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Abstract. Communication across distributed systems, where each system runs its own consensus, is a
problem previously studied only within a single trust domain (e.g., a datacenter). With the appearance
of distributed ledgers or blockchains, numerous protocols requiring robustness against adversarial be-
havior have emerged. Cross-chain communication thereby plays a fundamental role in cryptocurrency
exchanges, sharding, as well as the bootstrapping and migration of distributed ledgers. Unfortunately,
existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence on their
correctness and to use them as building blocks for new systems.
In this paper, we provide the first systematic exposition of protocols for cross-chain communication.
Through formalization of the underlying research question, which reduces to the fair exchange problem,
we identify threat and network model assumptions, necessary for designing correct cross-chain commu-
nication protocols. We overview main applications, derive a classification and provide a comparative
analysis of existing approaches. Further, we survey and classify techniques for verifying state cross-chain
and mechanisms for constructing locks.

1 Introduction

Why Cross-Chain Communication is Worthy of Research. Since the introduction of Bitcoin [141] as
the first decentralized ledger currency in 2008, the topic of blockchains (or distributed ledgers) has evolved
into a well studied field in both industry and academia. Nevertheless, developments are still largely driven
by community effort, resulting in a plethora of blockchain-based digital currencies being created. Taking into
account the heterogeneous nature of these systems in terms of design and purpose, it is unlikely that there
shall emerge a “coin to rule them all”, yielding interoperability an important research problem. Thereby,
cross-chain communication is not only found in currency transfers and exchanges [18, 19, 94–96], but is a
critical component of scalabilty solutions (synchronization in sharded systems [22, 23, 26, 117, 177]), feature
extensions (sidechains [36,84,112,125] and cryptocurrency-backed assets [168,179]), as well as bootstrapping
of new and migration between existing systems [3, 51, 105, 162]. In addition, numerous competing projects
aiming to create a single platform for cross-chain communication have recently emerged [20,98,121,161,169,
170,172]. However, in spite of the vast number of use cases and solution attempts, the underlying problem of
cross-chain communication has neither been clearly defined, nor have the associated challenges been studied
or related to existing research.
Historical Background and Difference to Databases. The need for communication among distributed
processes is fundamental to any distributed computing algorithm. In databases, to ensure the atomicity of
a distributed transaction, an agreement problem must be solved among the set of participating processes.
Referred to as the Atomic Commit problem (AC) [44], it requires the processes to agree on a common
outcome for the transaction: commit or abort. If there is a strong requirement that every correct process
should eventually reach an outcome despite the failure of other processes, the problem is called Non-Blocking
Atomic Commit (NB-AC) [35]. Solving this problem enables correct processes to relinquish locks without



waiting for crashed processes to recover. As such, we can relate the core ideas of communication across
distributed ledgers to NB-AC. The key difference hereby lies within the security model of the interconnected
systems. While in classic distributed databases all processes are expected to adhere to protocol rules and, in
the worst case, may crash, distributed ledgers must also consider and handle Byzantine failures.
Contributions. In this work, we provide the first systematic analysis of communication across distributed
ledgers. We start with an overview of the main scenarios for cross-chain communication observed in prac-
tice (Section 3). We then formalize the underlying problem of Correct Cross-Chain Communication (CCC)
and show a reduction to the Fair Exchange problem, known to be impossible without a trusted third party
(Section 4). Consequently, we provide a classification of CCC protocols (Section 5), and systematically ana-
lyze mechanisms for cross-chain state verification (Section 6) and locking techniques necessary for atomicity
(Section 7). Finally, we discuss implications for the blockchain, network, and threat models, and discuss
implications for privacy (Section 8). We overview the related work in Section 9 and conclude this paper in
Section 10.

2 Preliminaries

In literature, the terms blockchain and distributed ledger are often used as synonyms. We adopt this nomen-
clature as we proceed to introduce some notation, on the basis of [84] with minor alterations. For background
reading on the basics of distributed ledgers, we refer the reader to [54,81,141].

When speaking of cross-chain communication, we consider the interaction between two distributed sys-
tems X and Y , which can have distinct consensus participants and may employ different agreement protocols.
Thereby, it is assumed the majority of consensus participants in both X and Y are honest. The data struc-
tures underlying X and Y are blockchains (or chains), i.e., append-only sequences of blocks, where each
block contains a reference to its predecessor(s), e.g. via a hash.
Ledgers and State Evolution. We denote a ledger as L (Lx and Ly respectively) and define its state as
the dynamically evolving sequence of included transactions 〈tx1, ...,txn〉. We assume the evolution of the
ledger state progresses in discrete slots s, indexed1 by a natural number i ∈ N. At each slot i, a new set of
transactions (included in a newly generated block) is written to the ledger L. We use L[i] to denote the state
of ledger L at slot i, i.e., after applying all transactions written to the ledger since slot i− 1. A transaction
can be written to L only if it is consistent with the system’s consensus rules, given the current ledger state
L[i]. This consistency is left for the particular system to define, and we describe it as a free predicate valid(·).
In practice, the ordering at which transactions are included in the ledger is crucial for their validity, i.e.,
txj at position j can conflict with txl at position l (e.g. a double-spend). Depending on whether j > l or
j < l, either txj or txl are valid and can be included in L, but not both. For simplicity, we assume correct
ordering implicitly, and write valid(tx, Lx[i]) (instead of valid(tx, Lx[i][j])).
Global Clock. The state evolution of two distinct ledgers Lx and Ly may progress at different time intervals:
In the time that Lx progresses one sx slot, Ly may, for example, progress fourty sy slots (on average, as
in the case of Bitcoin [141] and Ethereum [58]). To capture the order of transactions when synchronizing
across Lx and Ly, we introduce a clock function τ which maps a given slot on any ledger to the time on a
global, synchronized clock τ : s → t. For simplicity and readability, we use this conversion implicitly, i.e.,
given τ(i) = t we write L[t] = L[i] instead of L[t] = L[τ(i)].
Persistence and Liveness. Each participant P adopts and maintains a local ledger state LP [t] at time t
(LPx [t] and LPy [t] respectively), i.e., her current view of the ledger. The views of two distinct participants P

and Q on the same ledger L may differ at time t (e.g., due to network delay or message loss): LP [t] = L[i],
LQ[t] = L[i− 1], LP [t] 6= LQ[t]. However, eventually, all honest parties in the ledger will have the same view.
This is captured by the persistence and liveness properties of distributed ledgers [81]:

Liveness: Consider an honest party P of a ledger L and a liveness delay parameter u. If P attempts to
write a transaction tx to its ledger time t ∈ N, then tx will appear in its ledger at time t′, i.e., ∃t′ ∈ N :
t′ ≥ t ∧ tx ∈ LP [t′]. Additionally, we require the interval t′ − t to be upper bound by u.

