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Abstract—Communication across distributed systems, each
running its own consensus, is a problem previously studied
under the assumption of trust across systems. With the
appearance of distributed ledgers or blockchains, numerous
protocols have emerged, which attempt to achieve trustless
communication between distrusting ledgers and participants.
Cross-chain communication thereby plays a fundamental
role in cryptocurrency exchanges, sharding, bootstrapping
and extension of distributed ledgers. Unfortunately, existing
proposals are designed ad-hoc for specific use-cases, making
it hard to gain confidence on their correctness and to use
them as building blocks for new systems.

We provide the first systematic exposition of protocols for
cross-chain communication. First, we formalize the underly-
ing research problem and show cross-chain communication is
impossible without a trusted third party, contrary to common
beliefs in the blockchain community. We then develop a
framework for evaluating existing and designing new cross-
chain protocols, based on use case, trust model and security
assumptions of interlinked blockchains. Finally, we identify
security and privacy challenges faced by protocols in the
cross-chain setting.

This Systematization of Knowledge (SoK) offers a com-
prehensive guide for designing protocols bridging the numer-
ous distributed ledgers available today and aims to facilitate
clearer communication between academia and industry in
this field.

Index Terms—blockchains, distributed ledgers, cross-chain
communication, interoperability

1. Introduction

Why Cross-Chain Communication is Worthy of Re-
search. Since the introduction of Bitcoin [135] as the
first decentralized ledger currency in 2008, the topic of
blockchains (or distributed ledgers) has evolved into a well
studied field in both industry and academia. Nevertheless,
developments are still largely driven by community effort,
resulting in a plethora of blockchain-based digital curren-
cies being created. Taking into account the heterogeneous
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nature of these systems in terms of design and purpose, it
is unlikely that there shall emerge a “coin to rule them all”,
yielding interoperability an important research problem.
Thereby, cross-chain communication is not only found in
currency transfers and exchanges [18], [19], [89]–[91],
but is a critical component of scalabilty solutions (syn-
chronization in sharded systems [22], [23], [26], [112],
[168]), feature extensions (sidechains [36], [81], [108],
[120] and cryptocurrency-backed assets [159], [169]), as
well as bootstrapping of new and migration between exist-
ing systems [3], [50], [100], [153]. In addition, numerous
competing projects aiming to create a single platform for
cross-chain communication have recently emerged [20],
[93], [116], [152], [160], [161], [163]. However, in spite
of the vast number of use cases and solution attempts,
the underlying problem of cross-chain communication
has neither been clearly defined, nor have the associated
challenges been studied or related to existing research.
Historical Background and Difference to Databases.
The need for communication among distributed processes
is fundamental to any distributed computing algorithm. In
databases, to ensure the atomicity of a distributed trans-
action, an agreement problem must be solved among the
set of participating processes. Referred to as the Atomic
Commit problem (AC) [44], it requires the processes to
agree on a common outcome for the transaction: commit
or abort. If there is a strong requirement that every correct
process should eventually reach an outcome despite the
failure of other processes, the problem is called Non-
Blocking Atomic Commit (NB-AC) [35]. Solving this
problem enables correct processes to relinquish locks
without waiting for crashed processes to recover. As such,
we can relate the core ideas of communication across dis-
tributed ledgers to NB-AC. The key difference hereby lies
within the security model of the interconnected systems.
While in classic distributed databases all processes are
expected to adhere to protocol rules and, in the worst
case, may crash, distributed ledgers, where consensus is
maintained by a committee, must also consider and handle
Byzantine failures.
Contributions. In this work, we provide the first system-
atic analysis of communication across distributed ledgers.
First, we overview the process of Cross-Chain Commu-
nication (CCC) and identify the main designs patters for



protocols in CCC (Section 2). Next, we formalize the un-
derlying problem of Correct Cross-Chain Communication
and show it is impossible without a trusted third party
by providing a reduction to the Fair Exchange problem
(Section 3). We then introduce a framework to build new
and evaluate existing CCC protocols. In particular, we
systematize mechanisms used in committing, aborting and
verifying in CCC, and analyze the inherent trust assump-
tions thereof (Sections 4- 5). Following this framework,
we introduce a classification of CCC protocols proposed
in literature (Section 6). Finally, we discuss implications
for the blockchain, network, and threat models, and ex-
amine transcendence for privacy (Section 7). We overview
related work in Section 8 and conclude in Section 9.

2. Overview of Cross-Chain Communication

In this section, we sketch the cross-chain communica-
tion (CCC) process and the design rationales of existing
protocols. We defer the formal description of the CCC
problem to Section 3.

2.1. The Cross-Chain Communication Process

The CCC process defines the interaction between two
blockchains X and Y to synchronize transactions, each of
which represents the transfer of goods, assets or objects.
CCC can be compartmentalized into four phases.
Setup. The setup phase is required to establish the pa-
rameters for the rest of the CCC process. For example,
in the case of an exchange of assets of digital goods,
parties agree on the CCC protocol type, asset amount, and
any additional conditions. Typically, this process occurs
out-of-band and we hence shift our focus on the actual
execution of CCC in the rest of this paper.
Commit on X . Upon a successful setup, a publicly
verifiable commitment to execute the CCC protocol is
published on X- typically a transaction being included in
the blockchain. In case of an asset exchange, this could
be a user locking assets, to be released upon fulfillment
of some conditions (e.g. an event on chain Y ).
Verify on Y . In this phase, the correctness of the commit-
ment on X is verified on Y , as per the parameters agreed
in the setup phase.
Commit (or Abort) on Y . If the verification succeeds, a
commitment as agreed in the setup phase is published on
Y . Following our exchange example, this could be a user
triggering the prepared exchange of assets. Alternatively,
the CCC can be aborted at this stage. In this case, the
commitment on X can also be reverted, e.g. returning
locked coins to their original owner on X , in our example.

2.2. Protocols for Cross-Chain Communication

We observe two main design patterns for protocols in
CCC: (i) protocols which synchronize (atomic) exchanges
of digital goods between chain X and chain Y ; and (ii)
protocols that solely transfer assets/objects from a chain
X to chain Y . An explanatory visualization for both
rationales is provided in Figure 1. In this section, we
overview these two protocol families and defer a system-
atic classification of individual protocols to Section 6.
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Figure 1: Difference between bidirectional exchange (left)
and one-way transfer (right) CCC protocols. In exchange
protocols, two assets/objects x and y are locked (and
unlocked atomically if required). In transfers, a represen-
tation y(x) of an asset/object x is created on y, after a
“write” lock on x was obtained on X .

2.2.1. Bidirectional Exchanges. The family of bidirec-
tional exchange protocols, as state in the name, encom-
passes those protocols to synchronize an atomic swap of
two (or more) digital goods (assets or objects): x of chain
X and y on Y . In practice, such protocols typically imple-
ment some form of a two-phase commit mechanism [18],
[91], [108], where the parties can explicitly abort the
exchange in case of a disagreement or failure during the
commit step.

Interestingly, bidirectional exchange protocols are
blockchain agnostic in that they do not require explicit
involvement of the consensus participants of interlinked
chains X and Y . That is, the only assumption is that
participants of the CCC will be able to include transactions
in the underlying ledgers. Notable examples are atomic
cross-chain swaps which use HTLCs [18], [19], [90],
[123] or similar symmetric cryptographic locks [46], [73],
[124], [134], [140], [157] (cf. Section 4), and centralized,
custodial exchange protocols [17], [41], [160].

2.2.2. One-way Transfers. The family of one-way
transfers protocols consists of protocols that move as-
sets/objects from one blockchain to another. Typically, this
is achieved by obtaining a “write lock” on an asset/object
x on chain X , i.e., preventing any further updates of x on
X , and creating a representation y(x) on Y . Now, the state
of x can only be modified by modifying y(x), comparable
to the concept of mutual exclusion in concurrency control
[67]. The state changes of y(x) can also be reflected back
to X by locking or destroying y(x) and applying the
updates to x when it is unlocked. This is, for example, the
case for cryptocurrency-backed assets [17], [120], [159],
[169], where changes in asset ownership executed on the
issuing chain Y are propagated to the backing chain X .
Although less common than in bidirectional exchanges,
one-way transfer protocols may implement an explicit
abort procedure, if the creation of y(x) fails.

Contrary to bidirectional exchanges, one-way transfer
protocols require explicit involvement of the consensus
participants of interlinked chains X and Y , specifically
in the verification step. In fact, we can classify one-
way transfers into homogeneous and heterogeneous, two
subfamilies defined upon the required blockchain security
model.
Homogeneous homogeneous one-way transfer protocols
explicitly make assumptions regarding the threat and net-
work models of Y when constructing a communication



protocol from X . In practice, this is the case in shard-
ing [23], [25], [112], [168], where every shard is con-
sidered to be secure by design [112], [168] leveraging,
for example, an appropriate form of randomness [146],
[155]. As a result, shards have “uniform” security, i.e.,
it is equally difficult for an adversary to compromise any
shard. Following, if one shard is corrupted, the failure typ-
ically occurs system wide. This further applies to (child)
blockchains which have hierarchical dependency to some
parent chain, i.e., the child chain’s security depends on that
of the parent (e.g., merged mining [3], [100], [120], [156]).
Since, if the parent fails, so does the child, we are forced to
assume the parent’s security holds when communicating
with it from the child. Note that this relation does not
necessarily hold inversely: by definition, a child can fail
without affecting the parent (contrary to the critical impact
of a failing shard) [36], [80].
Heterogeneous. In the design of heterogeneous one-way
transfer protocols, interlinked chains cannot be assumed
to have identical rule sets/data structures. In practice, it
can be understood that any user can create their own
chain and, in the absence of pre-defined specifications or
rules ensuring e.g. sufficient honest participants exist, no
generic security assumptions can be relied upon. Hence,
a chain, even if capable of verifying the consensus rules
of another chain, cannot be sure that the received infor-
mation is indeed valid (except if it is fully validated, cf.
Section 5.1) [36]. As a result, CCC protocols in the het-
erogeneous model typically make additional assumptions
regarding interlinked chains, restricting applicability to a
subset of existing systems [108] or introducing additional
economic incentives [169].

