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Privacy and Reader-first Authentication in
Vaudenay’s RFID Model with Temporary State

Disclosure
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Abstract

Privacy and mutual authentication under corruption with temporary state disclosure are two significant require-
ments for real-life applications of RFID schemes. No RFID scheme is known so far to meet these two requirements.
In this paper we propose two practical RFID schemes that fill this gap. The first one achieves destructive privacy,
while the second one narrow destructive privacy, in Vaudenay’s model with temporary state disclosure. Both of them
provide mutual (reader-first) authentication. In order to achieve these privacy levels we use Physically Unclonable
Functions (PUFs) to assure that the internal secret of the tag remains hidden against an adversary with invasive
capabilities. Our first RFID scheme cannot be desynchronized for more than one step, while the second one avoids
the use of random generators on tags. Detailed security and privacy proofs are provided.

Index Terms
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I. INTRODUCTION

RADIO Frequency Identification (RFID) refers to a technology whereby digital data encoded in RFID
tags is transmitted to a reader via radio waves. A back-end system, which has an online database, is

securely connected to the reader to collect, filter, process, and manage RFID data. It also stores complete
information associated with the RFID tags in order to be able to authenticate them.

The RFID technology has been implemented in many significant areas such as toll collection systems,
identification and tracking of various kind of objects, consumer products, or access control. With the
increasing usages to healthcare, electronic passports, and personal ID cards, the potential security threats
and compliance risks have become enormous. In such a context, the need for secure and private commu-
nication protocols between reader and tags becomes crucial. Moreover, when developing such protocols,
account must be taken of the adversary model to which they should resist. A widely accepted adversary
model was proposed in [1], [2], now called Vaudenay’s RFID model. According to it, an adversary is a
probabilistic polynomial-time algorithm that can do a lot of things such as:
• create legitimate or illegitimate tags;
• draw one or more tags according to some chosen probability distribution, and release drawn tags;
• launch protocol instances with drawn tags;
• send messages to reader or drawn tags;
• corrupt drawn tags to retrieve their internal states;
• get the result of a completed protocol instance.
Strong adversaries have all the above capabilities. Destructive adversaries destroy tags after corrupting

them. An adversary that can corrupt tags only at the end is a forward adversary; finally, an adversary
that cannot corrupt tags is a weak adversary. Orthogonal to these classes of adversaries is the class
of narrow adversaries that cannot see the result of completed protocol instances. Narrow adversaries
with the capabilities discussed above give rise to narrow strong, narrow destructive, narrow forward,
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and narrow weak adversaries. Thus, Vaudenay’s model comes with eight classes of adversaries and,
consequently, eight levels of RFID privacy. Among these, destructive privacy together with reader-first
authentication under corruption with temporary state disclosure plays an important role in practice. For
instance, tag destruction under corruption is an important requirement when the tag is used for access
control. Likewise, the disclosure of temporary state under tag corruption is a serious threat in practice.
Reader-first authentication [3] assures that the tag will give its private data only when it authenticates the
reader. Therefore, tag tracking and data theft are prevented when the reader is fake. All these together
mean that we need RFID schemes that provide destructive privacy and reader-first authentication under
corruption with temporary state disclosure.

Contribution: When Vaudenay’s model was proposed, it was not very clear whether the tag corruption
reveals the permanent state or the full (permanent and temporary) state of the tag. Later, this aspect
was clarified and it was shown that the mutual authentication protocols proposed in [2] do not achieve
the claimed privacy level under corruption with temporary state disclosure. Additionally, this does not
even happen [4] with newer protocols like those in [5], [6]. We face thus the problem that no mutual
authentication RFID scheme proposed so far achieves privacy under corruption with temporary state
disclosure.
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Fig. 1. Privacy and mutual authentication in Vaudenay’s model with temporary state disclosure

In this paper we provide the first mutual authentication RFID schemes that achieve destructive and
narrow destructive privacy in Vaudenay’s model with temporary state disclosure. Moreover, in our schemes
the tag authenticates first the reader (this is the reader-first approach [3]) that guarantees the information
goes from tag to a trusted reader. The diagram in Figure 1 shows clearly our contribution in the general
context of Vaudenay’s model with temporary state disclosure.

It is known that no privacy level can be achieved with ordinary tags (that is, tags that only run
cryptographic primitives) under mutual authentication and corruption with temporary state disclosure
[7]. Therefore, the schemes we propose are based on PUF tags, that is tags endowed with physically
unclonable functions (PUFs), a novel class of hardware security primitives that are in use for a while.
The security proofs we provide to our schemes are very detailed. We also elaborate on the tag-reader
desynchronization problem and its connection to narrow privacy.

Related work: The pseudo-random function (PRF) based RFID scheme in [2] achieves destructive
privacy and mutual authentication in Vaudenay’s model. It is straightforward to see that the proof in [2]
works even in the case of corruption with temporary state disclosure. The first PUF based RFID scheme
that achieves destructive privacy and mutual authentication in Vaudenay’s model (where corruption does
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not disclose the temporary state of tags) was proposed in [4], as an extension of the scheme in [8], [9]
(that only achieves unilateral authentication).

In [5], [6], two PUF based RFID schemes have been proposed and claimed that they achieve (narrow)
destructive privacy and mutual authentication in Vaudenay’s model with temporary state disclosure.
Unfortunately, neither of them reaches even the narrow forward privacy level [4].

As far as we are concerned, these are the only RFID schemes related to our work.

Paper structure: The paper consists of seven sections, the first one being the introduction. The
basic terminology and notation used throughout this paper is introduced in Section II and III. A general
discussion on privacy and mutual authentication in Vaudenay’s model with temporary state disclosure is
purported in Section IV. Our first RFID scheme, that achieves destructive privacy and mutual authentication
in Vaudenay’s model with temporary state disclosure, is presented in Section V. In the sixth section we
introduce our second RFID scheme that achieves narrow destructive privacy and mutual authentication in
the same model. The last section concludes the paper.

II. BASIC DEFINITIONS AND NOTATION

We fix in this section the basic terminology and notation used throughout this paper.

Probabilistic polynomial time algorithms and negligible functions: We use probabilistic polynomial
time (PPT) algorithms A as defined in [10]. If O is an oracle, then AO denotes that A has oracle access
to O. When the oracle O implements some function f , we simply write Af to denote that A has oracle
access to f . This means that whenever A sends a value x to the oracle, it gets back f(x).

If A is a set, then a← A means that a is uniformly at random chosen from A. If A is a probabilistic
algorithm, then a← A means that a is an output of A for some given input.

The asymptotic approach to security makes use of security parameters, denoted by λ in our paper. A
positive function f(λ) is called negligible if for any positive polynomial poly(λ) there exists n0 such that
f(λ) < 1/poly(λ), for any λ ≥ n0. f(λ) is called overwhelming if 1− f(λ) is negligible.

Pseudo-random functions: A pseudo-random function (PRF) is a family of functions with the property
that if we randomly choose a function from this family then its input-output behavior is computationally
indistinguishable from that of a random function. To be more precise, consider and fix two polynomials `1
and `2 with positive values. Given a set K of keys and λ ∈ N, define Kλ = {K ∈ K | |K| = λ}. A family
of functions indexed by K is a construction F = (FK)K∈K, where FK is a function from {0, 1}`1(|K|) to
{0, 1}`2(|K|). We also define Uλ = {f | f : {0, 1}`1(λ) → {0, 1}`2(λ)} and U = (Uλ)λ.