1 In practice often referred to as the blockchain height.
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Persistence: Consider two honest parties P,Q of a ledger L and a persistence delay parameter k. If a
transaction tx appears in the ledger of party P at time t, then it will eventually appear in the ledger of party
Q at a time t′ > t. Concretely, for all honest parties P and Q, we have that ∀t ∈ N : ∃t′ ≥ t : LQ[t′] = LP [t].
Additionally, we require that the interval t′ − t is upper bound by k.
Note: when a participant P writes a transaction txP to L, any participant Q can verify txP was written by
P .
Assets/Objects. We denote assets/objects on ledgers Lx and Ly as x and y, respectively.
Full nodes and Light Clients. We differentiate between two types of nodes in the networks: (i) those that
store the entire transaction history and validate the full ledger state (full nodes), (ii) and those that only
store transactions relevant to them and verify their inclusion in the underlying ledger, but do not check their
validity (light clients).

3 Main Scenarios for Cross-Chain Communication

We proceed to give an overview of the main scenarios for cross-chain communication, as observed in practice.
Transfers and Exchanges Across Ledgers. The likely most well known use case for communication across
distributed ledgers is the transfer of asset ownership between users. In practice, this implies two parties (i)
agree on exchange terms, e.g. amount, conversion rate and time, and (ii) update the ownership of the involved
assets, i.e., alter the state of the respective ledgers. Typically, exchange protocols are designed as two-phase
lock/unlock processes, where either both parties receive control over the agreed upon assets atomically, or
no exchange is executed at all. Historically, protocols for achieving a such fair exchange [80, 136] required
trust in third parties. Blockchains allow us to reduce these trust assumptions [73,111,116] by making use of
so called smart contracts, i.e., distributed programs, the result of which is enforced though consensus of the
underlying system [58].

The first approach towards cross-chain asset exchange outside of centralized exchanges is dated back to a
forum discussion in 2013 [18], which later became known as atomic cross-chain swaps [19, 95]. The initially
proposed protocol relied on symmetric (i.e., same on both chains) hash(ed) timelock contracts [2,150]: assets
x and y on Lx and Ly are locked such that they can be spent atomically when a secret (hash pre-image)
is revealed. Timelocks thereby prevent assets from remaining locked indefinitely in case one of the parties
crashes or abandons the exchange (cf. Section 7). However, atomic swaps using symmetric locks are vulnerable
to race conditions: exchange parties must be online throughout the entire exchange or risk losing funds [19].
Later adaptions improve on this requirement by using proofs of transaction inclusion2 and escrow smart
contracts: asset y is released by the smart contract on Ly if the counterparty can prove it made the agreed
upon transfer of x on Lx [8, 59,96,112,179].

A recently proposed alternative to atomic cross-chain swaps are cryptocurrency-backed assets [26,84,125,
179]. Thereby, an asset x is locked on Lx, while a corresponding representation of this asset y(x) is unlocked
on Ly. This asset can then be used just like any other native asset y on Ly, i.e., transferred, exchanged,
and used with smart contracts. The latter can be particularly useful if Lx itself only has limited scripting
capabilities (such as e.g. Bitcoin). After use, y(x) can be redeemed for the corresponding amount of x. A
benefit of this approach over atomic cross-chain swaps is that synchronization of Lx and Ly is performed
only twice for any number of swaps, reducing risk of failures. However, this comes at the cost of creating
a long term economic dependency between the two systems and the necessity to mitigate exchange rate
fluctuations.
Synchronization in Sharded Systems. The goal of sharding [23,117,177] is to increase the concurrency
of committing transactions by instantiating multiple blockchains, each of which is authoritative over a subset
of the state. Assuming that the workload of the system is parallelizable, sharding has the potential of a linear
increase (to the number of participating nodes) in throughput, a property named “scale-out” in traditional
literature [66]. Concretely, in sharded distributed ledgers different sets of nodes only maintain the state and
the ledger of a specific shard. For sharding to be practical, there must be a way to perform transactions

2 We referred to this as verification of state evolution, cf. Section 6.
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between shards which guarantees atomic execution. In order for this to be possible, shards must be able to
verify proofs about the state of all other shards.
Bootstrapping and Migration. Leveraging the security properties of existing blockchains to bootstrap
new systems is another well studied field of cross-chain communication. This idea was first put to practice in
merged mining [3,105,147,178], where (partial) Proof-of-Work solutions from a parent “chain” are reused as
valid proofs-of-work in “child” chains, i.e., miners can mine on the parent chain and the child chain(s) at the
same time. Instead of directly re-using solutions, Proof-of-Work can be used to sample committees [68,113,
146, 148] to bootstrap other systems, such as blockchains running (permissioned) Byzantine fault tolerant
agreement protocols. Alternatively, blockchains can also serve as a public source of randomness [52, 57],
which in turn can be leveraged as input to new systems, e.g. Proof-of-Stake [65,72]. Proof-of-burn [162], on
the other hand, is a technique to migrate between chains, where new assets are created on Ly by destroying
assets on Lx.
(Pegged) Sidechains. The definition of the term “sidechain” has seen heated debate in the past years. The
word has evolved to a generic term for cross-chain communication, used to refer to (i) ways for blockchains to
communicate with each other [16,84], (ii) blockchains which are capable of verifying other blockchains [36,84,
112], and (iii) blockchains which are considered “children” of another blockchain, i.e., whose security model
relies on the secure operation of a “parent” chain (at least for some period of time) [36,84]. The capability of
verifying the state of another blockchain is also captured by the notion of cross-chain state verification via
so called “chain-relays” (light clients for Lx deployed on Ly) [59, 179]. Similarly, the definitions of “pegged
sidechains” [36] and “cryptocurrency-backed assets” [179] both refer to the concept of moving assets from
one blockchain to another. We attempt to resolve this misdemeanor in this paper.

4 The Cross-Chain Communication Problem

In this section, we formally define the problem of Correct Cross-Chain Communication (CCC) and provide
a reduction to the Fair Exchange problem [30, 144], showing that CCC is impossible without a trusted third
party.