3. The Cross-Chain Communication Problem

We proceed to formally define the problem of Correct
Cross-Chain Communication (CCC) and provide a reduc-
tion to the Fair Exchange problem [29], [137], showing
that CCC is impossible without a trusted third party.

3.1. Preliminaries

In literature, the terms blockchain and distributed
ledger are often used as synonyms. We adopt this nomen-
clature as we proceed to introduce some notation, on the
basis of [81] with minor alterations. We refer to [53], [78],
[135] for reading on the basics of distributed ledgers.

When speaking of cross-chain communication, we
consider the interaction between two distributed systems
X and Y , which can have distinct consensus participants
and may employ different agreement protocols. Thereby, it
is assumed the majority of consensus participants in both
X and Y are honest1. The data structures underlying X
and Y are blockchains (or chains), i.e., append-only se-
quences of blocks, where each block contains a reference
to its predecessor(s), e.g. via a hash.
Ledgers and State Evolution. We denote a ledger as
L (Lx and Ly respectively) and define its state as the
dynamically evolving sequence of included transactions
〈TX1, ..., TXn〉. We assume that the evolution of the ledger

1. Or, in the case of Proof-of-Work blockchains such as Bitcoin, the
majority of computational power [135]

state progresses in discrete slots s, indexed2 by a natural
number i ∈ N. At each slot i, a new set of transactions
(included in a newly generated block) is written to the
ledger L. We use L[i] to denote the state of ledger L at
slot i, i.e., after applying all transactions written to the
ledger since slot i− 1. A transaction can be written to L
only if it is consistent with the system’s consensus rules,
given the current ledger state L[i]. This consistency is left
for the particular system to define, and we describe it as a
free predicate valid(·). In practice, the ordering at which
transactions are included in the ledger is crucial for their
validity, i.e., TXj at position j can conflict with TXl at
position l (e.g. a double-spend). Depending on whether
j > l, either TXj or TXl is valid and can be included in L,
but not both. For simplicity, we assume correct ordering
implicitly, and write valid(TX, Lx[i]) (instead of explicitly
specifying the transaction index as valid(TX, Lx[i][j])).
Global Clock. The state evolution of two distinct ledgers
Lx and Ly may progress at different time intervals: In
the time that Lx progresses one sx slot, Ly may, for
example, progress forty sy slots (on average, as in the
case of Bitcoin [135] and Ethereum [56]). To capture the
order of transactions when synchronizing across Lx and
Ly, we introduce a clock function τ which maps a given
slot on any ledger to the time on a global, synchronized
clock τ : s → t. For simplicity and readability, we use
this conversion implicitly, i.e., given τ(i) = t we write
L[t] = L[i] instead of L[t] = L[τ(i)].
Persistence and Liveness. Each participant P adopts and
maintains a local ledger state LP [t] at time t (LPx [t] and
LPy [t] respectively), i.e., her current view of the ledger.
The views of two distinct participants P and Q on the
same ledger L may differ at time t (e.g., due to network
delay or message loss): LP [t] = L[i], LQ[t] = L[i − 1],
LP [t] 6= LQ[t]. However, eventually, all honest parties
in the ledger will have the same view. This is captured
by the persistence and liveness properties of distributed
ledgers [78]:

Definition 1 (Liveness). Consider an honest party P of a
ledger L and a liveness delay parameter u. If P attempts
to write a transaction TX to its ledger at time t ∈ N, then
TX will appear in its ledger at time t′, i.e., ∃t′ ∈ N : t′ ≥
t∧TX ∈ LP [t′]. Additionally, we require the interval t′−t
to be upper bound by u.

Definition 2 (Persistence). Consider two honest parties
P,Q of a ledger L and a persistence delay parameter k.
If a transaction TX appears in the ledger of party P at
time t, then it will eventually appear in the ledger of party
Q at a time t′ > t. Concretely, for all honest parties P
and Q, we have that ∀t ∈ N : ∃t′ ≥ t : LQ[t′] = LP [t].
Additionally, we require that the interval t′ − t is upper
bound by k.

(Smart) Contracts and State Manipulation. A trans-
action TX, when included, alters the state of a ledger L
by defining operations to be executed and agreed upon
by consensus participants P1, ..., Pn. The expressiveness
of operations is thereby left for the particular system to
define, and can range from mere hash functions [52] to
(near) Turing complete programming languages [164].

2. In practice often referred to as the blockchain height.



Assets/Objects. We denote assets/objects on ledgers Lx
and Ly as x and y, respectively. Both assets and objects
can have a state, which is encoded as part of the state
of the underlying ledger L, i.e., in the evolving set of
included transactions associated with the asset/object (for
example, ownership).
Full nodes and Light Clients. We differentiate between
two types of nodes in the networks: (i) those that store the
entire transaction history and validate the full ledger state
(full nodes), (ii) and those that only store transactions rel-
evant to them and verify their inclusion in the underlying
ledger, but do not check their validity (light clients).

3.2. Model and Specification

Model. Consider two independent distributed systems X
and Y with underlying ledgers Lx and Ly, as defined in
Section 3.1. We assume a closed system model as in [118]
with a process P running on X and a process Q running
on Y . The only way a process can influence the state
evolution of the underlying system is by (i) writing a
transaction TX to the underlying ledger L (commit), or
(ii) by completely stopping to interact with the system
(abort). We assume that P possesses transaction TXP ,
which can be written to Lx, and Q possesses TXQ, which
can be written to Ly. A function desc maps a transaction
to some “description” which can be compared to an ex-
pected description value (e.g. specifying the transaction
value). Both processes posses descriptions dP and dQ
of the transactions TXP and TXQ they expect from their
counterparty. Note: dP = desc(TXP ) implies TXP is valid
in X (at time of synchronization), as it cannot be written
to Lx otherwise (analogous for dQ).

We assume P and Q know each other’s identity and
no (trusted) third party is involved in the communication
between the two processes. Further, we assume no bounds
on message delay or deviations between local clocks
and treat failure to communicate as adversarial behavior.
Hence, if P or Q become malicious, we indicate this using
boolean “error variables” [79] mP and mQ.
Specification. The goal of cross-chain communication can
be described as the synchronization of processes P and Q
such that Q writes TXQ to Ly if and only if P has written
TXP to Lx. Thereby, it must hold that desc(TXP ) = dQ∧
desc(TXQ) = dP . The intuition is that TXP and TXQ are
two transactions which must either both, or neither, be
included in Lx and Ly, respectively. For example, they can
constitute an exchange of assets which must be completed
atomically. A visual representation is provided in Figure 2.

To this end, P must convince Q that it created a
transaction TXP which was included in Lx. Specifically,
process Q must verify that at given time t the ledger
state Lx[t] contains TXP . A cross-chain communication
protocol which achieves this goal, i.e., is correct, must
hence exhibit the following properties:

Definition 3 (Effectiveness). If both P and Q behave cor-
rectly and TXP and TXQ match the expected descriptions
(and are hence valid), then TXP will be included in Lx and
TXQ will be included in Ly. If either of the transactions

are not as expected, then both parties abort.

(desc(TXP ) = dQ ∧ desc(TXQ) = dP ∧mP = mQ = ⊥
=⇒ TXP ∈ Lx ∧ TXQ ∈ Ly)

∧ (desc(TXP ) 6= dQ ∨ desc(TXQ) 6= dP

=⇒ TXP /∈ Lx ∧ TXQ /∈ Ly)

Definition 4 (Atomicity). There are no outcomes in which
P writes TXP to Lx but Q does not write TXQ, or Q writes
TXQ to Ly but P did not write TXP to Lx.

¬((TXP ∈ Lx ∧ TXQ /∈ Ly) ∨ (TXP /∈ Lx ∧ TXQ ∈ Ly))

Definition 5 (Timeliness). Eventually, a process that be-
haves correctly will write a transaction TX to its ledger
L.

From Persistence and Liveness of L, it follows that even-
tually P writes TXP to Lx and Q becomes aware of and
verifies TXP .

Definition 6 (Correct Cross-Chain Communication
(CCC)). Consider two systems X and Y with ledgers
Lx and Ly, each of which has Persistence and Liveness.
Consider two processes, P on X and Q on Y , with to-be-
synchronized transactions TXP and TXQ. Then a correct
cross-chain communication protocol is a protocol which
achieves TXP ∈ Lx ∧ TXQ ∈ Ly and has Effectiveness,
Atomicity, and Timeliness.

Summarizing, Effectiveness and Atomicity are safety
properties. Effectiveness determines the outcome if trans-
actions are not as expected or both transaction match
descriptions and both processes are behaving correctly.
Atomicity globally restricts the outcome to exclude behav-
iors which place a disadvantage on either process. Timeli-
ness guarantees eventual termination of the protocol, i.e.,
is a liveness property.

