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Abstract

Robust secret sharing is a strengthening of standard secret sharing that allows the shared
secret to be recovered even if some of the shares being used in the reconstruction have been
adversarially modified. In this work, we study the setting where out of all the n shares, the
adversary is allowed to adaptively corrupt and modify t shares, where n = 2t+ 1.1 Further, we
deal with rushing adversaries, meaning that the adversary is allowed to see the honest parties’
shares before modifying its own shares.

It is known that when n = 2t + 1, to share a secret of length m bits and recover it with
error less than 2−λ, shares of size at least m + λ bits are needed. Recently, Bishop, Pastro,
Rajaraman, and Wichs (EUROCRYPT 2016) constructed a robust secret sharing scheme with
shares of size m+O(λ · polylog(n,m, λ)) bits that is secure in this setting against non-rushing
adversaries. Later, Fehr and Yuan (EUROCRYPT 2019) constructed a scheme that is secure
against rushing adversaries, but has shares of size m + O(λ · nε · polylog(n,m, λ)) bits for an
arbitrary constant ε > 0. They also showed a variant of their construction with share size
m+O(λ · polylog(n,m, λ)) bits, but with super-polynomial reconstruction time.

We present a robust secret sharing scheme that is secure against rushing adversaries, has
shares of size m+O(λ log n(log n+logm)) bits, and has polynomial-time sharing and reconstruc-
tion. Central to our construction is a polynomial-time algorithm for a problem on semi-random
graphs that arises naturally in the paradigm of local authentication of shares used by us and in
the aforementioned work.

1 Introduction

Secret sharing, first studied by Shamir [Sha79] and Blakley [Bla79], is a fundamental cryptographic
primitive that allows a secret to be shared among several parties in such a way that certain autho-
rized subsets of parties can reconstruct the secret, while unauthorized subsets learn no information
about the secret from their shares. Secret sharing has widespread applications across cryptography,
ranging from secure multiparty computation [GMW87,BGW88,CCD88] to threshold cryptographic
systems [DF90,Fra90,DDFY94].
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1Note that if the adversary is allowed to modify any more shares, then correct reconstruction would be impossible.
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Typically, threshold secret sharing schemes2 are required to satisfy two properties: correctness,
which says that more than a certain number of parties can use their shares to reconstruct the
secret, and privacy , which says that if there are fewer than this number of parties, then their shares
together reveal nothing about the secret. A number of strengthenings of secret sharing have also
been studied in the past owing to various applications, such as verifiable secret sharing [CGMA85],
robust secret sharing [RB89], leakage-resilient secret sharing [BDIR18, GK18], etc. In this work,
we focus on robust secret sharing.

Robust Secret Sharing. In robust secret sharing [RB89], in addition to the standard correctness
and privacy properties, we require the following robustness property: even if some of the shares are
adversarially modified, there is a reconstruction procedure that can recover the original secret given
all the shares (among which it does not know which have been modified). In this sense, robust
secret sharing is to standard threshold secret sharing as decoding from errors is to decoding from
erasures in coding theory.

To be more specific, suppose a secret of length m bits is to be shared among n parties with
threshold t – meaning the adversary is allowed to (adaptively) corrupt up to t of the parties. The
properties we ask of a robust secret sharing scheme are:

• Correctness – given (t+ 1) shares, it is possible to reconstruct the secret,

• Privacy – given t shares, the secret is hidden, and,

• Robustness – even if the adversary arbitrarily modifies up to t shares belonging to the parties
it corrupts, the secret should be recoverable given all n shares.

If t < n/3, it may be seen that Shamir secret sharing [Sha79] with threshold t satisfies the
robustness requirement, owing to the error correcting properties of the Reed-Solomon code. On
the other hand, if t > n/2, robustness is impossible as the adversary could modify a majority
of the shares. In addition, it is known that for n/3 6 t < n/2, it is not possible to achieve
perfect robustness, and any construction will necessarily have a small probability of failure of
reconstruction [Cev11], which we will call the robustness error. Further, any robust secret sharing
scheme for n = 2t+ 1 that has robustness error at most 2−λ has shares of length at least (m+ λ)
bits [CDV94].

In this work, we are interested in schemes that are robust in this extreme case of n = 2t + 1.
And the quantity we are most interested in is the size of the shares as a function of the secret
length, the robustness error and the number of parties.