We say that F is computationally indistinguishable from U if, for any PPT algorithm A with oracle
access to functions, its advantage

AdvprfA,F (λ) = |P (1← A
FK (1λ) : K ← Kλ)− P (1← Ag(1λ) : g ← Uλ)|

is negligible (as a functions of λ).
F = (FK)K∈K is called a pseudo-random function if it is:
1) Efficiently computable : there exists a deterministic polynomial-time algorithm that on input λ,

K ∈ Kλ, and x ∈ {0, 1}`1(λ), returns FK(x);
2) Pseudo-random : F is computationally indistinguishable from U .
To prove that F is a PRF, we usually use a bit guessing game between a challenger C and an adversary
A (the game is parameterized by a security parameter λ):

1) C randomly chooses b← {0, 1};
2) if b = 1 then C randomly chooses K ← Kλ and sets f = FK ; otherwise, C randomly chooses

f ← Uλ;
3) C provides oracle access to f for A;
4) At some point, A outputs a bit b′.
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The probability A wins the game is denoted P (b′ = b). Now, one can see that F is a PRF if it is efficiently
computable and AdvprfA,F (λ) = |P (b = b′)− 1/2| is negligible.

Physically unclonable functions: A physically unclonable function (PUF) can be seen as a physical
object that, when queried with a challenge x generates a response y that depends on both x and the
specific physical properties of the object. PUFs are typically assumed to be physically unclonable (it is
infeasible to produce two PUFs that cannot be distinguished based on their challenge/response behavior),
unpredictable (it is infeasible to predict the response to an unknown challenge), and tamper-evident (any
attempt to physically access the PUF irreversible changes the challenge/response behavior).

Unfortunately, PUFs are subject to noise induced by the operating conditions, such as supply voltage
or ambient temperature. Therefore, PUFs return slightly different responses when queried with the same
challenge multiple times. However, from a theoretical point of view it is assumed that PUFs return a
similar response when queried with the same challenge multiple times (this is usually called robustness).

Based on these, we adopt here the concept of an ideal PUF slightly different than in [8]. Namely,
an ideal PUF is a physical object with a challenge/response behavior that implements a function P :
{0, 1}p → {0, 1}k, where p and k are of polynomial size in λ, such that:

1) P is computationally indistinguishable from U ;
2) Any attempt to physically tamper with the object implementing P results in destruction of P (P

cannot be evaluated any more).

III. RFID SCHEMES AND SYSTEMS

From an informal point of view, an RFID system [11], [12] consists of a reader, a set of tags, and a
communication protocol between reader and tags. The reader is a transceiver that has associated a database
that stores information about tags. Its task is to identify legitimate tags (that is, tags with information
stored in its database) and to reject all the other incoming communication. The reader and its database
are trusted entities, and the communication between them is secure. A tag is a transponder device with
much more limited computation capabilities than the reader. Depending on tag, it can perform simple
logic operations, symmetric key, or even public key cryptography. Each tag has a permanent (or internal)
memory that stores the state values, and a temporary (or volatile) memory that can be viewed as a set of
volatile variables used to carry out the necessary computations.

RFID schemes: Let R be a reader identifier and T be a set of tag identifiers whose cardinal
is polynomial in some security parameter λ. An RFID scheme over (R, T ) [1], [2] is a triple S =
(SetupR, SetupT, Ident) of PPT algorithms, where:

1) SetupR(λ) inputs a security parameter λ and outputs a triple (pk, sk,DB) consisting of a key pair
(pk, sk) and an empty database DB. pk is public, while sk is kept secret by reader;

2) SetupT (pk, ID) initializes the tag identified by ID. It outputs an initial tag state S and a secret
key K. A triple (ID, f(S), K) is stored in the reader’s database DB, where f is a public function
that extracts some information from tag’s initial state S;

3) Ident(pk; R(sk,DB); ID(S)) is an interactive protocol between the reader identified by R (with
its private key sk and database DB) and a tag identified by ID (with its state S) in which the
reader ends with an output consisting of ID or ⊥. The tag may end with no output (unilateral
authentication), or it may end with an output consisting of OK or ⊥ (mutual authentication).

The meaning of SetupR(λ) is that it “creates” a reader identified by R and initializes it (and also
establishes some public parameters of the system). We simply refer to the reader such created as being
R. The meaning of SetupT (pk, ID) is that it “creates” a tag identified by ID, initializes it with an initial
tag state, and also register this tag with the reader by storing some information about it in the reader’s
database. We denote this tag by TID. The meaning of the reader’s output ID (⊥) is that it authenticates
(rejects) the tag. Similarly, the tag outputs OK (⊥) when it authenticates (rejects) the reader.

Mutual authentication where the tag (reader) authenticates first the reader (tag) is also called reader-first
(tag-first) authentication.
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The correctness of an RFID scheme means that, regardless of how the system is set up, after each
complete execution of the interactive protocol between the reader and a legitimate tag, the reader outputs
tag’s identity with overwhelming probability. For mutual authentication RFID schemes, correctness means
that the reader outputs tag’s identity and the tag outputs OK with overwhelming probability.

RFID system: An RFID system is an instantiation of an RFID scheme. This is done by a trusted
operator I who establishes the reader identifier R, the set T of tag identifiers, and runs an RFID scheme
over (R, T ). In a given setting, the reader is initialized exactly once, while each tag at most once. Thus,
the reader’s database does not store different entries for the same tag. However, different settings with
the same RFID scheme may initialize the reader and the tags in different ways.

Adversaries: The two most basic security requirements for RFID schemes are authentication and
untraceability. To formalize them, the concept of an adversary model is needed. There have been several
proposal for this, such as [1], [2], [13]–[18]. One of the most influential, which we follow in this paper, is
Vaudenay’s model [1], [2]. We recall below this model as in [4]. Thus, we assume first that some oracles
the adversary may query share and manage a common list of tags ListTags, which is initially empty.
This list includes exactly one entry for each tag created and active in the system. A tag entry consists of
several fields with information about the tag, such as: the (permanent) identity of the tag (which is an
element from T ), the temporary identity of the tag (this field may be empty saying that the tag is free),
a bit value saying whether the tag is legitimate (the bit is one) or illegitimate (the bit is zero). When the
temporary identity field is non-empty, its value uniquely identifies the tag, which is called drawn in this
case. The adversary may only interact with drawn tags by means of their temporary identities.