3.3. Correct Cross-Chain Communication is as
Hard as Fair Exchange

We proceed to show that Correct Cross-Chain Com-
munication is as hard as Fair Exchange, and hence im-
possible without a trusted third party.
Fair Exchange. The fair exchange of digital goods is a
well-studied problem in computer science. On a high level,
an exchange between two (or more) parties is considered
fair if either both parties receive the item they expect, or
neither do [30]. Fair exchange can be considered a sub-
problem of fair secure computation [42], and is known to
be impossible without a trusted third party [137], [165].
Relating CCC to Fair Exchange. We proceed to show
that Correct Cross-Chain Communication is impossible
without a trusted third party (TTP) by reducing it to Fair
Exchange [29], [30], [137].

Lemma 1. Let C be a protocol which solves CCC in the
given system model. Then there exists a protocol S which
solves Fair Exchange in the same system model.

Proof. Consider that the two processes P and Q are
parties in a fair exchange. Specifically, P owns an item
iP and wishes to exchange it against an item iQ owned
by Q. Assume TXP assigns ownership of iP to Q and
TXQ ownership of iQ to P (“descriptions” of TXP and



Figure 2: Simplified visualization of CCC between X and Y . Process Q writes TXQ only if P has written TXP . We
use kX and kY to denote exemplary persistence delays of X and Y (kX = 3, kY = 4), and set ux = uy = 0 for the
liveness delays for the sake of simplicity.

TXQ). Then, TXP must be included in Lx and TXQ in Ly
to finalize the exchange. In other words, if TXQ ∈ Ly and
TXP ∈ Lx, then P receives desired iQ and Q receives
desired iP , i.e., P and Q fairly exchange iP and iQ.

A fair exchange protocol must fulfill three proper-
ties: Effectiveness, (Strong) Fairness and Timeliness [29],
[137]. It is easy to see the Timeliness property of CCC
is equivalent to Timeliness of fair exchange as defined
in [137]. Effectiveness in fair exchange states that if P
and Q behave correctly and do not want to abandon the
exchange, and items iP and iQ are as expected by Q and
P , then at the end of the protocol, P will have the desired
iQ and Q will have the desired iP [137]. It is easy to
see Effectiveness in CCC achieves exactly this property:
if P and Q behave correctly and the transaction match
the respective descriptions (i.e., assign iP to Q and iQ to
P ), then P will write TXP to Ly and Q will write TXQ
to Lx, resulting in P receiving iQ and Q receiving iP .
From Persistence and Liveness of Lx and Ly we know both
transactions will eventually be written to the local ledgers
of P and Q, and consequently appear in the local ledgers
of all other participants of X and Y . Strong Fairness in fair
exchange states that there is no outcome of the protocol,
where P owns iQ but Q does not own iP , or Q owns
iP but P does not own iQ [137]. In our setting, such an
outcome is only possible if TXP ∈ Lx ∧ TXQ /∈ Ly or
TXP /∈ Lx ∧ TXQ ∈ Ly, which contradicts the Atomicity
property of CCC.

We assume the same asynchronous (explicitly) and de-
terministic (implicitly) system model (cf. Section 3.2)
as [76], [137]. Since P and Q can simply stop partici-
pating in the CCC protocol, we also have the same crash
failure model as [76], [137]. Hence, we conclude:

Theorem 1. There exists no asynchronous CCC protocol
tolerant against misbehaving nodes.

Proof. Assume there exists a asynchronous protocol C
which solves CCC. Then, due to Lemma 1 there exists a
protocol which solves strong fair exchange. As this is a
contradiction, there cannot exist such a protocol C.

Our result currently holds for the closed model, as in [76],
[137]. In the open model, P and Q can be forced to
make a decision by the system, i.e., transactions can

be written on their behalf if they crash [112]. This can
be achieved by leveraging smart contracts, similar to
blockchain-based fair exchange protocols, e.g. [71]. As
such, we can construct a smart contract on Y which will
include TXQ in Ly as soon as P includes TXP in Lx, i.e., Q
is allowed to crash. A contract, however, can only perform
actions based on some prior input. Specifically, before
writing TXQ the contract must receive proof that TXP
was included in Lx. A protocol achieving CCC must hence
assume (i) P (or Q) will always submit a proof showing
TXP ∈ Lx, i.e., introduce some form of synchrony as-
sumptions, or (ii) resort to a TTP. We argue introducing a
TTP is equivalent to introducing synchrony assumptions,
as discussed in [137], and derive the following corollary:

Corollary 1. There exists no CCC protocol tolerant
against misbehaving nodes without a trusted third party.

Proof. A trusted third party is equivalent to introducing
some form of synchrony. As such, if there is no trusted
third party, then the protocol is asynchronous. Theorem 1
now proves Corollary 1.

The intuition behind this result is as follows.
If we assume that process P does not crash and hence

submits the necessary proof the the smart contract on Y ,
and that this message is delivered to the smart contract
within a know upper bound, then we can be sure that CCC
will occur correctly. Thereby, P represents its own trusted
third party. However, if we cannot make assumptions on
when the message will be delivered to the smart contract,
a trusted third party is necessary to determine the outcome
of the CCC: the TTP observes TXP ∈ Lx and informs the
smart contract or directly enforces the inclusion of TXQ
in Ly. Thereby, we observe similarities to the concept of
failure detectors [63], a construction used to introduce an
implicit notion of time into distributed systems to solve
consensus. In the context of fair exchange, and hence
CCC, a failure detector, which can also be considered a
(trusted) third party to the protocol, indicates whether a
participate has failed or misbehaved.

3.4. What is a Trusted Third Party?

Numerous recent works use a single distributed ledger
such as Bitcoin and Ethereum to construct (optimistic)



fair exchange protocols [27], [42], [71], [107], [111],
[114]. They leverage smart contracts (i.e., programs or
scripts), the result of which is agreed upon and enforced
by consensus participants, to ensure the correctness of the
exchange. These protocols thus use the consensus of the
distributed ledgers as an abstraction for a trusted third
party. As long as the majority of consensus participants are
honest, correct behavior of processes/participants of the
fair exchange is enforced – typically, the correct release
of iQ to P if Q received iP .

A CCC protocol aims to achieve synchronization be-
tween two such distributed ledgers, both of which are
inherently trusted to operate correctly. Here, a (possibly
additional) TTP can be used to (i) confirm to the consensus
participants of Y that TXP was included in Lx, who in turn
enforce the inclusion of TXQ in Ly; or (ii) directly enforce
correct behavior of Q, such that TXQ ∈ Ly.

Similar to the abstraction of TTPs used in fair ex-
change protocols, in CCC it does not matter how exactly
the TTP is implemented, as long as it can enforce correct
behavior of the participants. In more detail, from the
perspective of CCC there is little difference between a
TTP consisting of a single individual and a committee
where N out of M members must agree to take action
(even though the latter is, without question, more resilient
against failures).

3.5. Incentives and Economically Trustless CCC

Several workarounds have been proposed in literature
to counter the fair exchange problem. Most prominent al-
ternatives include gradual release mechanisms, optimistic
models, and partially fair secure computation [30], [42],
[60], [115]. These workarounds suffer, among others, from
a common drawback: they require a trusted party that
does not collude with the adversary. Further, when an
adversary aborts, the honest parties have to spend extra
efforts to restore fairness, e.g., the trusted server in the
optimistic model needs to be contacted each time fairness
is breached. The economic dimension of blockchains en-
abled a shift in this paradigm: Rather than forcing an hon-
est user to invest time and money to achieve fairness, the
malicious user is economically punished when breaching
fairness. This has paved the way to design economically
trustless CCC protocols that follow a game theoretic model
under the assumption that actors behave rationally [169].
We remark nevertheless that such assumption only hold
if incentives are aligned and players are economically
rational. Malicious/altruistic actors can still breach CCC
properties (e.g., even if there is no economic damage, the
correct execution of the communication itself still fails).

4. Commit and Abort in CCC

We now overview techniques for implementing the
different phases of CCC protocols, discussing ways of
implementing the necessary TTP.

The commit and abort steps, as described in Section 2,
go hand by hand in the CCC process. Intuitively, the
commit step is crucial to freeze an asset x in chain X
and provide a time window to be verified by participants
at Y according to the agreement reached at the setup.
This time window must be, however, limited to ensure

that x can be further used by the original owner if the
CCC ends in unsuccessful exchange or transfer of assets.
The abort step is thus crucial to limit the aforementioned
time window.

4.1. Commit Phase

First, we discuss the different techniques to handle
the commit phase of CCC protocols. We vertebrate this
discussion on the assumption upon which the commit
phase is designed: (i) relying on a TTP; (ii) relying on
CCC participants and assuming synchronous communica-
tion among them; and (iii) combinations thereof.

4.1.1. Trusted Third Party (Coordinators). A coor-
dinator (also referred to as vault [169]) is a TTP that
assists other protocol participants in achieving agreement
to either commit or abort the cross-chain transfer.

We can describe the coordinator types attending to two
criteria: custody of assets and involvement in blockchain
consensus. We first introduce both classification criteria
and then detail our classification of coordinators.
Custody of Assets. Custody refers to where the control
over assets of (honest) participants resides and we can
differentiate between custodians and escrows.
• Custodians receive unconditional control over the par-

ticipant’s funds and are thus trusted to release them as
instructed by the protocol rules. It is possible to mitigate
this trust assumption by introducing collateral (i.e., a
deposit of coins from the custodian) and penalties if the
custodian misbehaves [86], [87], [158], [159], [169].

