if the sources can be used to break our hardness assumption.

Our 2-source extractor. We define an pn1, n2, k1, k2q computational 2-source extractor (in the CRS
model) as a function E : t0, 1un1 ˆ t0, 1un2 ˆ t0, 1uc Ñ t0, 1um such that for all sources pX,Y q,
which conditioned on the crs, are independent, are polynomially sampleable, and have min-entropy
at least k1, k2 respectively, it holds that pEpX,Y, crsq, Y, crsq is computationally indistinguishable
from pU, Y, crsq, namely, any polynomial size adversary cannot distinguish pEpX,Y, crsq, Y, crsq from
pU, Y, crsqwith non-negligible advantage.4

We construct such a 2-source extractor (with unbalanced sources) assuming the sub-exponential
security of DDH.5

Theorem 1.1 (Informal). Let λ P N denote the security parameter and assume the sub-exponential
hardness of DDH. For every constant ε ą 0, there exist constants δ ą 0, c ą 1 such that there exists an
explicit pn1, n2, k1, k2q computational 2-source extractor in the CRS model, with n1 “ Ωpλq, n2 ď λδ and
min-entropy k1 “ nε1, k2 “ logcpλq.

Our non-malleable extractor. We also construct a computational non-malleable extractor in the
CRS model. A non-malleable extractor is a notion that was introduced by Dodis and Wichs [DW09].
This notion is motivated by cryptography, and was used to achieve privacy amplification, i.e., to
“boost" a private weak key into a private uniform one.

Similar to standard extractors, one can consider non-malleable extractors both in the seeded
setting and in 2-source setting. The seeded version is defined as follows: A strong pk, εq t-non-
malleable-extractor is a function E : t0, 1un ˆ t0, 1ud Ñ t0, 1um s.t. for all functions f1, . . . , ft :
t0, 1ud Ñ t0, 1ud, that have no fixed points, it holds that

pY,EpX,Y q, EpX, f1pY qq, . . . , EpX, ftpY qqq ”ε pY,U,EpX, f1pY qq, . . . , EpX, ftpY qqq

whereX,Y, U are independent,X has min-entropy at least k, Y is distributed uniformly over t0, 1ud
and U is distributed uniformly over t0, 1um. Non-malleable 2-source extractors are defined similarly
to seeded ones, except that the requirement that Y is uniformly distributed is relaxed; i.e., it is only
required to have sufficient min-entropy and be independent ofX . In addition, both the sources can
be tampered independently.

Clearly, in the information theoretic setting, such non-malleable extractors (both seeded and
2-sources ones) can exist only for a bounded t.

In this work we construct a computational analogue of a non-malleable extractor in the CRS
model. As opposed to the information theoretic setting, where the number of tampering attacks t
is a-priori bounded, in the computational setting we allow the adversary to tamper an arbitrary

3In this way, the CRS is different from the seed of a seeded extractor, which must be completely independent of the
source.

4Requiring the output of the extractor to be random even given the source Y is a standard requirement, and such an
extractor is known as a strong extractor.

5The sub-exponential DDH assumption asserts that there exists a groupG such that no sub-exponential time algorithm
can distringuish between pga, gb, gabq and pga, gb, gcq, where g is a fixed generator of G, and where a, b, c are chosen
randomly from Zq , where q denotes the order of G.
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(polynomial) number of times (i.e., we do not fix an a priori bound t on the number of tampering
functions). In fact, in addition to giving the adversary Y,EpX,Y q, we can even give the adversary
access to an oracle that on input Y 1 ‰ Y , outputs EpX,Y 1q.

We would like to note that the object we construct is somewhere in between a seeded and a
2-source non-malleable extractor. While the source Y need not be uniformly distributed, we only
allow tampering with Y , and do not allow tampering with the other source.

More formally, we define an pn1, n2, k1, k2q computational non-malleable extractor (in the CRS
model) as a function E : t0, 1un1 ˆt0, 1un2 ˆt0, 1uc Ñ t0, 1um such that for all sourcesX,Y that are
polynomially sampleable, are independent, and have min-entropy at least k1 and k2 respectively,
conditioned on the CRS, it holds that pEpX,Y,CRSq,CRS, Y q is computationally indistinguishable
from pU,CRS, Y q, even with respect to PPT adversaries that are given access to an oracle that on
input Y 1 ‰ Y outputs EpX,Y 1,CRSq. Clearly, such adversaries can obtain EpX,Y 1,CRSq for an
arbitrary t “ polypnq number of different samples Y 1, that depend on Y and the CRS.

In this setting, we obtain the following two incomparable results, in the high and lowmin-entropy
regimes respectively.

Theorem 1.2 (Informal). Let λ P N denote the security parameter and assume the sub-exponential security of
DDH. For every constant ε ą 0, there exists a constant c ą 0 such that there exists an explicit pn1, n2, k1, k2q

computational non-malleable extractor resisting arbitrarily polynomial tamperings where:

n1 “ Ωpλq, logc λ ď n2, k1 “ nε1, k2 “ 0.51n2

Theorem 1.3 (Informal). Let λ P N denote the security parameter and assume the sub-exponential security of
DDH. For every constant ε ą 0, there exist constants δ, c ą 0 such that there exists an explicit pn1, n2, k1, k2q

computational non-malleable extractor resisting arbitrarily polynomial tamperings, where:

n1 “ Ωpλq, logc λ ď n2 ď λδ, k1 “ nε1, k2 “ logc n2

Wemention that in our formal theorems, under the sub-exponential hardness of DDH, we allow
the sources to be sampled in super-polynomial time and the adversary to run in super-polynomial
time. We refer the reader to Section 5 and 6 for more details.

2 Our Techniques

We obtain our results in three steps.

1. We first construct a computational non-malleable extractor in the CRS model, for sources in
the high entropy regime (i.e., assuming one of the sources has min entropy rate larger than 1{2).
Our construction follows the blueprint of [BHK11], who built leaky pseudo-entropy functions
based on the sub-exponential hardness of DDH. When viewed differently, their construction
can be framed as showing how to use cryptography to convert any (information theoretic)
2-source extractor (with negligible error) into a computational non-malleable extractor in the
CRS model (for sources with roughly the same min-entropy as in the underlying 2-source
extractor). Since we only have information theoretic 2-source extractors for sources in the
high entropy regime, we obtain a computational non-malleable extractor (in the CRS model)
for sources in the high entropy regime.
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Importantly, this extractor is non-malleable w.r.t. arbitrarily many tampering functions (a
property that is impossible to achieve information theoretically). This contribution is mainly
conceptual.

2. We thendescribe how this extractor can be used to obtain a computational 2-source extractor (in
the CRSmodel) with negligible error for low min-entropy sources. This part contains the bulk of
the technical difficulty of this work. Specifically, we follow the blueprint of [BACD`17], which
shows how to convert any (information-theoretic) non-malleable extractor into a 2-source
extractor (with negligible error for low min-entropy sources). However, this transformation
assumes that the non-malleable extractor has a somewhat optimal dependence between the
seed length and the allowable number of tampering functions. Prior to our work, no explicit
constructions of non-malleable extractors were known to satisfy this requirement.
Our computational non-malleable extractor does satisfy this requirement, and therefore
we manage to use the [BACD`17] blueprint to construct the desired 2-source extractor.
Nevertheless, there are multiple unique challenges that come up when trying to apply
their transformation in the computational setting. One of our key ideas to overcome these
challenges involves using the leakage lemma of Gentry and Wichs [GW11]. We elaborate on
this in Section 2.2.

3. To achieve our final construction of a computational non-malleable extractor (in theCRSmodel)
with negligible error for low min-entropy sources, we again use the blueprint from [BHK11],
however, this time we use our computational 2-source extractor as a building block. To argue
security, we prove that the [BHK11] transformation goes through even if we start with a
computational 2-source extractor. As above, many techincal challanges arise when considering
the computational setting.

2.1 From 2-Source Extractors to Non-Malleable Extractors

We begin with the observation that the construction of leaky psuedo-random functions from
[BHK11], can be framed more generally as a cryptographic reduction from (information theoretic)
2-source extractors to computational non-malleable extractors in the CRS model. Since we only
know information theoretic 2-source extractors (with negligible error) in the high-entropy regime,
we obtain a computational non-malleable extractor (in the CRS model) in the high entropy regime.

Moreover, we generalize the [BHK11] blueprint, by showing that one can convert any compu-
tational 2-source extractor (in the CRS model) to a computational non-malleable extractor (in the
CRS model). This introduces several techinical difficulties which we elaborate on in Section 5. This
generalization is needed to obtain our final result, of a computational non-malleable extractor (in
the CRS model) for sources with low min-entropy (i.e., to achieve Item 3 in the overview above).

We next describe our interpretation of the [BHK11] blueprint for converting any (information
theoretic) 2-source extractor into a computational non-malleable one (in the CRS model):

Start with any 2-source extractor

2Ext : t0, 1un1 ˆ t0, 1un2 Ñ t0, 1um,

with negleigle error (eg., [Bou05, Raz05]).
Assume the existence of the following two cryptographic primitives:
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1. A collision resistant function family H, where for each h P H,

h : t0, 1un2 Ñ t0, 1uk,

where k is significantly smaller than the min-entropy of the second source of 2Ext.
A collision resistant hash family has the guarantee that given a random function hÐ H it is
hard to find two distinct elements y1, y2 P t0, 1u

n2 such that hpy1q “ hpy2q.

2. A family of lossy functions F , where for each f P F ,

f : t0, 1un1 Ñ t0, 1un1 .

A lossy function family consist of two types of functions: injective and lossy. Each lossy
function loses most of the information about the input (i.e., the image size is very small). It
is assumed that it is hard to distinguish between a random injective function and a random
lossy function in the family.

We note that both these primitive can be constructed under the DDH assumption, which is a
standard cryptographic assumption.6

Wenext show how these cryptographic primites can be used to convert 2Ext into a computational
non-malleable 2-source extractor in the CRS model. We start by describing the CRS.

The CRS consists of a random function h Ð H from the collision-resistant hash family, and
consists of 2k random injective functions from the lossy function family F , denoted by

f1,0, f2,0, . . . , fk,0
f1,1, f2,1, . . . , fk,1

The computational non-malleable extractor (in the CRS model) is defined by

cnm-Extpx, y, crsq :“ 2Extpfcrs,hpyqpxq, yq,

where
fcrs,spxq :“ f1,s1 ˝ . . . ˝ fk,skpxq

In what follows, we recall the proof idea from [BHK11]. To this end, consider any polynomial size
adversaryA that obtains either pcnm-Extpx, yq, y, crsq or pU, y, crsq, together with an oracleO that has
px, y, crsq hardwired, and on input y1 outputs K if y1 “ y, and otherwise outputs nm-Extpx, y1, crsq.
By the collision resistance property of h, A queries the oracle on input y1 s.t. hpy1q “ hpyq only
with negligible probability. Therefore, the oracle O can be replaced by a different oracle, that
only hardwires pcrs, hpyq, xq and on input y1 outputs K if hpy1q “ hpyq, and otherwise outputs
cnm-Extpx, y1q.