4.1 Model and Specification

Model. Consider two independent distributed systems X and Y with underlying ledgers Lx and Ly, as
defined in Section 2. We assume a closed system model as in [123] with a process P running on X and a
process Q running on Y . The only way a process can influence the state evolution of the underlying system is
by (i) writing a transaction tx to the underlying ledger L, or (ii) by completely stopping to interact with the
system (abort). We assume that P possesses transaction txP , which can be written to Lx, and Q possesses
txQ, which can be written to Ly. A function desc maps a transaction to some “description” which can be
compared to an expected description value (e.g. specifying the transaction value). Both processes posses
descriptions dP and dQ of the transactions txP and txQ they expect. Note: dP = desc(txP ) implies txP

is valid in X (at time of synchronization), as it cannot be written to Lx otherwise (analogous for dQ).
We assume P and Q know each other’s identity and no (trusted) third party is involved in the commu-

nication between the two processes. Further, we assume no bounds on message delay or deviations between
local clocks and treat failure to communicate as adversarial behavior. Hence, if P or Q become malicious,
we indicate this using boolean “error variables” [82] mP and mQ.
Specification. The goal of cross-chain communication can be described as the synchronization of processes
P and Q such that Q writes txQ to Ly if and only if P has written txP to Lx. Thereby, it must hold that
desc(txP ) = dQ ∧ desc(txQ) = dP . The intuition is that txP and txQ are two transactions which must
either both, or neither, be included in Lx and Ly, respectively. For example, they can constitute an exchange
of assets which must be completed atomically. A visual representation is provided in Figure 1.

To this end, P must convince Q that it created a transaction txP which was included in Lx. Specifically,
process Q must verify that at given time t ledger state Lx[t] contains txP . A cross-chain communication
protocol which achieves this goal, i.e., is correct, must hence exhibit the following properties:
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Fig. 1: Simplified visualization of CCC. Process Q writes txQ only if P has written txP . We use kX and kY
to denote exemplary persistence delays of X and Y (kX = 3, kY = 4), and set ux = uy = 0 for the liveness
delays.

Effectiveness: If both P and Q behave correctly and txP and txQ match the expected descriptions (and
are hence valid), then txP will be included in Lx and txQ will be included in Ly. If either of the transactions
are not as expected, then both parties abort.

(desc(txP ) = dQ ∧ desc(txQ) = dP ∧mP = mQ = ⊥ =⇒ txP ∈ Lx ∧ txQ ∈ Ly)

∧(desc(txP ) 6= dQ ∨ desc(txQ) 6= dP =⇒ txP /∈ Lx ∧ txQ /∈ Ly)

Atomicity: There are no outcomes in which P writes txP to Lx but Q does not write txQ, or Q writes
txQ to Ly but P did not write txP to Lx.

¬((txP ∈ Lx ∧ txQ /∈ Ly) ∨ (txP /∈ Lx ∧ txQ ∈ Ly))

Timeliness: Eventually, a process that behaves correctly will write a transaction tx its ledger L. From
Persistence and Liveness of L, it follows that eventually P writes txP to Lx and Q becomes aware of and
verifies txP .

Definition 1 (Correct Cross-Chain Communication (CCC)). Consider two systems X and Y with
ledgers Lx and Ly, each of which has Persistence and Liveness. Consider two processes, P on X and Q on
Y , with to-be-synchronized transactions txP and txQ. Then a correct cross-chain communication protocol
is a protocol which achieves txP ∈ Lx ∧ txQ ∈ Ly and has Effectiveness, Atomicity, and Timeliness.

Summarizing, Effectiveness and Atomicity are safety properties. Effectiveness determines the outcome if
transactions are not as expected or both transaction match descriptions and both processes are behaving
correctly. Atomicity globally restricts the outcome to behaviors which place a disadvantage on either process.
Timeliness guarantees eventual termination of the protocol, i.e., is a liveness property.

4.2 Correct Cross-Chain Communication as Hard as Fair Exchange

Fair Exchange. The fair exchange of digital goods is a well-studied problem in computer science. On a high
level, an exchange between two (or more) parties is considered fair if either both parties receive the item
they expect, or none do [31]. Fair exchange can be considered a sub-problem of fair secure computation [42],
and is known to be impossible without a trusted third party [144,174]. However, research has circumvented
this impossibility under weaker security models, e.g. under the optimistic model where a trusted third party
is only consulted in case a party deviates from the correct behavior [31, 62, 120]. Recently, there have been
numerous works which use cryptocurrencies such as Bitcoin and Ethereum to construct (optimistic) fair
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exchange protocols [27, 42, 73, 111, 115, 119]. Here, smart contracts, i.e., programs or scripts, the result of
which is agreed upon and enforced by consensus participants, are leveraged to ensure the exchange happens
correctly. Since the actions of a smart contract can be restricted, the latter need not be trusted, as long as
the majority of consensus participants in the underlying blockchain behave correctly.
Relating Cross-Chain Communication to Fair Exchange. We proceed to show that Correct Cross-
Chain Communication (CCC) is impossible without a trusted third party (TTP) by reducing it to Fair
Exchange [30,31,144].

Lemma 1. Let C be a protocol which solves CCC in the given system model. Then there exists a protocol S
which solves Fair Exchange in the same system model.

Proof (Sketch). Consider that the two processes P and Q are parties in a fair exchange. Specifically, P owns
an item iP and wishes to exchange it against an item iQ owned by Q. Assume txP assigns ownership of iP
to Q and txQ ownership of iQ to P (“descriptions” of txP and txQ). Then, txP must be included in Lx
and txQ in Ly to finalize the exchange. In other words, if txQ ∈ Ly and txP ∈ Lx, then P receives desired
iQ and Q receives desired iP , i.e., P and Q fairly exchange items iP and iQ.

A fair exchange protocol must fulfill three properties: Effectiveness, (Strong) Fairness and Timeliness [30,
144]. It is easy to see the Timeliness property of CCC is equivalent to Timeliness of fair exchange as defined
in [144]. Effectiveness in fair exchange states that if P and Q behave correctly and do not want to abandon
the exchange, and items iP and iQ are as expected by Q and P , then at the end of the protocol, P will have
the desired iQ and Q will have the desired iP [144]. It is easy to see Effectiveness in CCC achieves exactly
this property: if P and Q behave correctly and the transaction match the respective descriptions (i.e., assign
iP to Q and iQ to P ), then P will write txP and Q will write txQ to Lx, resulting in P receiving iQ and
Q receiving iP . From Persistence and Liveness of Lx and Ly we know both transactions will eventually be
written to the local ledgers of P and Q, and consequently appear in the local ledgers of all other participants
of X and Y . Strong Fairness in fair exchange states that there is no outcome of the protocol, where P owns
iQ but Q does not own iP , or Q owns iP but P does not own iQ [144]. In our setting, such an outcome is
only possible if txP ∈ Lx ∧ txQ /∈ Ly or txP /∈ Lx ∧ txQ ∈ Ly, which contradicts the Atomicity property of
CCC. ut

We assume the same asynchronous (explicitly) and deterministic (implicitly) system model (cf. Section 4.1)
as [78, 144]. Since P and Q can simply stop participating in the CCC protocol, we also have the same crash
failure model as [78,144]. Hence, we conclude:

Theorem 1. There exists no asynchronous CCC protocol tolerant against misbehaving nodes.