• Escrows receive control over the participant’s funds
conditional to certain prearranged constraints being ful-
filled. The release of the assets depend thus on that the
underlying chain correctly verifies the fulfillment for
the condition whereas the Escrow can only fail to take
action (e.g., crash). Moreover, from the game theoretic
perspective, Escrows are expected to lose utility from
misbehaving and are hence often referred to as “un-
trusted” third parties in the blockchain community.

Involvement in Blockchain Consensus. Coordinators can
optionally also take part in the blockchain consensus
protocol. We hence differentiate between consensus-level
and external coordinators.
• Consensus-level coordinators refer to, as the name

states, TTPs that are additionally consensus participants
of the underlying chain. This is the case, for example, if
the commit step is performed on chain X and enforced
directly by the consensus participants of X , e.g. through
a smart contract or directly a multi-/threshold signature.

• External coordinators, on the other hand, refer to TTPs
which are not represented by the consensus participants
of the underlying blockchain. This is the case if (i)
the coordinators are external to the chain X , e.g, the
consensus participants of chain Y or other parties, or
(ii) less than the majority of consensus participants of
chain X are involved.

Overview of Coordinator Types. We now proceed to
detail the different coordinator types according to the
aforementioned criteria and how they are implemented in
practice.



• External Custodians (Committees). In practice, in-
stead of relying on the availability and honest behav-
ior of a single external coordinator, trust assumptions
can also be distributed among a set of N committee
members. Decisions require the acknowledgment (e.g.
digital signature) of at least M ≤ N members, whereby
consensus can be achieved via Byzantine Fault Tolerant
(BFT) agreement protocols such as PBFT [61]. An
important distinction to make here is between static,
i.e., unchanged over time (usually permissioned), and
dynamic committees, where a pre-defined mechanism
is responsible for member election. The latter is a
well studied problem, e.g. in Proof-of-Work [66], [109],
[110], [139] and Proof-of-Stake [43], [65], [106], [131]
blockchains. Practical examples for such CCC protocols
relying on committees include [13], [68], [112].

• Consensus-level Custodian (Consensus Committee)
Consensus-level custodians are identical to external
custodians, except that they are also responsible for
agreeing on the state of the underlying ledger. Often,
this technique is used if the blockchain on which the
commit step is executed runs a BFT consensus protocol
and there hence already exists a static committee of
consensus participants. The later can be reused as the
TTP in CCC: the trust in the honest behavior of the
committee implicitly stems from the assumption that the
underlying ledger operates correctly. Examples include
sharded blockchains, such as [23], [112], [116], [163].

• External Escrows (Multisignature Contracts). Exter-
nal Escrows can be seen as a special case of commit-
tees (i.e., External Custodians) where the coordinator
is transformed from Custodian to Escrow by means
of a multisignature contract. Multisignature contracts
require the signature of the participant P (i.e., the asset
owner) in addition to those of the (subset of) committee
members, i.e., P+M,M ≤ N . The committee can thus
only execute actions pre-authorized by the participant
and can at most freeze assets, but not commit theft.

• Consensus-level Escrow (Smart Contracts) are pro-
grams stored in a ledger which are executed and their
result agreed upon by consensus participants [56], [59].
As such, trusting in the correct behavior of a smart
contract is essentially trusting in the secure operation of
the underlying chain, making this a useful construction
for Escrows. Depending on the system properties, smart
contracts can be (near) Turing complete [56], or limited
to a subset of operations [135], [148]. In addition, smart
contracts can be used to collateralize CCC participants,
penalize misbehavior [86], [87], [158] or pay premium
for correct participation [85] – even if the participants
are located on alternate chains, potentially without sup-
port for smart contracts themselves [169].

4.1.2. Synchrony Assumptions (Lock Contracts).
An alternative to coordinators consists in relying on
synchronous communication between participants and
leveraging locking mechaniusms which stemm security
from cryptographic hardness assumptions. Observations
in practice show these techniques are typically used in
bidirectional exchange CCC protocols implementing two-
phase commit, where the same (symmetric) locks are cre-
ated on both chains and released atomically. We provide
an overview, differentiating between the cryptographic

primitives relied upon.
• Hash Locks. A protocol based on hash locks relies

on the preimage resistance property of hash functions:
participants P and Q transfer assets to each other by
means of transactions that must be complemented with
the preimage of a hash h := H(r) for a value r chosen
by P – the initiator of the protocol – typically uniformly
at random [18], [19], [90], [123].

• Signature-based Locks. Protocols based on hash locks
have limited interoperability as they require that both
cryptocurrencies support the same hash function within
their script language. Unfortunately, this assumption
does not hold in practice (e.g., Monero does not even
support a script language). Instead, P and Q can transfer
assets to each other by means of transactions that re-
quire to solve the discrete logarithm problem of a value
Y := gy for a value y chosen uniformly at random by
P (i.e., the initiator of the protocol). In practice, it has
been shown that it is possible to embed the discrete
logarithm problem in the creation of a digital signature,
a cryptography functionality used for authorization is
most blockchains today [46], [48], [73], [124], [134],
[140], [157].

• Timelock Puzzles and Verifiable Delay Functions.
An alternative approach is to construct (cryptographic)
challenges, the solution of which will be made public
at a predictable time in the future. Thus, P and Q
can commit to the cross-chain transfer conditioned on
solving one of the aforementioned challenges. Concrete
constructions include timelock puzzles and verifiable
delay functions. Timelock puzzles [142] build upon
inherently sequential functions where the result is only
revealed after a predefined number of operations are
performed. Verifiable delay functions [46] improve upon
timelock puzzles on that the correctness of the result for
the challenge is publicly verifiable. This functionality
can also be simulated by releasing parts of the preimage
of a hash lock interactively bit by bit, until it can be
brute forced [41].

4.1.3. Hybrid (Watchtowers). Instead of fully relying
on coordinators being available or synchrony assumptions
among participants holding, it is possible to it is possible
to employ so called watchtowers, i.e., trusted third parties
/ service providers which act as a fallback if CCC partici-
pants experience crash failures. Specifically, watchtowers
take action to enforce the commitment, if one of the
parties crashes or synchrony assumptions do not hold, i.e.,
after a pre-defined timeout [32], [34], [103], [125]. This
construction was first introduced and applied to off-chain
payment channels [84].

4.2. Abort Phase

We now discuss different techniques to handle the
abort phase of CCC protocols. We organize our discussion
based on the same assumptions upon which the commit
phase is designed: (i) relying on a TTP; (ii) relying on
CCC participants and assuming synchronous communica-
tion among them; and (iii) combinations thereof.

4.2.1. Trusted Third Party (Coordinators). Similarly to
the commit phase, an abort can be handled by a trusted



third party. Thereby, the TTP must be the same TTP
which executed the commit step of the CCC protocol - as
such, the possible techniques are the same as described in
Section 4.1.1.

4.2.2. Synchrony Assumptions (Timelocks). Alterna-
tively, it is possible to enforce synchrony by introduc-
ing timelocks, after the expiry of which the protocol is
aborted. Specifically, to ensure that assets are not locked
up indefinitely in case of a crash failure of a participant or
misbehavior of a TTP entrusted with the commit step, all
commit techniques can be complimented with timelocks:
after expiry of the timelock, assets are returned to their
original owner. Thereby, we differentiate between two
types of timelocks:
• Absolute timelocks, where a transaction becomes valid

only after a certain point in time, defined in by a
timestamp or a block (ledger at index i, L[i]) located
in the future.

• Relative timelocks, where a transaction TX2 becomes
valid only after a given time value or number of confir-
mations [5] have elapsed since the inclusion of another
transaction TX1 in the underlying ledger. For example,
assuming transaction TX1 was included in L[i], then
relatively timelocked TX2 becomes valid when the chain
reaches ledger state L[j] where j = i+c, with c denoting
the number of required confirmations (i, j, c ∈ N).
Typically, TX1 and TX2 are related as TX2 spends assets
transferred in TX1 [141]. While more practical than
absolute timelocks (no need for external clock), as of
this writing, we are not aware of schemes allowing the
creation of relative timelocks across ledgers.

4.2.3. Hybrid (Watchtowers). After expiry of a time-
lock, the CCC protocol is aborted. However, participants
typically must be online to regain control over the assets
locked as part of the CCC commit phase. In most cases,
one-way transfer CCC protocols do not introduce an upper
bound on the delay until funds must be recovered from
the commit (lock) is introduced. However, in bidirectional
exchange protocols, where timelocks are often used to
prevent both parties’ funds from being frozen indefinitely,
a timely recover may be necessary. Thereby, participants
must come online within some pre-defined period or en-
trust a trusted third party, e.g. a watchtower [32], [34],
[103], [125], with the recovery of the locked assets. This
can be the case in HTLC atomic swaps [2], [19], [90],
[141], when either party crashes after the secret used in
the hash lock has been revealed.

5. Cross-Chain State Verification

A critical component of cross-chain communication is
the verification of the state evolution of a chain X from
within another chain Y , i.e., that X is in a certain state
after the commit step. We present a classification based on
the scope of the verification process, i.e., differentiating
between what is being verified (Section 5.1) and dis-
cuss the relation between these verification classes (Sec-
tion 5.2). We then overview implementation techniques
for cross-chain state verification, differentiating, as in
previous sections, between (i) using a TTP, (ii) relying on

verification by participants, (iii) and combinations thereof
(Section 5.3).