A key observation is that access to this oracle can be simulated entirely given only crs, hpyq and
pZ1, . . . Zkq, where

6The DDH assumption asserts that there exists a group G such that pga, gb, gabq is computationally indistinguishable
from pga, gb, gcq, where g is a fixed generator of G, and where a, b, c are chosen randomly from Zq , where q denotes the
order of G.
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Zk fi fk,1´hpyqkpxq

Zk´1 fi fk´1,1´hpyqk´1
pfk,hpyqkpxqq

...
Z1 fi f1,1´hpyq1pf2,hpyq2p. . . fk,hpyqkpxqqq

Since the adversary A cannot distinguish between random injective functions and random lossy
ones, we can change the CRS to ensure that functions f1,hpyq1 , . . . , fk,hpyqk are injective, whereas the
functions f1,1´hpyq1 , . . . , fk,1´hpyqk are all lossy. By setting k (the size of the output of the hash) to be
small enough, we can guarantee that Y has high min-entropy conditioned on hpyq, Z “ pZ1, . . . , Zkq.
Moreover, it is easy to seet thatX and Y remain independent conditioned on hpY q, Z. Thus, we can
use the fact that 2Ext is a (strong) 2-source extractor, to argue that the output of our non-malleable
extractor is close to uniform.

This was, of course, a very simplified overview. A careful reader may have observed a
circularity in the intuition above: Recall that we sample the crs such that for b “ hpyq, the functions
f1,b1 , . . . , fk,bk are injective, whereas f1,1´b1 , . . . , fk,1´bk are lossy. Thus, the crs implicitly depends
on y (via b “ hpyq). This results in a circularity, because y is then sampled as a function of this
crs, and hence may not satsify that b “ hpyq. The formal proof requires us to carefully deal with
this (and other) dependency issues that arise when formalizing this intuition. In a nutshell, we
overcome this circularity by strengthening our assumption to a sub-exponenential one, namely
we assume the sub-exponential hardness of DDH as opposed to the (more standard) polynomial
hardness of DDH.

In addition, as mentioned above, we prove that this transformation goes through even if the
underlying 2-source extractor is a computational one (in the CRS model). This introduces various
other technical difficulties. We refer the reader to Section 5 for the details.

2.2 Our 2-source extractor.

As mentioned earlier, we construct our computational 2-source extractor by following the blueprint
of [BACD`17], which shows how to use a non-malleable seeded extractor to construct a 2-source
extractor (in the low entropy regime). However, they need the non-malleable seeded extractor to
have the property that the seed length is significantly smaller than t logp1{εq, where t is the number
of tampering functions that the non-malleable extractor is secure against, and where ε is the error.7
Unfortuantely, all known (information theoretic) non-malleable extractors require the seed length
to be at least t logp1{εq

We note that in Section 2.1, we obtained computational non-malleable extractor (in the CRS
model) for sources in the high-entropy regime (by using a 2-source extractor from [Bou05, Raz05]
as a building block). This extractor, in particular, can be seen as a non-malleable seeded extractor.
Importantly, it satisfies the requirements of [BACD`17], since in our construction the seed length is
independent of t. Thus, one would expect that instantiating the [BACD`17] transformation with our
computational non-malleable extractor (in the CRS model), would directly yield a computational
2-source extractor (in the CRS model), with negligible error for low min-entropy sources. However,
this turns out not to be the case.

The reason is that the analysis of [BACD`17] crucially requires the underlying non-malleable
extractor to be secure against adversaries that run in unbounded time. Specifically, even given an

7The exact parameters are not relevant to this overview.

7



efficient adversary that contradicts the security of the 2-source extractor, [BACD`17] obtain an
inefficient adversary that contradicts the security of the underlying non-malleable extractor. Since our
underlying non-malleable extractor is computational, it is not clear if this gets us anywhere. Moreover,
dealing with sources that can depend on the CRS causes further technical problems. Nevertheless,
we show that the construction of [BACD`17] can be instantiated with our computational non-
malleable extractor in the CRS model, but with a substantially different (and more technically
involved) analysis. In particular, in our analysis we make a novel use the leakage lemma of Gentry
and Wichs [GW11].

The blueprint of [BACD`17]. To better understand these technicalities, we begin by describing
the transformation of [BACD`17]. Their transformation uses a disperser as a building block.

A pK,K 1q disperser is a function

Γ : t0, 1un2 ˆ rts Ñ t0, 1ud

such that for every subset A of t0, 1un2 that is of size ě K, it holds that the size of the set of
neighbours of A under Γ is at leastK 1.
The [BACD`17]-transformation takes a seeded non-malleable extractor

nm-Ext : t0, 1un1 ˆ t0, 1ud Ñ t0, 1um

and a disperser
Γ : t0, 1un2 ˆ rts Ñ t0, 1ud,

and constructs the following 2-source extractor 2Ext : t0, 1un1 ˆ t0, 1un2 Ñ t0, 1um, defined by

2Extpx1, x2q “
à

y:Di s.t. Γpx2,iq“y

nm-Extpx1, yq

In this work, we instantiate their transformation in the computational setting. In what follows,
we first describe the key ideas in the proof from [BACD`17], and then we explain the technical
difficulties that arise in the computational setting, and how we resolve them.

Fix any two independent sources X1 and X2 with “sufficient" min-entropy. One can argue that

p2ExtpX1, X2q, X2q ” pU,X2q

as follows:

1. By the definition of an (information-theoretic) t-non-malleable extractor nm-Ext, for a random
y P t0, 1ud, for all y11, . . . , y1t that are distinct from y, it holds that
`

nm-ExtpX1, yq,nm-ExtpX1, y
1
1q, . . . ,nm-ExtpX1, y

1
tq
˘

”
`

U,nm-ExtpX1, y
1
1q, . . . ,nm-ExtpX1, y

1
tq
˘

.

We call a y that satisfies the above property, a good y. By a standard averaging argument one
can argue that an overwhelming fraction of y’s are good.

2. Fix any x2 for which there exists an i P rts such that y “ Γpx2, iq is good. This means that
nm-ExtpX1, yq is stastistically close to uniform, even given nm-ExtpX1,Γpx2, jqq for every
j P rtsztiu such that Γpx2, jq ‰ y, which in turn implies that the XOR of these (distinct) values
is close to uniform, which implies that 2ExtpX1, x2q is close to uniform.
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3. It thus suffice to show that for x2 Ð X2, with overwhelming probability there exists an i P rts
such that y “ Γpx2, iq is good. This can be done by relying on the disperser. Specifically,
consider the set of bad x2’s for which y “ Γpx2, iq is not good for all i P rts. Loosely speaking,
if this set occurs with noticeable probability, then one can use the property of the disperser to
argue that the support of Γpx2, iq for x2 P bad, i P rts covers a large fraction of the y’s, and by
definition, none of these y’s can be good, contradicting the fact that we argued above that an
overwhelming fraction of y’s must be good.

This completes the outline of the proof in [BACD`17].

The Computational Setting. The intuitive analysis above, while easy to formalize in the informa-
tion theoretic setting, does not carry over to the computational setting, for various reasons.

1. First, it is not clear that a computational non-malleable extractor satisfies the first property used in
the [BACD`17] outline. Namely, it is not clear that for an overwhelming fraction of y P t0, 1ud,
it holds that for all y11, . . . y1t distinct from y,

`

cnm-ExtpX1, yq, cnm-ExtpX1, y
1
1q, . . . , cnm-ExtpX1, y

1
tq
˘

«
`

U, cnm-ExtpX1, y
1
1q, . . . , cnm-ExtpX1, y

1
tq
˘

,

where « denotes computational indistinguishability. This is because the computational
advantage of an efficient adversary on different y’s could cancel out.

2. More importantly, in the computational setting, we would have to construct an efficient
reduction R that breaks the non-malleable extractor, given any adversary A that breaks the
2-source extractor.
R obtains input pα, pyq, where py is a random seed and where α is either chosen according
to cnm-ExtpX1, pyq or is chosen uniformly at random. In addition, R obtains an oracle that
outputs cnm-ExtpX1, y

1q on input y1 ‰ py. The reduction R is required to efficiently distinguish
between the case where α Ð cnm-ExtpX1, pyq and the case where α is chosen uniformly at
random.
In order to use A, R needs to generate a challenge for A that corresponds either to the output
of the 2-source extractor (if α was the output of cnm-Ext) or uniform (if α was uniform). R
also needs to generate a corresponding x2 for A, that is sampled according to X2. How can it
generate these values?
IfR were allowed to be inefficient, then a simple strategy forR would be the following:

• Sample px2 Ð X2 conditioned on the existence of i P rts such that py “ Γppx2,piq.
• Next, query the oracle on inputs py1, . . . ytq where for every i P rts, yi “ Γppx2, iq. As a

result,R obtains zi “ cnm-Extpx1, yiq for all i P rtszpi, and sets z “
´

À

iPrts zi

¯

‘ α (after
removing duplicates).

• It is easy to see that px2 is generated from the distributionX2. Moreover, if α is the output
of cnm-Ext, then z corresponds to 2Extpx1, x2q, and otherwise to uniform.

• At this point, ifA distinguishes z from uniform,R can echo the output ofA to distinguish
α from uniform.
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Unfortunately, this does not help us much, because the underlying non-malleable extractor
is only guaranteed to be secure against efficient adversaries, whereas the adversary R that
we just outlined, crucially needs to invert the disperser. It is not clear that one can build
dispersers in our parameter setting that are efficiently invertible. Moreover, even if there was
a way to invert the disperser, R would need to ensure that the inverse px2 is sampled from the
correct distribution, and it is unclear whether this can be done efficiently.

3. Our first key idea is to get around this technicality by using the leakage lemma as follows:
Since R on input py cannot find px2 efficiently, we will attempt to view px2 as inefficiently
computable leakage on py, and simulate px2 using the following leakage lemma. Informally, this
lemma says that any inefficiently computable function that outputs γ bits, can be simulated in
time roughly Op2γq relative to all efficient distinguishers.