The oracles an adversary may query are:
1) CreateTagb(ID): Creates a free tag TID with the identifier ID by calling SetupT (pk, ID) to

generate a pair (K,S). If b = 1, (ID, f(S), K) is added to DB and the tag is considered legitimate;
otherwise (b = 0), the tag is considered illegitimate. Moreover, a corresponding entry is added to
ListTags;

2) DrawTag(δ): This oracle chooses a number of free tags according to the distribution δ, let us say n,
and draws them. That is, n temporary identities vtag1, . . . , vtagn are generated and the corresponding
tag entries in ListTags are filled with them. The oracle outputs (vtag1, b1, . . . , vtagn, bn), where bi
specifies whether the tag vtagi is legitimate ot not.
As one can see, DrawTag provides the adversary with access to some free tags by means of
temporary identifiers, and gives information on whether the tags are legitimate or not (but no other
information);

3) Free(vtag): Removes the temporary identity vtag in the corresponding entry in ListTags, and the
tag becomes free. The identifier vtag will no longer be used. We assume that when a tag is freed,
its temporary state is erased. This is a natural assumption that corresponds to the fact that the tag
is no longer powered by reader;

4) Launch(): Launches a new protocol instance and assigns a unique identifier to it. The oracle outputs
the identifier;

5) SendReader(m,π): Outputs the reader’s answer when the message m is sent to it as part of the
protocol instance π. When m is the empty message, abusively but suggestively denoted by ∅, this
oracle outputs the first message of the protocol instance π, assuming that the reader does the first
step in the protocol.
We emphasize that the reader’s answer is conceived as the message sent to the tag by the commu-
nication channel and not as the reader’s decision output (tag identity or ⊥). Therefore, if the reader
does not send anything to the tag, the output of this oracle is empty;

6) SendTag(m, vtag): outputs the tag’s answer when the message m is sent to the tag referred to by
vtag. When m is the empty message, this oracle outputs the first message of the protocol instance
π, assuming that the tag does the first step in the protocol.
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As in the case of the SendReader oracle, we emphasize that the tag’s answer is conceived as the
message sent to the reader by the communication channel and not as the tag’s decision output (OK
or ⊥). Therefore, if the tag does not send anything to the reader, the output of this oracle is empty;

7) Result(π): Outputs ⊥ if in session π the reader has not yet made a decision on tag authentication
(this also includes the case when the session π does not exist), 1 if in session π the reader
authenticated the tag, and 0 otherwise (this oracle is both for unilateral and mutual authentication);

8) Corrupt(vtag): Outputs the current permanent (internal) state of the tag referred to by vtag, when
the tag is not involved in any computation of any protocol step (that is, the permanent state before
or after a protocol step). For an extended discussion on this oracle the reader is referred to [4].

We emphasize that Corrupt does not return snapshots of the tag’s memory during its computations.
When the Corrupt oracle returns the full state, we will refer to this model as being Vaudenay’s model
with temporary state disclosure.

Now, the adversaries are classified into the following classes, according to the access they get to these
oracles:
• Weak adversaries: they do not have access to the Corrupt oracle;
• Forward adversaries: once they access the Corrupt oracle, they can only access the Corrupt oracle;
• Destructive adversaries: after the adversary has queried Corrupt(vtag) and obtained the correspond-

ing information, the tag identified by vtag is destroyed (marked as destroyed in ListTags) and the
temporary identifier vtag wil no longer be available. The database DB will still keep the record
associated to this tag (the reader does not know the tag was destroyed). As a consequence, a new
tag with the same identifier cannot be created (in this approach, the database cannot store multiple
records for the same tag identifier);

• Strong adversaries: there are no restrictions on the use of oracles.
Orthogonal to these classes, there is the class of narrow adversaries that do not have access to the

Result oracle. We may now combine the narrow constraints with any of the previous constraints in order
to get another four classes of adversaries, narrow weak, narrow forward, narrow destructive, and narrow
strong.

Security: Now we are ready to introduce the tag and reader authentication properties as proposed
in [1], [2], simply called the security of RFID schemes.

First of all, we say that a tag TID and a protocol session π had a matching conversation if they exchanged
well interleaved and faithfully (but maybe with some time delay) messages according to the protocol,
starting with the first protocol message but not necessarily completing the protocol session. If the matching
conversation leads to tag authentication, then it will be called a tag authentication matching conversation;
if it leads to reader authentication, it will be called a reader authentication matching conversation.

Now, the tag authentication property is defined by means of the following experiment that a challenger
sets up for an adversary A (after the security parameter λ is fixed):

Experiment RFIDt auth
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: Return 1 if there is a protocol instance π s.t.:

– π authenticates an uncorrupted legitimate tag TID;
– π had no tag authentication matching conversation with TID.

Otherwise, return 0.

The advantage of A in the experiment RFIDt auth
A,S (λ) is defined as

Advt authA,S (λ) = Pr(RFIDt auth
A,S (λ) = 1)
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An RFID scheme S achieves tag authentication if Advt authA,S is negligible, for any strong adversary A.
The experiment for reader authentication, denoted RFIDr auth

A,S (λ), is quite similar to that above:

Experiment RFIDr auth
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: Return 1 if there is a protocol instance π with a tag TID s.t.:

– TID is an uncorrupted legitimate tag that authenticates the reader;
– π had no reader authentication matching conversation with TID.

Otherwise, return 0.

The main difference compared to the previous experiment is that the adversary A tries to make some
legitimate tag to authenticate the reader. As π and TID have no matching conversation, A computes at
least one message that makes the tag to authenticate the reader.

An RFID scheme S achieves reader authentication if the advantage of A, Advr authA,S , is negligible, for
any strong adversary A (the advantage of A is defined as above, by using RFIDr auth

A,S (λ) instead of
RFIDt auth

A,S (λ)).

Privacy: Privacy for RFID systems [2] captures anonymity and untraceability. It basically means
that an adversary cannot learn anything new from intercepting the communication between a tag and the
reader. To model this, the concept of a blinder was introduced in [2].

A blinder for an adversary A that belongs to some class V of adversaries is a PPT algorithm B that:
1) simulates the Launch, SendReader, SendTag, and Result oracles for A, without having access

to the corresponding secrets;
2) passively looks at the communication between A and the other oracles allowed to it by the class V

(that is, B gets exactly the same information as A when querying these oracles).
When the adversary A interacts with the RFID scheme by means of a blinder B, we say that A is blinded
by B and denote this by AB. We emphasize that AB is allowed to query the oracles Launch, SendReader,
SendTag, and Result only by means of B; all the other oracles are queried as a standard adversary.

Given an adversary A and a blinder B for it, define the following two experiments (privacy games):

Experiment RFIDprv−0
A,S (λ)

1: Set up the reader;
2: A gets the public key pk;
3: A queries the oracles;
4: A gets the secret table of the DrawTag oracle;
5: A outputs a bit b′;
6: Return 1 if b′ = 0, and 0, otherwise.

Experiment RFIDprv−1
A,S,B (λ)

1: Set up the reader;
2: AB gets the public key pk;
3: AB queries the oracles;
4: AB gets the secret table of the DrawTag oracle;
5: AB outputs a bit b′;
6: Return 1 if b′ = 1, and 0, otherwise.
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Now, the advantage of A blinded by B is defined by

AdvprvA,S,B(λ) =| P (RFID
prv−0
A,S (λ) = 1)− P (RFIDprv−1

A,S,B (λ) = 1) |

An RFID scheme achieves privacy for a class V of adversaries if for any adversary A ∈ V there exists
a blinder B such that AdvprvA,S,B(λ) is negligible.

We thus obtain eight concepts of privacy: strong privacy, narrow strong privacy, destructive privacy,
and so on.