Prior Work. There has been significant past work [RB89, CDV94, CDF01, CDF+08, CFOR12,
Che15, CDD+15, BP16, BPRW16, HO18, FY19] in studying and constructing robust secret sharing
schemes, both in the setting where n = 2t+ 1, and where t < (1− δ)n/2 for some constant δ > 0.
We discuss here only the former line of work, which is what leads up to our own, and refer the
reader to the paper by Bishop et al. [BPRW16] for discussions of the rest.

The first construction of robust secret sharing was by Rabin and Ben-Or [RB89], and had a
share size of m+ Õ(nλ) bits.3 This was done by giving each party a set of (n−1) keys of a message

2Throughout this work, we will be concerned only with threshold secret sharing, and thus we leave out this
specification hereafter.

3Throughout the introduction, we use Õ to hide polylogarithmic factors in λ,n, and m.
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authentication code (MAC) that it could use to authenticate the shares held by each other party,
and a set of (n − 1) MAC tags that other parties could use to authenticate its share. This was
improved by Cramer, Damgard and Fehr [CDF01] tom+Õ(n+λ) but with inefficient reconstruction,
and later Cevallos et al. [CFOR12] achieved the same overhead with efficient reconstruction. The
approach of the latter was to reduce the size of the authentication keys used in the MAC at the
expense of a more complicated reconstruction procedure.

Recently, Bishop et al. [BPRW16] improved the overhead in the share size to m + Õ(λ). The
central idea in their work is to not authenticate each share to every other party, but instead, for
each party to have d (roughly O(log n)) authentication keys/tags corresponding to d other randomly
chosen parties. They further showed that even though some of the keys/tags themselves could be
adversarially modified, enough information can be recovered after such corruptions to reconstruct
the secret. However, it was pointed out later by Fehr and Yuan [FY19] that the proof of robustness
of this scheme relies on the adversary being non-rushing.

Rushing Adversaries. A rushing adversary, in our context, is one that decides how to change
the shares of the parties it has corrupted after seeing the honest parties’ shares. In the case of
interactive reconstruction (which is what is used in our construction and in prior work), in each
round the parties corrupted by the adversary may wait till they see all the honest parties’ messages
and then decide what to send. Robustness against such adversaries becomes relevant, for instance,
if the parties are conducting the reconstruction amongst themselves as in multiparty computation
protocols.

As mentioned above, Fehr and Yuan [FY19] noted that the proof of robustness of Bishop et
al. [BPRW16] does not work if the adversary is rushing, though it is not known whether their
construction is actually non-robust in this case. Fehr and Yuan then presented a construction of
robust secret sharing, using the local authentication approach of Bishop et al., that was robust
against rushing adversaries, but with a share size of m+ Õ(λ · nε) for an arbitrary constant ε > 0.
They also showed how to improve this to m+ Õ(λ) if the reconstruction procedure was allowed to
run in super-polynomial time.

Our Results. We construct robust secret sharing against rushing adversaries in the setting of
n = 2t+ 1, with a share size of m+O(λ · log n(log n+ logm)) for secrets of size m and robustness
error 2−λ. (Note that the overhead here is only polylogarithmically larger than in the lower bound
of m + λ for share size shown in [CDV94].) Our reconstruction procedure is interactive, with two
rounds of interaction, and both sharing and reconstruction are polynomial-time. Our approach is
similar to those of Bishop et al. and Fehr and Yuan, though our construction is simpler than either
and does not use some of the sophisticated tools used there.

1.1 Technical Overview

In this subsection, we give a high-level overview of our construction and the techniques we use.
Recall that we wish to share secrets of length m among n parties, with a threshold of t (the
adversary is allowed to corrupt t parties), with a robustness error smaller than 2−λ.
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1.1.1 Sharing and Reconstruction

We follow the local authentication paradigm used in [BPRW16,FY19]. In this approach, each party
is given authentication information about the shares of a small set of parties, which we will call
its “watchlist.” We will set the size of the watchlist to be roughly O(log n), thus this contributes
only a polylog(n) factor to the overhead in the size of each share. This is to be contrasted with
Rabin and Ben-Or’s approach [RB89] where each party stores authentication information about
every other party, thus leading to a linear blow-up in the overhead. We now give some more details
on how we use the local authentication paradigm.

