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Abstract. Evolving secret-sharing schemes, introduced by Komargod-
ski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which
there is no a-priory upper bound on the number of parties that will par-
ticipate. The parties arrive one by one and when a party arrives the
dealer gives it a share; the dealer cannot update this share when other
parties arrive. Motivated by the fact that when the number of parties
is known, ramp secret-sharing schemes are more efficient than threshold
secret-sharing schemes, we study evolving ramp secret-sharing schemes.
Specifically, we study evolving (b(j), g(j))-ramp secret-sharing schemes,
where g, b : N → N are non-decreasing functions. In such schemes, any
set of parties that for some j contains g(j) parties from the first parties
that arrive can reconstruct the secret, and any set such that for every j
contains less than b(j) parties from the first parties that arrive cannot
learn any information about the secret.

We focus on the case that the gap is small, namely g(i) − g(i) = tβ for
0 < β < 1. We show that there is an evolving ramp secret-sharing scheme

with gap tβ , in which the share size of the j-th party is Õ(j
4− 1

log2 1/β ).
Furthermore, we show that our construction results in much better share
size for fixed values of β, i.e., there is an evolving ramp secret-sharing
scheme with gap

√
t, in which the share size of the j-th party is Õ(j).

Our construction should be compared to the best known evolving g(j)-
threshold secret-sharing schemes (i.e., when b(j) = g(j) − 1) in which
the share size of the j-th party is Õ(j4). Thus, our construction offers
a significant improvement for every constant β, showing that allowing a
gap between the sizes of the authorized and unauthorized sets can reduce
the share size.

In addition, we present an evolving (k/2, k)-ramp secret-sharing scheme
for a constant k (which can be very big), where any set of parties of size
at least k can reconstruct the secret and any set of parties of size at most
k/2 cannot learn any information about the secret. The share size of the
j-th party in our construction is O(log k log j). This is an improvement
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over the best known evolving k-threshold secret-sharing schemes in which
the share size of the j-th party is O(k log j).

1 Introduction

In secret-sharing schemes (as in many cryptographic primitives) the number of
parties is known in advance. If the number of parties is not known in advance, the
dealer can assume an upper bound on this number. On one hand, if this upper
bound is too pessimistic (e.g., very few parties are active), then the shares are
unnecessarily large. On the other hand, if the upper bound is too optimistic and
the number of parties exceeds the upper bound, then either new parties cannot
join the system or the dealer needs to refresh the shares of all existing parties,
which is very costly. Komargodski, Naor, and Yogev [14] suggested evolving
secret-sharing schemes as a solution to this problem. In such schemes, there is
no upper bound on the number of parties and the parties arrive one after the
other. When a party arrives the dealer gives it a share; the dealer cannot update
this share when other parties arrive.

Following Beimel and Othman [1], we consider ramp evolving secret-sharing
schemes. In a traditional (b, g)-ramp secret-sharing schemes (with a fixed number
of parties n, where b < g ≤ n), sets of parties of size at least g should be able
to reconstruct the secret, while sets of parties of size at most b should get no
information on the secret.1 There are no requirements on sets with more than
b parties but less than g parties. Allowing a gap between b and g results in
schemes that are more efficient than threshold secret-sharing schemes. Ramp
secret-sharing schemes were first presented by Blakley and Meadows [4], and
were used to construct efficient secure multiparty computation (MPC) protocols,
starting in the work of Franklin and Yung [11]. In an evolving (b, g)-ramp secret-
sharing schemes (without an upper bound on the number of parties), g and
b are non-decreasing functions g, b : N → N such that b(j) < g(j) for every
j ∈ N, sets of parties that for some j contain at least g(j) parties from the first j
parties that arrive should be able to reconstruct the secret, while sets of parties
that for every j contain at most b(j) parties from the first j parties that arrive
should get no information on the secret. Again, there are no requirements on
sets that do not satisfy either of the requirements. In this work we investigate
evolving ramp secret-sharing schemes, where the gap between g and b is small,
e.g., g(j) − b(j) = jβ for some constant β or b(j) = k/2 and g(j) = k for some
constant k.

Before presenting our results, we describe several results on evolving secret-
sharing schemes. Komargodski, Naor, and Yogev [14] showed that every evolving
access structure can be realized by a secret-sharing scheme, where share size of
the j-th party is 2j−1 (even if the dealer does not know the access structure in
advance). They also showed evolving k-threshold secret-sharing schemes (where
any set of k parties can reconstruct the secret), in which the share size of the j-th

1 The letters b and g stand for “bad” parties (that should not learn information about
the secret) and “good” parties (that can reconstruct the secret).



Evolving Ramp Secret Sharing with a Small Gap 3

party is (k−1) log j+O(log log j). Komargodski and Paskin-Cherniavsky [15] con-
sidered evolving dynamic-threshold secret-sharing scheme in which the threshold
is defined by a function g : N → N; in such a scheme a set of parties is autho-
rized if for some j the set contains at least g(j) parties from the first j parties
that arrive. For every non-decreasing function 1 ≤ g(j) ≤ j, they constructed an
evolving g(j)-threshold secret-sharing scheme in which the share size of the j-th
party is O(j4 log j). As the number of parties is unbounded, this share size can be
quite large. Beimel and Othman [1] constructed for any constants 0 < α < γ < 1
an evolving (b(j) = αj, g(j) = γj)-ramp secret-sharing scheme where the size of
the share of the j-th party is O(1).

1.1 Our Results

In this work we continue the investigation of evolving ramp secret-sharing schemes.
We ask what the share size is in evolving ramp secret-sharing schemes when the
gap between g(j) and b(j) is small, i.e., o(j). Can the share size be smaller than
j4 – the share size in the evolving threshold secret-sharing schemes of [15]. We
give positive results when g(j)− b(j) ≤ jβ for some constant β. For example,

– When g(j)− b(j) = j
polylog(j) , the share size in our scheme is polylog(j).

– When g(j)− b(j) =
√
j, the share size in our scheme is Õ(j).

– When g(j)− b(j) = jβ for a constant β ≤ 1/2 the share size in our scheme

is Õ
(
j
4− 1

log2 1/β

)
.

Thus, our constructions offer a significant improvement for a constant β com-
pared to [15], showing that allowing a gap between g(j) and b(j) can reduce
the share size in known evolving secret-sharing schemes compared to schemes in
which there is no gap (i.e., g(j)− b(j) = 1).

In addition, we present a construction of evolving (k/2, k)-ramp secret-sharing
schemes for a constant k (where any set of parties of size at least k can recon-
struct the secret and any set of parties of size at most k/2 cannot learn any in-
formation about the secret). The share size of the j-th party in our construction
is O(log k log j). This is an improvement over the evolving k-threshold secret-
sharing schemes of [14] in which the share size of the j-th party is O(k log j).
Our result can be either seen as a first step in constructing improved evolving k-
threshold secret-sharing schemes or as showing that that for constant k evolving
(k/2, k)-ramp secret-sharing schemes are more efficient.

1.2 Our Techniques

We next describe the ideas of our construction for an evolving (b(j) = j/2 −
jβ , g(j) = j/2)-ramp secret-sharing scheme. We start in Section 3 by reducing
the problem of realizing an evolving ramp secret-sharing scheme with an infinite
number of parties to a problem of constructing secret-sharing realizing access
structures with a finite number of parties. Specifically, for a given t ∈ N, we de-
fine an access structure Γt containing the parties {ptβ , . . . , p2t}. A set A whose
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maximal party is pk should be able to reconstruct the secret in Γt if k > t and
|A| ≥ k/2 − tβ/2. If a set should not learn any information on the secret in
the evolving (j/2− jβ , j/2)-ramp secret-sharing scheme then the set is unautho-
rized in Γt. Given secret-sharing schemes realizing Γt, we construct an evolving
(j/2− jβ , j/2)-ramp secret-sharing scheme by executing a secret-sharing scheme
realizing Γt for every t that is a power of 2. That is, for every ` ∈ N, when party
ptβ arrives, we share the secret by a secret-sharing scheme realizing Γt with par-
ties {ptβ , . . . , p2t}. The correctness of the scheme is explained by the fact that
we “lose” at most tβ parties from the beginning; since we allow a gap of at most
tβ parties, we will not miss any authorized set.

We present two constructions of secret-sharing schemes realizing the above
access structure Γt. The first construction, described in Section 4, uses the so-
called segments technique, where we have a sequence n0, n1, . . . , nr of integers,
where t < n0 < n1 < · · · < nr ≤ 2t and we share the secret among the parties
{ptβ , . . . , pni} for every 0 ≤ i ≤ r using a threshold secret-sharing scheme,
with an appropriate threshold. We choose the sequence of number of parties and
thresholds so the correctness and security hold. This construction yields our best
result when β ≥ 1/2. In particular for β = 1/2 we get an evolving secret-sharing
scheme in which the share size of the j-th party is O(j log j).