We close this section by a remark on the blinded privacy game. In this game, the oracle SendTag is
simulated by the blinder. Therefore, the tags’ states are not changed in this game.

IV. PRIVACY AND MUTUAL AUTHENTICATION UNDER TEMPORARY STATE DISCLOSURE

When Vaudenay’s model was proposed [1], it was somewhat unclear whether the Corrupt oracle returns
the full (i.e., permanent and temporary) tag state or only the permanent one. This has also remained unclear
in Paisie and Vaudenay’s next year paper [2] on mutual authentication. While the distinction between full
and permanent state did not have a negative impact on the results already obtained in the case of unilateral
authentication, it highlighted several wrong results in the case of mutual authentication [7].

A. Understanding Theorem 1 in [7]
In the very interesting paper [7] a series of impossibility results were established, with respect to privacy

and mutual authentication in RFID schemes. One of them, namely Theorem 1, says that there is no RFID
scheme that achieves both reader authentication and narrow forward privacy in Vaudenay’s model with
temporary state disclosure. The argument is as follows. Given a blinder B, one may construct an adversary
ABsec against reader authentication so that, if the scheme is narrow forward private then ABsec has non-
negligible advantage to authenticate itself as a valid reader. Going inside the proof, we remark that it is
crucial the Corrupt oracle returns the full state of a tag in order to allow an adversary to perform the
test by which the tag authenticates the reader. By this test, the adversary distinguishes with non-negligible
probability between the real privacy game and the blinded one.

As a conclusion, none of the random oracle (RO) or public-key cryptography (PKC) based RFID
schemes in [2] achieves mutual authentication and the privacy level claimed in [2] if Vaudenay’s model
allows corruption with temporary state disclosure.

In our opinion, the RO based RFID scheme in [1], [2] needs a detailed discussion in order to understand
why Theorem 1 applies to this case as well. To define this scheme, two public random oracles F and G
running two random functions, one from {0, 1}k+` to {0, 1}k and the other one from {0, 1}k to {0, 1}k,
are needed. The SetupT (pk, ID) algorithm creates a tag with the identity ID and a (permanent) state
consisting of a key K ← {0, 1}k. The pair (ID,K) is stored in the reader’s database DB. The reader
and all tags are granted (secure) access to the oracles F and G. One may also think that copies of these
oracles are distributed to the reader and all tags. The interactive protocol Ident is pictorially represented
in Figure 2.

Now, we have to clarify what corruption means in the case of this protocol. As F and G are public
random oracles, the adversary is granted access to them as well. The Corrupt oracle returns only the tag
state but not the internal structure of the oracles F and G (which are thought as black boxes). Therefore,
an adversary that corrupts a tag and gets a state G(K) will not be able to “inverse” this value or to do any
other computation derived from the internal structure of these oracles, except with negligible probability.
This is somewhat opposite to pseudo-random functions whose internal structure is supposed to be known.
For instance, if we consider the candidate pseudo-random function DES = (DESK)K∈{0,1}64 , a key K,
and a cyphertext c = DESK(x), one may efficiently compute the plaintext x.

As a conclusion, an adversary that corrupts a tag and gets its key K may get F (K, x) and G(K) by
querying the oracles F and G (but not by corrupting them). Therefore, the tag can perfectly be simulated
by an adversary and Theorem 1 in [7] can be applied in this case (in fact, the adversary only needs to
know w′ in order to do the tag’s test in the last step).
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Reader (DB,F,G) Tag (F,G,K)

1 x← {0, 1}` x−→

2 z←−
z = F (0, K, x), w′ = F (1, K, x),
K = G(K)

3 If ∃(ID,K) ∈ DB and 0 ≤ i < t
s.t. z = F (0, Gi(K), x)

then output ID, K = Gi(K), K ′ = K
else output ⊥, K ′ ← {0, 1}k

w = F (1, K ′, x) w−→
If w = w′ then output OK

else output ⊥

Fig. 2. RO based RFID scheme in [2]

B. RFID design based on PUF tags
The newest technologies allow PUF tags that are tags with PUFs inside them. The tags that do not

include PUFs will sometimes be referred to as ordinary tags. In order to adapt Vaudenay’s model (with or
without temporary state disclosure) to RFID schemes with PUF tags, we have to clarify what corruption
means in this case. Taking into account that PUFs are temper-evident, at least two main scenarios are
possible:

1) Any corruption on a PUF tag destroys the tag. By corruption, one gets the (full) state except for
the values computed by the PUF (assuming that they were not saved in the tag’s memory);

2) The PUF tag is destroyed by corrupting it, but some values returned by its PUFs are obtained (an
example in this sense is the cold boot attack in [19] according to which the tag may be frozen at
some time to obtain the PUF value).

The first scenario is the most used one and it is the one adopted in our paper. As corruption of PUF based
tags does not reveal the full tag state, PUF tags cannot generally be simulated by adversaries. Working
in this scenario, Theorem 1 in [7], at least in its present form, cannot be applied to RFID schemes with
PUF tags. This leaves open the invitation to design RFID schemes that achieve mutual authentication and
higher privacy levels than narrow forward in Vaudenay’s model with temporary state disclosure. As we
have already said, such schemes cannot be based on ordinary tags. A good choice is to use PUF tags,
as it was done in [4]–[6], [8], [9]. However, the use of PUF tags does not mean that the schemes are
immune to corrupting adversaries. This is because an adversary might not need the entire tag state to
attack the scheme. An example in this sense is provided in [4] where it was shown that the RFID schemes
proposed in [5], [6] do not achieve mutual authentication and (narrow) destructive privacy in Vaudenay’s
model with temporary state disclosure, as it was claimed by authors, although they use PUF tags. The
proof exploits the fact that these schemes use volatile variables to carry values between protocol steps.

The second scenario was touched by several research papers such as [5], [6], [19]. We are not aware
of any formal treatment of this scenario in Vaudenay’s model. To implement this scenario in Vaudenay’s
model, the Corrupt oracle should be changed to return snapshots of the tag’s state during its computation
(recall that the standard Corrupt oracle returns the tag’s state before or after a protocol step). A formal and
complete treatment of such a corruption seems hard to reach; on the other side, such a corruption is very
strong and probably no PUF based RFID scheme may achieve a privacy level higher than (narrow) weak
under such a corruption. However, special cases may be relevant. One of them is the cold boot attack
mentioned above. To defeat it, a two PUF evaluation technique was proposed in [19], which consists
of two evaluations in a row of the same PUF. If the attack is applied immediately after the first PUF
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evaluation, the second PUF evaluation is lost, and vice-versa. This technique was implemented in two
RFID schemes [5], [6]. Unfortunately, the authors dis not pay much attention to the volatile variables,
which made their schemes not to achieve even the narrow forward privacy level [4].

C. Strong and destructive privacy with PUF tags
Recall that (narrow) strong adversaries may corrupt a tag multiple times. However, working in the

first corruption scenario mentioned above (with PUF tags), (narrow) strong adversaries become in fact
(narrow) destructive. This is because corruption destroys the PUF tag and, therefore, it cannot be further
used. Therefore, Vaudenay’s model (with or without temporary state disclosure) for RFID schemes with
PUF tags is limited to at most (narrow) destructive privacy.