Proof (Sketch). Assume there exists a asynchronous protocol C which solves CCC. Then, due to Lemma 1
there exists a protocol which solves strong fair exchange. As this is a contradiction, there cannot exist such
a protocol C. ut

Our result currently holds for the closed model, as in [78, 144]. In the open model, P and Q can be forced
to make a decision by the system, i.e., transactions can be written on their behalf if they crash [117]. This
can be achieved by leveraging smart contracts, similar to blockchain-based fair exchange protocols, e.g. [73].
As such, we can construct a smart contract on Y which will include txQ in Ly as soon as P includes txP

in Lx, i.e., Q is allowed to crash. A contract, however, can only perform actions based on some prior input.
Specifically, before writing txQ the contract must receive proof that txP was included in Lx. A protocol
achieving CCC must hence assume (i) P (or Q) will always submit a proof showing txP ∈ Lx, i.e., introduce
some form of synchrony assumptions, or (ii) resort to a TTP. We argue introducing a TTP is equivalent to
introducing synchrony assumptions, as discussed in [144], and derive the following corollary:

Corollary 1. There exists no CCC protocol tolerant against misbehaving nodes without a trusted third party.

Proof (Sketch). A trusted third party is equivalent to introducing some form of synchrony. As such, if there
is no trusted third party, then the protocol is asynchronous. Theorem 1 now proves Corollary 1. ut
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5 Classification of Cross-Chain Communication

In this section, we define the main properties of cross-chain communication protocols and then present a
classification of existing work.

5.1 CCC Protocol Models

Communication Model. We differentiate between two main types of cross-chain communication protocols,
based how synchronizations of state transitions across chains is handled. An explanatory visualization is
provided in Figure 2.

– Two-Phase Commit protocols enforce atomicity of CCC by explicitly introducing an abort (or recover)
step to mitigate communication failures. Typically, two-phase commit is used in protocols which facilitate
exchanges [18,96,112] (actions on both X and Y by different parties) or communication involving synchro-
nization across more than two chains (e.g., multi-input transactions in UTXO-based sharding [26,117]).

– Fire-and-Forget protocols assume a valid state transition on Lx will eventually result in a state transition
on Ly, but no abort or recovery phase is explicitly introduced to handle failures. This approach is followed
in one-way asset and information transfers, such as cryptocurrency-backed assets [168, 179], Proof-of-
Burn [162] or merged mining [105, 125]. We note that atomic execution of multiple one-way protocols
again requires explicit recovery handling.

Fig. 2: Difference between Two-Phase Commit and Fire-and-Forget CCC protocols. Two-Phase Commit is
typically used in exchange protocols, or when multiple cross-chain transactions need to be coordinated. Fire-
and-Forget, or one way, protocols typically transfer assets or information from X, to Y . Thereby, a “write”
lock is obtained on X, preventing any changes to the locked asset or object.

Verification Model. A critical component of CCC is the verification of state transitions which occurred on
other chains.

– Local verification assumes that only the protocol participants must agree on the correctness of the state
transition(s). An example are atomic cross-chain swaps using symmetric HTLC locks [18, 19, 95], where
only the exchange partners verify the correctness of the counterparty’s lock.

– Global or consensus-level verification implies the consensus participants of a chain Y verify and agree that
some state transition occurred on X. An example are atomic cross-chain swaps realized via cross-chain
state verification [96, 112, 179]: assets are unlocked on Y if a proof for the agreed counter-transfer being
executed on X is provided (and accepted by Y ).
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Blockchain Security Model. Another distinction between CCC protocols is the assumptions made with
respect to the security models of interlinked chains.

– Homogeneous security implies that we can explicitly make assumptions regarding the threat and network
model of Y when constructing a communication protocol from X. In practice, this is the case in shard-
ing [23, 25, 117, 177], where every shard is secure by design [117, 177] using, for example, an appropriate
form of randomness [155, 164]. As a result, shards have “uniform” security, i.e., it is equally difficult for
an adversary to compromise any shard. This further applies to (child) chains which have hierarchical de-
pendency to some parent chain, i.e., the child chain’s security depends on that of the parent (e.g., merged
mining [3,105,125,165]). Since, if the parent fails, so does the child, we are forced to assume the parent’s
security holds when communicating with it from the child. Note, this relation does not necessarily hold
inversely: by definition, a child can fail without affecting the parent (contrary to the critical impact of a
failing shard).

– Heterogeneous. Interlinked chains cannot be assumed to have identical rule sets/data structures. In
practice, this implies any user can create their own chain and, in the absence of pre-defined specifications
or rules ensuring e.g. sufficient honest participants exist, no generic security assumptions can be relied
on. Hence, a chain, even if capable of verifying the consensus rules of another chain, cannot be sure that
the received information is indeed valid (except if fully validated, cf. Section 6.1) [36]. Typically, CCC
protocols in the heterogeneous security model make additional assumptions regarding interlinked chains,
restricting applicability to a subset of existing systems.

– Blockchain agnostic protocols. CCC protocols which assume a local verification model require only
verification and agreement among CCC participants. That is, they do not require direct involvement of
the consensus participants of the interlinked chains in the synchronization process. Consequently, such
protocols are applicable to both homo- and heterogeneous security models. Notable examples are atomic
cross-chain swaps which use HTLCs [18, 19, 95, 128] or similar symmetric cryptographic locks [46, 49, 75,
129,140,149,166] (cf. Section 7), as well as centralized and custodial exchange protocols [17,41,169].

5.2 Protocol Classification

We proceed to provide a (non-exhaustive) overview of how existing cross-chain communication protocols fit
into the introduced classification. A visual representation is provided in Figure 3.

Backed assets [84,
168,179], Proof-of-
Burn [162], Ran-
domness [52]

Heterogeneous

Sharding [26,177],
Merged min-
ing [105, 125] /
staking [84]

Homogeneous

Global

Custodial backed-
assets [13, 17,70]

Local

Fire-and-Forget

Atomic swaps via
symmetric locks
[18, 19, 95, 169],
Custiodial ex-
changes

Local

Atomic swaps
via state verifica-
tion [8, 41, 59, 96,
112,176,179]

Heterogeneous

Sharding [23,25,26,
117,160]

Homogeneous

Global

Two-Phase Commit

Fig. 3: Classification of cross-chain communication protocols. We provide a non-exhaustive list of exam-
ple protocols representative for each combination. Protocols following the local verification model do not
differentiate between homogeneous and heterogeneous security models.