5.1. Verification Classes

If a party P on X is misbehaving, it may withhold
information from a party Q on Y (i.e., not submit a proof),
but it should not be able to trick Q into accepting an
incorrect state of Lx (e.g., convince Q that TX1 ∈ Lx
although TX1 was never written).
Verification of State. The simplest form of cross-chain
verification is to check whether a specific state exists, i.e.,
is reachable but has not necessarily been agreed upon by
the consensus participants. A representative example is the
verification of Proof-of-Work in merged mining [3], [100]:
the child chain Y only parses a given X block and verifies
that the hash of the Y candidate block was included, and
checks that the PoW hash exceeds the difficulty target of
Y . Note that Y does not care whether the block is actually
part of Lx. Another example is the use of blockchains as
a public source of randomness [51], [55], [64], [70].
Verification of State Agreement. In addition to the ex-
istence of a state, a proof can provide sufficient data to
verify that consensus has been achieved on that state. Typ-
ically, the functionality of this verification is identical to
that of blockchain light clients [1], [11], [135]: instead of
verifying the entire blockchain of X , all block headers and
only transactions relevant to the CCC protocol are verified
(and stored) on Y . The assumption thereby is that an in-
valid block will not be included in the verified blockchain
under correct operation [122], [135]. Block headers can
be understood as the meta-data for the block, including
a commitment to all the transactions in the block, which
are typically referenced using a vector commitment [62]
(or some other form of cryptographic accumulator [39]),
e.g. Merkle trees [129]. We discuss how proofs of state
agreement differ depending on the underlying consensus
mechanism below (non-exhaustive):
• Proof-of-Work. To verify agreement in PoW

blockchains, a primitive called (Non-interactive)
Proofs of Proof-of-Work [104], [105], also referred
to as SPV (simplified payment verification) [135] is
used. Thereby, the verifier of a proof must at least
check for each block that (i) the PoW meets the
specified difficulty target, (ii) the specified target is
in accordance with the difficulty adjustment and (iii)
the block contains a reference to the previous block in
the chain [1], [169]. The first known implementation
of cross-chain state agreement verification (for PoW
blockchains) is BTCRelay [4]: a smart contract which
allows to verify the state of Bitcoin on Ethereum3.

• Proof-of-Stake. If the verified chain uses Proof-of-
Stake in its consensus, the proofs represent a dynamic
collection of signatures, capturing the underlying stake
present in the chain. These are referred to as Proofs of
Proof-of-Stake (PoPoS) and a scheme in this direction
was put forth in [81].

• BFT. In case the blockchain is maintained by a BFT
committee, the cross-chain proofs are simplified and
take the form of a sequence of signatures by 2f + 1

3. Similar contracts have consequently been proposed for other chains
[6], [7], [10], [12], [14], [15].



members of the committee, where f is the number of
faulty nodes that can be tolerated [61]. If the committee
membership is dynamically changing, the verification
process needs to capture the rotating configuration of
the committee, which can incur significant cost for
parties that rarely synchronize.

Sub-linear State Agreement Proofs. Verifying all block
headers results in proof complexity linear in the size
of the blockchain. However, there exist techniques for
achieving sub-linear (logarithmic in the size of the chain)
complexity, which rely on probabilistic verification. For
PoW blockchains, we are aware of two approaches: Su-
perblock (Ni)PoPoWs [36], [104], [105], [132] and Fly-
Client [122]. Both techniques rely on probabilistic sam-
pling but differ in the selection heuristic. Superblock
(Ni)PoPoWs sample blocks which exceed the required
PoW difficulty4, i.e., randomness is sourced from the
unpredictability of the mining process, whereas FlyClient
suggests to sample blocks using an optimized heuristic
after the chain has been generated (using randomness
from the PoW hashes [51]). Such probabilistic sampling
techniques may be potentially applicable to Proof-of-Stake
blockchains [122], however, to the best of our knowledge,
no concrete schemes have been put forth at the time of
writing. For blockchains maintained by a static BFT com-
mittee, the verified signatures can be combined into ag-
gregate signatures [109], [110] for optimization purposes.
These signature techniques are well known and have
been invented prior to blockchains, and we hence do not
elaborate further on these schemes. In the dynamic setting,
skipchains [77], [113], [136], i.e., double-linked skiplists
which enable sub-linear crawling of identity chains, can
reduce costs from linear to logarithmic (to the number of
configurations).
Verification of State Evolution. Once verified by some
chain Y that chain X has reached agreement on a ledger
state Lx[i], it is then possible for (users on) Y to verify
that certain transactions have been included in Lx (and
hence taken place on X). As mentioned, block headers
typically reference included transactions via vector com-
mitments. As such, to verify that TX ∈ Lx[i] the vector
commitment on Lx[i] needs to be opened at the index of
that transaction, e.g. by providing a Merkle tree path to
the leaf containing TX (e.g. as in Bitcoin).
Verification of State Validity. Even though a block is
believed to have consensus, it may not be a valid block
if it contains invalid transactions or state transitions (e.g.
a PoW block meeting the difficulty requirements, but
containing conflicting transactions). Fully validating nodes
will reject these blocks as they check all included transac-
tions. However, in the case of cross-chain communication,
where chains typically only verify state agreement but not
validity, detection is not directly possible. We classify two
categories of techniques to enable such chains, and non-
full nodes (i.e., light clients), to reject invalid blocks:
• In proactive state validation, nodes ensure that blocks

are valid before accepting them. Apart from requir-
ing participants to run fully validating nodes, this can
be achieved by leveraging “validity proofs” through
succinct proofs of knowledge, using systems such as

4. It is a property of the PoW mining process that a certain percentage
of blocks exceeds or fall short of the required difficulty.

SNARKs [45], STARKs [37] or Bulletproofs [54]. First
schemes for blockchains offering such proofs for each
state transition are put forth in [38], [47], [128]. Infor-
mally speaking, this is a “guilty until proven innocent
model”: nodes assume blocks that have consensus are
invalid until proven otherwise.

• In reactive state validation, nodes follow an “innocent
until proven guilty” model. It is assumed that blocks
that have consensus only contain valid state transition,
unless a state transition “fraud proof” [24] is created.
Fraud proofs typically are proofs of state evolution, i.e.,
opening of the transaction vector commitment in the
invalid block at the index of the invalid transaction,
e.g. via Merkle tree paths. Depending on the observed
failure, more data may be necessary to determine in-
consistencies (e.g. Merkle tree paths for conflicting
transactions in case of a double spend).

Verification of Data Availability. Consensus participants
may produce a block header, but not release the included
transactions, preventing other participants from validating
the correctness of the state transition. To this end, verifica-
tion of state validity can be complimented by verification
of data availability. A scheme for such proofs was put
forth in [24] and extended in [167], which allows to verify
with high probability that all of the data in a block is
available, by sampling chunks in an erasure-coded version
of a block.

5.2. Relation between Verification Classes

Verification of State Agreement requires to first verify
a specific state exists or has been proposed (Verification of
State). To verify a transaction was included at L[i] (State
Evolution), it is first necessary to verify that the ledger
state at L [i] is indeed agreed upon (State Agreement).
Finally, to verify that a the state (transition) is indeed valid
(State Validity), one must first verify that all associated
transactions were indeed included in the ledger (State
Evolution). Verification of Data Availability serves as
complimentary security measure, and can be added to any
of the classes to protect against data withholding attacks.
We illustrate this relationship in Figure 3.

Figure 3: Venn diagram visualizing the relation of cross-
chain state verification classes. The red dotted line high-
lights the minimum requirement for correctly operating
light clients, i.e., verifying SPV / NiPoPoWs in the case
of PoW blockchains.

5.3. Implementation Techniques

We discuss implementations of cross-chain verifica-
tion, differentiated by whether they rely on synchrony
assumptions, a TTP, or a combination thereof (hybrid).



• Synchrony Assumption (Direct Observation). The
simplest approach to cross-chain verification is to re-
quire all participants of a CCC protocol to run (fully
validating) nodes in all involved chains. This is often
the case in exchange protocols, such as atomic swaps
using symmetric locks such as HTLCs [19], [90], but
also in parent-child settings where one chain by design
verifies or validates the other [36], [81], [120]. This
relies on a synchrony assumption that requires the CCC
participants to observe and act upon the state evolution
of chains within a certain time, in order to complete the
CCC.

• Trusted Third Party (Coordinators). Similar to the
commit and abort phases of CCC, the verification of the
state of interlinked chains can be handled by a trusted
third party (also referred to as validator [163]). Thereby,
we differentiate between the following techniques:
– External Validators. A simple approach is to out-

source the verification step of CCC to a (trusted) third
party, external to the verifying ledger (in our case Y ),
as in [17], [160]. The TTP can thereby be the same
as in the commit / abort steps.

– Consensus Committee / (Smart) Contracts. Alter-
natively, the verification can be handled by the con-
sensus participants of the verifying chain [68], [112],
[119] – leveraging the assumption that misbehavior of
consensus participants indicates a failure of the chain
itself. The verification process can be further encoded
in smart contracts, as in the case of BTCRelay [4],
which verifies Bitcoin block headers. Thereby, smart
contracts have recently been used to verify succinct
proofs of knowledge [72], [171], which in turn can
(theoretically) enable proactive verification of State
Validity in CCC protocols.

– Verification Games. Finally, rather than fully trust-
ing coordinators, they can be used as a mere opti-
mistic performance improvement by introducing dis-
pute handling mechanisms to the verification process:
users can provide (reactive) fraud proofs [24] or
accuse coordinators of misbehavior requiring them
to prove correct operation [86], [101], [158].