Lemma 2.1. [GW11, JP14, CLP15] Fix d, γ P N and fix ε ą 0. Let Y be any distribution over
t0, 1ud. Consider any randomized leakage function π : t0, 1ud Ñ t0, 1uγ . For every T , there exists
a randomized function pπ computable by a circuit of size poly

´

2γε´1T log T
¯

such that for every
randomized distinguisher D that runs in time at most T ,

|PrrD
`

Y, πpYq
˘

“ 1s ´ PrrD
`

Y, pπpYq
˘

“ 1s| ď ε

By Lemma 2.1, simulating px2 given py would take time roughly Op2|px2 |q.8 While this simulator
is clearly not as efficient as we would like, one can hope that things still work out if the
underlying non-malleable extractor is secure against adversaries running in time Op2|px2 |q.
However, any disperser (with our setting of parameter, where t is small) must be compressing,
which means that |px2| ą |py|. Therefore, the simulator’s running time would be more than
Op2|py|q. Howeover, py corresponds to the input of the non-malleable extractor, and recall that
our non-malleable extractor applies a (compressing) collision-resistant hash function to its
input y. Therefore, the non-malleable extractor is completely insecure against adversaries that
run in time Op2|py|q. This creates a circular dependency, and it may appear that this approach
is doomed to fail. Nevertheless, we will shortly see how one can apply the leakage lemma in a
more sophisticated way. To this end, in what follows, we study our non-malleable extractor in
more granular detail.

4. Our next key idea is to split our adversary’s running time (for both the 2-source and the
non-malleable extractor) into two parts:

• the time required to sample the sources, and
• the running time of the distinguisher.

The reason why this is useful, is that we observe that for the non-malleable extractor, the
collision-resistant hash function h only requires the running time of the distinguisher be smaller
than Op2|py|q, and allows the sources to be sampled in time significantly higher than Op2|py|q.
Armed with this insight, we return to the analysis of our 2-source extractor. Our key idea
there, is to also consider two adversaries, one that samples the sources, and the other that
distinguishes the output of the 2-source extractor from uniform (as opposed to considering a

8Jumping ahead, this is the reason that we end up with a 2-source extractor for unbalanced sources (see Theorem 1.3).
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unified reductionR). As a result, we push the complexity of simulating an inverse px2 given
py, to the algorithm that samples the sources for the 2-source extractor. This allows us to
complete the leakage argument in the previous bullet, by applying the leakage lemma while
sampling the sources, instead of at the time of distinguishing. We therefore get a modular
construction of a 2-source extractor, by relying on a non-malleable extractor that is secure for
sources sampleable in time Op2|px2|q (as opposed to being secure against adversaries running
in time Op2|py|q).

Roadmap. The rest of this paper is organized as follows. In Section 3, we provide the relevant
preliminaries. In Section 4, we provide our new definitions of computational 2-source extractors
and non-malleable extractors in the CRS model.

In Section 5 we show how to convert a computational 2-source extractor (in the CRS model) into
a computational non-malleable extractor (in the CRS model), with similar min-entropy guarantees.
By applying this transformation to the information theoretic 2-source extractors of [Bou05] or
[Raz05], we get a computational non-malleable extractor (in the CRS model) for sources in the high
min-entropy regime.

Finally, in Section 6 we show how to convert any computatational non-malleable seeded extractor
(in the CRS model) into a computational 2-source extractor (in the CRS model) in the low entropy
regime. By applying this transformation to the computational non-malleable extractor obtained
from Section 5 (which in particular can be thought of as a seeded one), we get a computational
2-source extractor (in the CRS model) in the low entropy regime.

Finally, we obtain our final result which is a computational non-malleable extractor (in the
CRS model) in the low entropy regime, by applying the transformation from Section 5 to the
computational 2-source extractor that we constructed in Section 6. This is done in Corollary 6.3.

3 Preliminaries

In this section, we discuss some preliminaries needed for the later sections. This includes facts
about min-entropy, lossy functions, leakage lemma and dispersers.

Definition 3.1. A function µ : N Ñ N is said to be negligible, denoted by µ “ negpλq, if for every
polynomial p : NÑ N there exists a constant c P N such that for every λ ą c it holds that

µpλq ď 1{ppλq.

For any function T : NÑ N, we say that µ is negligible in T , denoted by µpλq “ negpT pλqq if for every
polynomial p : NÑ N there exists a constant c P N such that for every λ ą c it holds that

µpλq ď 1{ppT pλqq.

Definition 3.2. Two distribution ensembles X “ tXλuλPN and Y “ tYλuλPN are said to be
T pλq-indistinguishable if for every polypT q size circuit A,

ˇ

ˇ

ˇ

ˇ

PrxÐXλ rApxq “ 1s ´ PryÐYλ rApyq “ 1s

ˇ

ˇ

ˇ

ˇ

“ negpT pλqq
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Definition 3.3. A distribution X over a domain D is said to have min-entropy k, denoted by H8pXq “ k,
if for every z P D,

Pr
xÐX

rx “ zs ď 2´k.

In this paper, we consider sources with average conditional min entropy, as defined in [DORS08]
(and also in the quantum information literature). This notion is less restrictive than worst case
conditional min-entropy (and therefore this strengthens our results), and is sometimesmore suitable
for cryptographic applications.

Definition 3.4. [DORS08] Let X and Y be two distributions. The average conditional min-entropy of X
conditioned on Y , denoted by H8pX|Y q9 is

H8pX|Y q “ ´ logEyÐY max
x

PrrX “ x|Y “ ys “ ´ logpEyÐY r2´H8pX|Y“yqsq

Note that 2´H8pX|Y q is the highest probability of guessing the value of the random variableX given the value
of Y .

We will rely on the following useful claims about average conditional min-entropy.

Claim 3.5. [DORS08] Let X,Y and Z be three distributions, where 2b is the number of elements in the
support of Y . Then,

H8pX|Y,Zq ě H8pX,Y |Zq ´ b

Claim 3.6. Let X , Y and Z be three distributions, then

H8pX|Y q ě H8pX|Y, Zq

Proof of Claim 3.6. Note that

EyÐY max
x

PrrX “ x|Y “ ys “

EyÐY max
x

ÿ

z

PrrX “ x|Y “ y, Z “ zs ¨ PrrZ “ z|Y “ ys ď

EyÐY
ÿ

z

max
x

PrrX “ x|Y “ y, Z “ zs ¨ PrrZ “ z|Y “ ys “

ÿ

y,z

max
x

PrrX “ x|Y “ y, Z “ zs ¨ PrrZ “ z|Y “ ys ¨ PrrY “ ys “

Epy,zqÐpY,Zqmax
x

PrrX “ x|Y “ y, Z “ zs

Therefore,

H8pX|Y q “ ´ logEyÐY max
x

PrrX “ x|Y “ ys

ě ´ logEpy,zqÐpY,Zqmax
x

PrrX “ x|Y “ y, Z “ zs

“ H8pX|Y,Zq,

as desired.

9This is often denoted by rH8pX|Y q in the literature.
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3.1 Lossy Functions

Lossy functions were defined by Peikert and Waters in [PW08]. Loosely speaking a lossy function
family consists of functions of two types: lossy functions and injective ones. The lossy ones
(information theoretically) losemost of the information about the input; i.e., the image is significantly
smaller than the domain. The injective functions, on the other hand, are injective. It is required that
it is (computationally) hard to distinguish between a random lossy function in the family and a
random injective function in the family. In our setting, we will need a lossy function family where
the range and the domain are of a similar size (or close to being a similar size). Intuitively, the
reason is that we apply these functions to our min-entropy source, and if the functions produce
output strings that are much longer than the input strings then we will lose in the min-entropy rate.

Definition 3.7 (Lossy functions). A function family F “ tFλuλPN is a pT, n, wq-lossy function family if
the following conditions hold:

• There are two probabilistic polynomial time seed generation algorithms Geninj and Genloss s.t. for any
polypT pλqq-size A, it holds that

ˇ

ˇ

ˇ

ˇ

PrsÐGeninjp1λq rApsq “ 1s ´ PrsÐGenlossp1λq rApsq “ 1s

ˇ

ˇ

ˇ

ˇ

“ negpT pλqq.

• For every λ P N and every f P Fλ, f : t0, 1unpλq Ñ t0, 1unpλq.

• For every λ P N and every s P Geninjp1
λq, fs P Fλ is injective.

• For every λ P N and every s P Genlossp1
λq, fs P Fλ is lossy i.e. its image size is at most 2npλq´w.

• There is a polynomial time algorithm Eval s.t. Evalps, xq “ fspxq for every λ P N, every s in the
support of Geninjp1

λq YGenlossp1
λq and every x P t0, 1unpλq.

Modifying the construction in [PW08] (to ensure that the input and output lengths of the
functions are the same for every n “ polypλq), [BHK11] gave a construction of a pT, n, wq-lossy
function family, for w “ n´ nε (where ε ą 0 can be any arbitrary small constant), and for every T
assuming the DDH assumption holds against polypT q-size adversaries.

In this work, we use the following lemma.

Lemma 3.8. [PW08, BHK11] For any constant ε ą 0 there exists a constant δ ą 0 such that for every
Ωpλq ď npλq ď polypλq there exists a pT, n, wq-lossy function family, with T pλq “ 2λ

δ and w “ n´ nε,
assuming the sub-exponential DDH assumption.

3.2 Leakage Lemma

We make use of the following lemma, which shows that any inefficient leakage function can be
simulated efficiently relative to a class of distinguishers.

Lemma 3.9. [GW11, JP14, CLP15] Fix d, γ P N and fix ε ą 0. Let Y be any distribution over t0, 1ud.
Consider any randomized leakage function π : t0, 1ud Ñ t0, 1uγ .

For every T , there exists a randomized function pπ computable by a circuit of size poly
´

2γε´1T
¯

such
that for every randomized distinguisher D that runs in time at most T ,

|PrrD
`

Y, πpYq
˘

“ 1s ´ PrrD
`

Y, pπpYq
˘

“ 1s| ď ε
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3.3 Dispersers

Definition 3.10. A function Γ : rN sˆ rts Ñ rDs is a pK,K 1q disperser if for everyA Ď rN s with |A| ě K
it holds that

ˇ

ˇ

Ť

aPA,iPrtstΓpa, iqu
ˇ

ˇ ě K 1.

We will rely on dispersers which follow from the known constructions of seeded extractors (e.g.
[GUV09]).

Theorem 3.11 (e.g. [GUV09]). There exists a constant c such that the following holds. For every
N,K,K 1, D such that D ď

?
K andK 1 ď D{2, there exists an efficient pK,K 1q- disperser

Γ : rN s ˆ rts Ñ rDs

with degree
t “ logcpNq

4 Computational Extractors: Definitions

In this section, we define extractors in the computational setting with a CRS. We define both a
2-source extractor and a non-malleable extractor in this setting.