Fire-and-Forget
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– Global Heterogeneous one-way protocols facilitate transfers of information and assets without explicit
security assumptions for interlinked chains. Notable examples are bootstrapping protocols such as Proof-
of-Burn [162], or crypto-currency-backed assets [168,179], where trust in the correct operation of a smart
contract on Y is assumed as restriction. Thereby, collateral can be used to mitigate the lack of homogeneous
security assumptions.

– Global Homogeneous one-way protocols comprise communication (i) in sharded blockchains [26, 177]
and (ii) between chains in a parent-child relation as in merged mining [3, 105] and merged staking [84].
The main difference to heterogeneous protocols here is that both synchronization and verification of state
transitions are handled directly by consensus participants, without the need for additional measures such
as collateral.

– Local (Agnostic). One-way transfers operating only under a local verification module are observed in
custodial protocols for cryptocurrency-backed assets [13, 17, 70]. Thereby, a (set of) coordinator(s) takes
full control of the issuing process, and hence participants need only to verify the presence of the correct
signature(s). While this verification is often outsourced to a globally verified smart contract, this is not
necessary in theory, if no additional security measures such as collateral are introduced.

Two-Phase-Commit

– Global Heterogeneous protocols using two-phase commit are mainly observed in atomic cross-chain
exchanges, which leverage a coordinator to hold exchanged assets on chain Y and release the latter only
upon receiving a proof of the agreed payment on chain X. The coordinator can thereby be realized directly
by the consensus participants of involved chains [176], or a non-trusted escrow using smart contracts [8,
59,96,112,179] or trusted hardware [41].

– Global Homogeneous two-phase commit protocols are specific to sharding [23,25,26,117,160]. The main
difference to one-way (fire-and-forget) cross-shard communication protocols lies in the explicit recovery
mode. Two-phase commit protocols can be either client-driven [117], where transaction submitters are
responsible for delivering the protocol messages to the respective shards, or shard-driven [23], where
shard consensus participants handle this task.

– Local (Agnostic) verification in two-phase commit protocols is used in atomic exchanges relying on
symmetric cryptographic locks [18,19,95,169]. Thereby, assets are locked with the same release condition
across multiple chains (cf. Section 7), as in the case of HTLCs [2, 150]. In contrast to global verification,
these protocols are typically interactive, i.e., require exchange parties to remain online or resort to services
such as watchtowers [34,130].

6 Cross-chain State Verification and Validation

A critical component of cross-chain communication is the verification of the state evolution of a chain X
from within another chain Y . We present a classification discussing available (non-interactive) cryptographic
proving techniques, i.e., where verification does not require trust in third parties or running fully validat-
ing nodes in all involved blockchains (Section 6.1). Consequently, we discuss other verification approaches,
loosening these constraints (Section 6.2).

6.1 Classification of State Verification and Validation Proofs

Specifically, if a party P on X is misbehaving, it may withhold information from a party Q on Y (i.e., not
submit a proof), but it should not be able to trick Q into accepting an incorrect state of Lx (e.g., convince
Q that tx1 ∈ Lx although tx1 was never written).
Verification of State. The simplest form of cross-chain verification is to check if a specific state exists,
i.e., is reachable but has not necessarily been agreed upon by the consensus participants. A representative
example is the verification of Proof-of-Work in merged mining [3, 105]: the child chain Y only verifies that
the hash of the Y candidate block was included in a X block, the PoW hash of which exceeds the difficulty
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target of Y . Note: Y does not care whether the block is actually part of Lx. Another example is the use of
blockchains as a public source of randomness [52,57,65,72].
Verification of State Agreement. In addition to the existence of a state, a proof can provide sufficient
data to verify that consensus has been achieved on that state. Typically, the functionality of this verification is
identical to that of blockchain light clients [1,11,141]: instead of verifying the entire blockchain of X, all block
headers but only transactions relevant to the CCC protocol are verified (and stored) on Y . The assumption
thereby is that an invalid block will not be included in the verified blockchain under correct operation [127,
141]. Block headers can be understood as the information stored in a block, excluding transactions, which are
typically referenced using a vector commitment [64] (or some other form of cryptographic accumulator [39]),
e.g. Merkle trees [134]. We discuss how proofs of state agreement differ depending on the underlying consensus
mechanism below (non-exhaustive):

– Proof-of-Work. To verify agreement in PoW blockchains, a primitive called (Non-interactive) Proofs of
Proof-of-Work [108,109], also referred to as SPV (simplified payment verification) [141] is used. Thereby,
the verifier of a proof must for each block at least check that (i) the PoW meets the specified difficulty
target, (ii) the specified target is in accordance with the difficulty adjustment mechanism and (iii) the
block contains a reference to the previous block in the chain [1, 179]. The first known implementation of
cross-chain state agreement verification (for PoW blockchains) is BTCRelay [4]: a smart contract which
allows to verify the state of Bitcoin on Ethereum3.

– Proof-of-Stake. If the verified chain uses Proof-of-Stake, the proofs represent a dynamic collection of
signatures, capturing the underlying stake of the chain. These are referred to as Proofs of Proof-of-Stake
(PoPos) and a scheme in this direction was put forth in [84].

– BFT. In case the blockchain is maintained by a BFT committee, the cross-chain proofs are simplified and
take the form of a sequence of signatures by the majority of the committee. If the committee member-
ship is dyncamically changing, the verification process need to capture the rotating configuration of the
committee, which can incur significant cost for parties that rarely synchronize.

Sub-linear State Agreement Proofs. Verifying all block headers results in proof complexity linear in the size of
the blockchain. However, there exist techniques for achieving sub-linear (logarithmic in the size of the chain)
complexity, which rely on probabilistic verification. For PoW blockchains, we are aware of two approaches:
Superblock (Ni)PoPoWs [36,108,109,138] and FlyClient [127]. Both techniques rely on probabilistic sampling
but differ in the selection heuristic. Superblock (Ni)PoPoWs sample blocks which exceed the required PoW
difficulty4, i.e., randomness is sourced from the unpredictability of the mining process, whereas FlyClient
suggests to sample blocks using an optimized heuristic after the chain has been generated (using randomness
from the PoW hashes [52]). Such probabilistic sampling techniques may be potentially applicable to Proof-
of-Stake blockchains [127], however, to the best of our knowledge, no concrete schemes have been put forth
at the time of writing. For blockchains maintained by a static BFT committee, the verified signatures can
be combined into aggregate signatures [113, 114] for optimization purposes. These signature techniques are
well known and invented prior to blockchains, and we hence do not elaborate further on these schemes. In
the dynamic setting, skipchains [79,118,142], i.e., double-linked skiplists which enable sub-linear crawling of
identity chains, can reduce costs from linear to logarithmic (to the number of configurations).
Verification of State Evolution. Once it is verified or known by some chain Y that chain X has agreed
on a ledger state Lx[i], it is then possible for chain Y to verify that certain transactions have been included in
Lx (and hence taken place on X). As mentioned, block headers typically reference included transactions via
vector commitments. As such, to verify that tx ∈ Lx[i] the vector commitment on Lx[i] needs to be opened
at the index of that transaction, e.g. by providing a Merkle tree path to the leaf containing tx (e.g. as in
Bitcoin).
Verification of State Validity. Even though a block is believed to have consensus, it may not be a
valid block if it contains invalid transactions or state transitions (e.g. a PoW block meeting the difficulty

