
NP-completeness Reduction for Semiprimes
Factorization Problem

Yen-Lung Lai

Monash University Malaysia,
Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor

yenlung.lai@monash.edu

Abstract. We show a reduction of integer (semiprimes) factorization
problem to a NP -complete problem related to coding. Our results rigor-
ously imply the existence of a quantum computer could possibly devas-
tate existing security system relies on NP-hard problem.

Keywords: · Integer Factorization · NP-complete Problems· Complex-
ity Theory

1 Introduction

Integer factorization is a commonly studied problem and has been well applied
to cryptographic primitive like asymmetric cryptographic system (i.e., RSA).
There are some notable works on reducing the integer factorization problem to
other computational problems [1] [2] [3], named as low exponent RSA and full
RSA. These computational problems rely on the existence of the straight-line
programs, which are sub-class of generic ring algorithm that can perform addi-
tion, subtraction, and multiplication, and multiplicative inverse of modulo N .
However, the later works by Boneh and Vekatesan[4] have shown that there are
no such straight-line programs reducing integer factorization problem to low ex-
ponent RSA or full RSA problem, unless the integer factorization problem itself
is easy. Apart from this, the work by Jager and Schwenk [5] have analysed large
class of subset membership problem related to integer factorization, again, shown
that there is no algorithm solving these kinds of problem efficiently unless inte-
ger factorization is easy. Their analysis has included the well-known quadratic
residuosity problem and subgroup decision problem.

1.1 The NP-complete problems

The problem of class P corresponds to polynomial-time (deterministic) algo-
rithm. It defines a set of problems which can be solved in computational time
polynomial to the input size. The problems over class P are generally regarded as
intractable, i.e., solving linear equations, finding the minimum cut in flowgraph,
etc.

Alternately, the classNP refer to the problems solvable by a non-deterministic
algorithm whose running time is bounded by a polynomial in the input size. A

2 Yen-Lung Lai

non-deterministic algorithm is one which, may produce different results in differ-
ent courses run (simultaneously). The consequence of different courses run would
be the exponential growth of the number of possible solutions, and the algorithm
is said to solve the problem given one of the solutions produces the correct an-
swer. Above description explained that NP corresponds to non-deterministic
polynomial-time algorithm.

Showing that the class of problem P ⊆ NP is trivial since both solutions
for NP and P are verifiable in polynomial time. However, the proof of the
converse whether NP = P remains a central open question of computer science.
The Cook-Levin theorem (in 1971) has proved that any problem in NP can be
reduced to the satisfiability problem. Given a polynomial-time algorithm can be
used to solve the satisfiability problem, so would any other NP problem like
travelling salesman problem, integer programming problem, etc. However, a lot
of researchers have work on these NP problems many years without producing
an efficient (running in polynomial-time in the input size) algorithm for any one
of them. In later Krap [9] showed that the satisfiability problem itself can be
reduced to other NP -problem. These class of problem is now called the NP -
complete class, corresponds to the hardness problem in NP . If anyone of the
NP-complete problem possesses polynomial-time algorithm, so does every NP
problem hence P = NP .

Up till now, there are literally more than hundreds NP-complete problem can
be found in book [10]. No one has ever found a polynomial-time algorithm for
any one of these NP-complete problem. It is natural to believe that P 6= NP .

It is an interesting exploitation over the integer factorization problems, which
is commonly believed that this problem is in the class of NP . Researchers have
been trying to come out with a more efficient factorization algorithm. Despite
a long time of researching, to our best knowledge, there have no existing any
reduction prove for integer factorization problem to be in problem of class either
NP -hard or NP complete. Even so without efficient algorithm to solve the
integer factorization problem, there have no reason to believe that factoring is
hard other than the fact that many people have failed to solve it. Therefore, the
exact complexity of factoring integers (specifically its decision version) remains as
a major open question. Recent result obtained by Shor [6], showing that integer
factorization problem can be done in polynomial time by reducing it to the order
finding of the multiplicative group (mod N) using a quantum computer.

In this correspondence, we provide a concrete factorization algorithm de-
picted as algorithm PF. We show a reduction of the integer (semiprimes) fac-
torization problem to an NP -complete problem related to coding. As factoring
a semiprimes is refer to the hardest instance of integer factorization problem,
our result implies that integer factorization problem is in problem class of NP -
complete. Accompanies with the assertion of quantum algorithm can be used to
solve integer factorization problem in polynomial-time, our results would denote
the emergence requirement of post-quantum security system.