Sharing. In the sharing phase, we first compute a set of Shamir shares (Sh1, . . . ,Shn) for the
given secret. Then, for each i ∈ [n], we pick a random multiset Si of size d (where d is roughly
O(log n)) from [n] \ {i}. Si will be the set of parties in the watchlist of party i. For every j ∈ Si,
we pick a random MAC key ki→j and compute the tag σi→j of the jth Shamir share Shj using ki→j .
The tuple (ki→j , σi→j) constitutes authentication information for Shj . The share corresponding to
the ith party includes the Shamir share Shi, the watchlist Si, and the authentication information
{ki→j , σi→j}j∈Si of the parties in its watchlist.

There is, however, a concern about privacy as we are storing both the key ki→j and the tag σi→j
together and this might leak some information about the share Shj that is being authenticated.
In order to deal with this issue, we use a tool called private (randomized) MAC introduced in
[BPRW16]. This private MAC has the property that for any key ki→j , the pair (ki→j , σi→j) does
not reveal any information about Shj . This allows us to argue that even when the key is stored
together with the tag, the privacy is still preserved.

Reconstruction. Recontruction is performed by a two-round interactive protocol that proceeds
as follows.

• In the first round, the i-th party broadcasts its Shamir share Shi. The honest parties will
broadcast the correct shares, whereas for the adversarial parties, the broadcasted shares
could either be the original share or some modified (even empty) share. At this point, we
may partition the set of parties into three sets – the set H of honest parties, the set P of
“passive” corrupted parties i that are corrupted but broadcast the correct share Shi, and the
set A of “active” corrupt parties that broadcast a modified share.

At the end of the first round, all the parties can determine if the shares of the parties in its
watchlist have been modified or not by checking if the corresponding MAC tag verifies under
the respective key. Specifically, for every j ∈ Si, such that the σi→j verifies, party i labels j
as “good.” Similarly, if the tag does not verify, it labels j as “bad.” Thus, at the end of the
first round, the parties can obtain the labels for each j ∈ Si. Note that the honest parties
will always label a party j ∈ H ∪ P as “good” and with overwhelming probability, will label
a party in A as “bad.” Furthermore, at the end of the first round, the adversarial parties do
not learn any information about the watchlist of the honest parties. This will be crucially
used to argue robustness.

• In the second round, each party i broadcasts Si along with the labels it computed as above
for each j ∈ Si. Again, the honest parties will broadcast the correct information whereas
the adversarial parties, including the parties in P , can broadcast incorrect information. In
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particular, an adversarial party might modify its watchlist, and also incorrectly accuse some
honest party as being “bad” or label a party in A as “good.”

The action of any adverary in this protocol effectively induces a (labelled directed) graph
on the vertex set V = [n] (with a vertex representing each party) that is generated by the
following process:

– The adversary partitions V into sets H,P, and A, where |H| > t+ 1.

– For every i ∈ H, we choose a random multiset Si of size d from [n]\{i}. For each j ∈ Si,
we add an edge (i, j) to the graph. We label the edge (i, j) to be “good” if j ∈ H ∪ P ,
and “bad” if j ∈ A.

– The outgoing edges from P ∪A and their labels are generated adversarially after seeing
the edges and labels from H.

(In the above process, we sample the watchlists Si of honest parties after the adversary
has partitioned the set into H,P,A. We note that this is fine, in spite of the fact that
the watchlists are actually sampled during the sharing, since the adversary does not learn
any information about the watchlist of honest parties at the end of the first round of the
reconstruction protocol.)

Suppose we have an algorithm that on input the above graph, outputs the set S = H ∪P . In
this case, we are done since we can use the shares of these parties to reconstruct the correct
secret by the correctness of Shamir sharing. We give an algorithm that finds an S that has
a large intersection with H ∪ P and a small intersection with A. With such an S, we can
use the error correction properties of Shamir secret sharing (a.k.a. Reed-Solomon codes) to
recover the correct secret.

We next briefly describe how the above graph algorithm works.

1.1.2 Vertex Identification Algorithm

Our vertex identification algorithm crucially uses the connection between the problem at hand and
the independent set problem. Recall that a subset of vertices in an undirected graph is said to be
an independent set if there is no edge between any pair of vertices in the set. While our graph G is
a directed graph, there is a natural way to view it as an undirected graph: by simply keeping each
edge with a “bad” label as an undirected edge and discarding all edges with “good” labels. It is
not hard to show that a maximum independent set in this undirected version of G would give the
desired set S.