3 Similar contracts have consequently been proposed for other chains [6, 7, 10,12,14,15].
4 It is a property of the PoW mining process that a certain percentage of blocks exceeds or fall short of the required

difficulty.
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requirements, but containing invalid transactions). Fully validating nodes will reject these blocks as they
check all included transactions. However, in the case of cross-chain communication where chains only verify
state agreement but not that the blocks are valid, detection is not directly possible. We classify two broad
categories of techniques to enable such chains, and non-full nodes (i.e., light clients), to reject invalid blocks:

– In proactive state validation, nodes ensure that blocks are valid before accepting them. Apart from requir-
ing participants to run fully validating nodes, this can be achieved by leveraging “validity proofs” through
succinct proofs of knowledge using systems such as SNARKs [45], STARKs [37] or Bulletproofs [56]. First
schemes for blockchains offering such proofs for each state transition are put forth in [38, 48, 133]. Infor-
mally speaking, this is a “guilty until proven innocent model”: nodes assume blocks that have consensus
are invalid until proven otherwise.

– In reactive state validation, nodes follow an “innocent until proven guilty” model. It is assumed that
blocks that have consensus only contain valid state transition, unless a state transition “fraud proof” [24]
is created. Fraud proofs typically are proofs of state evolution, i.e., opening of the transaction vector
commitment in the invalid block at the index of the invalid transaction, e.g. via Merkle tree paths.
Depending on the observed failure, more data may be necessary to determine inconsistencies (e.g. Merkle
tree paths for conflicting transactions in case of a double spend).

Verification of Data Availability. Consensus participants may produce a block header, but not release the
included transactions, preventing other participants from validating the correctness of the state transition.
To this end, verification of state validity can be complimented by verification of data availability. A scheme
for such proofs was put forth in [24], which allows to verify with high probability that all of the data in a
block is available, by sampling a constant number of chunks in an erasure-coded version of a block.

6.2 Other Verification Techniques

We discussed (non-interactive) cryptographic proofs, involving only communicating parties and consensus
participants. We now overview other approaches:

– Direct Observation. The simplest approach to cross-chain verification is to require all participants of a
CCC protocol to run (fully validating) nodes in all involved chains. This is often the case in local verification
models, e.g. as in atomic swaps using symmetric locks such as HTLCs [19, 95], but also in parent-child
settings where one chain by design verifies or validates the other [36,84,125].

– Watchtowers. As a fallback mechanism to direct observation it is possible to employ so called watchtow-
ers, i.e., service providers which take action in case a party crashes [33,34,107,130].

– Coordinators. Another option is to fully trust in a third party to perform the verification. There is,
however, a difference between relying on consensus participants [70, 117, 124] and parties external to the
verifying blockchain [169]. Specifically, if consensus participants misbehave this, in most cases, indicates a
failure of the chain itself, whereas it is not possible to make any assumptions on the operation of external
parties.

– Verification Games. Finally, rather than fully trusting coordinators, they can rather be used as a
pure optimistic performance improvement by introducing dispute handling mechanisms to the verification
process: user can provide fraud proofs [24] or accuse coordinators of misbehavior requiring them to prove
correct operation [91,106,167].

7 Locking Techniques for Atomicity in CCC

The majority of cross-chain communication protocols discussed in this paper focus on the transfer and ex-
change of digital assets. One of the required properties for CCC is Atomicity (cf. Section 4.1), that is, either
assets are exchange across chains successfully, or no asset leaves its original chain/owner. In practice, this is
achieved by locking mechanisms: assets in different chains are locked until the fulfillment of a certain condi-
tion. We discuss possible approaches in the following and provide an accompanying visualization, capturing
possible combinations, in Figure 4
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Fig. 4: Overview of locking techniques and possible combinations. Custodians can be realized using Commit-
tees. Escrows, with restricted and pre-authorized access to assets, can be implemented using Multisignature
Contracts, TEEs, or Smart Contracts. (Symmetric) contracts allow to lock assets without requiring a third
party and rely on cryptographic hardness assumptions. Timelocks are used to prevent assets from being
locked up indefinitely in case of crash failures (similarly, Timelock Puzzles and VDFs). In practice, it is
possible to combine techniques from all three groups: e.g. use a Multisig. contract to create an Escrow, but
also allow an alternative execution path by using a Hash Lock - and combine with a Timelock to release
assets in case of a timeout (e.g. used in HTLC atomic swaps [19,95] and payment channels [150]).

Coordinators. A coordinator is a distinguished participant that helps other protocol participants in achiev-
ing agreement for either committing or aborting the cross-chain transfer. We differentiate between two types
of coordinators depending on their access to (honest) participants’ assets.

– Custodians receive unconditional control over the participant’s funds and are thus trusted to release
the latter as instructed by the protocol rules. A mitigation of this trust assumption can be achieved via
collateralization and penalties [91,92,167,168,179].

– Escrows receive control over the participant’s funds conditional to certain prearranged constraints being
fulfilled. An Escrow thus cannot steal the locked assets, as long as the underlying ledger is operating
correctly, and can only fail to take action, i.e. crash. From game theoretic perspective, Escrows are typically
expected to not gain from misbehaving and are hence often referred to as “untrusted” third parties.

We proceed to overview techniques to reduce the trust put in coordinators below.

– Committees. The trust assumptions are distributed among a set of N committee members. Decisions
require the acknowledgement (e.g. digital signature) of at least M ≤ N members, whereby consensus can
be achieved via Byzantine Fault Tolerante (BFT) agreement protocols such as PBFT [63]. An important
distinction to make here is between static, i.e., unchanged over time (usually permissioned), and dynamic
committees, where a pre-defined mechanism is responsible for member election. The latter is a well studied
problem, e.g. in Proof-of-Work [69,113,114,146] and Proof-of-Stake [43,67,110,137] blockchains. Practical
examples for such CCC protocols relying on committees include [13,70,117].