Our second construction, described in Section 6, uses the so called tree tech-
nique (which also uses the segments technique). The tree techniques was intro-
duced in [15] (generalizing ideas of [14]). In the tree technique, we construct a
tree, where for every edge in the tree we assign a set of consecutive parties and
a weight. We define an access structure for this tree, where a set of parties A
should be able to reconstruct the secret if there is a path from the root to a leaf
such that for every edge in the path whose weight w the set A contains at least
w parties from the set of parties assigned to the edge. In [15], an infinite tree is
constructed with appropriate sets and weights such that the resulting scheme is
an evolving g(n)-threshold secret-sharing scheme; in this scheme the share size
of the j-th party is Õ(j4). Using the fact that we have a gap between b and g
and our reduction to finite access structures, we can construct finite trees result-
ing in more efficient evolving secret-sharing schemes. For example, we optimize
our construction for the evolving (j/2 − j1/8, j/2)-ramp secret-sharing scheme,
resulting in share size Õ(j2.32) for the j-th party. For every β < 1/2 the share
size of the j-th party in our evolving (t/2− tβ , t/2)-ramp secret-sharing scheme

is O(j
4− 1

log2 1/β log2 j).

The results in sections 3 to 6 only apply to evolving (γj − jβ , γj)-ramp
secret-sharing schemes for γ ≤ 1/2. In Section 7 we show that they also apply to
evolving (g(j)−jβ , g(j))-ramp secret-sharing schemes for an arbitrary increasing
function g such that γj ≤ g(j) ≤ j for some constant γ > 0. This is done by
a reduction, where we use a (γj − γjβ , γj)-ramp secret-sharing scheme Π to
construct a (g(j) − jβ , g(j))-ramp secret-sharing scheme Π ′. The reduction is
simple, the share of the j-th party in Π ′ is the share of the g(j)/γ-th party in
Π. Verifying that the reduction is correct is quite easy (see proof of Theorem 7.1).
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In Section 8, we construct an evolving (k/2, k)-ramp secret-sharing scheme
in which the share size of the j-th party is O(log k log j). The idea of the con-
struction is as follows. We use the evolving k-threshold secret-sharing scheme
of [14] as a building box. The secret-sharing scheme of [14] is recursive and its
bottle-neck is a procedure that shares k secrets v1, . . . , vk among a set of parties
of size j, where each secret vi is independently shared using an i-out-of-j thresh-
old secret-sharing scheme. Since each sharing results in a share of size log j, the
total share of the j-th party is k log j. For the ramp scheme, we use a similar
procedure, however we use only log k threshold secret-sharing schemes, where
for every ` ∈ {0, . . . , log k} we share v2` , . . . , v2`+1−1 using a 2`-out-of-j thresh-
old secret-sharing scheme. For the security of the scheme we observe that a set
of size k/2 obtains less than k shares of the evolving k-threshold secret-sharing
scheme, thus learns nothing about the secret. Since sharing k short secrets in a
2`-out-of-j threshold secret-sharing scheme requires only shares of size log j, the
share size in our scheme is O(log k log j).

In Section 9, we analyze the share size in the schemes Πseg and Πtree –
our schemes from Section 4 and Section 6 respectively. We prove that for β >
1/2 the share size in the scheme Πseg is better than the share size in every
implementation of Πtree, that is, for β > 1/2 the best share size achievable using
our schemes is j(1−β)/β . Furthermore, we prove a weak lower bound of Ω(j) on
the best share size in Πseg and Πtree for β ≤ 1/2.

1.3 Previous Works

Secret-sharing schemes were introduced by Shamir [17] and Blakley [3] for thresh-
old access structures, and by Ito, Saito, and Nishizeki for the general case [12].
Shamir’s [17] and Blakley’s [3] constructions are efficient both in the size of the
shares and in the computation required for sharing and reconstruction. The size
of the share in Shamir’s scheme for sharing an `-bit secret among n parties is
max{`, log n}. Kilian and Nisan [13] proved a log(n− k+ 2) lower bound on the
share size for sharing a 1-bit secret for the k-out-of-n threshold access structure
(see [7]). This lower bound implies that Ω(log n) bits are necessary when k is
not too close to n. Bogdanov, Guo, and Komargodski [5] proved that the lower
bound of Ω(log n) bits applies to any secret-sharing scheme realizing k-out-of-n
threshold access structures for every 1 < k < n. When k = 1 or k = n, schemes
with share size of 1 are known.

Ramp secret-sharing schemes. Ramp secret-sharing schemes were presented by
Blakley and Meadows [4]. For long enough secrets, they constructed a (b, g)-
ramp secret-sharing scheme with share size 1/(g− b) times the size of the secret.
Ramp schemes have found numerous applications in cryptography, including ef-
ficient secure multiparty computation (MPC) protocols (Franklin and Yung [11]
and many follow-up works), broadcast encryption (Stinson and Wei [18]) and
error decodable secret sharing (Martin, Paterson, and Stinson [16]). Cascudo,
Cramer, and Xing [7] proved lower bounds on the share size in ramp secret-
sharing schemes: If every set of size at least an can reconstruct the secret while
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every set of size at most bn cannot learn any information on the secret, then the
length of the shares is at least log((1 − b)/(a − b)). Bogdanov et al. [5] showed
that for all 0 < b < a < 1, in any ramp secret sharing the size of the shares is at
least log(a/(a − b)). On the positive side, Chen et al. [8] proved that for every
ε > 0 there is a ramp secret-sharing scheme with share size O(1) in which every
set of size at least (1/2 + ε)n can reconstruct the secret while every set of size
at most (1/2− ε)n cannot learn any information on the secret.

Evolving and online secret-sharing schemes. D’Arco et al. [10] constructed evolv-
ing k-threshold secret-sharing schemes, where the secret is reconstructed only
with probability p < 1, however the share size is O(1). Komargodski and Paskin-
Cherniavsky [15] showed how to transform any evolving secret-sharing scheme
to a robust scheme, where a shared secret can be recovered even if some par-
ties hand-in incorrect shares. Cachin [6] and Csirmaz and Tardos [9] considered
online secret sharing, which is similar to evolving secret-sharing schemes. As in
evolving secret-sharing scheme, in on-line secret-sharing, parties can enroll in
any time after the initialization, and the number of parties is unbounded. How-
ever, in the works on online secret-sharing, the number of authorized sets a party
can join is bounded.

2 Preliminaries

In this section we present formal definitions of secret-sharing schemes and evolv-
ing secret-sharing schemes.

Notations. We denote the logarithmic function with base 2 by log. We use the
notation [n] to denote the set {1, 2, . . . , n}. When we refer to a set of parties
A = {pi1 , pi2 , . . . , pit}, we assume that i1 < i2 < · · · < it.

2.1 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes. Our definition is of
non-perfect secret-sharing schemes, where some sets of parties can reconstruct
the secret, some sets should not get any information on the secret, and there are
no requirements on all other sets.

Definition 2.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties.
A collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ = (ΓYES, ΓNO) is a pair of collections of sets such that
ΓYES, ΓNO ⊆ 2{p1,...,pn}, the collections ΓYES and 2{p1,...,pn}\ΓNO are monotone,
and ΓYES ∩ ΓNO = ∅. Sets in ΓYES are called authorized, and sets in ΓNO are
called unauthorized. The access structure is called an incomplete access structure
if there is at least one subset of parties A ⊆ P such that A 6∈ ΓYES ∪ ΓNO.
Otherwise, it is called a complete access structure.
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Definition 2.2 (Secret-sharing schemes). A secret-sharing Σ = 〈Π,µ〉
over a set of parties P = {p1, . . . , pn} with domain of secrets K is a pair, where µ
is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K × R to a set of n-tuples K1 ×K2 × · · · ×Kn (the
set Kj is called the domain of shares of pj). A dealer distributes a secret k ∈ K
according to Σ by first sampling a random string r ∈ R according to µ, com-
puting a vector of shares Π(k, r) = (s1, . . . , sn), and privately communicating
each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(k, r) as
the restriction of Π(k, r) to its A-entries (i.e., the shares of the parties in A).
The size of the secret is defined as log |K| and the size of the share of party pj
is defined as log |Kj |.

A secret-sharing scheme 〈Π,µ〉 with domain of secrets K realizes an access
structure Γ = (ΓYES, ΓNO) if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ ΓYES, there exists a reconstruc-
tion function ReconB : Ki1 × · · · ×Ki|B| → K such that for every secret k ∈ K
and every random string r ∈ R, ReconB

(
ΠB(k, r)

)
= k.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T ∈ ΓNO, every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉pj∈T ,

Pr[ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ΠT (b, r) = 〈sj〉pj∈T ],

where the probability is over the choice of r from R at random according to µ.

Remark 2.3. For sets of parties A ⊆ P such that A 6∈ ΓYES ∪ ΓNO there are no
requirements, i.e., they might be able to reconstruct the secret, they may have
some partial information on the secret, or they may have no information on the
secret.