D. Weak privacy and mutual authentication
The PRF based RFID scheme in [2] achieves mutual authentication and weak privacy in Vaudenay’s

model with temporary state disclosure. This simply follows from the proof in [2] together with the remark
that weak adversaries are not allowed to corrupt tags.

V. DESTRUCTIVE PRIVACY AND READER-FIRST AUTHENTICATION

An interesting question that arises when designing mutual authentication RFID schemes is whether
the tag or the reader should be authenticated first. We have thus two approaches: tag-first and reader-
first authentication, respectively [3]. The tag-first authentication has some advantage with respect to
desynchronization: the tag computes its new state and sends information about it to the reader. However,
the tag state is updated only when the reader authenticates the tag and confirms the new state to the tag.
The disadvantage of this approach is that the tag should provide some information to the reader before it
is confident of the reader’s identity.

The reader-first authentication might enhance the tag privacy because the tag gives private information
to the reader when it is confident of its identity. This also might help preventing adversaries from tracking
tags. Another advantage is when the tag is designed only for a limited number of authentications. In such
a case, the reader-first approach prevents a form of the denial of service attack that would “consume” all
the tag’s authentication answers.

In this section we address the problem to construct a destructive private and mutual authentication
RFID scheme in Vaudenay’s model with temporary state disclosure. For mutual authentication we follow
the reader-first approach and, according to our discussion in Section IV, all tags are endowed with PUFs.

To describe our scheme, let us assume that λ is a security parameter, `1(λ) and `2(λ) are two poly-
nomials, and F = (FK)K∈K is a pseudo-random function, where FK : {0, 1}2`1(λ)+2 → {0, 1}`2(λ) for all
K ∈ Kλ. Each tag is equipped with a (unique) PUF P : {0, 1}p(λ) → Kλ and has the capacity to compute
F , where p(λ) is a polynomial. The internal state of the tag consists of a pair (s, x), where s ∈ {0, 1}p(λ)
is randomly chosen as a seed to evaluate P , and x ∈ {0, 1}`1(λ) is a random string used as a “dynamic”
identifier of the tag. The reader maintains a database DB with entries for all legitimate tags. Each entry
is a vector (ID,K, x), where ID is the tag’s identity and K = P (s), where P is the tag’s PUF and (s, x)
is its state.

The mutual authentication protocol is given in Figure 3. As we can see, the tag generates initially a
random u ← {0, 1}`1(λ), computes K = P (s) and z = FK(0, 0, u, x), erases K, and sends (u, z). The
reader checks its database for a triple (ID,K, x) such that z = FK(0, 0, u, x) or z = FK(0, 0, u, x + 1).
The reason is that at most one step desynchronization may occur between reader and tag; that is, when
x is on tag, either x or x− 1 is on reader. When the reader finds out the right value, it uses it to prepare
the answer (v, w) for the tag. The tag evaluates the PUF, checks the value w received from reader, and
takes a decision. It also updates x correspondingly and prepares the answer for the reader. On receiving
the tag’s answer, the reader checks it, takes a decision, and updates x correspondingly.
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Reader (DB,F ) Tag (P, s, F, x)

1 u← {0, 1}`1(λ), K = P (s)
u, z←−−− z = FK(0, 0, u, x)

erase K, u, z

2 If ∃(ID,K, x) ∈ DB and i ∈ {0, 1}
s.t. z = FK(0, 0, u, x+ i)

then v ← {0, 1}`1(λ), w = FK(0, 1, v, x+ i)

else v ← {0, 1}`1(λ), w ← {0, 1}`2(λ) v, w−−→
3 K = P (s), w′ = FK(0, 1, v, x)

If w = w′

then x = x+ 1,
w′ = FK(1, 1, v, x)

w′←−− else w′ ← {0, 1}`2(λ)
erase K, v, w, w′

4 If w′ = FK(1, 1, v, x+ i+ 1)
then output ID, x = x+ i+ 1
else output ⊥

Fig. 3. Destructive private and reader-first authentication PUF based RFID scheme in Vaudenay’s model with temporary state disclosure

Remark that if the reader does not update x (because it rejects the tag), then it will do so in step 2 of
the next protocol session (with the same tag). Therefore, the desynchronization between reader and tag
is at most one step.

Theorem 5.1: The RFID scheme in Figure 3 is correct.
Proof: Assuming that a tag TID is legitimate, the reader’s database contains an entry (ID,K, x),

where K = P (s), (s, x) is the tag’s state, and P is its PUF.
When the reader receives (u, z) from the tag TID, exactly one of the two equalities z = FK(0, 0, u, x)

and z = FK(0, 0, u, x+ 1) holds with overwhelming probability (we use the notation in Figure 3).
If the reader has found the tag in its database, the equality w = w′ on tag’s side holds with over-

whelming probability. This means that the tag authenticates the reader. In such a case, the equality
w′ = FK(1, 1, v, x + 1) holds with overwhelming probability, meaning that the reader authenticates the
tag.

As a final remark, if the tag does not authenticate the reader, then the reader will no authenticate the
tag with negligible probability.

We will focus now on the security of our RFID scheme.

Theorem 5.2: The RFID scheme in Figure 3 achieves tag authentication in Vaudenay’s model with
temporary state disclosure, provided that F is a PRF and the tags are endowed with ideal PUFs.

Proof: Assume that the scheme does not achieve tag authentication, and let A be an adversary that
has non-negligible advantage over the scheme, with respect to the tag authentication property. We will
show that there exists a PPT algorithm A′ that can break the pseudo-randomness property of the function
F .

The main idea is the next one. Let C be a challenger for the pseudo-randomness security game of the
function F . The adversary A′ will play the role of challenger for A. Thus, A′ guesses the tag identity ID∗

that A can authenticate with the reader with non-negligible probability (recall that there is a polynomial
number t(λ) of tags). Then, it creates the tag TID∗ with the help of C. Namely, the random key chosen
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by C will be thought as the key generated by the tag’s PUF. The adversary A′ does not know this key
but, in fact, it does not need to. As A′ impersonates the reader, it can provide A with correct answers by
querying C. Therefore, TID∗ will be regarded by A as a legitimate tag.

When A succeeds to authenticate TID∗ to the reader with non-negligible probability, A′ will use the
information obtained from A to answer correctly, with overwhelming probability, some challenge of C.