• Hybrid (Watchtowers). Synchrony and TTP assump-
tions can be combined, such that a CCC protocol works
if at least either a synchrony or TTP assumption holds.
For example, in case one of the parties in the CCC goes
offline, TTPs in the form of watchtowers, that take over
the role of the offline party can be relied upon. See
Section 4.1.3.

6. Evaluation of CCC Protocols

In this section, we evaluate existing CCC protocols
based on the introduced classifications. We present our
results in Table 1. We note that we performed this evalua-
tion to the best of our knowledge, but are not able to cover
all existing projects released in the blockchain community.
As such, our focus lies on published academic papers and
on community-driven projects deployed to practice.
Methodology. We group protocols by their design ratio-
nale, i.e., bidirectional exchanges and one-way transfers.
For the latter we split protocols according to the under-
lying blockchain security assumptions: homogeneous and

heterogeneous. The main focus of the evaluation lies on
how each protocol handles the impossibility result from
Section 3 during each phase of the CCC process: Commit
on X , verify and commit on Y , and, if implemented, abort
on X in case of failure. We further evaluate the restrictions
of becoming a trusted third party / intermediary in each
protocol, i.e., whether the TTP selection is dynamic or
static (pre-defined). We also consider collateralization of
TTPs in protocols where participants are reimbursed in
case of failure, to minimize financial damages faced.

6.1. Bidirectional Exchange Protocols

Exchange protocols are generally agnostic to the secu-
rity assumptions made for the interlinked blockchains, as
the default application is the exchange of assets between
distinct ledgers.

We observe multiple techniques, with different under-
lying trust models, the simplest and currently most used
being custodial (centralized) exchanges. Recent works,
such as Tesseract [41], attempt to reduce the risk of theft
by the custodian by leveraging trusted hardware, e.g. Intel
SGX [94]. The long standing alternative to entrusting a
custodian with to-be-exchanged funds are atomic swaps,
first introduced in 2012 using hashed-timelock contracts
for commit and abort phases [18], [19], and recently
formalized in [90]. Hashlocks can thereby be replaced
with signature locks [124], improving privacy and cross-
platform support. As of today, the adoption of HTLC
atomic swaps is scarce, which can be explained by the
strict online requirements for participants: the initiator of
the swap can steal funds of the receiving party, if the later
does not claim the initiator’s committed assets before the
abort timelock expires (after the secret to the hashlock was
released). Notarized atomic swaps [160] remove the online
requirement for users, by entrusting a set of coordinators
(notaries) with the verification (and timely reaction) to the
release of the HTLC secret - however, introducing the risk
of coordinators colluding with exchange counterparties to
commit theft.

An alternative to interactive swaps via HTLCs or
signature locks are SPV atomic swaps [18], [19], [90],
[160]. Hereby, the initiator of the swap locks assets y
in a smart contract on Y , which will release the later to
anyone who can prove correct payment of x on X to the
initiator (Verification of State Evolution and/or Validity).
However, in accordance with the impossibility result, the
counterparty can fail to provide the proof of payment on
X to the smart contract on time - again enabling theft
through a malicious abort by the initiator.

Recently, hybrid versions of HTLC and signature lock
atomic swaps have been introduced, most notably Ar-
wen [89] and A2L [157], where users enter assets into a
multisignature escrow with an exchange coordinator. This
relieves the user of strict online requirements while reduc-
ing the risk of theft by the TTP to a (long) lockup of assets
in the worst case. However, this requires a more complex
setup process (similar to payment channels [141]) and
introduces higher costs in the form of additional fees to
prevent malicious lockup of coordinator funds (griefing).



TABLE 1: Evaluation of Cross-Chain Communication protocols. Notation for non-binary TTP values: # relies on
participants being available and synchrony,  relies on TTP, H# hybrid.

Protocol
CCC Protocol Execution

Commit on X Verify / Commit on Y Abort on X

TTP Dynamic
TTP? Type TTP Collateral? Type TTP Dynamic

TTP? Type

E
xc

ha
ng

e
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gn
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tic
)

Custodial Exchange [41], [160]  7
External Custodian
(single, pre-defined)  7 External Validator  7 TTP (same)

HTLC Atomic Swaps [18], [19], [90], [160] # - Hash Lock # 7 Direct Observation # - Timelock
Notarized HTLC Atomic Swaps [160] # - Hash Lock  7 External Validator H# - Timelock + TTP
SPV Atomic Swaps [8], [57], [91], [108], [169]  3 Smart Contract  7 Smart Contract - - -
Collateralized SPV Atomic Swaps [108], [169]  3 Smart Contract  3 Smart Contract - - -
ECDSA Atomic Swaps [124] # - Signature Lock # 7 Direct Observation # - Timelock

A2L [157] H# 7
Multisig Escrow +

Signature Lock # 7 Direct Observation H# 7 Timelock + TTP

Arwen [89] H# 7
Multisig Escrow + Hash

Lock # 7 Direct Observation H# 7 Timelock + TTP

Tr
an

sf
er

H
et

er
og

en
eo

us XCLAIM [169]  3
External Custodian

(single, unrestricted)  3 Smart Contract - - -

Multisig XCLAIM [170]  3
Multisig Escrow (single,

unrestricted)  3 Smart Contract - - -

Dogethereum [159]  3
External Custodian

(single, unrestricted)  3 Smart Contract - - -

PoS Sidechains [81]  7
External Custodian
(Consensus of Y )  7 Smart Contract - - -

tBTC [16]  7 External Custodian  3 Smart Contract - - -

wBTC [17]  7
External Custodian
(single, pre-defined)  7 Direct Observation - - -

H
om

og
en

eo
us

ATOMIX [112]  7
Consensus Custodian

(shard)  7 Consensus Committee  7 TTP (same)

SBAC [23], [151]  7
Consensus Custodian

(shard)  7 Consensus Committee  7 TTP (same)

Rapidchain [168]  7
Consensus Custodian

(shard)  7 Consensus Committee - - -

Fabric Channels [26]  7 Consensus Custodian  7 Consensus Committee  7 TTP (same)

Federated Sidechains/Pegs [36], [68]  7
External Custodian
(Consensus of Y )  7 Consensus Committee - - -

PoS Sidechains [81]  7
External Custodian
(Consensus of Y )  7 Consensus Committee - - -

Rootstock [119], [120]  7
External Custodian
(Consensus of Y )†  7 Consensus Committee - - -

Proof-of-Burn [102], [153]  3
Smart Contract / Burn

address  7
Smart Contract /

Consensus Committee - - -

Merged Mining/Staking [81], [100]  7 Consensus Custodian  7 Consensus Committee - - -

Randomness Beacon [51]  3 Smart Contract  7
Smart Contract /

Consensus Committee - - -
† The Rootstock sidechain plans to rely on Bitcoin’s (chain X) consensus participants (only those merge-mining Rootstock) to act as (consensus) custodians. As of this writing, however, the consensus
committee of Rootstock (chain Y ) is used as external custodian.

6.2. One-Way Transfers

Moving on to one-way asset transfers, a first obser-
vation is that this protocol family generally relies on the
existence of a TTP.

6.2.1. Heterogeneous Transfers. Heterogeneous one-
way transfer protocols, in most cases, focus on trans-
ferring assets to other ledgers via cryptocurrency-backed
assets [26], [81], [120], [169]. An asset x is commit-
ted/locked on Lx, while a representation of this asset y(x)
is unlocked on Ly. This asset can then be used just like any
other native asset y on Ly: transferred, exchanged, or e.g.
used with smart contracts. The latter can be particularly
useful if Lx itself only has limited scripting capabilities
(such as Bitcoin). After use, y(x) can be redeemed for
the corresponding amount of x. Compared to exchange
protocols, where each swap requires transaction broadcast
on all interlinked chains5, cryptocurrency-backed assets
require synchronization only twice: once to issue and a
second time to redeem the transferred assets.

The trust assumptions in this protocol family range
from a single centralized custodian [17], to a dynamic
network of collateralized intermediaries as in the case of
XCLAIM [169]. In the latter approach, any participant
can lock collateral in a smart contract on the issuing
chain Y and act as custodial coordinator (or vault) for
locking of x on X (commit phase). If the coordinator
attempts to defraud users (fail to prove correct behavior),
the smart contract on Y will automatically slash collateral

5. Note: while payment channels allow to keep transactions off-chain,
correct synchronization of e.g. time across ledgers introduces risk to race
conditions (see Section 7.2).

and reimburse victims. Should (escrow) smart contracts
be available on both interlinked chains, custodial coor-
dinators serve only as fallback or performance improve-
ment. A similar collateralization approach is followed by
tBTC [16], yet with the restriction that the set of custodial
coordinators is pre-defined (static). The risk of theft by co-
ordinators can thereby be reduced by using multisignature
escrows rather than custodial coordinators - at the cost of
introducing complexity in terms of broadcast transactions
and data published to the underlying blockchains [170].

A drawback of cryptocurrency-backed assets between
heterogeneous chains is the necessity to maintain a stable
exchange rate between the backing assets x and the assets
y of the issuing chain, which are used as collateral. As
such, a sudden significant fluctuation of the exchange rate
can result in (i) financial damages to users holding y(x),
and in turn (ii) network congestion on both X and Y as
users race to recover assets x. A further disadvantage of
existing heterogeneous one-way transfer protocols is the
lack of a dedicated abort phase on chain X: if Y fails
to issue backed assets y(x), locked assets x can remain
frozen indefinitely at the TTP’s discretion.