Definition 2.4 (Threshold access structures). Let 1 ≤ k ≤ n. A k-out-
of-n threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the
complete access structure accepting all subsets of size at least k, that is, ΓYES =
{A ⊆ P : |A| ≥ k} and ΓNO = {A ⊆ P : |A| < k}.

The well known scheme of Shamir [17] for the k-out-of-n threshold access
structure (based on polynomial interpolation) is an efficient threshold secret-
sharing scheme, whose properties are summerized in the following claim.

Claim 2.5 (Shamir [17]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret-
sharing scheme for secrets of size m realizing the k-out-of-n threshold access
structure in which the share size is `, where ` = max{m, dlog(n+ 1)e}.
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Definition 2.6 (Ramp secret-sharing schemes [4]). Let 0 ≤ b < g ≤ n.
The (b, g)-ramp access structure over a set of parties P = {p1, . . . , pn} is the
incomplete access structure Γb,g = (ΓYES, ΓNO), where ΓYES = {A ⊆ P : |A| ≥
g} and ΓNO = {A ⊆ P : |A| ≤ b}. A (b, g)-ramp scheme with n parties is a
secret-sharing scheme realizing Γb,g.

Chen et al. [8] showed the existence of ramp secret-sharing schemes with
share size O(1).

Claim 2.7 (Chen et al. [8]). For every constant 0 < ε < 1/2 there are integers
` and n0 such that for every n ≥ n0 there is a ((1/2−ε)n, (1/2+ε)n-ramp secret-
sharing scheme with n parties and share size `.

The next corollary, which can be found in [1], shows the existence of ramp
secret-sharing schemes for any gap of Θ(n).

Corollary 2.8. For every constants 0 < b < g < 1 there are integers ` and n0
such that for every n ≥ n0 there is a (b, g)-ramp secret-sharing scheme with n
parties and share size `.

2.2 Secret Sharing for Evolving Access Structures

We proceed with the definition of an evolving access structure, introduced in [14].

Definition 2.9 (Evolving access structures). Let P = {pi}i∈N be an infi-
nite set of parties. An evolving access structure Γ = (ΓYES, ΓNO) is a pair of
collections of sets ΓYES, ΓNO ⊂ 2P , where each set in ΓYES ∪ ΓNO is finite and
for every t ∈ N the collections Γ t , (ΓYES ∩ 2{p1,...,pt}, ΓNO ∩ 2{p1,...,pt}) is an
access structure as defined in Definition 2.1.

Definition 2.10 (Evolving secret-sharing schemes). Let Γ be an evolving
access structure, K be a domain of secrets, where |K| ≥ 2, and {Rt}t∈N, {Kt}t∈N
be two sequences of finite sets. An evolving secret-sharing scheme with domain
of secrets K is a pair Σ = 〈{Πt}t∈N, {µt}t∈N〉, where, for every t ∈ N, µt is a
probability distribution on Rt and Πt is a mapping Πt : K×R1×· · ·×Rt → Kt

(this mapping returns the share of pj).
An evolving secret-sharing scheme Σ = 〈{Πt}t∈N, {µt}t∈N〉 realizes Γ if for

every t ∈ N the secret-sharing scheme 〈µ1×· · ·×µt, Πt〉, where Πt(k, (r1, . . . , rk))
= 〈Π1(k, r1), . . . , Πt(k, r1, . . . , rt)〉, is a secret-sharing scheme realizing Γ t ac-
cording to Definition 2.2.

Definition 2.11 (Evolving ramp access structures). For two non-decreasing
functions b, g : N→ N such that 0 ≤ b(t) < g(t) ≤ t for every t ∈ N, the evolving
(b(t), g(t))-ramp incomplete access structure is the evolving incomplete access
structure Γb(t),g(t), where for a set A whose maximum party is pt:

– A is authorized if |A ∩ {p1, . . . , pj}| ≥ g(j) for some 1 ≤ j ≤ t,
– A is unauthorized if |A ∩ {p1, . . . , pj}| ≤ b(j) for every 1 ≤ j ≤ t.
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In other words,A is authorized in Γb(t),g(t) if it is authorized in the (b(j), g(j))-
ramp incomplete access structure for some j ≤ t and it is unauthorized in
Γb(t),g(t) if it is unauthorized in the (b(j), g(j))-ramp incomplete access struc-
ture for every j ≤ t. In the above definition, there are no requirements on sets
where |A ∩ {p1, . . . , pj}| < g(j) for every j and |A ∩ {p1, . . . , pj}| > b(j) for at
least one j.

In the rest of the paper, the secret is taken from {0, 1}.

3 Reduction to an Access Structure with a Finite
Number of parties

Our goal is to construct an evolving (γt− f(t), γt)-ramp secret-sharing scheme
for any constant 0 < γ < 1 and some function 0 < f(t) ≤ γt such that γt− f(t)
is non-decreasing. We show that to construct a ramp evolving secret-sharing
scheme (with an unbounded number of parties) it suffices to construct a secret-

sharing scheme for an access structure Γ ft,ρ,γ with a finite number of parties.
The ramp evolving secret-sharing schemes we construct will use many copies of
a scheme realizing Γ ft,ρ,γ (for every t that is a power of 2). In the definition of

Γ ft,ρ,γ , there is a parameter 0 < ρ ≤ 1. This parameter adds flexibility to our
reductions and we use different values of ρ in our two constructions.

Definition 3.1 (The access structure Γ ft,ρ,γ). Let 0 < γ < 1 be a constant
and f : N→ N be a function such that 0 < f(j) < γj for every j ∈ N and γt−f(t)
is non-decreasing, let t be an integer, and let 0 < ρ ≤ 1. The incomplete access
structure Γ ft,ρ,γ over the set of parties {pρ·f(t), pρ·f(t)+1, . . . , p2t} is the following
access structure, where for a set A = {pi1 , . . . , pik} ⊆ {pρ·f(t), . . . , p2t}:

– if ij > t and j ≥ γij − γρ · f(t) for some j ∈ [k], then A is authorized.
– If j ≤ γij − f(ij) for every j ∈ [k], then A is unauthorized.

Example 3.2. Consider the case that f(t) =
√
t and the access structure Γ

√
j

t,1,1/2

whose parties are {p√t, . . . , p2t}. The subset {p(t+√t+3)/2, . . . , pt+1} is authorized

since it contains (t+1)/2−
√
t/2 parties. The subset of parties {p3t/2+1, . . . , p2t}

is unauthorized for t > 32 since for every pij in the set it holds that ij/2−
√
ij >

3t/4−
√

2t ≥ t/2 ≥ j.

Theorem 3.3. Let 0 < ρ ≤ 1. If for every t there is a secret-sharing scheme
Πf
t,ρ,γ realizing the access structure Γ ft,ρ,γ , where, for ρ · f(t) ≤ j ≤ t, the size of

the share of party pj is ct(j), then the scheme Πreduction, described in Figure 1,
realizes the evolving access structure Γγt−f(t),γt, where the size of the share of
pj is

∑
t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t ct(j).

Proof. We first prove the correctness of the scheme Πreduction. Consider a min-
imal authorized set A = {pi1 , . . . , pik} of Γγt−f(t),γt, thus, k ≥ γik. Let ` ∈ N
be the index such that 2` < ik ≤ 2`+1 and let t = 2`, thus, t < ik ≤ 2t. As
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The Scheme Πreduction

– For every ` ∈ N do:
• Let t = 2`

• When party pρ·f(t) arrives, prepare the shares of Πf
t,ρ,γ , denote these

shares by st,ρ·f(t), . . . , st,2t.
– The share of party pj is (st,j){ t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t }.

Fig. 1. The scheme Πreduction that realizes the evolving ramp access structure
Γγt−f(t),γt, assuming a scheme Πf

t,ρ,γ realizing Γ ft,ρ,γ .

A is a minimal authorized set, it contains less than γρ · f(t) parties among the
parties {p1, . . . , pρ·f(t)−1}, i.e., it contains at least γik − γρ · f(t) parties from

{pρ·f(t), . . . , p2t}. This implies that A is authorized in Γ ft,ρ,γ , thus, the parties in

A can reconstruct the secret from their shares in Πf
t,ρ,γ .

We now prove the security of the scheme. Consider a set A that is unau-
thorized in Γγt−f(t),γt. By definition, it is unauthorized in all Γ ft,ρ,γ , thus, the
parties in A have no information on the secret.

The share of pj contains shares of Πf
t,ρ,γ for every value t such that t is a

power of 2 and ρ · f(t) ≤ j ≤ 2t, that is, the size of pj ’s share is∑
t : ∃i∈Nt=2i∧ρ·f(t)≤j≤2t

ct(j).

For the case that f(t) = tβ for some 0 < β < 1, the reduction in Theorem 3.3
yields the following result.