In both defintions, we allow the min-entropy sources to depend on the CRS, but require that
they are efficiently sampleable conditioned on the CRS (where the efficiency is specified by a
parameter T ). We also allow each source to partially leak, as long as the source has sufficient
min-entropy conditioned on the CRS and the leakage.

At first, it may seem that there is no need to consider leakage explicitely, since one can incorporate
the leakage as part of the definition of the min-entropy source; i.e., define the source w.r.t. a fixed
leakage value. However, the resulting source may not be efficiently sampleable. For example, if
the leakage on a source X is hpXq, where h is a collision resistant hash function, then sampling
xÐ X conditioned on a given leakage value is computationally hard, due to the collision resistance
property of h. Therefore, in the definions below we consider leakage explicitely.

More specifically, for two sources X and Y we allow leakage on Y , which we will denote by
Linit; and then allow leakage on X (that can also depend on Linit), which we will denote by Lfinal.
Moreover, both Linit and Lfinal can depend on the CRS. We mention that a more general leakage
model is one which allows first leakage on Y , then allows leakage on X (that may depend on the
initial leakage), and then again allows leakage on Y (that may depend on all the leakage so far), etc.
Unfortunately, we do not know how to obtain our results in this more general leakage model.

For technical reasons, we also allow one of the sources (the one which is given to the adversary
in the clear, as part of the definition of a strong extractor) to be sampled together with auxiliary
information AUX. This auxiliary information depends on the source and on the CRS. As in the
leakage case, we need to consider this auxiliary information explicitely, since in our proofs we will
use an auxiliary input which is hard to compute given the source and CRS (and therefore cannot
generate it while ensuring the security of our underlying hardness assumption). Importantly, it is
easy to generate this auxiliary information together with the source, jointly as a function of CRS. As
opposed to the case of leakage, the source is not required to have min-entropy conditioned on AUX.

Definition 4.1 (T -Admissible Leaky pn1, n2, k1, k2q Source Distribution). A T -admissible leaky
pn1, n2, k1, k2q source distribution with respect to a CRS distribution tCRSλuλPN consists of an ensemble of
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sourcesX “ tXλuλPN, Y “ tYλuλPN, leakage L “ tLλu and auxiliary input AUX “ tAUXλu, such that for
every λ P N, the following holds:

• For every crs P SupppCRSλq, SupppXλ|crsq Ď t0, 1u
n1pλq and SupppYλ|crsq Ď t0, 1u

n2pλq.

• The leakage Lλ consists of two parts, Linit and Lfinal, such that for every crs P SupppCRSq,
pY,AUX, Linit|crsq is sampleable in timepolypT q, and for every `init P SupppLinit|crsq, pX,Lfinal|crs, `initq

is sampleable in time polypT q.

• H8pXλ|CRSλ, Lλq ě k1 and H8pYλ|CRSλ, Lλq ě k2.

• For every crs P CRSλ and ` P SupppLλ|crsq, the distributions pXλ|crs, `q and pYλ,AUXλ|crs, `q are
independent.

• For every aux P SupppAUXλq, |aux| “ Oplog T pλqq10.

Definition4.2 (Computational strong 2-source extractors in theCRSmodel). For functionsn1 “ n1pλq,
n2 “ n2pλq, c “ cpλq, andm “ mpλq, a function ensemble 2Ext “ t2ExtλuλPN, where

2Extλ : t0, 1un1pλq ˆ t0, 1un2pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq,

is said to be a pn1, n2, k1, k2q strong pT, T 1q-computational 2-source extractor in the CRS model if there
is an ensemble tCRSλuλPN where CRSλ P t0, 1ucpλq, such that the following holds:

For every T -admissible leaky pn1, n2, k1, k2q source distribution pX,Y, L,AUXq with respect to CRS,
for every polynomial p, there exists a negligible function νp¨q such that for every λ and every ppT 1pλqq-size
adversary A,

ˇ

ˇ

ˇ

ˇ

Pr

„

A p2Extλpx, y, crsq, y, crs, `, auxq “ 1



´

Pr

„

A pU, y, crs, `, auxq “ 1

ˇ

ˇ

ˇ

ˇ

“ νpT 1pλqq,

where the probabilities are over the randomness of sampling pcrs, x, y, `, auxq Ð pCRSλ, Xλ, Yλ, Lλ,AUXλq,
and over U which is uniformly distributed over t0, 1umpλq independent of everything else.

Definition 4.3 (Computational strong non-malleable extractors in the CRS model). For functions
n1 “ n1pλq, n2 “ n2pλq, c “ cpλq, andm “ mpλq, a function ensemble cnm-Ext “ pcnm-ExtλqλPN, where

cnm-Extλ : t0, 1un1pλq ˆ t0, 1un2pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

is said to be a pn1, n2, k1, k2q strong pT, T 1q-computational non-malleable extractor in the CRS model
if there is an ensemble tCRSλuλPN, where CRSλ P t0, 1ucpλq, such that the following holds:

For every T -admissible leaky pn1, n2, k1, k2q source distribution pX,Y, L,AUXq with respect to CRS,

10We restrict the length of aux to be at most Oplog T pλqq for technical reasons.
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for every polynomial p, there exists a negligible function νp¨q such that for every λ and every ppT 1pλqq-size
adversary A,

ˇ

ˇ

ˇ

ˇ

Pr
”

AOyx,crs pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1
ı

´

Pr
”

AOyx,crs pU, y, crs, `, auxq “ 1
ı

ˇ

ˇ

ˇ

ˇ

“ νpT 1pλqq,

where the oracle Oy
x,crs on input y1 ‰ y outputs cnm-Extpx, y, crsq, and otherwise outputs K; and where the

probabilities are over the randomness of sampling pcrs, x, y, `, auxq Ð pCRSλ, Xλ, Yλ, Lλ,AUXλq, and over
U which is uniformly distributed over t0, 1umpλq independent of everything else.

We will occasionally need to impose a different requirement on the error distribution. In such
cases we specify the error requirement explicitly. Specifically, we say that a pn1, n2, k1, k2q strong
pT, T 1q-computational two source (or non-malleable) extractor has error negpT 2pλqq if it satisfies
Definition 4.2 (or Definition 4.3), where the adversary’s distinguishing advantage is required to be
at most negpT 2pλqq.

For our constructions, we will rely on the following theorem from [Raz05] (simplified to our
setting). This is a statistical 2-source extractor; i.e., one that considers sources that are sampled in
unbounded time, and fools adversaries with unbounded running time.

Theorem 4.4. There exists a pn1, n2, k1, k2q strong statistical 2-source extractor according to Definition 4.2
where n2 “ ωplog n1q, k1 ě log n1, and k2 ě αn2 for any constant α ą 1

2 , and error exp´Θpmintk1,k2uq.

5 Computational Strong Non-Malleable Extractors in the CRS Model

In this section, we describe the construction of computational non-malleable extractors. Theorem
5.1 describes the reduction from non-malleable extractors to 2-source extractors. Corollary 5.2
instantiates Theorem 5.1 with the known constructions of 2-source extractors with negligible error.
We describe the construction in Section 5.1 and analyze it in Section 5.2.

Theorem 5.1. Let T, T 1, n1, n2, k1, k2, k3, w : N Ñ N be functions of the security parameter, such that
T ě 2k3 and the following primitives exist.

• A pn1, n2, k1, k2q strong pT, T 1q-computational 2-source extractor with error negp2k3q in the CRS
model, denoted by:

2Extλ : t0, 1un1pλq ˆ t0, 1un2pλq ˆ t0, 1ucpλq Ñ t0, 1umpλq

• A pT, n1, wq-lossy function family F “ tFλuλPN, according to Definition 3.7, where w “ n1 ´ n
γ
1 for

some constant γ P p0, 1q.

• A polypT 1q-secure family of collision resistant hash functions H “ tHλuλPN with h : t0, 1un2 Ñ

t0, 1uk3 .

Then there exists a pn1, n2,K1,K2q strong pT, T 1q-computational non-malleable extractor satisfying Defini-
tion 4.3 forK1 “ k1 ` k3pn1 ´ w ` 1q ` 1,K2 “ k2 ` k3 ` 1.
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Corollary 5.2. Assume the sub-exponential hardness of DDH, and fix any constant ε ą 0. Then there exists
a constant δ where 0 ă δ ă ε, such that for any parameters pn1, n2,K1,K2q satisfying

n1 “ Θpλq, Ωplog2{δ2 n1q ď n2 ď polypn1q, K1 “ nε1, andK2 “ 0.51n2

there exists a pn1, n2,K1,K2q strong pT, T 1q-computational non-malleable extractor (satisfyingDefinition 4.3
and computable in time polypλq), for T pλq “ 2λ

δ and T 1pλq “ λlog λ.

Proof of Corollary 5.2. Fix a constant ε ą 0, and fix n1 “ n1pλq and n2 “ n2pλq as in the statement
of Corollary 5.2. The sub-exponential hardness of DDH (together with the restrictions on n1 and
n2q implies that there exists a constant δ ą 0 such that the following exist:

• A pT, n1, wq-lossy function family F “ tFλuλPN where T pλq “ 2λ
δ and w is such that

n1 ´ w “ n
ε{3
1 .

This follows from Lemma 3.8.

• A collision resistant hash familyH “ tHλuλPN, where each h P Hλ is of the form h : t0, 1un2 Ñ

t0, 1uk3 , where k3 “ 0.01 mintn
ε{3
1 , n

δ{2
2 u, that is secure against polypλlog λq-size adversaries.

This follows from the following argument: The sub-exponential DDH assumption implies that
there exists a constant η ą 0, and there exists such a hash familyH that is collision resistant
against adversaries of size 2k3

η . Thus it remains to note that 2k3
η
ě λc log λ for every constant

c P N, which is indeed the case if we set δ ą 0 to be small enough. This follows from the
definition of k3, together with the fact that n1 ě Ωpλq and n2 ě Ωplog2{δ2 n1q.

By Theorem 4.4, there exists a pn1, n2, k1, k2q strong statistical 2-source extractor for k1 “ n
ε{3
1 and

k2 “ 0.501n2 with error exp´Θpminpk1,k2qq “ negp2k3q. In particular, this extractor is a pn1, n2, k1, k2q

strong pT, T 1q-computational 2-source extractor in the CRS model (where the CRS is empty), with
error negp2k3q.

Therefore as long as T ě 2k3 (which is satisfied for our setting of parameters), then by Theorem
5.1, there exists a pn1, n2,K1,K2q strong pT, T 1q-computational non-malleable extractor for K1 “

k1`k3pn1´w`1q`1 ď n
ε{3
1 `0.01n

ε{3
1 ¨n

ε{3
1 ď nε1 andK2 “ k2`k3`1 ď 0.501n2`0.01n2 ď 0.51n2,

as desired.