– Multisignature Contracts. A special case of committees, allowing to transform a Custodian into an
Escrow, are multisignature contracts, which require the signature of the participant P in addition to those
of the (subset of) committee members, i.e., P +M,M ≤ N . As a result, the committee can only execute
actions pre-authorized by the participant.

– Trusted Execution Environments (TEEs). TEE is based on a piece hardware trusted for integrity of
code execution and confidentiality of handled data. While TEEs do not support arbitrary long code and
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data, they can be leveraged to provide confidentiality and integrity guarantees within an untrusted part of
the system [29,99]. As such, TEEs can be entrusted to store private keys and perform computations, i.e.,
be used as Escrows. However, vulnerabilities to side-channel attacks [86,173] require the use of dedicated
libraries [55,88,143] limiting performance and available functionality.

– Smart Contracts are programs stored in a ledger which are executed and their result agreed upon by
consensus participants [58,61]. As such, trusting in the correct behavior of a smart contract is essentially
trusting in the secure operation of the system, making this a useful construction for Escrows. Depending
on the system properties, smart contracts can be (near) Turing complete [58], or limited to a subset of
operations [141,157]. In addition, smart contracts can be used to collateralize CCC participants, penalize
misbehavior [91,92,167] or pay premium for correct participation [90] – even if the custodians are located
on different chains, which may have no support for smart contracts themselves [179]. Recently, smart
contracts have been also used to verify succinct proofs of knowledge [74,180].

(Symmetric) Contracts. An alternative to coordinators consists in using locks stemming security from
cryptographic hardness assumptions. Observations in practice show these techniques are typically used in
two-phase commit CCC, where the same (symmetric) locks are created on both chains and released atomically.
We provide an overview, differentiating between the cryptographic primitives relied upon.

– Hash Locks rely on the preimage resistance property of hash functions: participants P and Q transfer
assets to each other by means of transactions that must be complemented with the preimage of a hash
h := H(r) for a value r chosen uniformly at random by P (i.e., the initiator of the protocol) [18,19,95,128].

– Signature-based Locks. Protocols based on hash locks have limited interoperability as they require
that both cryptocurrencies support the same hash function within their script language. Instead, P and
Q can transfer assets to each other by means of transactions that require to solve the discrete logarithm
problem of a value Y := gy for a value y chosen uniformly at random by P (i.e., the initiator of the
protocol) [46,49,75,129,140,149,166].

– Timelock Puzzles and Verifiable Delay Functions. An alternative approach is to construct (cryp-
tographic) challenges, the solution of which will be made public at a predictable time in the future.
Thus, P and Q can commit to the cross-chain transfer conditioned on solving one of the aforementioned
challenges. Concrete constructions include timelock puzzles and verifiable delay functions. Timelock puz-
zles [151] build upon inherently sequential functions where the result is only revealed after a predefined
number of operations are performed. Verifiable delay functions [47] improve upon timelock puzzles on that
the correctness of the result for the challenge is publicly verifiable. This functionality can also be simulated
by releasing parts of the preimage of a hash lock interactively bit by bit, until it can be brute forced [41].

Timelocks. To ensure that assets are not locked up indefinitely in case of a crash failure, all of the above
locking mechanisms can be complimented with timelocks: after expiry of the timelock, assets are returned
to their original owner. Thereby, we differentiate between two types of timelocks:

– Absolute timelocks, where a transaction becomes valid only after a specified delay. The latter can
be defined in absolute time units or by specifying a timestamp located in the future, after which the
transaction becomes valid. Alternatively, the delay can be defined in confirmations [5], i.e., assuming
transaction tx was included in L[i], then tx becomes valid when the chain reaches ledger state L[j] where
j = i+ c, which c denoting the number of required confirmations (i, j, c ∈ N).

– Relative timelocks, where a transaction tx2 becomes valid only after a given time value or number
of confirmations have elapsed since the inclusion of another transaction tx1 in the underlying ledger.
Typically, tx1 and tx2 are related as tx2 spends assets transferred in tx1 [150]. While more practical
than absolute timelocks (no need for external clock), as of this writing, we are not aware of schemes
allowing the creation of relative timelocks across ledgers.
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8 Implications for Blockchain, Threat, Network, and Privacy Models

In this section, we overview implications of cross-chain communication on distributed ledgers and necessary
considerations when designing CCC protocols.

8.1 Threat Model

Security and Adversary Model. Both X and Y can have a well defined security model on their own.
However, these security models are not necessarily the same and even further, it might not be trivial to
compare the guarantees they provide. For instance, X may rely on PoW and thus assume that adversarial
hash computation is bound by α ≤ 33% [76, 85, 154]. On the other hand, Y may use PoS and similarly
assume that the adversary’s stake in the system is bound by β ≤ 33%. While similar at first glance, the
cost of accumulating stake [77, 83] may be lower than that of accumulating computational power, or vice-
versa [50]. Since permissionless distributed ledgers (such as PoW or PoS) are not Sybil resistant [71], i.e.,
provide weak identities at best, quantifying adversary strength is nearly impossible, even within a single
ledger [32]. However, this task becomes even more difficult in the cross-chain setting: not only can consensus
participants (i) “hop” between different chains [122, 135], destabilizing involved systems, but also (ii) be
susceptible to bribing attacks, which can be executed cross-chain, making detection unlikely [104,132].
Consensus Finality Guarantees. Interlinked chains X and Y may assume different finality guarantees
in their ledgers. Consider the following: X accepts a transaction as valid when confirmed by k subsequent
blocks, e.g. as in PoW blockchains [81]; Y , on the other hand, deems transactions valid as soon as they are
written to the ledger (k = 1, e.g. [21]). A CCC protocol triggers a state transition on Y conditioned on a
transaction included in X, however, later an (accidental) fork occurs on X (perhaps deeper than k). While
the state of X will be reverted, this may not be possible in Y according to consensus rules - although the
Atomicity property of CCC would require such measures.
Replay Attacks. Replay attacks on state verification, i.e., where proofs are re-submitted multiple times or
on multiple chains, can result in failures such as double spending. Protections involve the use of sequence
numbers, or chains keeping track of previously processed proofs [60, 131, 160]. Special consideration may
be needed in case of permanent blockchain forks, as this may require updating the way verification is
performed [131,179].
Increasing Verification Cost. An adversary can increase the cost of the verification of a transaction across
chains. For instance, a spam attack in a chain makes the ledger grow in size, increasing both verification time
and cost. This in turn may impair cross-chain state verification, especially in heterogeneous settings, where
verification of external consensus is typically an expensive operation [179]. In sharded systems, an adversary
can attempt to create transactions, the validation of which requires information from (almost) all shards,
significantly increasing cost and defeating the purpose of sharding in the first place.
Composability Attacks. We recall, in blockchains with stablizing [28,171] consensus, a security parameter
k is used to denote the number of blocks or confirmation [5] a transaction should have, before being accepted
as secure [81, 141, 145], i.e., with the probability of a reversion being negligible. The same applies to state
agreement and state evolution proofs. In addition, the value linked a verified transaction must be considered:
the higher the potential gain by an adversary, the higher the risk of an attack, and the more confirmations
should be required [159]. However, following recent works [182], we argue at least the entire composition of a
block must be considered, as this is the total value an adversary can gain from executing a successful attack5.