Corollary 3.4. Let 0 < β < 1 be a constant and c : N → N be a function. If

for every t there exists a scheme realizing Γ
f(t)=tβ

t,1/2,γ where the size of the share

of each party pj, for tβ/2 < j ≤ 2t, is c(j), then there exists a scheme realizing
Γγt−tβ ,γt in which the size of the share of each party pj, for j ∈ N, is c(j) log j.

Our main challenge in sections 4 to 6 is to construct efficient schemes realizing
the access structure Γ ft,ρ,γ for some parameter ρ.

Example 3.5. Consider the evolving (t/4, t/2)-ramp access structure, i.e., f(t) =

t/4. In this case, Γ
f(t)=t/4
t,1,1/2 is an access structure over the parties {pt/4, . . . , p2t}.

A first attempt to realize Γ
f(t)=t/4
t,1,1/2 is to use one threshold secret-sharing scheme.

This attempt fails since the set {p5t/8+1, . . . , pt+1} is an authorized set of size
≈ 3t/8, while {p3t/2, . . . , p2t} is an unauthorized set of size 2t/4 = t/2. To solve

this problem, we use 4 threshold schemes. That is, to realize Γ
f(t)=t/4
t,1,1/2 , for every
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α = 1, 2, 3, 4, we share the secret s using a (2+α)t/8-out-of-(4+α−1)t/4 among
the parties {pt/4, . . . , pt+αt/4}. In the next two paragraphs we prove that this

scheme realizes Γ
f(t)=t/4
t,1,1/2 .

Consider a minimal authorized set A = {pi1 , . . . , pik} of Γ
f(t)=t/4
t,1,1/2 and let α

be such that t+(α−1)t/4 < ik ≤ t+αt/4. This set contains at least ik/2−t/8 ≥
(1 + (α − 1)/4)t/2 − t/8 = (2 + α)t/8 parties from the set {pt/4, . . . , pt+αt/4},
thus it can reconstruct the secret.

Consider an unauthorized set A of Γ
f(t)=t/4
t,1,1/2 . For every α = 1, 2, 3, 4, it con-

tains at most (1+α/4)t/4 parties among the parties {pt/4, . . . , pt+αt/4} (as such
set contains at most a quarter of the parties ending at party (1 + α/4)t). Since
(1 +α/4)t/4 < (2 +α)t/8, the parties in A cannot learn any information on the
secret from each of the 4 schemes, thus, cannot learn any information on the
secret.

The size of the share of party pj in this scheme for Γ
f(t)=t/4
t,1,1/2 is O(log t) =

O(log j) (as this is the share size in Shamir’s scheme). If instead of sharing the
secret using a threshold secret-sharing scheme, we share the secret using a (non-
evolving) ((1 + α/4)t/4, (2 + α)t/8)-ramp secret-sharing scheme, the size of the
share will be reduced to O(1), by [8] (see Corollary 2.8).

By Theorem 3.3, the size of the share of pj in the evolving scheme realizing

Γt/4,t/2 is the sum of the shares in the schemes realizing Γ
f(t)=t/4
t,1,/1/2 , where t is a

power of two such that t/4 < j < 2t. Thus, the share size of pj is O(1).

4 First Scheme Realizing Γ
f(t)
t,1,γ: The Segments Technique

In this section we construct a simple scheme Πseg realizing Γ ft,1,γ for 0 < γ ≤ 1/2.
We analyze the share size of the evolving ramp scheme resulting by using Πseg

in Πreduction for a function f(t) = tβ for some β < 1. For β ≥ 1/2 this is our
best scheme. For smaller values of β, the scheme presented in Section 6 is more
efficient.

The scheme Πseg is a generalization of the scheme presented in Example 3.5;

we realize Γ ft,1,γ using several threshold secret-sharing schemes on increasing
segments of parties, where for larger segments we use larger thresholds. The
scheme is described in Figure 2.

Lemma 4.1. Let 0 < γ ≤ 1/2. The secret-sharing scheme Πseg, described in

Figure 2, realizes the access structure Γ ft,1,γ with share size O(t/f(t) log t).

Proof. We start by proving the correctness of the scheme Πseg. Consider a min-

imal authorized set A = {pi1 , pi2 , . . . , pik} of Γ ft,1,γ and let α be such that
t+ (α− 1)f(t) < ik ≤ t+ αf(t). Since A is a minimal authorized set,

|A| = k ≥ γik − γf(t) > γ(t+ (α− 1)f(t))− γf(t) = γ(t+ (α− 2)f(t)).

Since |A| is an integer,

|A| ≥ bγ(t+ (α− 2)f(t))c+ 1.
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The Scheme Πseg

– For α = 1 to dt/f(t)e,
• Share s using Shamir’s (bγ(t+ (α− 2)f(t))c+ 1)-out-of-

(t+ (α− 1)f(t)) secret-sharing scheme among the parties
{pf(t), . . . , pt+αf(t)}; let sα,f(t), sα,f(t)+1, . . . , sα,t+αf(t) be the
shares in this scheme.

– The share of pj is (sα,j){α:α≥max{1,(j−t)/f(t)}}.

Fig. 2. A scheme Πseg realizing the access structure Γ ft,1,γ .

By the construction, the parties in A can reconstruct the secret from the thresh-
old scheme for the parties {pf(t), . . . , pt+αf(t)}.

We continue by proving the security of the scheme. Consider an unauthorized
set A. We show that for every α, the parties in A cannot learn any information
about the secret from the threshold scheme for {pf(t), . . . , pt+αf(t)}. Note that
f(t+αf(t)) ≥ f(t+ f(t)) ≥ 2γf(t+ f(t)). Since A is unauthorized, the number
of parties in A ∩ {pf(t), . . . , pt+αf(t)} is at most

γ(t+ αf(t))− f(t+ αf(t)) ≤ γ(t+ αf(t))− 2γf(t) = γ(t+ (α− 2)f(t)).

Thus, the parties in A cannot learn any information about the secret from the
shares of each threshold scheme. As these schemes are executed with independent
randomness, the parties in A cannot learn any information about the secret.

Finally, we analyze the share size of each party in the scheme. Each party gets
at most O(t/f(t)) shares of Shamir’s secret-sharing scheme with O(t) parties; the
size of each such share is O(log t). Thus. the total share size is O(t/f(t) log t).

We next present two conclusions of Lemma 4.1.

Theorem 4.2. For every constants 0 < δ < γ ≤ 1/2, the evolving (δt, γt) ramp
access structure can be realized by an evolving secret-sharing scheme with share
size O(1) for every party.

Proof. Let b = γ − δ. In this case f(t) = bt and Γ
f(t)=bt
t,1,γ is an access structure

whose parties are {pbt, . . . , p2t}. By Lemma 4.1, Πseg realizes Γ
f(t)=bt
t,1,γ with share

size O(log t) (since b is constant). We next show how to reduce the share size to
O(1). By the construction, the secret is shared among the parties {pbt, . . . , pt+btα}
for every α = 1 to d1/be by a (bγt(1+bα−2b)c+1)-out-of-(t+(α−1)bt) thresh-
old secret-sharing scheme. However, in an unauthorized set there are at most
δ(t + btα) = (γ − b)(t + btα) = γt(1 + bα − b/γ − b2α/γ) < γt(1 + bα − 2b)
parties. Therefore, we can share the secret by a (γt(1+ bα−b/γ−b2α/γ), γt(1+

bα− 2b) + 1)-ramp secret-sharing scheme. By Corollary 2.8, we realize Γ
f(t)=bt
t,1,γ

with share size O(1) for every party. By Theorem 3.3, the size of the share of pj
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in the evolving scheme realizing Γδt,γt is the sum of the shares in the schemes

realizing Γ
f(t)=bt
t,1,γ , where t is a power of two such that δt < j < 2t. There are

O(1) schemes. Thus, the share size of pj is O(1).

The same result was presented in [1]. However, the analysis of the new scheme
is much simpler than the one in [1].

Theorem 4.3. Let β > 0 and 0 < γ ≤ 1/2. There exits an evolving (γt−tβ , γt)-
ramp secret-sharing scheme in which for every j ∈ N the share size of pj is
O(j(1−β)/β log j).

Proof. Consider the schemeΠreduction withΠseg as the scheme realizing Γ
f(t)=tβ

t,1,γ .

By Lemma 4.1, the scheme Πseg realizes Γ
f(t)=tβ

t,1,γ , where the share size of pj is

ct(j) = O(t1−β log t). Thus, by Theorem 3.3, Πreduction realizes the evolving
ramp access structure Γγt−tβ ,γt, where the share size of the party pj is∑

t : ∃i∈Nt=2i∧tβ≤j≤2t

ct(j) =
∑

t : ∃i∈Nt=2i∧j/2≤t≤j1/β
ct(j).

The largest value of t in the above sum is j1/β and cj1/β (j) = O(j(1−β)/β log j);

the second largest value of t in the above sum is j1/β/2 and cj1/β/2(j) =

O(j(1−β)/β/21−β log j) and so on. Thus, the share size of pj is a sum of a geo-
metric sequence and is O(j(1−β)/β log j).