5.1 Construction

In this section, we describe the construction of the non-malleable extractor. We begin by defining
the CRS distribution.

Generating the common reference string (CRS). For a given security parameter λ P N, the
common reference string is generated as follows.

1. Sample crs2Ext for the pn1, n2, k1, k2q strong pT, T 1q-computational 2-source extractor with
respect to the security parameter 1λ.

2. Sample hÐ Hλ.

3. Sample bÐ t0, 1uk3 .
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4. Sample independently k3 pairs of random injective functions from Fλ,

f1,b1 , f2,b2 , . . . , fk3,bk3 Ð Geninjp1
λq.

5. Sample independently k3 pairs of random lossy functions from Fλ,

f1,1´b1 , f2,1´b2 , . . . , fk3,b1´k3 Ð Genlossp1
λq.

Output

crs “

ˆ

crs2Ext, h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

˙

Our computational non-malleable extractor, cnm-Ext “ tcnm-ExtλuλPN, is defined as follows:
For any λ P N, denote by c “ cpλq “ |crs|, then

cnm-Extλ : t0, 1un1 ˆ t0, 1un2 ˆ t0, 1uc Ñ t0, 1um,

where @px, y, crsq P t0, 1un1 ˆ t0, 1un2 ˆ t0, 1uc, where crs “
ˆ

crs2Ext, h, tfi,buiPrk3s,bPt0,1u

˙

cnm-Extλpx, y, crsq “ 2Extλ

ˆ

f1,hpyq1 ˝ f2,hpyq2 ˝ . . . ˝ fk3,hpyqk3 pxq, y, crs2Ext

˙

. (1)

5.2 Analysis

In this section, we prove Theorem 5.1; namely, we prove the security of the non-malleable extractor
defined in Section 5.1. The proof proceeds in stages. First we replace the oracleOy

x,crs with an oracle
rOy
x,crs which refuses to answer when queried on a y1 s.t. the hash values of y and y1 match, and we

argue that the adversary cannot distinguish between these two oracles. Then in Claim 5.4, we prove
that if the adversary succeeds in distinguishing the output of the non-malleable extractor from
random, then he can also distinguish even if we condition on the event that hpyq “ b (recall that
b P t0, 1uk3 is used to determine which functions are lossy or injective in the crs). Finally in Claim
5.5, we design a distribution for the 2-source extractor and break it using the supposed adversary
for the non-malleable extractor.

Lemma 5.3. Assuming the conditions in Theorem 5.1 hold, cnm-Ext is a pn1, n2,K1,K2q strong pT, T 1q-
computational non-malleable extractor.

Proof. We will sometimes suppress the dependence on λ in the notation for convenience.
Fix any T -admissible leaky pn1, n2,K1,K2q source distribution pX,Y, L,AUXqwith respect to

CRS. Suppose for the sake of contradiction, that there exists a polynomial p, and a polypT 1pλqq-size
adversary A, such that for infinitely many λ P N,

PrrAOyx,crspcnm-Extpx, y, crsq, y, crs, `, auxq “ 1s´

PrrAOyx,crspU, y, crs, `, auxq “ 1s ě
1

ppT 1pλqq
, (2)

where the probabilities are over pcrs, x, y, `, auxq Ð pCRS, X, Y, L,AUXq and over uniformly distri-
bution U Ð t0, 1um.

For any x P t0, 1un1 and y P t0, 1un2 , let
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zk3 fi fk3,1´hpyqk3 pxq

zk3´1 fi fk3´1,1´hpyqk3´1
pfk3,hpyqk3 pxqq

...
z1 fi f1,1´hpyq1pf2,hpyq2p. . . fk3,hpyqk3 pxqqq

Denote by zx,hpyq “ pz1, . . . , zk3q.

Let rOy
x,crs (abusing notation we will call it just rO) be the oracle that on input y1 P t0, 1un2 , if

hpy1q ‰ hpyq outputs

Oy
x,crspy

1q “ cnm-Extpx, y1, crsq “ 2Extλpf1,hpy1q1 ˝ . . . ˝ fk3,hpy1qk3 pxq, y
1, crs2Extq,

and otherwise outputs K. The key observation is that this oracle can be simulated efficiently given
only phpyq, zx,hpyq, crsq, without any additional information about x or y. This will come in handy
later.

BecauseH is collision resistant against polypT 1q-size adversaries, it follows that A generates a
query y1 ‰ y such that hpy1q “ hpyq only with probability negpT 1q, and therefore cannot distinguish
between oracles Oy

x,crs and rO except with probability negpT 1q. This, together with Equation (2),
implies that for infinitely many λ P N,

PrrA rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1s´

PrrA rO pU, y, crs, `, auxq “ 1s ě
1

ppT 1pλqq
´ negpT 1pλqq. (3)

where the probabilities are over pcrs, x, y, `, auxq Ð pCRS, X, Y, L,AUXq and over uniformly distri-
bution U Ð t0, 1um. Next, the T -security of the lossy function family, together with the assumption
that T ě 2k3 ě pT 1qωp1q, implies that for every polypT q-size adversary B (recall b P t0, 1uk3 is used
to determine which functions are lossy or injective in the crs),

negpT 1q ě 2´k3 ` negpT q ě PrrBpcrsq “ bs ě 2´k3 ´ negpT q. (4)

This, together with the fact that pX,Y, L,AUX|crsq can be sampled in time polypT q, implies that

negpT 1q ě 2´k3 ` negpT q ě Pr
“

hpyq “ b
‰

ě 2´k3 ´ negpT q, (5)

where the probability is over crsÐ CRS, and over px, y, `, auxq Ð pX,Y, L,AUX|crsq.

Claim 5.4. For infinitely many λ P N,

Pr
”

`

A rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1
˘

ˇ

ˇ

ˇ

`

hpyq “ b
˘

ı

´ Pr
”

`

A rO pU, y, crs, `, auxq “ 1
˘

ˇ

ˇ

ˇ

`

hpyq “ b
˘

ı

ě
1

4ppT 1pλqq
(6)

Proof. Towards a contradiction, suppose the claim is not true, that is, for every large enough λ P N,

Pr
”

`

A rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1
˘

ˇ

ˇ

ˇ

`

hpyq “ b
˘

ı

´ Pr
”

`

A rO pU, y, crs, `, auxq “ 1
˘

ˇ

ˇ

ˇ

`

hpyq “ b
˘

ı

ă
1

4ppT 1pλqq
(7)

We construct a polypT q-size adversary B that contradicts the second inequality in Equation (4). On
input crs, the adversary B does the following:
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1. Let N “ T 1 ¨ p2pT 1q.

2. Sample y Ð pY |crsq, and set z “ hpyq.

3. For every i P rN s, do the following:

(a) Sample pxi, yi, `i, auxiq Ð pX,Y, L,AUX|crsq conditioned on hpyq “ z 11, and sample
uÐ t0, 1um uniformly at random.

(b) Compute δi “ A rO pcnm-Extpxi, yi, crsq, yi, crs, `i, auxiq ´A rO pu, yi, crs, `i, auxiq, by simu-
lating rO for A.

Set δ “ 1
N

řN
i“1 δi.

4. If δ ă 1
2ppT 1pλqq then output b1 “ z. Else, sample fresh uniformly random b1 Ð t0, 1uk3 .

In the rest of the proof, we argue that Prrb1 “ bs ě 1.5 ¨ 2´k3 , contradicting the second inequality in
Equation (4) (since T ě 2k3).

By Equation (7),
Erδ|z “ bs ă

1

4ppT 1pλqqq

Define H as the event that

˜

δ ă 1
2ppT 1pλqq

¸

. By a Chernoff bound12,

PrrH|z “ bs “ 1´ Pr

«˜

δ ě
1

2ppT 1pλq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

z “ b

ff

ě 1´
´

e
´
T 1¨p2pT 1q

32p2pT 1q

¯

ą 1´ negpT 1pλqq (8)

Note that

PrrA rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1^ phpyq ‰ bqs´

PrrA rO pU, y, crs, `, auxq “ 1^ phpyq ‰ bqs ě

PrrA rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1s ´ Prrhpyq “ bs´

PrrA rO pU, y, crs, `, auxq “ 1s ě

1

ppT 1pλqq
´ negpT 1pλqq (9)

where the last inequality holds for infinitely many λ P N by Equations (3) and (4).
This, together with Equation (4), implies that for infinitely many λ P N,

11Note that this can be done in time at most 2k3 ď T .
12We are using the following version of the Chernoff bound: LetX1, . . . XN be independent random variables taking

values in r´1, 1s. LetX denote their mean, and µ “ ErXs denote the expected value of their mean. Then for every α ą 0,

PrrX ě µ` εs ď e´
ε2N
2

We derive Equation (8) by setting ε “ 1
4ppT 1q

, N “ T 1 ¨ p2pT 1q.
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PrrA rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1|phpyq ‰ bqs´

PrrA rO pU, y, crs, `, auxq “ 1|phpyq ‰ bqs ě
1

ppT 1pλqq
´ negpT 1pλqq ą 0.99

ppT 1pλqq
. (10)

where the probabilities are over crsÐ CRS (b is used to decide the injective and lossy functions in
the crs), and over px, y, `, auxq Ð pX,Y, L,AUX|crsq. This implies that

Erδ|z ‰ bs ą
0.99

ppT 1pλqq

Recall that H is the event that

˜

δ ă 1
2ppT 1pλqq

¸

, which implies  H is the event that

˜

δ ě 1
2ppT 1pλqq

¸

.

Therefore, by the Chernoff bound13,

Prr H|z ‰ bs “ 1´ Pr

«˜

δ ă
1

2ppT 1pλqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

z ‰ b

ff

ě 1´ e
´ 0.492

p2pT 1q
¨
T 1¨ppT 1q2

2 “ 1´ negpT 1pλqq (11)

Furthermore, by construction,

Prrb1 “ b|H^ z “ bs “ 1 (12)

and

Prrb1 “ b| H^ z ‰ bs “ 2´k3 (13)

Therefore,

Prrb1 “ bs

ě Prrb1 “ b|H^ z “ bs ¨ PrrH|z “ bs ¨ Prrz “ bs

` Prrb1 “ b| H^ z ‰ bs ¨ Prr H|z ‰ bs ¨ Prrz ‰ bs

ě 1 ¨ PrrH|z “ bs ¨ Prrz “ bs ` 2´k3 ¨ Prr H|z ‰ bs ¨ Prrz ‰ bs
`

By substituting with Equations (12) and (13)
˘

“ 1 ¨ p1´ negpT 1pλqqq ¨ Prrz “ bs ` 2´k3 ¨ p1´ negpT 1pλqqq ¨ Prrz ‰ bs
`

By substituting with Equations (8) and (11)
˘

ě 1 ¨
`

1´ negpT 1pλqq
˘

p2´k3 ´ negpT pλqqq ` 2´k3 ¨ p1´ negpT 1pλqqq ¨ p1´ negpT 1pλqqq
`

By substituting with Equation (5)
˘

ě 2´k3 ¨
`

2´ negpT 1pλqq
˘

ą 1.5 ¨ 2´k3 .