NP-completeness Reduction for Semiprimes Factorization Problem 3

2 Integer(semiprimes) Factorization Problem

The semiprimes (integer) factorization problem can be described as follow.

N = pq (1)

Given N ∈ {0, 1}n, for all p and q to be some variables (primes number) s.t.
p, q ∈ {0, 1}k, where k < n, find p or q.

Since p, q ∈ {0, 1}k, we shall have the worst-case value for N to be 2n =
(2k)(2k), therefore:

k ≤ dlog(N)/2e , (2)

must hold for all p, q ∈ {0, 1}k.
By letting p = a − b and q = a + b, for all random variables a, b ∈ {0, 1}k

(not necessary to be primes), we can express the product of p and q from Eq. 1
as:

N = (a− b)(a+ b),

= a2 − b2. (3)

In such a case, our factorization problem now turns to look for a and b
instead of p or q. Intuitively, doing so means we are looking for two integers a
and b where their distance give rise to the desired prime number, p or q.

To look for a and b, there are only two cases we have to consider, which are
when a = b, and a 6= b. Clearly, given a = b, we shall have the trivial solution:

N = a2 − b2 = 0.

On the other hand, to look for non-trivial solutions when a 6= b, we need to
first define some error vector e ∈ E in some random distribution E over {0, 1}k. In
particular, we refer all error vectors e ∈ E are of weight ‖e‖ = bkεc parametrized
some error rate ε ∈ [1/k, 1/2], s.t.:

a = e⊕ 0k,

b = e⊕ 1k, (4)

By doing so, ‖a⊕ b‖ ≥ 1 always hold for ε ∈ [1/k, 1/2]. Therefore a 6= b by their
uniqueness.

Viewing a = (e⊕ 0k)10 and b = (e⊕ 1k)10 both in based 10, with both side
mod (N) in Eq. 2, it follows that:

N mod (N) = a2 − b2 mod (N),

0 = (e⊕ 0k)210 − (e⊕ 1k)210 mod (N). (5)

4 Yen-Lung Lai

Since the value of a and b can be determined by knowing e, therefore, our
main goal is to look for such e in E over {0, 1}k with the help of strings 0k, 1k,
and N . Under the event where the distance between a and b is known, determine
the value of ε is straightforward since ‖a⊕ b‖ = ‖e‖ = bkεc. However, since a
and b are unknowns without the knowledge of p and q, one has no cruel about
the weight of e. Nevertheless, a straightforward way is to brute-force such e by
using different possible values of ε. Remark that since ‖e‖ ≥ 1, the values of
a and b must be different, thus, their corresponding solutions must be unique.
Therefore two different solutions (a unique pair of (a, b)) can be obtained with
a single trial for e ∈ E . In such a case, it is enough to choose ε up to 1/2 s.t.
ε = 1

k ,
2
k ,

3
k , . . . ,

1
2 .

To ensure the correctness in getting e so for a and b, all possible weight of
solutions for ‖e‖ must be considered s.t. ‖e‖ = 1, 2, . . . , bk/2c, including the
worst-case scenario where a and b come with hamming distance arbitrary close
to k/2. More generally, the error vector e ∈ {E1, . . . , Ebk/2c} can be found over a
family of error distributions {E1, . . . , Ebk/2c} parametrized by different value of
ε.

To minimise the number of brute-force trials, a smaller value of ε is always
desired, which corresponds to smaller weight solution for ‖e‖. Noting that the
brute-force search can be carried out in parallel with different value of ε, thus,
the overall brute-force complexity can be expressed as:

(
k

bkεc

)
≤ 2bkh2(ε)c ≤ 2kh2(ε) = O(2kh2(ε)), (6)

where h2(ε) = −ε log(ε)− (1− ε) log(1− ε) refers to the binary entropy function
of rate ε.

Recall that for every single trial of e ∈ {E1, . . . , Ebk/2c}, we shall have a unique
pair of (a, b). If follows that we can look for their corresponding solutions x and
y follow:

x = a2 mod N,

y = b2 mod N.