Unfortunately, computing the maximum independent set is NP-hard in the worst case [Kar72].
On the other hand, our graph is not a worst case graph since all edges from H are random, although
the edges from A∪P are worst case (i.e., adversarially generated). Finding independent sets in such
“semi-random” graphs has long been a topic of study in literature, starting with the work of Feige
and Kilian [FK01] (see also [FK00, CSV17, MMT18]). Unfortunately, these works do not apply to
our scenario because of the following two reasons. First, the guarantees from this line of work do
not suffice for us; a typical guarantee there is that an independent set found has a large size relative
to the maximum independent set, whereas we need the fact that the independent set has a large
intersection with H ∪ P and a small intersection with A. Second, the distribution of our graph is
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unlike those considered in [FK01,FK00,CSV17,MMT18]. Specifically, the distributions considered
in literature are often the following: pick a set I of vertices (i.e., the “planted independent set”)
and add random edges between I and the remaining vertices. Then, the adversary is allowed to
add arbritrary edges that are not within I. However, this is not the case for us since the edges
from P to H are not random.

Despite the challenges mentioned in the previous paragraph, several things go in our favor. First,
our directed graph G actually contains more information than its undirected variant considered in
the previous paragraph. For instance, if we have two vertices u1, u2 each having a directed edge
pointing to v but with different labels, then we know that either u1 or u2 must be corrupted.
Such information is not included when we just consider finding an independent set in the trivial
undirected version of G. This motivates us to look instead to what we call the conflict graph
Gconf, where we add an edge between every pair of vertices u1, u2 that label a common neighbor
differently. Clearly, H remains an independent set in Gconf. Moreover, from the definition of Gconf,
any independent set I of Gconf has a “consistent opinion” on all vertices in the following sense:
every vertex v is labelled with the same label by all its in-neighbors that lie in I. This leads us to
the overall structure of our algorithm: (1) find a large independent set I in Gconf and (2) output
the set of all vertices labelled “good” by (at least one vertex in) I.

Of course, we have not yet specified how we find a large independent set I in Gconf. This is indeed
where a second advantage of our scenario comes in: we are guaranteed to have an independent set
H of size more than half of the graph, unlike previous works that place weaker assumptions on
the size of the “planted” independent set. It turns out that this 1/2 threshold makes the problem
“easier.” For instance, Nemhauser and Trotter [NT74] show that any extremal solution to the
linear program (LP) relaxation of the independent set problem is half integral (i.e., every variable
is assigned either 0, 1/2, or 1), which means that at least one vertex in H is assigned 1 in the
solution. In our proof, we use a more specific structural lemma from [ACF+04] (Lemma 3.10)
together with the expansion property of the random part of our graph (Lemma 3.11) to argue that,
if we let I be the set of all vertices assigned 1 by the LP solution, then it contains sufficiently many
vertices from H. This in turn implies that I labels most of the vertices in H ∪ P as “good” and
most of those in A as “bad.” A more quantitative version of this argument shows that the output
set satisfies the desired properties.

1.2 Comparison with Prior Work

As mentioned earlier, our construction follows the paradigm of local authentication of shares intro-
duced by Bishop et al. [BPRW16] and used also by Fehr and Yuan [FY19]. There are a number
of similarities and differences between how we proceed in this paradigm and how these papers do,
and we briefly explain these below.

Bishop et al. [BPRW16]. The authors here use local authentication of shares to reduce the
robust reconstruction to a graph theoretic problem called graph bisection, which when solved gives
a set S of trustworthy parties whose shares are used to reconstruct the secret.

Their reduction also involves partitioning the corrupted parties into a set P of “passive” cor-
ruptions and a set A of “active” corruptions according to whether a certain part of the shares are
reported correctly during reconstruction. But their notion of passive corruption is stronger than
the one we use here – they also require that parties in P never falsely label a party in H as being
“bad.” This required them to store the authentication information in a distributed manner, using
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a primitive they call robust distributed storage. Additionally, they had to authenticate not only
the Shamir shares (as we do), but also the MAC keys themselves. As pointed out by Fehr and
Yuan, authenticating the keys in this way eventually causes their proof of robustness to fail against
rushing adversaries. Finally, in the end, the set S that is the solution to the graph bisection problem
is the set H ∪ P .

We use a weaker notion of passive corruptions, where parties in P are allowed to label parties
in H as “bad.” This allows us leave out the distributed storage and the authentication of the MAC
keys, enabling proofs of security against rushing adversaries. And solving the graph problem that
we reduce to does not require recovering the entire set H ∪ P , but only a set S that has a large
intersection with H ∪P and a small intersection with A. Such a set is easier to find, which is what
lets us relax the definition of passive corruptions, and is still sufficient to recover the shared secret
due to the error correction properties of Shamir sharing.