This contradicts Equation (4), and thus completes the proof of the claim.

13Here we are using the following version of the Chernoff bound: LetX1, . . . XN be independent random variables
taking values in r´1, 1s. LetX denote their mean, and µ “ ErXs denote the expected value of their mean. Then,

PrrX ď µ´ εs ď e´
ε2N
2
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Claim 5.4, together with Equation (5), implies that for infinitely many λ P N:

Pr
”

`

A rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1
˘

^
`

hpyq “ b
˘

ı

´ Pr
”

`

A rO pU, y, crs, `, auxq “ 1
˘

^
`

hpyq “ b
˘

ı

“ Pr
”

`

A rO pcnm-Extpx, y, crsq, y, crs, `, auxq “ 1
˘

ˇ

ˇ

ˇ

`

hpyq “ b
˘

ı

¨ Pr
”

hpyq “ b
ı

´ Pr
”

`

A rO pU, y, crs, `, auxq “ 1
˘

ˇ

ˇ

ˇ

`

hpyq “ b
˘

ı

¨ Pr
”

hpyq “ b
ı

ě
1

4ppT 1pλqq
¨ p2´k3 ´ negpT pλqqq ě 1

p2p2k3q
(14)

where the last inequality holds for somepolynomial p2p¨q, and it follows from the fact thatT 1pλq ă 2k3 ,
which in turn follows from our assumption that the underlying hash function h : t0, 1un2 Ñ t0, 1uk3

is polypT 1q-secure.
Next, substituting

cnm-Extpx, y, crsq “ 2Extpf1,hpyq1 ˝ f2,hpyq2 ˝ . . . ˝ fk3,hpY qk3 pxq, y, crs2Extq,

in Equation (14), we conclude that for infinitely many λ P N,

Pr
”´

A rO
´

2Extpf1,hpyq1 ˝ f2,hpyq2 ˝ . . . ˝ fk3,hpyqk3 pxq, y, crs2Extq, y, crs, `, aux
¯

“ 1
¯

^

´

hpyq “ b
¯ı

´ Pr
”´

A rO pU, y, crs, `, auxq “ 1
¯

^

´

hpyq “ b
¯ı

ě
1

p2p2k3q
(15)

We will now use the T -admissible leaky pn1, n2,K1,K2q source distribution pX,Y, L,AUXq for
the non-malleable extractor, to define a new T -admissible leaky pn1, n2, k1, k2q source distribution
pX 1, Y 1, L1,AUX1q for the underlying two-source extractor with CRS distribution CRS2Ext, where
k1 “ K1 ´ k3 ¨ pn1 ´ w ` 1q ´ 1 and k2 “ K2 ´ k3 ´ 1. Then, we will prove that there exists an
adversary A1 that breaks the pn1, n2, k1, k2q strong pT, T 1q-computational two-source extractor for
pX 1, Y 1, L1,AUX1q.

Define pX 1, Y 1, L1,AUX1|crs2Extq as follows:

1. We first define pY 1, L1init,AUX
1q|crs2Extq:

(a) Sample bÐ t0, 1uk3 .

(b) Sample fh “
ˆ

h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

˙

such that tfi,biuiPrk3s are injective and the rest are

lossy. Set crs “ pcrs2Ext, fhq.
(c) Sample py, `init, auxq Ð pY,Linit,AUX|crsq.
(d) Set py1, aux1q “ py, auxq.
(e) Set `1init “ pd, `init, fh, bq, where d “ 0 if hpyq ‰ b and 1 otherwise.

2. We next define pX 1, L1final|crs2Ext, `
1
initq:

(a) Parse `1init “ pd, `init, fh, bq, and set crs “ pcrs2Ext, fhq.
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(b) Sample px, `finalq Ð pX,Lfinal|crs, `initq. Set x1 “ f1,b1 ˝ f2,b2 ˝ . . . ˝ fk3,bk3 pxq and `
1
final “

p`final, zx,bq, where

zx,b “ tz1, . . . , zk3u and for every i P r`s, zi :“ fi,1´bipfi`1,bi`1
p. . . fk3,bk3 pxqqq.

Claim 5.5. pX 1, Y 1, L1,AUX1q is a T -admissible leaky pn1, n2, k1, k2q source distribution with respect to
CRS2Ext, where k1 “ K1 ´ k3 ¨ pn1 ´ w ` 1q ´ 1 and k2 “ K2 ´ k3 ´ 1.

Proof. First, we observe that pY 1,AUX1, L1init|crs2Extq and pX 1, L1final|crs2Ext, `
1
initq can be sampled in

time polypT q.
Next we note that

H8pY
1|CRS2Ext, L

1
initq “ H8pY |CRS2Ext, D, Linit, fh, Bq

ě H8pY |CRS2Ext, Linit, fhq ´ k3 ´ 1 (by Claim 3.5)
“ H8pY |CRS, Linitq ´ k3 ´ 1

ě K2 ´ k3 ´ 1 (by assumption).

Similarly,

H8pX
1|CRS2Ext, L

1q

“ H8pX
1|CRS2Ext, Lfinal, ZX,B, D, Linit, fh, Bq

“ H8pX|CRS2Ext, Lfinal, ZX,B, D, Linit, fh, Bq (since fi,bi ’s are injective)
ě H8pX

1|CRS2Ext, Lfinal, Linit, fhq ´ k3 ¨ pn1 ´ ω ` 1q ´ 1

(by Claim 3.5 and since fi,1´bi ’s are lossy)
“ H8pX

1|CRS, Lq ´ k3 ¨ pn1 ´ ω ` 1q ´ 1

ě K1 ´ k3 ¨ pn1 ´ ω ` 1q ´ 1 (by assumption).

It remains to argue that for every crs2Ext P SupppCRS2Extq and every `1 P SupppL1pcrs2Extqq it
holds that X 1 is independent of pY 1,AUX1q. To this end, fix any such crs2Ext and `1.

First, we note that `1 “ p`1init, `
1
finalq, where `1init “ p`init, fh, b, dq and `1final “ p`final, zq. Let

crs “ pcrs2Ext, fhq, and let ` “ p`init, `finalq. In this caseX 1 “ f1,b1 ˝ . . . fk3,bk3 pXqwhereX is sampled
conditioned on pcrs, `q, and pY 1,AUX1q “ pY,AUXq where pY,AUXq is sampled conditioned on
pcrs, `initq and on hpY q “ b.

The fact that pX,Y, L,AUXq is T -admissible w.r.t. CRS, implies that X and pY,AUXq are inde-
pendent conditioned on pcrs, `q. Moreover, since hpY q, d are a function of Y and the crs, we have
that X and pY,AUXq are independent conditioned on pcrs, `, dq and on hpY q “ b. This implies
that f1,b1 ˝ . . . fk3,bk3 pXq and pY,AUXq are indepedent conditioned on pcrs, `, dq and on hpY q “ b,
and moreover z is just a function of crs, x. This in turn implies that indeed X 1 and pY 1,AUX1q are
independent conditioned on pcrs2Ext, `

1q, as desired.
This completes the proof of the claim.

Now, note that Equation (15), together with the definition of pX 1, Y 1, L1,AUX1|crs2Extq, implies
that there exists a polypT 1q-size adversary A1, that simulates the adversary A, as well as its oracle,
such that for infinitely many λ P N,

PrrA1p2ExtpX 1, Y 1, crs2Extq, y
1, crs2Ext, `

1, aux1q “ 1s ´ PrrA1pU, y1, crs2Ext, `
1, aux1q “ 1s

ě 1{polyp2k3q. (16)
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The algorithm A1 on input pα, y1, crs2Ext, `
1, aux1q does the following:

1. Parse `1 “ p`1init, `
1
finalq and further parse `1init “ pd, `init, fh, hpyqq, `1final “ p`final, zx,hpyqq. and

obtain d from `1init.

2. If d “ 0 then output K.

3. Else, set ` “ p`init, `finalq, and set crs “ pcrs2Ext, fhq.

4. Output A rOpα, y1, crs, `, aux1q, where the oracle rO is simulated using phpyq, zx,hpyq, crsq.

Equation (15) implies that indeed Equation (16) holds, as desired. This contradicts the fact that 2Ext
is a strong pT, T 1q-computational 2-source extractor for pX 1, Y 1, L1,AUX1qwith error negp2k3q.

6 Computational Strong 2-Source Extractors in the CRS Model

In this section, we describe our compiler that converts any computational non-malleable extractor
(in the CRSmodel) with negligible error for sources in the high entropy regime, into a computational
2-source extractor (in the CRS model) with negligible error for sources in the low entropy regime.
This construction is essentially identical to that suggested by [BACD`17]. However, the analysis in
the computational setting introduces many technical challenges which result from the existence of
the CRS, and the necessity of building an efficient reduction. In this section, we formally describe
the construction and the techniques that we develop to overcome these challenges. We prove the
following theorem.

Here is a brief plan for this section. Theorem 6.1 talks about the reduction from 2-source
extractors to non-malleable extractors. Corollary 6.2 instantiates Theorem 6.1with the non-malleable
extractor constructed in Section 5. Corollary 6.3 instantiates Theorem 5.1 with the 2-source extractor
from Corollary 6.2 to get a stronger non-malleable extractor. Section 6.1 describes the reduction
from 2-source extractors to non-malleable extractors and Section 6.2 analyzes this reduction.

Theorem 6.1. Let T, T 1, n1, n2, k1, k2, d : N Ñ N be functions of the security parameter, such that
T “ pT 1qωp1q and T “ λΩp1q, n2 “ Oplog T q, k2 “ ωplog T 1q, and such that the following primitives exist.

• A
`

n1, d, k1, d
˘

strong pT, T 1q-computational non-malleable extractor in the CRS model (according to
Definition 4.3), denoted by

cnm-Extλ : t0, 1un1 ˆ t0, 1ud ˆ t0, 1uc Ñ t0, 1um

• A
´

2k2

T 1 log T 1
, 2d´1

¯

disperser
Γ : t0, 1un2 ˆ rts Ñ t0, 1ud

with degree t “ polypλq (according to Definition 3.10).

Then there exists a pn1, n2, k1, 2k2q strong pT, T 1q-computational 2-source extractor in the CRS model
(according to Definition 4.2).