Suppose x or y is a square, by computing the gcd of N with the different (or sum)
of (a, x) and (b, y), it follows that gcd(x+ a)gcd(x− a)|N or gcd(y + b)gcd(y −
b)|N , hence the factor of N can be obtained. Despite the output may be the
trivial factor (1 or N), given that all possible weight of ‖e‖ = 1, 2, . . . , bk/2c
are considered, all possible solution of (a, b) and (x, y) should be covered. The
collection of all the possible solutions is known as the congruence of square. In
such a case, at least one of the solution would produce the non-trivial factor
of N , which is p or q. Note that computing the congruence of square is indeed
a common technique used for many integer factorization method such as the
Fermet’s factorization, quadratic sieve and Dixon’s factorization.

NP-completeness Reduction for Semiprimes Factorization Problem 5

2.1 The Reduction

Our reduction utilised one of the coding problem which has proven to be NP -
complete by Berlekamp et al., [7] (through reduction to the three dimensional
matching problem). More precisely, the problem can be formalised into a decision
problem as follow:

Input: A binary matrix H and non-negative integer z > 0
Problem: Is there exits a vector w of hamming weight ‖w‖ ≤ z such that
Hw = 0

Based on above problem, we can always express the error vector in Eq. 4
with some k × n binary matrix H and random binary string w ∈ Fn2 , s.t.:

a = e⊕ 0k = Hw ⊕H0n = H(w ⊕ 0n),

b = e⊕ 1k = Hw ⊕ (1k ⊕H0n) = 1k ⊕H(w ⊕ 0n).

With such expression, one can easily verify that the process of looking for e is
equalvalent to look for w given H and a (or b). In reverse, if one could factor
N and yield p (or q), he/she should be able to determine a and b easily, so for
e as well. Once e is known, determine its weight ‖e‖ is straightforward, then
the answer for the above problem can be obtained immediately. This showcase a
reduction of our problem in looking for e to an NP -complete problem [8] related
to coding.

2.2 The Complexity

Observe that the brute-force complexity is bounded by order O(2kh2(ε)). To make
sure our brute-force trials can be done in an efficient manner, we hope to show
that 2kh2(ε) ≤ 2log(poly(n)) = poly(n). Clearly, this can be done if:

kh2(ε) ≤ log(poly(n)). (7)

In viewed of this, the efficiency of PF can be evaluated based on any poly-
nomial function of n to determine the maximum value of ε. For instance, let
poly(n) = n3+n+3, the efficiency claim for PF only holds when 2k ≤ n3 + n+ 3.
This means one could choose a higher value of ε (given k) compare to poly(n) =
n+1. This result also implies any polynomial function can only be evaluated (or
verified) efficiently given their entropy is larger or equal to the Shannon entropy
of some error rate ε.

Since 2kh2(ε) ≤ 2kh2(1/2) = 2k which is maximum when ε = 1/2. This implies
there should have some worst-case polynomial function which require 2k number
of brute-force trials. Viewed this way, the error rate ε indeed determined the
number of polynomial function can be evaluated efficiently. To be specific, to
make sure all polynomial functions poly(n) ∈ {0, 1}n can be evaluated or verified

6 Yen-Lung Lai

efficiently, we must have 2k brute-force trials with some k < n. Relaxing such
requirement with ε > 0 would allow us to evaluate more polynomial function
(with smaller order) but indeed reducing the number of function can be evaluated
or verified in an efficient manner.

As a summary, given ε > 0 and k < n, we can evaluate and verify any
polynomial function efficiently only if:

2kh2(ε) ≤ poly(n). (8)

For instance, given n = 16, for n ≥ 2k (see Eq. 2), we shall have maximum
k = 8. Suppose we trial all ε = 1/k, . . . , 1/2 (up to 1/2), hence 2k = 256 ≤
poly(n) is needed for efficient evaluation over poly(n). Let poly(n) = nx ≥ (2k)x,
then the minimum value of x ≥ 2, thus factoring p and q can be done efficiently in
O(n2). Noting that the order of complexity will increase with higher value of n.
Given n = 256 bits, the order of complexity increased up toO(n17). Noticing such
complexity is constrained by the strict bound of n ≥ 2k. The remaining question
is whether one can derive a better lower bound representation for k < n. The
solution for this question could further reduce the factoring time significantly.