Fehr and Yuan [FY19]. The approach of Fehr and Yuan [FY19] is more similar to ours. They
also partition the parties into sets H, P and A, and their definitions for these sets are the same as
ours. However, they still use robust distributed storage to store authentication information. Our
construction is simpler, using only private MACs, which both of these papers also use.

Their approach is also to recover a set S of vertices that has a large intersection with H ∪ P
and a small intersection with A, and then use the error correction properties of Shamir sharing to
recover the secret. Further, like our approach, they also do this by reducing robust reconstruction
to the vertex identification problem in the model of random graphs that comes up in our work.

But their algorithm to solve this problem over n vertices with out-degree d only works when
the number of passive parties (|P |) is at most roughly n · (log d/ log n)2. And so when they find
that |P | is less than this and their algorithm fails, they fall back to list-decoding on all the shares
together to recover a list of possible sharings and then iterate over this list to find the actual secret.
The size of this list is roughly (log n/ log d)Õ((logn/ log d)2), leading to the restriction of d > nε for
some constant ε for the list-decoding to run in polynomial-time.

Our algorithm, on the other hand, solves the same problem without any such restriction on
|P |. To be more precise, it first solves the problem when |P | is at most roughly 0.84 · n, and then
observes that if |P | is more than this, then S = [n] is already a solution. As |P | can be efficiently
estimated from the graph, this solves the problem. This releases us from their restriction on d,
which we can set to be O(log n), leading to our shares being significantly smaller.

Outline. In Section 2, we define robust secret sharing and private MACs, and state some known
facts and theorems that will be useful later. In Section 3, we present our vertex identification
algorithm that will be used in our reconstruction procedure. For readers who are only interested
in our cryptographic constructions, we suggest to look at Theorem 3.1 in Section 3 and skip to
Section 4, where we present our robust secret sharing scheme.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and corresponding
lowercase letters to denote a sample from the same. Let [n] denote the set {1, 2, . . . , n} and Ur

denote the uniform distribution over {0, 1}r. For a finite set S, we denote x
$← S as sampling x

uniformly at random from the set S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate

7



of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed
by T . We write ◦ to denote concatenation.

Multisets. Let S be a multiset and for any element a, we define the multiplicity ma(S) to be
the number of times a occurs in the multiset S. For any two multisets S1, S2, we define S1‖S2 to
be the multiset such that for any element a, ma(S1‖S2) = ma(S1) +ma(S2).

We assume the reader’s familiarity with the definition of statistical distance.

2.1 Private MAC

In this subsection, we recall the definition of a private message authentication code (MAC) used
by Bishop et al [BPRW16] and Fehr and Yuan [FY19], but using different terminology. A private
MAC for message space {0, 1}η for some η ∈ N consists of the following algorithms, all of them
running in time poly(η).

• KeyGen : A randomized algorithm that outputs a key k.

• Tag(k, (m, r)) : A deterministic algorithm that takes a key k, a “message tuple” (m, r) ∈
{0, 1}η × {0, 1}κ for some κ ∈ N (called the randomness length), and outputs a tag σ.

• Verify(k, (m, r), σ) : A deterministic algorithm that takes a key k, a message tuple (m, r), and
a tag σ, and outputs 1 or 0.

Definition 2.1 For an η, ` ∈ N and ε ∈ [0, 1], a triple of algorithms (KeyGen,Tag,Verify) is an
(`, ε)-private MAC for a message space {0, 1}η if the following properties are satisfied for some
κ ∈ N.

• Correctness. For every message tuple (m, r) ∈ {0, 1}η × {0, 1}κ, with k ← KeyGen, and
σ ← Tag(k, (m, r)),

Pr[Verify(k, (m, r), σ) = 1] = 1

• Unforgeability. For any message tuple (m, r) ∈ {0, 1}η × {0, 1}κ, and any adversary A,
with k ← KeyGen, σ ← Tag(k, (m, r)), and (m′, r′, σ′)← A(m, r, σ),

Pr[(m, r) 6= (m′, r′) ∧ Verify(k, (m′, r′), σ′) = 1] 6 ε.

• Privacy. For every m0,m1 ∈ {0, 1}η, any arbitrary set of ` keys {k1, . . . , k`}, and any
adversary A, with k ← KeyGen, r ← {0, 1}κ, and σbi ← Tag(ki, (mb, r)) for i ∈ [`] and
b ∈ {0, 1},

Pr[A(σ0
1, σ

0
2, . . . , σ

0
` ) = 1] = Pr[A(σ1

1, σ
1
2, . . . , σ

1
` ) = 1]

• Uniformity. There is an s ∈ N such that for every (m, r) ∈ {0, 1}η × {0, 1}κ, with k ←
KeyGen, the distribution of σ ← Tag(k, (m, r)) is uniform over {0, 1}s.