The details on A′ are as follows (assuming a given security parameter λ):
1) The challenger C chooses uniformly at random a key for F and will answer all queries of A′ with

respect to this key;
2) A′ plays the role of challenger for A. It will run the reader and all tags created by A, answering all
A’s oracle queries. Therefore, using SetupR(λ) it generates a triple (pk, sk,DB), gives the public
key pk to A, and keeps the private key sk.
A′ will maintain a list of tag entries A′ListTags similar to ListTags (see Section III) but with the
difference that each entry in this list also includes the current state of the tag as well as a special
field designated to store the “key generated by the tag’s internal PUF”. The legitimate entries in
this list define the reader’s database DB. Initially, A′ListTags is empty;

3) A′ guesses the tag identity ID∗ that A will authenticate to reader (recall that the number of tag
identities is polynomial in the security parameter);

4) A′ will simulate for A all the corresponding oracles in a straightforward manner, but with the
following modifications:

a) CreateTagb(ID) : If TID was already created, then A′ does nothing.
If TID was not created and ID 6= ID∗, then A′ randomly chooses K ∈ {0, 1}λ and x ∈ {0, 1}`1
and records a corresponding entry into A′ListTags (K plays the role of the key generated by
the tag’s internal PUF). Thus, TID has just been created.
If TID was not created and ID = ID∗, then A′ records (ID∗, ?, x) into A′ListTags, where
x← {0, 1}`1 . The meaning of “?” is that this field should have contained the key chosen by C,
which is unknown to A′. However, A′ does not need to know this key because it can answer
all A’s queries regarding ID∗ with the help of C.
As the tags are endowed with ideal PUFs and the keys are uniformly at random chosen by A′,
including the key chosen by C, A′ implements correctly the functionality of all tags (including
TID∗);

b) DrawTag and Free : A′ knows the list of all tags created by A, and updates it correspondingly
whenever A draws or frees some tag;

c) Launch() : A′ launches a new protocol instance whenever A asks for it;
d) SendTag(∅, vtag) : This is the first message vtag sends in a protocol instance. If the tag

referred by vtag is ID∗, then A′ will randomly generate u ∈ {0, 1}`1(λ) and query C for
(0, 0, u, x). If z is C’s response, than A′ answers with (u, z).
If vtag refers to some ID 6= ID∗, then A′ can prepare by itself the answer because it knows
the corresponding key for ID;

e) SendReader((u, z), π) : Assume the reader (run by A′) has received (u, z) in the protocol
instance π from a tag identified by vtag (in other words, (u, z)← SendTag(∅, vtag)).
If vtag refers to some tag ID such that (ID,K, x) ∈ DB for some K, then the reader (run
by A′) can compute the answer according to the protocol.
If vtag refers to ID∗, then the reader (run by A′) can compute the answer according to the
protocol by queering C (recall that TID∗ is regarded by A as a legitimate tag).
If vtag refers to some ID for which no entry can be found in DB, then the answer (v, w) is
randomly chosen;

f) SendTag((v, w), vtag) : If the tag referred by vtag is ID∗, then A′ queries C for (0, 1, v, x)
and then compares the answer with w. If they match, the tag outputs OK; otherwise, it outputs
⊥. In the first case A′ increments x and queries C for (1, 1, v, x) to get w′; in the second case,
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it chooses at random w′. If vtag refers to some ID 6= ID∗ that has associated a pair (K, x),
then A′ can compute by itself w′ (according to the protocol).
In all cases, the oracle returns w′;

g) Result(π) : A′ can infer the decision of the reader in the last step of π because it can obtain
the value FK(1, 1, v, x+i+1) for all tags (either it can compute it or query C for it). Therefore,
A′ can simulate Result(π) according to its definition;

h) Corupt(vtag) : If the tag referred by vtag is different from ID∗, then A′ returns its current
state; otherwise, it aborts;

5) If A is able to make the reader to authenticate the tag ID∗, then this means that A can compute
w′ = FK∗(1, 1, v, x + 1) without knowing K∗, provided that K∗ is the key chosen by C and x is
the current third component of the entry (ID∗, ?, x). Then, A′ can prepare the challenge phase for
C as follows:

a) A′ sends (1, 1, v, x+ 1) to C;
b) C randomly chooses b ∈ {0, 1}; if b = 1, then C returns w′′ = FK∗(1, 1, v, x+1), else C returns

a random w′′;
c) A′ prepares its guess b′ as follows: if w′ = w′′, then b′ = 1, else b′ = 0.

The probability that A′ guesses the bit chosen by C can be computed as the product between the
probability that A′ guesses ID∗ and the probability that A makes the reader to authenticate the tag ID∗.

The probability that A′ guesses ID∗ is 1/t(λ), where t(λ) is the polynomial number of tag identities.
If we assume now that A has non-negligible probability to make the reader authenticate the tag ID∗, then
A′ can successfully answer C’s challenge with non-negligible probability; this contradicts the fact that F
is a pseudo-random function.

As with respect to the reader authentication property, we have the following result.

Theorem 5.3: The RFID scheme in Figure 3 achieves reader authentication in Vaudenay’s model with
temporary state disclosure, provided that F is a PRF and the tags are endowed with ideal PUFs.

Proof: Assume that our scheme does not achieve reader authentication, and let A be an adversary
that has non-negligible advantage over the scheme, with respect to the reader authentication property. We
will show that there exists a PPT algorithm A′ that can break the pseudo-randomness property of the
function F .

The main idea is somehow similar to the one in the Theorem 5.2. Let C be a challenger for the pseudo-
randomness property of the function F . The adversary A′ will play the role of a challenger for A. First,
A′ guesses the tag identity ID∗ that authenticates A as a valid reader, with non-negligible probability
(recall that there is a polynomial number t(λ) of tags). Then, it creates the tag TID∗ with the help of C,
exactly as in the proof of Theorem 5.2. This tag will be regarded by A as a legitimate one. When A
succeeds in making TID∗ to authenticate it as a valid reader, A′ will use the message sent by A to answer
some challenge of C.

The description of A′ is very similar to the one in the proof of Theorem 5.2, so we will focus on the
differences between them (λ denotes a security parameter):

1) The challenger C chooses uniformly at random a key for F and will answer all queries of A′ with
respect to this key;

2) A′ plays the role of challenger for A. It will run the reader and all tags created by A, answering all
A’s oracle queries. Therefore, using SetupR(λ) it generates a triple (pk, sk,DB), gives the public
key pk to A, and keeps the private key sk.
A′ will maintain a list of tag entries A′ListTags exactly as in the proof of Theorem 5.2;

3) A′ guesses the tag identity ID∗ that authenticates A as a valid reader;
4) A′ will simulate for A all the corresponding oracles exactly as in the proof of Theorem 5.2;
5) If A is able to make TID∗ to authenticate it as a valid reader, then this means that A can compute

w = FK∗(0, 1, v, x) without knowing K∗ (provided that K∗ is the key chosen by C), where x is the
current identifier of TID∗ . Then, A′ can prepare the challenge phase for C as follows:
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a) A′ sends (0, 1, v, x) to C;
b) C randomly chooses b ∈ {0, 1}; if b = 1, then C returns w′ = FK∗(0, 1, v, x), else C returns a

random w′;
c) A′ prepares its guess b′ as follows: if w = w′, then b′ = 1, else b′ = 0.

The probability thatA′ guesses the bit chosen by C is non-negligible ifA has a non-negligible probability
to make TID∗ to authenticate it as a valid reader (this is similar to the proof of Theorem 5.2). Therefore,
the assumption that A has a non-negligible probability to make TID∗ to authenticate it as a valid reader
contradicts the pseudo-randomness of the function F .

By using the sequence-of-games approach [20] we will prove that our protocol reaches destructive
privacy. With this approach, a sequence of games (probabilistic experiments) is defined. The initial game
is the original privacy game with respect to a given adversary. The transition from one game Gi to another
one Gi+1 is done by indistinguishability in our case. This means that a probability distribution in Gi is
replaced by another one that is indistinguishable from the previous one. In this way, the difference between
the probabilities the adversary wins Gi and Gi+1, is negligible.