3 Concluding Remark

We showcase a reduction of semiprimes factorization problem to anNP -complete
coding problem. Our result reveals the semiprimes factorization can in reverse,
use to solve the NP -complete problem related to coding. Follows the work in
[9] stated, if any NP -complete problem possesses a polynomial time algorithm
to solve, then so does every NP -problem. The Shor’s algorithm is proven to
be efficient for factorization of N in polynomial time (O(n3)). This strongly
argued that every NP -problem could be solve in polynomial time by the exis-
tence of quantum computer. In computational complexity theory [10], the class
of problem solvable by an quantum computer in polynomial time is refer to the
bounded-error quantum polynomial time (BQP). It is clearly that factoring N
is in BQP class. In such a case, our results would imply all NP problem can be
solved by a quantum computer hence NP ⊆ BQP .

Despite of such discovery, we still have no known existing prove that P =
BQP , the answer to such question would lead to P = NP since NP = BQP =
P .

As a site note, the works in [11] (yet to be verified) also pointed out that
another NP -complete problem related to coding could be solved in polynomial
time with proper encoding and decoding function.

NP-completeness Reduction for Semiprimes Factorization Problem 7

PF(N, ε)

1 : S ← ∅// Initiate an empty set

2 : E ← {0, 1}k// Initiate a noise distribution with ε > 0

3 : Set k = dlog(N)/2e
4 :

5 : // Collect information to generate set of solutions for S

6 : for i = 1, 2, . . . , 2bkh2(ε)c do

7 : ei ←$ E// Sample e from E uniformly at random (without replacement), where ‖e‖ = bkεc

8 : Set a = ei ⊕ 0k and Compute x = a2 mod N

9 : Set b = ei ⊕ 1k and Compute y = b2 mod N

10 : if
√
x Divides x

11 : Set s = (
√
x, a)

12 : S = S
⋃

s

13 : elseif
√
y Divides y

14 : Set s = (
√
y, b)

15 : S = S
⋃

s

16 : endif

17 : endfor

18 : return S
19 :

20 : // Verify the solutions with S

21 : for j = 1, . . . , |S|
22 : si = (si(1), si(2))// Recall we have si comes is pair (see Step 11 and 14)

23 : Compute p = N/gcd(si(1) + si(2)) or q = N/gcd(si(1)− si(2))

24 : if (p or q) 6= N AND (p or q) 6= 1// only look for nontrivial p and q

25 : return (p or q)

26 : BREAK

27 : endif

28 : endfor

Step 1 to 18 of PF is viewed as data collection phase where it collects data
(or information) with referring to Eq. 2, yielding a set of possible solutions over
S. The set of solution S is also known as congruence of square. The data collec-
tion phase can be done in parallel with different value of ε, i.e. ε = 1

k ,
2
k , . . . ,

1
2

correspond to different weight of solution for ‖e‖ = 1, 2, . . . , bk/2c.
On the other hand, Step 21 to 28 of PF is viewed as verification phase, where

it verifies the all the possible solutions over S. It the solution obtained is valid,
it can factor p and q from N successfully.

8 Yen-Lung Lai

References

1. G. Leander and A. Rupp, “On the equivalence of rsa and factoring regarding generic
ring algorithms,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2006, pp. 241–251.

2. D. R. Brown, “Breaking rsa may be as difficult as factoring.” IACR Cryptology
ePrint Archive, vol. 2005, p. 380, 2005.

3. K. Altmann, T. Jager, and A. Rupp, “On black-box ring extraction and integer
factorization,” in International Colloquium on Automata, Languages, and Program-
ming. Springer, 2008, pp. 437–448.

4. D. Boneh and R. Venkatesan, “Breaking rsa may not be equivalent to factoring,” in
International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1998, pp. 59–71.

5. T. Jager and J. Schwenk, “The generic hardness of subset membership problems
under the factoring assumption,” Cryptology ePrint Archive, Report 2008/482,
2008, https://eprint.iacr.org/2008/482.

6. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

7. E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent intractability of
certain coding problems (corresp.),” IEEE Transactions on Information Theory,
vol. 24, no. 3, pp. 384–386, 1978.

8. R. McEliece and H. Van Tilborg, “On the inherent intractability of certain coding
problems(corresp.),” IEEE Transactions on Information Theory, vol. 24, no. 3, pp.
384–386, 1978.

9. R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of com-
puter computations. Springer, 1972, pp. 85–103.

10. M. R. Garey and D. S. Johnson, Computers and intractability. wh freeman New
York, 2002, vol. 29.

11. Y.-L. Lai and Z. Jin, “Information-theoretic secure sketch for noisy sources of low
entropy.”

https://eprint.iacr.org/2008/482

	NP-completeness Reduction for Semiprimes Factorization Problem