5 Realizing Weighted Trees Access Structures

In this section, we review and generalize the tree technique introduced in [15]
(generalizing ideas of [14]) in order to construct a scheme for the evolving ma-
jority access structure.

Next we overview and generalize the tree technique. In Section 6, we construct
a specific tree that we use in our constructions.

5.1 A Secret Sharing Scheme Realizing Finite Trees

In this section, we define a complete access structure from a tree and show how
to realize it. This scheme is a special case of the scheme realizing the connectivity
access structure [2].

Let T = (V,E) be a directed tree such. The edges in the tree represent the
parties in the access structure. A set of edges is authorized if it contains a path
from the root to a leaf, otherwise it is an unauthorized and should not learn any
information on the secret.

We next describe a simple scheme ΠT realizing this tree. Let k ∈ {0, 1} be
the secret. The share of each edge (u, v) is a bit ru,v computed as follows: if v
is not a leaf, then it is a uniformaly distributed random bit. Otherwise, if v is
a leaf and P = (v0, v1, . . . , vn−1 = u, vn = v) is the path from the root to v,
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then ru,v = ⊕n−2i=0 rvi,vi+1
⊕k. To see that this scheme is correct, observe that the

edges on a path can reconstruct the secret by computing the exclusive-or of the
shares given to the parties (edges) of the path.

To see that this scheme is secure consider an unauthorized set, that is, a set
of edges F not containing a path from s to a leaf. Define the set of nodes V1 such
that vi ∈ V1 if there exist a path from the root to vi in (V, F ). By definition,
s ∈ V1 and V1 does not contain leaves. Furthermore, for every (vi, vj) ∈ F either
both nodes vi, vj are in V1 or both of them are not in V1. Let {ri,j}(vi,vj)∈F be a
set of shares generated for the parties in F with a secret k, where ri,j is the share
given to party (vi, vj). We next show that the same set of shares can be used to
share the secret k⊕1. Complete {ri,j}(vi,vj)∈F to shares {ri,j}(vi,vj)∈E of all the
parties in the tree for the secret k. Consider the shares r′i,j such that r′i,j = ri,j⊕1
if vi ∈ V1 and vj 6∈ V1 and r′i,j = ri,j otherwise. Notice that r′i,j = ri,j for every
(vi, vj) ∈ F . We claim that the shares {r′i,j}(vi,vj)∈E are shares for the secret
k ⊕ 1. This is true since for any simple path s = v0, v1, . . . , vn−1, vn = v from
the root to a leaf contains exactly one edge (vi, vi+1) such that vi ∈ V1 and
vi+1 /∈ V1 and the exclusive or of the shares given to the parties (edges) on the
path is k ⊕ 1. As we describe a bijection between the shares of k and k ⊕ 1, the
probability of {ri,j}(vi,vj)∈F given k and k ⊕ 1 is equal, thus the security holds.

5.2 Secret-Sharing Schemes Realizing Finite Weighted Trees

Following [15], we describe an access structure for a finite directed weighted tree
T = (V,E) such that V = ∪ni=1Vi, where Vi are the vertices of distance i from the
root and each edge (u, v) has weight wu,v. In addition, for each edge we assign
a set of parties; informally, any set of at least wu,v parties among the parties
assigned to an edge can reconstruct “the bit of the edge”.

We remark that the tree used in [15] is infinite. However, since we allow a
gap between the sizes of authorized and unauthorized sets, we can use a scheme
realizing a finite tree.

Terminology: We use the following notations in our constructions.

– The i-th layer of the tree contains nodes of distance exactly i from the root.
– A node in the i-th layer is identified by the sequence of weights assigned to

the edges along the path from the root to that node; the node is denoted
by uw1,w2,...,wi , where w1, . . . , wi are the weights of the edges from the root
to the node. That is, the root is uε and for every nodes uw1,w2,...,wi−1

and
uw1,w2,...,wi−1,wi in the (i − 1)-th and i-th layers respectively there is an
edge with weight wi connecting them. We assume that for every node in the
tree the weights of the edges of its children are distinct, thus, the notation
uw1,...,wi uniquely identifies a node.

– We assign parties to each edge of the tree. That is, we consider a function
q : V → N such that q(uε) is the index of the first party in the scheme
and q(v) for every (u, v) ∈ E for v ∈ V , the parties {pq(u)+1, . . . , pq(v)} are
assigned to the edge (u, v).
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Definition 5.1. Given a finite weighted tree T = (V,E) with the weight function
w : E → N and the function q : V → N, let umax = maxv∈V {q(v)}. We define
the complete access structure ΓT,w,q with parties {pq(uε), . . . , pq(umax)}, where
a set A is authorized in the access structure if and only if there exists a leaf
uw1,...,wi in the tree and a path

(uε, uw1
), (uw1

, uw1,w2
), . . . , (uw1,...,wi−1

, uw1,...,wi)

such that |A ∩ {pq(uw1,...,wj−1
)+1, . . . , pq(uw1,...,wj

)}| ≥ wj for every 1 ≤ j ≤ i.

Given a finite weighted tree T , we construct a secret-sharing scheme, denoted by
Πwt, realizing ΓT,w,q. We next informally describe the secret-sharing scheme for
the weighted tree: we first share the secret using the scheme of Section 5.1. Then
for every edge (u, v) we share the bit given to (u, v) by a threshold secret-sharing
scheme among the parties assigned to the edge; the threshold used is the weight
of the edge. The formal description of Πwt appears in Figure 3.

The Scheme Πwt

– Run ΠT on the tree T . Denote the share given to an edge (u, v) by ru,v,
where if w(e) = 0 then re = 0 (instead of a random bit).

– For every edge (vw1,w2,...,wi−1 , vw1,w2,...,wi−1,wi) such that wi > 0,
share the bit rvw1,w2,...,wi−1

,vw1,w2,...,wi−1,wi
among the par-

ties {pq(vw1,w2,...,wi−1
)+1, . . . , pq(vw1,w2,...,wi−1,wi

)} by a wi-out-of-(
q(vw1,w2,...,wi−1,wi)− q(vw1,w2,...,wi−1)

)
threshold secret-sharing scheme.

Fig. 3. The scheme Πwt that realizes the access structure ΓT,w,q.

Lemma 5.2. The scheme Πwt realizes ΓT,w,q.

Proof. Since we share the secret using ΠT, a set A can reconstruct the secret iff it
can reconstruct the bits rvε,v1 , rv1,v2 , . . . , rvc−1,vc for some path (vε, . . . , vc) from
the root to a leaf. Let w1, . . . , wc be the weights of the edges on this path. The
bit rvj−1,vj is shared by a wj-out-of-(q(vj)− q(vj−1)) threshold secret-sharing
scheme among the parties {pq(vj−1)+1, . . . , pq(vj)} and A can learn the bit rvj−1,vj

if and only if |A ∩ {pq(vj−1)+1, . . . , pq(vj)}| ≥ wj .

6 The Second Scheme Realizing Γ ft,1/2,γ: The Tree
Technique

We show how to use the secret sharing for weighted trees described in Section 5
to realize Γ ft,1/2,γ , thus, to construct evolving ramp secret-sharing schemes. Our
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scheme Πtree can be used for arbitrary functions f(t), however to simplify the
analysis of the share size, we only consider functions f(t) = tβ for some constant
0 < β < 1. In Figure 4, we define a weighted tree Tramp. The tree contains n+ 1
layers for some constant n. The first n layers partition the parties pf(t)/2, . . . , ptα

(for some α ≤ 1 as will be defined later) to n sets of consecutive parties, and
the parties corresponding to edges from the (i − 1)-th layer to the i-th layer
are the parties from the i-th set. The (n + 1)-th layer adds, for every node of
layer n, edges as in the segment construction in Section 4 for the set of parties
ptα+1, . . . , p2t. We construct a scheme Πtree:

– Execute Πwt on Tramp.

1. Parameters:
– n: the number of layers in the tree (to be fixed later).

– q0, q1, q2, . . . , qn: q0 = f(t)
2

, qn ≤ t, qn+1 = 2t, where q1, q2, . . . , qn will
be chosen later.

– Let di = t+ if(t) for 0 ≤ i < t
f(t)

; m = d t
f(t)
e and dm = 2t.

– Let Wi = {0, γf(t)
2n

, 2γf(t)
2n

, . . . , b 2nqi
γf(t)
c · γf(t)

2n
} for 0 ≤ i ≤ n.