6.2.2. Homogeneous Transfers. Similar to heteroge-
neous transfers, this protocol group focuses on moving as-
sets between different chains. The main difference hereby
is that interlinked chains either maintain identical security
assumptions or are dependent on one-another, e.g. exhibit
a parent-child relation. We differentiate between commu-
nication (i) among shards in sharded blockchains and (ii)
from a parent to child blockchains.

With the goal of sharding being to improve transac-
tion throughput in blockchains, efficient communication
among individual shards is a necessity. As such, we



observe cross-shard communication protocols [23], [26],
[112], [151], [168] to rely on consensus participants of
(individual) shards to execute both commit, verify and
abort phases of CCC. Thereby, communication in sharded
blockchains follows the assumption that consensus com-
mittees of all shards can be trusted, as otherwise the
system is considered to fail (“correct by construction”
assumption [112]). The main difference observed in this
protocol group is the execution of an explicit abort phase
in e.g. ATOMIX [112], as opposed to the assumption that
proofs of correct commit/lock execution will be timely
delivered between / accepted by consensus committees of
different shards, as e.g. in SBAC [23], [151].

Sidechains, as first introduced by Back et al. in
2012 [36] aim to extend the functionality of existing
blockchains (parent) by allowing to move assets to so-
called child blockchains, which run their own consensus
but to some extent are dependent on the parent chain.
While the design of CCC protocol for sidechains are very
similar to those of sharded systems, a core difference is
that the homogeneous security assumptions only apply
when transferring from parent to child, but not vice-versa.
As such, e.g. in the case of Federated Sidechains/Pegs
[36], [68], participants of the parent chain X cannot
assume correct operation of the sidechain Y and hence
consider the consensus committee of Y as external. Root-
stock seeks to reduce this risk by using trusted hardware
for the coordinators on parent chain X (in this case,
Bitcoin) [119], [120].

Finally, mechanisms for bootstrapping new
blockchains, such as merged mining [3], [100] and
Proof-of-Burn [102], [153], as opposed to CCC protocols
discussed so far, aim to transfer information other than
digital assets. In the case of merged mining, this is a
proof that some proof-of-work was performed on the
parent chain, in Proof-of-Burn it is a proof that some
assets were destroyed. A further difference hereby is
the absence of a mechanism to return the transferred
information back to the parent chain: these protocols are
deployed as velvet forks [172] and hence the parent chain
generally remains oblivious to the existence of the child
chain(s).

6.3. General Observations

We proceed to briefly overview general observations
with respect to existing CCC protocols.
Tendency to TTPs. The majority of CCC protocols re-
sort to TTPs, rather than relying on participants being
online and networks communication being synchronous
(although synchronous models are often assumed never-
theless). Further, with the exceptions of XCLAIM [169]
and Dogethereum [159], such CCC protocols utilize a pre-
defined, static committee of coordinators.
Static Committees. If one of the interlinked chains Y
implements a BFT agreement protocol and hence has a
static consensus committee, this committee is typically
used as TTP in all phases of CCC protocols. Arguably,
this makes sense, as participants of the other blockchain
X must anyway trust in the secure operation of Y (honest
majority of the consensus committee).
Collateralization Trend. In recent works [16], [108],
[159], [169], there is a trend towards collateralizing co-

ordinators, with the aim of preventing financial damages
to users and incentivizing correct behavior of TTPs - this
way potentially achieving economically trustless CCC pro-
tocols (cf. Section 3.5). Here, the exchange rate is crucial
to ensure that collateral has sufficient value to punish
misbehavior, and stabilization measures are necessary to
mitigate both short and long term fluctuations.
Absence of Hybrid Verification. Surprisingly, despite
numerous recent works on constructing and optimizing
watchtowers for payment channel networks [32], [34],
[103], [125], these techniques have not yet been applied to
CCC protocols – despite the similarity between payment
channels and some CCC approaches (e.g. HTLC atomic
swaps).
Interoperability Blockchains. Recently, there has been
an influx of so called interoperability blockchains – spe-
cialized sharded distributed ledgers which aim to serve as
communication platform between other blockchains [20],
[93], [116], [152], [161], [163]. Thereby, individual
shards, which are coordinated via a parent chain running
a Byzantine fault tolerant agreement protocol, connect
to and import assets from existing blockchains. Thereby,
these projects have in common that they rely on exist-
ing techniques such as cryptocurrency-backed assets [81],
[159], [169] to bridge the gap to existing systems (and
are hence not included in the evaluation above). A for-
mal treatment of this design, also considering distributed
computations, is presented in [121].

7. Implications for Blockchain, Threat, Net-
work, and Privacy Models

In this section, we overview implications of cross-
chain communication on distributed ledgers and necessary
considerations when designing CCC protocols.

7.1. Threat Model and Attacks

Security and Adversary Model. Both X and Y can have
a well defined security model on their own. However,
these security models are not necessarily the same and
even further, it might not be trivial to compare the guar-
antees they provide. For instance, X may rely on PoW and
thus assume that adversarial hash computation is bound by
α ≤ 33% [74], [82], [145]. On the other hand, Y may use
PoS and similarly assume that the adversary’s stake in the
system is bound by β ≤ 33%. While similar at first glance,
the cost of accumulating stake [75], [80] may be lower
than that of accumulating computational power, or vice-
versa [49]. Since permissionless distributed ledgers (such
as PoW or PoS) are not Sybil resistant [69], i.e., provide
weak identities at best, quantifying adversary strength
is nearly impossible, even within a single ledger [31].
However, this task becomes even more difficult in the
cross-chain setting: not only can consensus participants (i)
“hop” between different chains [117], [130], destabilizing
involved systems, but also (ii) be susceptible to bribing
attacks, which can be executed cross-chain, making de-
tection unlikely [99], [127].
Consensus Finality Guarantees. Interlinked chains X
and Y may assume different finality guarantees in their
ledgers. Consider the following: X accepts a transaction



as valid when confirmed by k subsequent blocks, e.g. as
in PoW blockchains [78]; instead, Y deems transactions
valid as soon as they are written to the ledger (k = 1,
e.g. [21]). A CCC protocol triggers a state transition on Y
conditioned on a transaction included in X , however, later
an (accidental) fork occurs on X (perhaps deeper than k).
While the state of X will be reverted, this may not be
possible in Y according to consensus rules - although the
Atomicity property of CCC would require such measures.
Replay Attacks. Replay attacks on state verification, i.e.,
where proofs are re-submitted multiple times or on multi-
ple chains, can result in failures such as double spending.
Protections involve the use of sequence numbers, or chains
keeping track of previously processed proofs [58], [126],
[151]. Special consideration may be needed in case of
permanent blockchain forks, as this may require updating
the way verification is performed [126], [169].
Increasing Verification Cost (Griefing). An adversary
can increase the cost of the verification of a transaction
across chains. For instance, a spam attack makes the
ledger grow in size, increasing both verification time and
cost. This in turn may impair cross-chain state verification,
especially in heterogeneous settings, where verification
of external consensus is typically an expensive opera-
tion [169]. In sharded systems, an adversary can try to
create transactions, the validation of which requires infor-
mation from (almost) all shards, significantly increasing
cost and defeating the purpose of sharding itself.
Composability Attacks. We recall, in blockchains with
stablizing [28], [162] consensus, a security parameter k
is used to denote the number of blocks or confirma-
tion [5] a transaction should have, before being accepted
as secure [78], [135], [138], i.e., with the probability of
a reversion being negligible. The same applies to state
agreement and state evolution proofs. In addition, the
value linked a verified transaction must be considered:
the higher the potential gain by an adversary, the higher
the risk of an attack, and the more confirmations should
be required [150]. However, following recent works [173],
we argue at least the entire composition of a block must
be considered, as this is the total value an adversary can
gain from executing a successful attack. Recall that for
a transaction to be reversed or modified, the entire block
must be altered.

7.2. Network model

Synchrony Across Chains. The absence of a global clock
across chains requires to either agree and trust a third
party as external clock, or rely on chain-dependent time
definition, such as the block generation rate [78], hinder-
ing a seamless synchronization across chains [78], [169].
Several factors, such as the instance of the consensus
algorithm, computation and communication capabilities
of consensus participants or peer-to-peer network delay
must be considered for a correct operation of cross-chain
communication protocols, especially if timelocks are used.
Data Availability. Protocols leveraging verification of
state agreement or validity across chains typically rely
on timely arrival of proofs and accompanying data (block
headers, transactions, ...). Furthermore, existing sub-linear
state verification techniques relying on probabilistic sam-
pling require additional data to be included in the verified

blockchain [105], [122]. If an adversary can exclude this
data from the chain, these protocols not only become less
efficient but may potentially exhibit vulnerabilities [122].
This is a particular problem in heterogeneous settings,
if data availability is not enforced by consensus, e.g.
if protocols are deployed via velvet forks [172]. One
possible solution is to include data availability proofs [23],
at the cost of increasing complexity of the process.

7.3. Blockchain Model

Cryptographic Primitives. Interconnected chains X and
Y may leverage different cryptographic schemes, or dif-
ferent instances of the same scheme. Thereby, cross-chain
communication often requires compatible cryptographic
primitives: a CCC protocol between a system X using
ECDSA [95] as its digital signature scheme and a system
Y using Schnorr [147] is only possible if both schemes are
instantiated over the same elliptic curve [124]. Similarly,
HTLC-based protocols require that the domain of the hash
function has the same size in both X and Y - otherwise
the protocol is prone to oversize preimage attacks [97].
Language Expressiveness. The functionality of CCC pro-
tocols is typically restricted by the computational opera-
tions supported by the involved chains. These can reach
from near Turing complete environments [56], over re-
stricted operation sets [135], [148], to the (near) absence
of scripting functionality altogether [9], [52]. CCC pro-
tocols must hence (i) consider the operations supported
by both X and Y and leverage the intersecting function-
ality [124]; or (ii) move assets from chain with limited
functionality to those with high(er) language expressive-
ness [68], [159], [169].