8.2 Network model

Synchrony Across Chains. The absence of a global clock across chains requires to either agree and trust
a third party as external clock, or rely on chain-dependent time definition, such as the block generation
rate [81], hindering a seamless synchronization across chains [81, 179]. Several factors, such as the instance

5 Recall: for a transaction to be reversed or modified, the entire block must be altered.

14



of the consensus algorithm, computation and communication capabilities of consensus participants or peer-
to-peer network delay must be considered for a correct operation of cross-chain communication protocols,
especially if timelocks are used.
Exchange Rates. In economically driven cross-chain communication, the exchange rate of assets is crucial
for the economic viability of a protocol. For instance, while the exchange of assets can be beneficial for both
users given the exchange rate at time t, this may no longer be the case at time t+ 1 provided that exchange
rates have changed [90]. Finally, there exists protocols that rely on collateral (i.e., coins locked in a smart
contract) to make third parties accountable [92, 168, 179]. Here, the exchange rate is crucial to ensure that
collateral has sufficient value to punish misbehavior, and stabilization measures are necessary to mitigate
both short and long term fluctuations.
Data Availability. Protocols leveraging verification of state agreement or validity across chains typically
rely on timely arrival of proofs and accompanying data (block headers, transactions, ...). Furthermore,
existing sub-linear state verification techniques relying on probabilistic sampling require additional data to
be included in the verified blockchain [109,127]. If an adversary can exclude this data from the chain, these
protocols not only become less efficient but may potentially exhibit vulnerabilities [127]. This is a particular
problem in heterogeneous settings, if data availability is not enforced by consensus, e.g. if protocols are
deployed via velvet forks [181]. One possible solution is to include data availability proofs [23], at the cost
of increasing complexity of the process.

8.3 Blockchain Model

Cryptographic Primitives. Interconnected chains X and Y may leverage different cryptographic schemes,
or different instances of the same scheme. Thereby, cross-chain communication often requires compatible
cryptographic primitives: a CCC protocol between a system X using ECDSA [100] as its digital signature
scheme and a system Y using Schnorr [156] is only possible if both schemes are instantiated over the same
elliptic curve [129]. Similarly, HTLC-based protocols require that the domain of the hash function has the
same size in both X and Y - otherwise the protocol is prone to oversize preimage attacks [102].
Language Expressiveness. The functionality of CCC protocols is typically restricted by the computational
operations supported by the involved chains. These can reach from near Turing complete environments [58],
over restricted operation sets [141,157], to the (near) absence of scripting functionality altogether [9,53]. CCC
protocols must hence (i) consider the operations supported by both X and Y and leverage the intersecting
functionality [129]; or (ii) move assets from chain with limited functionality to those with high(er) language
expressiveness [70,168,179].

8.4 Privacy and Linkability

Privacy is crucial in any financial interaction and thus in cross-chain communication as well. Ideally it
should not be possible for an observer to determine what two events have been synchronized across chains
(e.g., what two assets have been exchanged and by whom). Among other advantages, this improves the
fungibility of payments. However, there exist several privacy attack vectors in cross-chain communication:
(i) recent works [87, 128] show attacks leveraging the locking mechanism and some countermeasures have
been proposed [128, 129, 153]; (ii) heuristics to explore blocks from different cryptocurrencies [105] as well
as forks [163] to cluster miner and user accounts [97]; (iii) CCC protocols leveraging coordinators, similar to
and payment hubs [89,103], also lead to privacy leakages that enable further account clustering [175]. Recent
works [87, 93, 166] propose measures that allow to preserve the anonymity of participants, if added to CCC
protocols.

9 Related Work

Surveys and Reports. The first work discussing cross-chain communication, excluding forum discussions, is
a technical report by Back et al. [36]. The authors introduce the term “sidechain” and present how assets can
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be transferred between two chains using a committee of custodians or SPV proofs in a homogeneous security
model. A more recent report by Buterin discusses how cross-chain exchanges can be achieved via custodians,
escrows, HTLCs and cross-chain state verification, and provides a high level discussion of possible failures in
cross-chain communication [59]. Siris et al. provide an iterative overview of protocols for atomic cross-chain
swaps and “sidechains” [158], focusing mostly on community driven efforts, rather than academic publica-
tions. Similarly, Johnson et al. discuss open source interoperability projects related to Ethereum [101], while
Robinson evaluates Ethereum as a coordination platform for communication among other blockchains [152].
Bennik et al. [40] and similarly Miraz et al. [139] summarize technical details of HTLC atomic cross-chain
swaps.
Interoprability Platforms. The idea of using a specialized sharded blockchains to interconnect existing
distributed ledgers was first introduced in [172]. Thereby, individual shards, which are coordinated via a
parent chain running a Byzantine fault tolerant agreement protocol, connect to and import assets from
existing blockchains using techniques such as [84, 168, 179]. A formal treatment of such a design, extending
the functionality from asset transfer to distributed computation, is presented in [126]. Other projects following
a similar mentality include [20,98,121,161,170].

10 Concluding Remarks

Our systematic analysis of cross-chain communication as a new problem in the era of distributed ledgers
allows us to relate (mostly) community driven efforts to established academic research in database and
distributed systems research. We formalize the cross-chain communication problem and show it cannot be
solved without a trusted third party (or synchrony assumptions) - contrary to the assumptions often made in
previous community driven development efforts. The classifications and comparative evaluations introduced
in this work, taking into account both academic research and the vast number of online resources, allow to
better understand the similarities and differences between existing cross-chain communication approaches -
and possibly contribute to clearer communication between academia and industry in this field. Finally, by
discussing implications and open challenges related to blockchain, network, and threat models, as well as
privacy and linkability, we offer a comprehensive guide for designing protocols, bridging multiple distributed
ledgers.
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82. Gärtner, F.C.: Specifications for fault tolerance: A comedy of failures (1998)
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