2. Layer V0 contains the root uε with q(uε) = q0.
3. For every 1 ≤ i ≤ n, for each uw1,w2,...,wi−1 ∈ Vi−1

and wi ∈ Wi ∪ {
∑i−1
j=1 wj} such that wi ≥

∑i−1
j=1 wj , add

the node u
w1,w2,...,wi−1,wi−

∑i−1
j=1 wj

in layer Vi, add the edge

(uw1,w2,...,wi−1 , uw1,w2,...,wi−1,wi−
∑i−1
j=1 wj

) (with weight wi −
∑i−1
j=1 wj),

and define q(uw1,...,wi−1,wi) = qi.
4. Add an additional layer Vn+1: For every 0 ≤ i ≤ t

f(t)
, for every

uw1,w2,...,wn ∈ Vn, add the node uw1,w2,...,wn,w to Vn+1, where w =
dγdi −

∑n
i=1 wi − γf(t)e, add the edge (uw1,w2,...,wn , uw1,w2,...,wn,w), and

define q(uw1,w2,...,wn,w) = di+1.

Fig. 4. The weighted tree Tramp used for realizing Γ ft,1/2,γ .

Lemma 6.1. Let f be a function such that f(t+f(t)) > f(t). The scheme Πtree

realizes the access structure Γ ft,1/2,γ .

Proof. We start by proving the correctness of the scheme, that is, if A =

{pi1 , pi2 , . . . , pik} such that t < ik ≤ 2t and k ≥ γik − γf(t)
2 , then A can re-

construct the secret. By Lemma 5.2, we need to prove that there is a path from
the root to a leaf uw1,...,wn+1

such that

|A ∩ {pq(uw1,...,wi−1
)+1, . . . , pq(uw1,...,wi

)}| ≥ wi (1)
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for every 1 ≤ i ≤ n + 1. Let zi = |A ∩ {pqi−1+1, . . . , pqi}| for 1 ≤ i ≤ n. We
define the weights inductively. Assume that we defined w1, . . . , wi−1 such that
(1) holds for them. Let wi = max{w −

∑i−1
j=1 wj : w ∈ Wi, w ≤

∑i−1
j=1 wj + zi}.

By the construction of Wi, wi ≥ zi− γ
2nf(t). The path from the root to uw1,...,wn

satisfies (1) for every 1 ≤ i ≤ n and

n∑
i=1

wi ≥ |A ∩ {pf(t)/2, . . . , ptαn }| −
γf(t)

2
. (2)

Let j be the index such that dj < ik ≤ dj+f(t) and let wn+1 = dγdj−
∑n
i=1 wi−

γf(t)e. By the construction of Tramp there is an edge between uw1,...,wn and
uw1,...,wn,wn+1 . To complete the proof of the correctness, we need to show that
|A ∩ {ptαn+1, . . . , pdj+f(t)}| ≥ wn+1:

|A ∩ {ptαn+1, . . . , pdj+f(t)}| = |A| − |A ∩ {pf(t)/2, . . . , ptαn }|

≥ γik −
γf(t)

2
−

(
n∑
i=1

wi +
γf(t)

2

)

≥ γdj −
n∑
i=1

wi − γf(t).

Since |A ∩ {ptαn+1, . . . , pdj+f(t)}| is an integer, |A ∩ {ptαn+1, . . . , pdj+f(t)}| ≥
dγdj −

∑n
i=1 wi − γf(t)e = wn+1.

We next prove the security of the scheme. Let A be an unauthorized set of
Γ ft,1/2,γ . By Lemma 5.2, we need to prove that there is no path from the root to

a leaf uw1,...,wn+1
such that

|A ∩ {pqw1,...,wi−1+1
, . . . , pqw1,...,wi

}| ≥ wi

for every i = 1, . . . , n + 1. Fix such a leaf uw1,...,wn+1 and let j be the index
such that wn+1 = dγdj −

∑n
i=1 wi − γf(t)e and q(uw1,...,wn+1

) = dj+1. Since A
is unauthorized,

|A ∩ {pf(t)/2, . . . , pdj+1
}| ≤ γdj+1 − f(dj+1) < γdj+1 − f(t), (3)

where the last inequality is implied by the assumption that f(t+ (j + 1)f(t)) ≥
f(t + f(t)) > f(t) for every t. If |A ∩ {pqw1,...,wi−1

+1, . . . , pqw1,...,wi
}| < wi for

some i = 1, . . . , n, then we are done. Otherwise,

|A ∩ {ptαn+1, . . . , pdj+1
}| = |A ∩ {pf(t)/2, . . . , pdj+1

}| − |A ∩ {pf(t)/2, . . . , ptαn }|

< (γdj+1 − f(t))−
n∑
i=1

wi ≤ wn+1.
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6.1 Analysis of the Share Size

We next analyze the share size of the scheme Πtree for a function f(t) = tβ for
some 0 < β < 1. In this case, it would be convenient to write q0 = tα0 , q1 =
tα1 , . . . , qn = tαn , qn+1 = 2tαn+1 = 2t (where αn+1 = 1) and express the share
size as a function of α0, . . . , αn, αn+1.

Lemma 6.2. Let q0 = tβ/2, α0 = β, αn+1 = 1, qn+1 = 2t, and let n and
α1, α2, . . . , αn, αn be constants such that β < α1 < α2 < · · · < αn ≤ αn+1 ≤ 1.
Denote qi = tαi for i = 1, . . . , n. For every 1 ≤ i ≤ n+ 1 and qi−1 < j ≤ qi, the

share size of the party pj in Πtree is O

(
j

∑i
`=1 α`−iβ
αi−1 log j

)
.

Proof. The share of party pj is composed of many shares of Shamir’s threshold
secret-sharing scheme with O(t) parties; the size of each such share is O(log t).
The number of shares of a threshold secret-sharing that party pj gets is the
number of edges between layer i − 1 and layer i in Tramp, i.e., the number of
nodes in layer i in Tramp; this number is bounded from above by

i∏
`=1

|W`| =
i∏

`=1

2nq`
γf(t)

=

i∏
`=1

2n

γ
tα`−β =

(
2n

γ

)i
· t(

∑i
`=1 α`)−iβ .

This holds also for parties ptαn+1, . . . , p2t by taking αn+1 = 1 and |Wn+1| = t1−β .

As n, i, αi = O(1), the total share size of pj is O

(
j

∑i
`=1 α`−iβ
αi−1 log j

)
.

By Theorem 3.3 and Lemma 6.2 we get the following lemma.

Lemma 6.3. Let n and α0, α1, . . . , αn, αn+1 be constants such that β = α0 <
α1 < α2 < · · · < αn ≤ αn+1 = 1. Define

C = max

{∑i
`=1 α` − iβ
αi−1

: 1 ≤ i ≤ n+ 1

}
.

Then, there is a secret-sharing scheme realizing Γ
f(t)=tβ

t,1/2,γ , where the size of the

share of pj, for tβ/2 < j ≤ 2t, is O(jC log j) and there is an evolving secret-
sharing scheme realizing Γγt−tβ ,γt, where the size of the share of pj, for j ∈ N,

is O(jC log2 j) .

In order to find the best share size, we should find the number of layers n
and the values of α1, . . . , αn that minimize the above value C.

Example 6.4. Take α0 = β and αi = 2αi−1 for 0 ≤ i ≤ log 1/β and let i, j be
such that tαi−1 < j ≤ tαi . In this case n = log(1/β). The share size of party pj

in the scheme realizing Γ
f(t)=tβ

t,1/2,γ is O(jC log j), where

C =

∑i
`=1 α` − iβ
αi−1

=

∑i
`=1 2`β − iβ

2i−1β
=

2i+1 − 1− i
2i−1

≤ 4− 2β log(1/β),
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where the last inequality is implied by the fact that i ≤ log(1/β). By Corol-
lary 3.4, this implies a scheme realizing the evolving access structure Γγt−tβ ,γt
with share size O(j4−β log(1/β) log2 j). This should be compared to the secret-
sharing scheme of [15], which realizes the dynamic majority access structure
(i.e., Γt/2−1,t/2) with share size Õ(j4). Thus, our scheme improves on the scheme
of [15] for every constant β > 0, showing that allowing a gap between the sizes of
the authorized and unauthorized sets reduces the share size, in the best known
schemes.

Our goal in the rest of the section is to find better choices of α1, . . . , αn, αn
that will reduce the share size. For β = 1/8 this is done in Example 6.6; similar
optimization can be done for every fixed β. For general values of β this is done
in Claim 6.8, where we care about the asymptotic dependency of the exponent
in the share size on β.

Example 6.5. We next analyze the optimal share size that we can get by our
scheme using one layer. We need to choose β < α1 ≤ 1. By Lemma 6.2, the

share size of the parties pj where tβ/2 ≤ j ≤ tα1 is O(j
α1−β
β log j), and the share

size of the parties pj where tα1 < j ≤ 2t is O(j
α1+1−2β

α1 log j). We need to find

α such that max{α1−β
β , α1+1−2β

α1
} is minimized. The solution of this problem

is when α1−β
β = α1+1−2β

α1
(since increasing α1 will increase α1−β

β and decrease
α1+1−2β

α1
), therefore, α1 = β +

√
β − β2 and the exponent in the share size is√

1/β − 1. Note that by using 0 layers, the exponent in share size is 1/β − 1.