Theorem 6.1 implies the following corollary.
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Corollary 6.2. Fix any constant ε ą 0. Then assuming the sub-exponential hardness of the DDH assumption,
there exists a constant δ ą 0 for which there exists a pn1, n2, k1, k2q strong pT, T 1q-computational 2-
source extractor (computable in time polypλq) in the CRS model (satisfying Definition 4.2) for any
n1, n2, k1, k2, T, T

1 satisfying:

Ωpλq ď n1 ď polypλq,Ωplog2{δ2 n1q ď n2 ď Opλδq, k1 “ nε1, k2 “ Ωplog2{δ2 n1q, T “ 2λ
δ and T 1 “ λlog λ.

Proof. Fix any constant ε ą 0. By Corollary 5.2, there exists a constant δ where 0 ă δ ă ε, for which
there exists a pn1, d,K1, dq strong pT, T 1q-computational non-malleable extractor in the CRS model,
for T “ 2λ

δ and T 1 “ λlog λ, and for any n1, d,K1 such that

Ωpλq ď n1 ď polypλq,Ωplog2{δ2 n1q ď d ď n1,K1 “ nε1

Fix T “ 2λ
δ and T 1 “ λlog λ, and fix any n1 such that Ωpλq ď n1 ď polypλq. Let k1 “ nε.

By Theorem 3.11, there exists a polynomial t “ polypλq for which there exists a
´

2k2

T 1plog T
1q
, 2d´1

¯

disperser
Γ : t0, 1un1 ˆ rts Ñ t0, 1ud

for any d, k2 that satisfy
k2 ě 2d` log2 T 1 “ 2d` log4 λ.

Setting d “ Ωplog2{δ2 n1q, we have that

k2 ě Ωplog2{δ2 n1q ` log4 λ “ Ωplog2{δ2 n1q,

where the latter equation follows from the fact that n1 “ Ωpλq. Therefore, Theorem 6.1 implies
that there exists a pn1, n2, k1, 2k2q strong pT, T 1q-computational 2-source extractor in the CRS model,
as long as n2 “ Oplog T q “ Opλδq, and as long as k2 “ ωplog T 1q “ ωplog2 λq, and in particular for
k2 “ Ωplog2{δ2 n1q, as desired.

By using the 2-source extractor obtained as a result of Corollary 6.2 to instantiate the non-
malleable extractor in Theorem 5.1, we obtain the following corollary:

Corollary 6.3. Fix any constant ε ą 0. Then, assuming the sub-exponential hardness of theDDHassumption,
there exists a constant δ ą 0 for which there exists a pn1, n2,K1,K2q strong pT, T 1q-computational non-
malleable extractor (satisfying Definition 4.3) whenever

Ωpλq ď n1 ď polypλq,Ωplog2{δ2 n1q ď n2 ď Opλδq,K1 “ nε1, k2 “ Ωplog2{δ2 n1q, T “ λlog λ and T 1 “ λ.

Proof. Fix any constant ε ą 0. By Corollary 6.2, assuming the sub-exponential hardness of DDH,
there exists a constant δ ą 0 such that there exists a pn1, n2, k1, k2q strong pT1, T2q-computational
two source extractor for n1, n2, k1, k2, T1, T2 satisfying

Ωpλq ď n1 ď polypλq,Ωplog2{δ2 n1q ď n2 ď Opλδq, k1 “ n
ε{3
1 , k2 “ Ωplog2{δ2 n1q, T1 “ 2λ

δ and T2 “ λlog λ,

and with error negpT2q.
Furthermore, the sub-exponential hardness of DDH, together with the fact that n1 ě Ωpλq,

implies that the following exist:
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• A pT,wq-lossy function family F “ tFλuλPN where each f P Fλ is of the form f : t0, 1un1 Ñ

t0, 1un1 , and where T pλq “ λlog λ and w is such that n1 ´ w “ n
ε{3
1 .

• A collision resistant hash familyH “ tHλuλPN, where each h P Hλ is of the form h : t0, 1un2 Ñ

t0, 1uk3 where k3 “ plog λq ¨ plog log λq, that is secure against polypλq-size adversaries.

Since T ą 2k3 , by Theorem 5.1, there exists a pn1, n2,K1,K2q strong pT, T 1q-computational
non-malleable extractor forK1 ě k1` k3pn1´wq` 1 “ n

ε{3
1 `n

ε{3
1 ¨n

ε{3
1 , that is, whenK1 ě nε1, and

K2 ě k2 ` k3 ` 1 “ Ωplog2{δ2 n1q ` plog λq ¨ plog log λq, that isK2 “ Ωplog2{δ2 n1q, as desired.

6.1 Construction.

In this section, we describe the reduction from 2-source extractors to non-malleable extractors.
Fix any parameters T, T 1, n1, n2, k1, k2, d according to Theorem 6.1. Fix any pn1, d, k1, dq strong

pT, T 1q-computational non-malleable extractor

cnm-Ext : t0, 1un1 ˆ t0, 1ud ˆ t0, 1uc Ñ t0, 1um

and any
´

2k2

T 1 log T 1
, 2d´1

¯

disperser

Γ : t0, 1un2 ˆ rts Ñ t0, 1ud.

Define
2Ext : t0, 1un1 ˆ t0, 1un2 ˆ t0, 1uc Ñ t0, 1um

by
2Extpx1, x2, crsq “

à

y: Di s.t. Γpx2,iq“y

cnm-Extpx1, y, crsq

6.2 Analysis

In this section, we prove the security of the reduction described above. The proof proceeds in
several steps. We start by assuming an adversary that breaks the 2-source extractor (and also the
distribution on which it breaks the extractor). Using this adversary, we define an adversary that
is supposed to break the non-malleable extractor (on a distribution to be defined later). Then we
define the sets BAD-rand and BAD-seed. These capture the places where the adversary breaks the
non-malleable extractor. Claims 6.4 and 6.5 prove that these sets are large. Finally in Claim 6.6 we
define the distribution on which the adversary breaks the non-malleable extractor. This relies on
the leakage lemma.

Suppose for contradiction that 2Ext is not an pn1, n2, k1, 2k2q strong pT, T 1q-computational
2-source extractor. This implies that there exists a T -admissible leaky pn1, n2, k1, 2k2q source
distribution pX1, X2, L,AUXq, a polypT 1q-size adversary B, and a polynomial p1p¨q, such that for
infinitely many λ P N,

PrrBp2Extpx1, x2, crsq, x2, crs, `, auxq “ 1s ´ PrrBpU, x2, crs, `, auxq “ 1s ě
1

p1pT 1q
(17)

where the probability is over pcrs, x1, x2, `, auxq Ð pCRS, X1, X2, L,AUXq.
We use B to build a polypT 1q-size adversary A for the non-malleable extractor. We will define a
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T -admissible source distribution pX 1, Y 1, L1,AUX1q such that A breaks the non-malleable extractor
with respect to this source distribution.

The source distribution pX 1, Y 1, L1,AUX1q depends on the adversary A, and therefore, we defer
the description of this distribution until after we define A. However, we point out that the auxiliary
information aux1 is either K, or is of the form paux, x2, iq where aux corresponds to the auxiliary
information of the underlying distribution pX1, X2, L,AUXq, and px2, iq is such that Γpx2, iq “ y1.
We start by defining our adversary A.

The adversary A. A on input pα, y1, crs, `1, aux1q and with access to oracle O, does the following:

1. If aux1 “ K, output 0. Otherwise, continue.

2. Parse aux1 “ paux, x2, iq.

3. For every j P rtsztiu, let vj “ Γpx2, jq.

4. Let vi “ y1.

5. Set z “ α‘
À

v:v‰y1 and there exists jPrtsztiu s.t. vj“vOpvq.

6. Output B
`

z, x2, crs, `
1, aux

˘

.

Note that A is a polypT 1q-size adversary.

Next, for any crs P SupppCRSq, and any `init P SupppLinit|crsq, we define the sets BAD-randpcrs, `initq

and BAD-seedpcrs, `initq. Before formally defining these sets, we provide some intuition to assist the
reader.

• The setBAD-randpcrs, `initq consists of randomness r such thatwhen sampling pX2,AUX, Linitq|crs
with randomness r, one obtains px2, aux, `initq, such that `init is the a priori fixed leakage, and
such that for every i P rts, the adversary A distinguishes between

`

cnm-Extpx1, y
1
i, crsq, y

1
i, crs, `, aux1

˘

and
`

U, y1i, crs, `, aux1
˘

with probability at least 1
2p1pT 1q , where y1i “ Γpx2, iq, aux1 “ paux, x2, iq, and where the

probability is over px1, `finalq Ð pX1, Lfinal|crs, `initq (and ` “ p`init, `finalq).

• The set BAD-seedpcrs, `initq consists of all y1 for which there exists an r P BAD-randpcrs, `initq

and i P rts, such that for x2 sampled conditioned on the crs using randomness r,

y1 “ Γpx2, iq

Looking ahead, we will prove that with noticeable probability over crsÐ CRS and `init Ð Linit|crs,
the sets BAD-randpcrs, `initq and BAD-seedpcrs, `initq are “large”. We will now formally define these
sets.
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DefiningBAD-rand. For any crs P SupppCRSq andany `init P SupppLinit|crsq, the setBAD-randpcrs, `initq

is defined as follows.

BAD-randpcrs, `initq “

#

r : px2, aux, `initq “ pX2,AUX, Linitqpcrs; rq and

@i P rts, for y :“ Γpx2, iq,Pr
”

AOyx1,crs
`

cnm-Extpx1, y, crsq, y, crs, `, paux, x2, iq
˘

“ 1
ı

´

Pr
”

AOyx1,crs
`

U , y, crs, `, paux, x2, iq
˘

“ 1
ı

ě
1

2p1pT 1q

+

where the probabilities are over px1, `finalq Ð pX1, Lfinalq|pcrs, `initq and where ` “ p`init, `finalq.

We now prove the following claim about BAD-rand.

Claim 6.4. With probability at least 1
4p1pT 1q over crs Ð CRS and over the randomness of sampling

`init Ð pLinit|crsq,
Pr

rÐt0,1upolypλq

”

r P BAD-randpcrs, `initq

ı

ě
1

4p1pT 1q
(18)

Proof. Suppose the claim is not true, then with probability at least 1´ 1
4p1pT 1q over crsÐ CRS and

over the randomness of sampling `init Ð pLinit|crsq,

Pr
rÐt0,1upolypλq

rr P BAD-randpcrs, `initqs ă
1

4p1pT 1q

This implies that

Pr
crsÐCRS,`initÐpLinit|crsq,rÐt0,1upolypλq

rr P BAD-randpcrs, `initqs ă
1

2p1pT 1q
(19)

Bydefinition, for every pcrs, `init, rq such that r R BAD-randpcrs, `initq, and px2, aux, `initq “ pX2,AUX, Linitqpcrs; rq,
Di P rts such that for y “ Γpx2, iq,

Pr
”

AOyx1,crs
`

cnm-Extpx1, y, crsq, y, crs, `, paux, x2, iq
˘

ı

´

Pr
”

AOyx1,crs
`

U, y, crs, `, paux, x2, iq
˘

ı

ă
1

2p1pT 1q

where the probability is over the randomness of sampling px1, `finalq Ð pX1, Lfinalq|pcrs, `initq.