7.4. Privacy and Linkability

Privacy is crucial in any financial interaction and thus
in cross-chain communication as well. Ideally it should
not be possible for an observer to determine what two
events have been synchronized across chains (e.g., what
two assets have been exchanged and by whom). Among
other advantages, this improves the fungibility of pay-
ments. However, there exist several privacy attack vectors
in cross-chain communication: (i) recent works [83], [123]
show attacks leveraging the locking mechanism and some
countermeasures have been proposed [123], [124], [144];
(ii) heuristics to explore blocks from different cryptocur-
rencies [100] as well as forks [154] to cluster miner
and user accounts [92]; (iii) CCC protocols leveraging
coordinators, similar to and payment hubs [84], [98],
also lead to privacy leakages that enable further account
clustering [166]. Recent works [83], [88], [157] propose
measures that allow to preserve the anonymity of partici-
pants, if added to CCC protocols.

8. Related Work

We believe that our study represents the most compre-
hensive systematic investigation of cross-chain communi-
cation to date. Yet, we list here other works and efforts by
the blockchain community, illuminating different subsets
of this space and supporting our study.



The first work discussing cross-chain communication,
excluding forum discussions, is a technical report by Back
et al. [36]. The authors introduce the term “sidechain”
and present how assets can be transferred between two
chains using a committee of custodians or SPV proofs
in a homogeneous security model. A more recent report
by Buterin discusses how cross-chain exchanges can be
achieved via custodians, escrows, HTLCs and cross-chain
state verification, and provides a high level discussion
of possible failures in cross-chain communication [57].
Siris et al. provide an iterative overview of protocols for
atomic cross-chain swaps and “sidechains” [149], focusing
mostly on community driven efforts, rather than academic
publications. Similarly, Johnson et al. discuss open source
interoperability projects related to Ethereum [96], while
Robinson evaluates Ethereum as a coordination platform
for communication among other blockchains [143]. Ben-
nik et al. [40] and similarly Miraz et al. [133] summa-
rize technical details of HTLC atomic cross-chain swaps.
Avarikioti et al. provide a thorough formal study of block-
chain sharding protocols, although their focus does not lie
on the communication between shards [33].

9. Concluding Remarks

Our systematic analysis of cross-chain communication
as a new problem in the era of distributed ledgers allows us
to relate (mostly) community driven efforts to established
academic research in database and distributed systems
research. We formalize the cross-chain communication
problem and show it cannot be solved without a trusted
third party – contrary to the assumptions often made in
the blockchain community. The classifications and com-
parative evaluations introduced in this work, taking into
account both academic research and the vast number of
online resources, allow to better understand the similarities
and differences between existing cross-chain communica-
tion approaches - and possibly contribute to clearer com-
munication between academia and industry in this field.
Finally, by discussing implications and open challenges re-
lated to blockchain, network, and threat models, as well as
privacy and linkability, we offer a comprehensive guide for
designing protocols, bridging multiple distributed ledgers.
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[31] Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.:
Bitcoin security under temporary dishonest majority. In: 23rd
Financial Cryptography and Data Security (FC) (2019), https:
//www.tik.ee.ethz.ch/file/ab83461dc5ca3b739c079a27f3757e94/
bitcoin%20security%20under%20temporary%20dishonest%
20majority.pdf

[32] Avarikioti, G., Kogias, E.K., Wattenhofer, R.: Brick: Asyn-
chronous state channels. arXiv preprint arXiv:1905.11360 (2019)

[33] Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and
scale: Formalization of distributed ledger sharding protocols.
arXiv preprint arXiv:1910.10434 (2019)

[34] Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Watten-
hofer, R.: Towards secure and efficient payment channels. arXiv
preprint arXiv:1811.12740 (2018)

[35] Babaoglu, O., Toueg, S.: Understanding non-blocking atomic
commitment. Distributed systems pp. 147–168 (1993)

[36] Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G.,
Miller, A., Poelstra, A., Timón, J., Wuille, P.: Enabling blockchain
innovations with pegged sidechains (2014), https://blockstream.
com/sidechains.pdf

[37] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable,
transparent, and post-quantum secure computational integrity.
IACR Cryptology ePrint Archive 2018, 46 (2018)

[38] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs.
In: Theory of Cryptography Conference. pp. 31–60. Springer
(2016)

[39] Benaloh, J., De Mare, M.: One-way accumulators: A decentral-
ized alternative to digital signatures. In: Workshop on the Theory
and Application of of Cryptographic Techniques. pp. 274–285.
Springer (1993)

[40] Bennink, P., Gijtenbeek, L.v., Deventer, O.v., Everts, M.: An
analysis of atomic swaps on and between ethereum blockchains
using smart contracts. Tech. report (2018), https://work.delaat.net/
rp/2017-2018/p42/report.pdf

[41] Bentov, I., Ji, Y., Zhang, F., Li, Y., Zhao, X., Breidenbach,
L., Daian, P., Juels, A.: Tesseract: Real-time cryptocurrency
exchange using trusted hardware. Cryptology ePrint Archive,
Report 2017/1153 (2017), https://eprint.iacr.org/2017/1153.pdf,
accessed:2017-12-04

[42] Bentov, I., Kumaresan, R.: How to use bitcoin to design fair
protocols. In: Advances in Cryptology–CRYPTO 2014. pp. 421–
439. Springer (2014), http://eprint.iacr.org/2014/129.pdf

[43] Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure
proofs of stake (2016), https://eprint.iacr.org/2016/919.pdf, ac-
cessed: 2016-11-08

[44] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency con-
trol and recovery in database systems, vol. 370. Addison-wesley
New York (1987)

[45] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From ex-
tractable collision resistance to succinct non-interactive arguments
of knowledge, and back again. In: Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference. pp. 326–349.
ACM (2012)

[46] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay
functions. In: CRYPTO (2018)

[47] Boneh, D., Bünz, B., Fisch, B.: Batching techniques for ac-
cumulators with applications to iops and stateless blockchains.
Cryptology ePrint Archive, Report 2018/1188 (2018), https://
eprint.iacr.org/2018/1188.pdf, https://eprint.iacr.org/2018/1188

[48] Boneh, D., Naor, M.: Timed commitments. In: Annual Interna-
tional Cryptology Conference. pp. 236–254. Springer (2000)

[49] Bonneau, J.: Why buy when you can rent? bribery attacks on
bitcoin consensus. In: BITCOIN ’16: Proceedings of the 3rd
Workshop on Bitcoin and Blockchain Research (February 2016),
http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf

[50] Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public
randomness source (2015), https://eprint.iacr.org/2015/1015.pdf,
accessed: 2015-10-25

[51] Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public
randomness source. IACR Cryptology ePrint Archive 2015, 1015
(2015)

[52] Bonneau, J., Miller, A.: Fawkescoin: Bitcoin without public-
key crypto. In: Security Protocols XXII. pp. 350–358.
Springer (2014), http://www.jbonneau.com/doc/BM14-SPW-
fawkescoin.pdf

[53] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A.,
Felten, E.W.: Sok: Research perspectives and challenges for bit-
coin and cryptocurrencies. In: IEEE Symposium on Security and
Privacy (2015), http://www.ieee-security.org/TC/SP2015/papers-
archived/6949a104.pdf

[54] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell,
G.: Bulletproofs: Efficient range proofs for confidential trans-
actions (2017), http://web.stanford.edu/∼buenz/pubs/bulletproofs.
pdf, accessed:2017-11-10

[55] Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and ran-
domness beacons in ethereum (2017)

[56] Buterin, V.: Ethereum: A next-generation smart contract and
decentralized application platform (2014), https://github.com/
ethereum/wiki/wiki/White-Paper, accessed: 2016-08-22

[57] Buterin, V.: Chain interoperability. Tech. report (2016),
https://www.r3.com/wp-content/uploads/2017/06/chain
interoperability r3.pdf, accessed: 2017-03-25

[58] Buterin, V.: Cross-shard contract yanking.
https://ethresear.ch/t/cross-shard-contract-yanking/1450 (2018)

[59] Cachin, C.: Architecture of the hyperledger blockchain fabric
(2016), https://www.zurich.ibm.com/dccl/papers/cachin dccl.pdf,
accessed: 2016-08-10

[60] Cachin, C., Camenisch, J.: Optimistic fair secure computation.
In: Annual International Cryptology Conference. pp. 93–111.
Springer (2000)

[61] Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance.
In: OSDI. vol. 99, pp. 173–186 (1999), http://pmg.csail.mit.edu/
papers/osdi99.pdf

[62] Catalano, D., Fiore, D.: Vector commitments and their applica-
tions. In: International Workshop on Public Key Cryptography.
pp. 55–72. Springer (2013)

[63] Chandra, T.D., Toueg, S.: Unreliable failure detectors for
reliable distributed systems. vol. 43, pp. 225–267. ACM (1996),
https://ecommons.cornell.edu/bitstream/handle/1813/7192/95-
1535.pdf?sequence=1

[64] Chepurnoy, A., Duong, T., Fan, L., Zhou, H.S.: Twinscoin: A
cryptocurrency via proof-of-work and proof-of-stake (2017), http:
//eprint.iacr.org/2017/232.pdf, accessed: 2017-03-22
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