Since for β > 1/2 it holds that 1/β − 1 <
√

1/β − 1, then 0 layers is better in
this case than one layer.

Example 6.6. We present an upper bound for the share size that can be achieved
by our construction for β = 1

8 . We get this upper bound for n = 2, that is, when

q0 = t1/8

2 , q1 = tα1 , q2 = tα2 , q3 = 2t. We need to find α1 and α2. By Lemma 6.2,

the share size of the parties pj , where t1/8/2 ≤ j ≤ tα1 , is O(j
α1−1/8

1/8 log j), the

share size of the parties pj , where tα1 < j ≤ tα2 , is O(j
α1+α2−2/8

α1 log j), and the

share size of the parties pj , where tα2 < j ≤ 2t, is O(j
α1+α2+1−3/8

α2 log j). In order
to find the an upper bound, we solve the following non-linear program.

Minimize C subject to:

α1 − 1/8 ≤ C/8
α2 + α1 − 2/8 ≤ Cα1

1 + α1 + α2 − 3/8 ≤ Cα2

1/8 < α1 < α2 ≤ 1
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A possible solution for this problem is α1 = 0.413857, α2 = 0.792505. In this
case, C = 2.310852. However, we do not know if this solution is optimal.

Theorem 6.7. There is an evolving secret-sharing scheme realizing the evolving
access structure Γγt−t1/8,γt, where the share size of party pj is O(j2.32 log2 j).

Choosing the Parameters for the General case. In this subsection, we
show how to choose good parameters for a general 0 < β < 1/2. To minimize

the share size, we need to minimize
∑i
`=1 α`−iβ
αi−1

. As the saving we aim to is bigger

than iβ, we will ignore this term and minimize
∑i
`=1 α`
αi−1

=
∑i−2
`=1 α`
αi−1

+ 1 + αi
αi−1

.

In Example 6.6, we saw that if we take the values of αi as a geometric sequence
with common ratio 2, then we get an exponent slightly smaller than 4. If α` is
much smaller than 2α`−1 for many values on `, then

∑i−2
`=1 α` will be greater

than αi−1 and the exponent in the share size will be larger than 4. On the other
hand, if αi is bigger than 2αi−1, then αi−1

αi
> 2 and, also in this case, the share

size will be larger than 4. Thus, we take a sequence that is close to geometric
sequence with common ratio 2.

Claim 6.8. Let α0 = β and αi = (2+ 1
2i )·αi−1 until the first n such that αn ≥ 1

(and define αn = 1). Then, for every i

∑i
i=1 α` − iβ
αi−1

≤
(

4−O
(

1

log2(1/β)

))
.

Proof. Note that αi > 2αi−1, so n ≤ log(1/β). Furthermore, for every ` ≤ i

α` =
αi(

2 + 1
2(`+1)

)
· . . . ·

(
2 + 1

2i

) ≤ αi

(2 + 1
2i )

i−` .

Thus,

i∑
`=1

αj ≤
i∑

`=1

αi(
2 + 1

2i

)i−`
=

αi(
2 + 1

2i

)i
(
2 + 1

2i

)i+1 −
(
2 + 1

2i

)(
1 + 1

2i

)
≤ αi

(
2 +

1

2i

)(
1− 1

2i+ 1

)
.
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For every 2 ≤ i ≤ n,∑i
`=1 α` − iβ
αi−1

≤
∑i−1
`=1 α` + αi
αi−1

≤
(

2 +
1

2(i− 1)

)(
1− 1

2(i− 1) + 1

)
+

αi
αi−1

≤ 4− 1

2i(2i− 1)

≤ 4−O
(

1

log2(1/β)

)
,

where the last inequality is implied by the fact that i ≤ n ≤ log(1/β). Note that
for i = n+ 1 it holds that αn

αn−1
= 1 and therefore the the inequality holds.

For example, for β = 2−20 the exponent is less than 4− 1/(40 · 39) < 3.9994.
This should be compared to the simpler solution given in Example 6.4, where
the exponent is 4− 40/220 > 3.99996.

By Lemma 6.3 and Claim 6.8, we obtain our evolving ramp secret-sharing
scheme.

Theorem 6.9. For every constants 0 < β < 1 and 0 < γ < 1, there is an
evolving secret-sharing scheme realizing the access structure Γγt−tβ ,γt, where the

share size of party pj, for j ∈ N, is O
(
j
4−O( 1

log2(1/β)
)
log2 j

)
.

Remark 6.10. In our analysis in Section 6.1 we ignore the factor of iβ in the
exponent in the share size. This implies that in our construction of Tramp we
can take Wi = {0, 1, . . . , qi}. The saving in this case, compared to the scheme of
[15], stems from the fact that we take a collection of finite trees, where in each
tree we ignore the first f(t)/2 parties.

7 Reduction between Evolving Ramp Secret-Sharing
Schemes

In this section we show how to construct an evolving secret-sharing scheme
realizing Γg(t)−f(t),g(t) for any function g(t) ≥ γt for some constant γ from
an evolving secret-sharing scheme realizing Γγt−f(t/γ),γt. Our construction only
works if g(t) ≥ γt. For this case, we obtain a scheme with share size as in the
scheme for the access structure Γγt−f(γt),γt (up to constants).

Theorem 7.1. Let d ∈ N be a constant, γ = 1/d, and g : N → N be an
increasing function such that γt ≤ g(t) ≤ t for every t ∈ N, and let Π be a
scheme that realizes the evolving ramp access structure Γγt−f(γt),γt such that
the length of the share of party pj is c(j). Then there is a scheme realizing the
evolving ramp access structure Γg(t)−f(t),g(t) such that the size of the share of
party pj is c(g(j)/γ).
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Proof. In Figure 5 we describe the scheme Π ′ that realizes the evolving access
structure Γg(t)−f(t),g(t). Next we prove the correctness and security of this scheme
as well as analyzing its share size.

The Scheme Π ′

For every j ∈ N:

1. Give party pj the share of party pg(j)/γ in Π.

Fig. 5. The scheme Π ′ that realizes the evolving access structure Γg(t)−f(t),g(t).

First we can observe that party pj in Π ′ gets the share of party pg(j)/γ in Π
such that g(j)/γ ≥ j. Also, since g is an increasing function and γ < 1, for every
j > j′, parties pj and pj′ in Π ′ get shares of parties pt and pt′ in Π, respectively,
such that t > t′.

Correctness: Let A = {pi1 , . . . , pik} be a minimal authorized set, i.e., |A| =
k ≥ g(ik). We show that A can reconstruct the secret. It holds that |A| ≥ g(ik)
and the parties in A get shares of parties in the set {p1, . . . , pg(ik)/γ} in Π, thus
they can reconstruct the secret.

Security: Let A = {pi1 , . . . , pik} be an unauthorized set. Thus, for every 1 ≤
j ≤ k, parties pi1 , . . . , pij in Π ′ get shares of parties in the set {p1, . . . , pg(ij)/γ},
and

j ≤ g(ij)− f(ij) ≤ γg(ij)/γ − f(γg(ij)/γ)

(as g(ij) ≤ ij). Thus, for every 1 ≤ j ≤ k, parties pi1 , . . . , pij in Π ′ get shares of
an unauthrized set in Γγt−f(γt),γt, and the parties pi1 , . . . , pik get no information
about the secret.

Share size: Party pj gets the share of party pg(j)/γ in Π. Therefore, the share
size of party pj is c(g(j)/γ).

By applying the reduction of Theorem 7.1 to the scheme of Theorem 4.3
we obtain the following corollary. Note that in Theorem 4.3, we required that
g(t) = γt for γ ≤ 1/2 and in Corollary 7.2 the function g(t) can be bigger than
t/2 and can be any increasing function.

Corollary 7.2. Let 0 < β < 1/2, d ∈ N be an integer, and g : N → N be an
increasing function such that t/d ≤ g(t) ≤ t for every t ∈ N. There exits an
evolving (g(t) − tβ , g(t))-ramp secret-sharing scheme in which for every j ∈ N
the share size of pj is O(j(1−β)/β log j).

By applying the reduction of Theorem 7.1 to the scheme of Theorem 6.9 we
obtain the following corollary.
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Corollary 7.3. Let 0 < β < 1, d ∈ N be an integer, and g : N → N be an
increasing function such that t/d ≤ g(t) ≤ t for every t ∈ N. Then, there is an
evolving secret-sharing scheme realizing the access structure Γg(t)−tβ ,g(t), where

the share size of party pj, for j ∈ N, is O
(
j
4−O( 1

log2(1/β)
)
log2 j

)
.