This implies that for every pcrs, `init, rq such that r R BAD-randpcrs, `initq, and px2, aux, `initq “

pX2,AUX, Linitqpcrs; rq,

Pr
”

B
`

2Extpx1, x2, crsq, x2, crs, `, aux
˘

ı

´

Pr
”

B
`

U, x2, crs, `, aux
˘

ı

ă
1

2p1pT 1q
(20)
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where the probability is over the randomness of sampling px1, `finalq Ð pX1, Lfinal|crs, `initq.

This, together with Equation (19) implies that

Pr
”

B
`

2Extpx1, x2, crsq, x2, crs, `, auxq
˘

ı

´

Pr
”

B
`

U, x2, crs, `, auxq
˘

ı

ă
1

p1pT 1q

where the probability is over crs Ð CRS, px1, x2, `, auxq Ð pX1, X2, L,AUX|crsq. This contradicts
Equation (17) and thus completes the proof of this claim.

Defining BAD-seed. For any crs P CRS, `init P SupppLinit|crsq, define the set BAD-seedpcrs, `initq as
follows:

BAD-seedpcrs, `initq “

!

y : Dr P BAD-randpcrs, `initq, Di P rts, such that y :“ Γpx2, iq for x2 :“ X2pcrs; rq
)

where x2 :“ X2pcrs; rq is a shorthand for the notation px2, ¨, ¨q :“ pX2,AUX, Linitqpcrs; rq.

Claim 6.5.

Prry P BAD-seedpcrs, `initqs ě
1

10p1pT 1q

where the probability is over the randomness of sampling crsÐ CRS, `init Ð Linit|crs, and y Ð t0, 1ud.

Proof. First, recall that by definition of BAD-seed, for every crs P SupppCRSq and every `init P

SupppLinit|crsq,
ˇ

ˇ

ˇ

ˇ

ˇ

!

Γ
`

X2pr, crs, `initq, i
˘

)

rPBAD-randpcrs,`initq,iPrts

ˇ

ˇ

ˇ

ˇ

ˇ

Ď BAD-seedpcrs, `initq.

Next, recall that H8pX2|CRS, Linitq “ 2k2, which implies that with probability 1´ 2´k2 over choice
of crsÐ CRS, `Ð Linit, H8pX2|crs, `initq “ p2k2 ´ k2q “ k2. This, together with Claim 6.4, implies
that with probability at least 1

5p1pT 1q , over the randomness of sampling crsÐ CRS, `init Ð pLinit|crsq,
ˇ

ˇ

ˇ

ˇ

ˇ

!

X2pr, crs, `initq

)

rPBAD-randpcrs,`initq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
2k2

4p1pT 1q
ą

2k2

T 1 log T 1

By the definition of p 2k2

T 1 log T 1
, 2d´1q disperser (Definition 3.10), Γ maps each set of size at least

2k2

T 1plog T
1q
to a set of size at least 2d´1. Therefore, with probability at least 1

5p1pT 1q over sampling
crsÐ CRS, `init Ð pLinit|crsq,

|BAD-seedpcrs, `initq| ě 2d´1,

Thus, with probability at least 1
5p1pT 1q over sampling crsÐ CRS, `init Ð pLinit|crsq,

Prry P BAD-seedpcrs, `initqs ě
1

2
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where the probability is over the randomness of sampling y Ð t0, 1ud.

Thus,
Prry P BAD-seedpcrs, `initqs ě

1

2
¨

1

5p1pT 1q
ą

1

10p1pT 1q

where the probability is over the randomness of sampling crsÐ CRS, `init Ð pLinit|crsq, y Ð t0, 1ud,
as desired.

Finally, we define pX 1, Y 1, L1,AUX1q such that A breaks the non-malleable extractor on these
sources. We note that the CRS for the 2-source extractor is identical to the CRS for the non-malleable
extractor.

Defining the sources pX 1, Y 1, L1,AUX1|crsq for the non-malleable extractor.

• Sampling pL1init|crsq. Sample px2, aux, `initq Ð pX2,AUX, Linit|crsq, and set `1init “ `init.

• Sampling pY 1,AUX1|crs, `1initq.

1. Sample y1 Ð t0, 1ud.
2. Compute aux1 as a function of pcrs, `1init, y

1q as follows:
(a) Define the inefficient function F that on input pcrs, `1init, y

1q outputs aux computed as
follows.
– If y1 R BAD-seedpcrs, `1initq, set aux “ K.
– Else output aux “ paux, x2, iq, where paux, x2, iq is computed as follows.

Sample r Ð BAD-randpcrs, `1initq such that Di : ΓpX2pr, crs, `
1
initq, iq “ y1,

and set px2, auxq “ pX2,AUX|crs; rq.
(b) Note that the output of F consists ofOplog T q bits. This follows from the assumption

that |AUX| “ Oplog T q, x2 “ n2 “ Oplog T q, and |i| “ log t “ Oplog λq “ Oplog T q.
ApplyLemma2.1with respect to the functionF , the inputdistribution pCRS, L1init, Y

1q,
and the time bound T 1, to conclude that there exists a function pF , computable in time
polypT q, such that no adversary running in time polypT 1q can distinguish between
the distributions

´

pX1, Lfinalq, pCRS, L1init, Y
1q, F pCRS, L1init, Y

1q

¯

and
´

pX1, Lfinalq, pCRS, L1init, Y
1q, pF pCRS, L1init, Y

1q

¯

with advantage better than negpT 1q. The fact that pF is computable in time polypT q
follows from the fact that T “ pT 1qωp1q and that the output of F is Oplog T q bits.

(c) Set aux1 Ð pF pcrs, `1init, y
1q.

• Sampling pX 1, L1final|crs, `
1
initq.

1. Sample px1, `finalq Ð pX1, Lfinal|crs, `
1
initq.
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2. Set px1 “ x1, `
1
final “ `finalq.

Claim 6.6. pX 1, Y 1, L1,AUX1q is a T -admissible leaky pn1, d, k1, dq source distribution with respect to CRS.

Proof. We prove that pX 1, Y 1, L1,AUX1q satisfies the following.

Efficient Sampling. By construction, for every crs P SupppCRSq, pY 1,AUX1, L1init|crsq can be
sampled in time polypT pλqq. Additionally, for every `1init P SupppLinit|crsq, pX 1, L1final|crs, `

1
initq “

pX1, Lfinal|crs, `initq, which can also be sampled in time polypT pλqq.

Min-entropy. Recall that Y 1 is sampled uniformly at random in t0, 1ud, independently of pcrs, `1q.
Therefore,

H8pY
1|CRS, L1q “ d.

Next, we observe that
H8pX

1|CRS, L1q “ H8pX|CRS, Lq “ k1.

Independence. Since aux1 is sampled as a function of py1, crs, `1q independent ofX 1, it follows that
for every crs P CRS and `1 P SupppLp¨qq, X 1 and pY 1,AUX1q are independent conditioned on pcrs, `1q.

This proves that pX 1, Y 1, L1,AUX1q is a T -admissible leaky pn1, d, k1, dq source distribution with
respect to CRS.

Next, we prove that the adversary A breaks the non-malleable extractor for pX 1, Y 1, L1,AUX1q. To
see this, first observe that paux ‰ Kq ðñ py1 P BAD-seedpcrs, `1initqq, which implies

Prraux ‰ Ks “ Prry1 P BAD-seedpcrs, `1initqs ą
1

10p1pT 1q
(21)

where the probabilities are over the randomness of sampling crs Ð CRS, `1init Ð L1init|crs, and
y1 Ð t0, 1ud, and where the equation on the right-hand-side follows by Claim (6.5) together with
the fact that L1init|crs “ Linit|crs.

By the definition of BAD-seed, A has distinguishing advantage at least 1
2p1pλq when y1 P

bad-seedpcrs, `1initq, or equivalently, when aux1 ‰ K. This implies that

Pr
”

AOy
1

x1,crspcnm-Extpx1, y1, crsq, y1, crs, `1, auxq “ 1
ˇ

ˇ

ˇ

`

aux ‰ K
˘

ı

´

Pr
”

AOy
1

x1,crspU, y1, crs, `1, auxq “ 1
ˇ

ˇ

ˇ

`

aux ‰ K
˘

ı

ě
1

2p1pT 1q
(22)

where the probabilities are over the randomness of sampling crsÐ CRS, `1init Ð L1init|crs, y1 Ð t0, 1ud,
px1, `1finalq Ð pX 1, L1final|pcrs, `

1
initq, and where `1 “ p`1init, `

1
finalq.

Moreover, when aux “ K, AOy
1

x1,crs outputs 0. Combining this fact with Equation (21) and
Equation (22), we have that for px1, y1, `1, auxq sampled as described above,

Pr
”

AOy
1

x1,crspcnm-Extpx1, y1, crsq, y1, crs, `1, auxq “ 1
ı

´Pr
”

AOy
1

x1,crspU, y1, crs, `1, auxq “ 1
ı

ą
1

20pp1pT 1qq2
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By Lemma 2.1, we have that no adversary running in time polypT 1q can distinguish px1, y1, crs, `1, auxq
from px1, y1, crs, `1, aux1qwith advantage better than negpT 1q, and therefore,

Pr
”

AOy
1

x1,crspcnm-Extpx1, y1, crsq, y1, crs, `1, aux1q “ 1
ı

´

Pr
”

AOy
1

x1,crspU, y1, crs, `1, aux1q “ 1
ı

ą
1

20pp1pT 1qq2
´ negpT 1q

where the probabilities are over the randomness of sampling crsÐ CRS, `1init Ð L1init|crs, py1, aux1q Ð
pY 1,AUX1|crs, `1initq, px1, `1finalq Ð pX 1, L1final|pcrs, `

1
initq, and where `1 “ p`1init, `

1
finalq.

Thus, the existence of A contradicts the fact that cnm-Ext is a strong pT, T 1q-computational non-
malleable extractor for T -admissible leaky pn1, d, k1, dq source distribution pX 1, Y 1,AUX1, L1q.
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