Theorem 5.4: The RFID scheme in Figure 3 achieves destructive privacy in Vaudenay’s model with
temporary state disclosure, provided that F is a PRF and the tags are endowed with ideal PUFs.

Proof: Let A be a destructive adversary against our RFID scheme denoted S. We will show that
there is a blinder B such that AdvprvA,S,B(λ) is negligible. The blinder B that we construct, which has to
answer to the oracles Launch, SendReader, SendTag, and Result without knowing any secret information,
works as follows:
• Launch(): returns a unique identifier π for a new protocol instance;
• SendTag(∅, vtag): returns (u, z), where u← {0, 1}`1(λ) and z ← {0, 1}`2(λ);
• SendReader((u, z), π): returns (v, w), where v ← {0, 1}`1(λ) and w ← {0, 1}`2(λ);
• SendTag((v, w), vtag): returns w′ ← {0, 1}`2(λ);
• SendReader(w′, π): the blinder does not do anything because, in this case, the reader does not

answer;
• Result(π): if the session π does not exist or exists but is not completed, the blinder outputs ⊥. If π

has been issued by the Launch() oracle and a protocol transcript trπ = ((u, z), (v, w), w′) has been
generated by

– (u, z)← SendTag(∅, vtag),
– (v, w)← SendReader((u, z), π),
– w′ ← SendTag((v, w), vtag), and
– SendReader(w′, π),

where vtag refers to some legitimate tag, the blinder outputs 1; otherwise, outputs 0 (remark that
the blinder sees what A sees and, therefore, it knows whether vtag refers to some legitimate tag or
not).

We further prove that AdvprvA,S,B(λ) is negligible. To this we define a sequence of games G0, . . . , G7,
where G0 is the experiment RFIDprv−0

A,S and Gi+1 is obtained from Gi as described below, for all 0 ≤ i < 7.
By P (Gi) we denote the probability the adversary A wins the game Gi.

Game G1: This is identical to G0 except that the game challenger will not use the PRF keys generated
by PUFs to answer the adversary’s oracle queries, but randomly generated keys, one for each tag created by
the adversary. Of course, the game challenger must maintain a secret table with the association between
each tag and this new secret key. From the adversary’s point of view, this means that the probability
distribution given by each tag’s PUF (in G0) is replaced by the uniform probability distribution (in G1).
As the PUFs are ideal, the two distributions are indistinguishable. Taking into account that there are a
polynomial number of tags, it must be the case that |P (G0)−P (G1)| is negligible. We will provide below
a proof sketch of this.

Assume A is an adversary that can distinguish between G0 and G1 with non-negligible probability.
Define then a new adversary A′ that can break the PUF security with non-negligible probability. In order
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to interact with the RFID system, the adversary A must create some tags. As the tags’ PUFs, as well
as their seeds, are independently at random chosen, we may assume, without loss of generality, that A
creates exactly one tag with some identity ID, interacts with it, and draws the final conclusion based on
this interaction.

Now, the proof goes in a way somewhat similar to the proof of Theorem 5.2. Assume that C is a
challenger for some PUF P . A′ will play the role of challenger for A. When A queries CreateTag to
create the tag TID, legitimate or not, A′ chooses at random a state (s, x) for this tag and sends s to the
challenger C. The challenger chooses at random a bit b← {0, 1} and answers with K = P (s), if b = 0,
or K ← {0, 1}λ, if b = 1. The adversary A′ will then use K to create the tag TID. It will also answer
A’s all other oracle queries (similar to the proof of Theorem 5.2).

Remark that A will play the game Gb, without knowing b. After some time, A will output a guess
b′ ∈ {0, 1} about the game it thinks it is playing. Then, A′ can make a decision about the key K: it was
computed as P (s), if b′ = 0, or it is randomly chosen, if b′ = 1. Clearly, the probability the adversary A′
wins the PUF security game is the probability that A distinguishes between the two worlds, G0 and G1.
If this is non-negligible, then A′ has non-negligible probability to break the PUF.

Game G2: We replace in G1 the oracle Result by the oracle ResultB which is the simulation of
Result by the blinder B (please see above the definition B). Denote by G2 the game such obtained. We
prove that P (G1) = P (G2).

Recall first that in game G1 the tags are still endowed with PUFs, but their secret PRF keys are not
computed by PUFs. They are randomly generated by the game challenger that maintains a secret table
with the key associated to each tag. In this way, the Corrupt oracle will never reveal the secret key, but
it destroys the tag when queried.

If A queries the oracle Result or ResultB for a protocol session that does not exist or is incomplete,
both oracles return ⊥. Therefore, let us assume that these oracles are queried on a complete protocol
session π. In this case we will show that Result(π) = 1 if and only if ResultB(π) = 1.

Assume Result(π) = 1. Then, there is a transcript trπ = ((u, z), (v, w), w′) defined by a sequence of or-
acle queries (u, z)← SendTag(∅, vtag), (v, w)← SendReader((u, z), π), w′ ← SendTag((v, w), vtag),
and SendReader(w′, π) such that vtag refers to some tag TID whose state is (s, x) and secret key is K,
u← {0, 1}`1(λ), z = FK(0, 0, u, x), and (ID,K, x) is in the reader’s database (that is, TID is legitimate).
All these facts show that ResultB(π) = 1 (recall that the blinder B sees what A sees and, therefore, it
knows whether vtag refers to some legitimate tag or not).

The inverse implication is a bit more elaborate. Assume that ResultB(π) = 1. This means that there
is a transcript trπ = ((u, z), (v, w), w′) defined by a sequence of oracle queries as those above and the
tag TID referred by vtag is legitimate. Assume that the tag’s key is K and its state is (s, x), and in
DB there is a record (ID,K, x′). According to the description of the protocol, x′ is either x − 1 or
x. Because the oracles SendReader and SendTag are the real ones (and not simulated by blinder), the
reader finds i ∈ {0, 1} such that z = FK(0, 0, u, x−i). Therefore, w must be of the form FK(0, 1, v, x−i),
and this value will match FK(0, 1, v, x) computed by tag. Therefore, the tag authenticates the reader and
replies by w′ = FK(1, 1, v, x + 1). But then, the reader will successfully check the equality between w
and FK(1, 1, v, x − i + 1) (computed by itself) and, therefore, authenticates the tag. As a conclusion,
Result(π) = 1.

This shows that P (G1) = P (G2).
Game G3: This game is identical to G2 except that the Launch() oracle is simulated according to the

blinder description. No difference is encountered between the two games and, therefore, P (G2) = P (G3).
Game G4: This game is identical to G3 except that the SendTag(∅, vtag) oracle is simulated

according to the blinder description. By doing this, the probability distribution

{(u, z) | u← {0, 1}`1(λ), z = FK(0, 0, u, x)}

is replaced by
{(u, z) | u← {0, 1}`1(λ), z ← {0, 1}`2(λ)}.
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As F is a PRF, |P (G3) − P (G4)| is negligible. The proof is quite straightforward. The main idea is as
follows. Assume that an adversary A can distinguish with non-negligible probability between G4 and G5.
Define an adversary A′ for PRF that uses A as a subroutine and sends (0, 0, u, x) as a challenge. When
the PRF challenger returns, with equal probability, either z = FK(0, 0, u, x) or z ← {0, 1}`2(λ), A′ sends
this value to A. The probability A′ guesses between the two possibilities for z is exactly the probability
A distinguishes between the two games.