8 An evolving (k/2, k)-ramp secret-sharing scheme

Komargodski et al. [14] presented an evolving secret-sharing scheme for the
evolving k-threshold access structure for a constant k (i.e., the complete ac-
cess structure containing all sets of size at least k). In their construction, the
j-th party’s share size is O(k log j), we denote this construction by Π0. An in-
teresting open question is whether the dependency on k can be improved. We
study a relaxtion of the problem, namely evolving (k/2, k)-ramp secret-sharing
for constant k; where every set that contains at least k parties can reconstruct
the secret, and any set of size less than k/2 cannot learn any information about
the secret. We require nothing regarding the sets of size greater than k/2 but
smaller than k. We construct an evolving (k/2, k)-ramp secret-sharing scheme
with share size O(log k log j). In our construction, we use the scheme Π0 of [14]
as a building box.

In Figure 6 we describe the scheme Πk/2,k that realizes the evolving (k/2, k)-
threshold access structure. As in [14], we first partition the parties into sets,
called generations, according to the order they arrive, where the i-th generation
contains the parties p2ki , . . . , p2k(i+1)−1.

The Scheme Πk/2,k

Let Π0 be the evolving k-threshold scheme of [14].
When party p2ki arrives, the dealer prepares shares for all the parties
{p2ki , . . . , p2k(i+1)−1}.

1. Generate the next k shares from the scheme Π0. Denote these shares by
vi1, v

i
2, . . . , v

i
k.

2. For ` ∈ {0, 1, . . . , log k}, share vi2` , . . . , v
i
2`+1−1 by a 2`-out-of-(2k(i+1)−2ki)

secret-sharing scheme among the parties {p2ki , . . . , p2k(i+1)−1}. Denote

this scheme by Πi
` . That is, the share vi1 is shared with threshold 1 using

Πi
1, the shares vi2, v

i
3 are shared with threshold 2 using Πi

2, the shares
vi4, . . . , v

i
7 are shared with threshold 4 using Πi

3, etc.

Fig. 6. The scheme Πk/2,k realizing the evolving (k/2, k)-access structure.

We use the following observation in order to analyze the share size in Πk/2,k.
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Observation 8.1. Shamir’s t-out-of-n secret-sharing scheme shares m differ-
ent secrets s1, s2, . . . , sm with sizes `1, . . . , `m among n parties using share size
max{log n, `1 + `2 + · · ·+ `m}.

Proof. We simply share the secret s = s0◦s1◦· · ·◦sm by Shamir’s secret-sharing
scheme (where ◦ is the concatenation of string).

Theorem 8.2. The scheme Πk/2,k realizes the evolving ramp access structure
Γk/2,k with share size O(log k log j) for party pj.

Proof. Correcntess: we show that any set of size at least k can reconstruct the
secret. Let A = {pi1 , pi2 , . . . , pik} be a minimal authorized set such that pik is
in the g-th generation, that is, 2kg ≤ ik ≤ 2k(g+1) − 1. For 1 ≤ j ≤ g, let cj be
the number of of parties in A from the j-th generation. By the construction, cj
parties in generation j can reconstruct at least cj shares from generation j (this

is true since every vj` is shared by threshold of at most `). Therefore, the set A

can reconstruct at least
∑k
j=1 cj = k shares of Π0, thus, by the correctness of

Π0, the set A can reconstruct the secret.
Security: Let A be an unauthorized set of size at most k/2 ending in gen-

eration g. By the construction, cj parties from the j-th generation can recon-

struct at most 2cj − 1 shares from generation j (this is true since everu vj` is
shared by threshold of at least d`/2e), thus the set A can reconstruct at most∑g
j=1(2cj − 1) < k shares of Π0. By the security of Π0, the set A cannot learn

any information about the secret.
Share size analysis: the share of party pj in generation g is composed of the

shares from the schemes Πi
` for every ` ∈ {0, 1, . . . , log k}. The size of generation

g is 2k(g+1) − 2kg ≤ 2kg · 2k. Party pj is in the b log jk c-th generation. The log of

the generation size of the generation of pj is less than kg + k ≤ k log j
k + k =

log j + k. The scheme Πi
` for every 0 ≤ ` ≤ log k requires share size max{log j +

k, |vg
2`
|+· · ·+|vg

2`+1−1|} (by Observation 8.1). The shares vg1 , . . . , v
g
k are generated

from Π0; recall that the share size of the n-th party in Π0 is k log n. By the
construction, k(g−1) shares fromΠ0 were generated for the previous generations.
Therefore,

|vg` | ≤ |v
g
k| ≤ k log kg ≤ k log k

log j

k
= k log log j.

Thus, the share size in Πg
` is at most

max{log j + k, 2` · k log log j}.

The total share size is:

log k∑
`=0

max{log j + k, 2` · k log log j} ≤ (log k + 1)(log j + k) + 2k2 log log j.

When j > 22k
2

, the share size of pj is O(log k log j).
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9 Properties of Optimal Choices of Parameters for the
Tree Technique

In this section we show the limitations of the tree technique for β ≥ 1/2. We
also give an upper bound on the number of layers minimizing the share size in
our scheme for general β.

9.1 The Share Size in Πtree

In this subsection, we analyze the share size in Πtree and prove that for 1/2 ≤
β < 1 the optimal share size is obtained when n = 0, i.e., it is Θ(j

1−β
β ).

Claim 9.1. For every β ≥ 1/2, the share size in Πtree is Ω(j
1−β
β ) for at least

one party pj.

Proof. Let j = tαn + 1. By Lemma 6.2, the share size of the party pj is Ω(jC),

where C =
1+

∑n−1
`=1 α`+αn−β(n+1)

αn
. It holds that,

n−1∑
`=1

α` = αn(C − 1− β
β

) + (n+ 1)β − 2β − 1

β
αn − 1

≤ αn(C − 1− β
β

) + (n+ 1)β − (2β − 1)− n− 1

= αn(C − 1− β
β

) + (n− 1)β,

where the inequality follows from the fact that αn > β and 2β−1 ≥ 0. As α` > β
for every 1 ≤ ` ≤ n − 1, we get that αn(C − 1−β

β ) ≥
∑n−1
`=1 α` − (n − 1)β ≥ 0,

i.e., C ≥ 1−β
β .

Remark 9.2. For every n > 0 and β > 1/2, Πtree with n layers has shares greater
than Πseg (since, 2β−1

β αn > 2β − 1 as αn > β).

Claim 9.3. For every β < 1/2 there is at least one party pj such that the share
size of pj in Πtree is Ω(j).

Proof. Let j = tαn + 1. The share size of party pj is Ω(jC
′
) where C ′ =

1+
∑n−1
`=1 α`+αn−β(n+1)

αn
≥ αn

αn
= 1 (since α` ≥ β for every 1 ≤ ` ≤ n− 1).

9.2 Upper Bound on the Number of Layers in the Optimal Solution
for Πtree

In this section, we show that, for every β < 1/2, there exists a choice of the
parameters n, α1, . . . , αn that minimizes the share size of Πtree and the number
of layers n is at most O(log(1/β)).
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Claim 9.4. Let n, α1, . . . , αn be parameters for Πtree. If the share size of party
pj, for every j ∈ N, in Πtree is less than j4 and there exist indices 1 ≤ i1 < i2 ≤
n− 2 such that αi2 < 2αi1 and αi1 ≥ 2β, then i2 ≤ i1 + 15.

Proof. By the assumption of the lemma, αi1 − β ≥ αi1 − 0.5αi1 = 0.5αi1 . Recall
that the the share size of party pj where j = tαi2 + 1 is greater than jC , where

C =
∑i2+1

`=1 α`−(i2+1)β

αi2
. We next analyze this expression, using the fact that α` >

β for 1 ≤ ` ≤ i1 − 1 and α` ≥ αi1 for ` ≥ i1.∑i2+1
`=1 α` − (i2 + 1)β

αi2
≥
∑i2+1
`=i1

(αi1 − β)

αi2

≥
∑i2+1
`=i1

0.5αi1
2αii

≥ i2 + 1− i1
4

.

Since we assume that the exponent is at most 4, we obtain that i2 ≤ i1 +15.

Lemma 9.5. For every β < 1/2, there exists a choice of the parameters n, β <
α1 < · · · < αn ≤ 1 that minimizes the share size in Πtree and the number of
layers n is at most 15 log(1/β) + 2.

Proof. First, let i be the largest index such that αi ≤ 2β. If i ≥ 2, we consider the
parameters n−i+1, αi, . . . , αn with n−i+1 layers. This choice of parameters can
only decrease the share size of parties ptαi+1, . . . , p2t (since α1, . . . , αi−1 > β).
The share size of party pj , where tβ/2 ≤ j ≤ tαi , is Õ(jC) where C = (αi −
β)/β ≤ 1. By Claim 9.3, for every β ≤ 1/2, the exponent of the share size is at
least 1. Thus, n− i+ 1, αi, . . . , αn is also optimal.2

Second, the optimal solution has exponent less than 4 (by our construction
in Section 6.1). Thus, by Claim 9.4, for every 1 ≤ log(1/β), in the interval
2dβ + 1, . . . , 2d+1β there are at most 15 layers. Thus, the total number of layers
is as most 15 log(1/β) + 2.
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