Game G5: This game is identical to G4 except that the SendReader((u, z), π) oracle is simulated
according to the blinder description. That is, for each tag TID whose secret key is K and current state is
(s, x), one of the probability distributions

{(u, z, v, w) | u, v ← {0, 1}`1(λ), z ← {0, 1}`2(λ), w = FK(0, 0, v, x+ i)},

where i ∈ {0, 1}, or
{(u, z, v, w) | u, v ← {0, 1}`1(λ), z, w ← {0, 1}`2(λ)}

is replaced by
{(u, z, v, w) | u, v ← {0, 1}`1(λ), z, w ← {0, 1}`2(λ)}.

As F is a PRF and the key K was chosen at random, it must be the case that |P (G4) − P (G5)| is
negligible. The proof is by contradiction and it is quite similar to the proof that establishes the transition
from G3 to G4.

Game G6: This game is identical to G5 except that the SendTag((v, w), vtag) oracle is simulated
by blinder. That is, for each tag TID, the probability distribution

{(u, z, v, w, w′) | u, v ← {0, 1}`1(λ), z, w ← {0, 1}`2(λ), w′ = FK(1, 1, v, x)},

is replaced by
{(u, z, v, w, w′) | u, v ← {0, 1}`1(λ), z, w, w′ ← {0, 1}`2(λ)}.

As F is a PRF and the key K was chosen at random, it must be the case that |P (G5) − P (G6)| is
negligible. The proof is by contradiction and it is quite similar to the proof in Game G5. Therefore, it is
omitted.

Game G7: This game is identical to G6 except that the SendReader(w′, π) oracle is simulated by
blinder. However, this does not change the probability distribution from G6. Therefore, P (G6) = P (G7).

Now, we show that G7 is in fact RFIDprv−1
A,S,B . The blinded adversary AB sees each tag as a standard

PUF tag, although random secret keys are used instead of the keys generated by PUFs. The oracles
CreateTag, Draw, Free, and Corrupt that can be queried directly by A do not use the keys generated
by PUFs in order to answer the adversary’s queries (in fact, they do not use any secret key). The answer
to the other oracles is simulated by blinder which does not use the secret keys either. Therefore, G7 is
indeed RFIDprv−1

A,S,B .
Now, to derive the final conclusion of the proof we remark that PA(G0) = P (RFIDprv−0

A,S (λ) = 1)

and PA(G7) = P (RFIDprv−1
A,S,B (λ) = 1). Combining all the probabilities P (Gi) together, we obtain that

AdvprvA,S,B(λ) is negligible and, therefore, our protocol achieves destructive privacy.

VI. NARROW DESTRUCTIVE PRIVACY AND READER-FIRST AUTHENTICATION

With little effort, the RFID scheme in Figure 3 can be simplified to a narrow destructive private and
reader-first authentication RFID scheme in Vaudenay’s model with temporary state disclosure. The mutual
authentication protocol of this new RFID scheme is presented in Figure 4; all the other elements are as in
Section V, except that FK is a function from {0, 1}`1(λ)+2 to {0, 1}`2(λ) and t is polynomial in the security
parameter. As one can see, there is no random generator on tag. Because of this, the synchronization
between tag and reader can be lost. The only thing we can do is to check (on the reader side) for
a polynomial bounded desynchronization. Due to this, the scheme can be at most narrow destructive
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private: if an adversary desynchronizes the tag and reader sufficiently enough (for more than t steps),
then it will be able to distinguish the real privacy game from the blinded one by means of the Result
oracle. This is because in the real privacy game the Resut oracle returns 0 (when the tag and reader are
desynchronized for more than t steps), while in the blinded privacy game it returns 1.

Reader (DB,F ) Tag (P, s, F, x)

1 K = P (s)
z←− z = FK(0, 0, x)

erase K, z
x = x+ 1

2 If ∃(ID,K, x) ∈ DB and 0 ≤ i < t
s.t. z = FK(0, 0, x+ i)

then w = FK(0, 1, x+ i+ 1)

else w ← {0, 1}`2(λ) w−→
3 K = P (s)

If w 6= FK(0, 1, x)
then w′ = FK(1, 1, x)

w′←−− else w′ ← {0, 1}`2(λ)
erase K, w, w′

If w′ = FK(1, 1, x+ i+ 1)
then output ID, x = x+ i+ 1
else output ⊥

Fig. 4. Narrow destructive private and reader-first authentication PUF based RFID scheme in Vaudenay’s model with temporary state
disclosure

We therefore have the following result.

Theorem 6.1: The RFID scheme in Figure 4 achieves mutual authentication and narrow destructive
privacy in Vaudenay’s model with temporary state disclosure, provided that F is a PRF and the tags are
endowed with ideal PUFs.

Proof: It is straightforward to see that the proof follows a similar line to the proofs of Theorems
5.2 and 5.3 for mutual authentication, and Theorem 5.4 for narrow destructive privacy. Remark that for
privacy, the Result oracle is not used.

It is good to remark that our RFID scheme in Figure 4 also provides an appropriate practical solution
to the narrow destructive privacy in the plain Vaudenay’s model, where the existing solution is based on
random oracles (please see Section IV-A).

A few more words on desynchronization are in order. If we look to the protocol in Figure 4 we remark
that the desynchronization is a result of the fact that the tag and reader share a common variable x that
is updated by tag before authenticating the reader. This allows an adversary to query a tag for more than
t times and, therefore, to desynchronize the tag and the reader.

To prevent desynchronization between reader and tag in reader-first authentication RFID schemes, the
tag should update the shared permanent variables after authenticating the reader, and not before.

VII. CONCLUSIONS

Modern applications of RFID systems ask for advanced security and privacy properties. For instance,
tag destruction under corruption is an important requirement when the tag is used for access control.
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Likewise, the disclosure of temporary state under tag corruption is a serious threat in practice. Reader-
first authentication [3] assures that the tag will give its private data only when it authenticates the reader.
Therefore, tag tracking and data theft is prevented when the reader is fake. All these together mean that
we need RFID schemes that provide destructive privacy and reader-first authentication under corruption
with temporary state disclosure.

As far as we are concerned, no RFID scheme developed so far meets these requirements in Vaudenay’s
model with temporary state disclosure. The aim of this paper is to propose two RFID schemes that fill
this gap. The first one is destructive private and the second one is narrow destructive private. Both of them
assure reader-first authentication, are practical, and efficient. The first one may be desynchronized for at
most one step. The second scheme avoids random generators on tags. As (narrow) destructive privacy
cannot be achieved with ordinary tags, we have used PUFs as secure hardware containers for the secret
key of tags. Detailed security and privacy proofs are provided for our schemes.
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[19] S. Kardaş, M. S. Kiraz, M. A. Bingöl, and H. Demirci, “A novel RFID distance bounding protocol based on physically unclonable

functions,” in RFID. Security and Privacy, A. Juels and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
78–93.

[20] V. Shoup, “Sequences of games: A tool for taming complexity in security proofs,” 2004.