The following theorem follows from the construction of a private MAC presented in [BPRW16],
using GF[2λ] as the field there.

Theorem 2.2 ( [BPRW16]) For any η, ` ∈ N and ε ∈ [0, 1], there exists an (`, ε)-private MAC
for message space {0, 1}η, with randomness length `λ, key length 2λ and tag length λ, where λ =
dlog((η + `)/ε)e.
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2.2 Secret Sharing Scheme

We start with the definition of the sharing function and then give the definition of a threshold
secret sharing scheme.

Definition 2.3 (Sharing Function [Bei11]) Let [n] = {1, 2, . . . , n} be a set of identities of n
parties. Let M be the domain of secrets. A sharing function Share is a randomized mapping from
M to S1 × S2 × . . . × Sn, where Si is called the domain of shares of party with identity i. A
dealer distributes a secret m ∈ M by computing the vector Share(m) = (S1, . . . ,Sn), and privately
communicating each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a
restriction of Share(m) to its T entries.

Definition 2.4 ((t, n, εc, εs)-Secret Sharing Scheme) Let M be a finite set of secrets, where
|M| > 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing function
Share with domain of secretsM is a (t, n, εc, εs)-secret sharing scheme if the following two properties
hold :

• Correctness: The secret can be reconstructed by any t-out-of-n parties. That is, for any set
T ⊆ [n] such that |T | > t, there exists a deterministic, interactive reconstruction protocol Rec
between the parties in T with the input of i ∈ T being Share(m)i such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1− εc

where the probability is over the randomness of the Share function. We will slightly abuse the
notation and denote Rec as the reconstruction protocol that takes in T and Share(m)T where
T is of size at least t and outputs the secret.

• Statistical Privacy: Any collusion of less than t parties should have “almost” no informa-
tion about the underlying secret. More formally, for any unauthorized set U ⊆ [n] such that
|U | < t, and for every pair of secrets m0,m1 ∈ M , for any distinguisher D with output in
{0, 1}, the following holds :

|Pr[D(Share(m0)U ) = 1]− Pr[D(Share(m1)U ) = 1]| 6 εs

We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Remark The above definition of privacy considers a weaker notion where the unauthorized set
U is specified upfront. We can also consider a stronger variant where the adversary adaptively
specifies this set U one party at a time, seeing the share of each party as it is specified. We note
that for the case of perfect privacy (i.e., εs = 0), the above two variants are equivalent.
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2.3 Robust Secret Sharing

We now give the definition of robust secret sharing scheme.

Definition 2.5 An (t, n, εc, εs) secret sharing scheme (Share,Rec) for message space M is said to
be (δ, κ, τ)-robust if for every interactive adversary A and message m ∈M,

Pr[ExptA,m,κ,τ = 1] 6 δ

where ExptA,m,κ,τ is defined below.

• (share1, . . . , sharen)← Share(m).

• A outputs a set Γ ⊆ [n] such that |Γ| = κ.

• Set T = ∅. Repeat until |T | = τ :

– A chooses i ∈ Γ \ T .

– Update T = T ∪ {i} and give sharei to A.

• Run the reconstruction protocol among the parties in Γ with every party i ∈ Γ \ T behaving
honestly using its share sharei and the adversary A taking control the parties in T . A is
allowed to behave maliciously (possibly using a different share) and can deviate arbitrarily
from the specification of the reconstruction protocol. Here, we assume that in every round
of the reconstruction protocol, A can send its outgoing messages after seeing all its incoming
messages from the honest parties (a.k.a. rushing adversary). For every i ∈ Γ \ T , let m′i be
the output of the i-th party at the end of the reconstruction algorithm.

• Output 1 if and only if there exists an i ∈ Γ \ T such that m 6= m′i.

We call log(1/εs) as the privacy parameter and log(1/δ) as the robustness parameter.

Fact 2.6 Fix t ∈ N, n, κ > t. There is a robust reconstruction protocol such that Shamir secret
sharing is a (t, n, 0, 0) secret sharing scheme that is (0, κ, b(κ− t)/2c)-robust.

3 Vertex Identification Algorithm

In this section, we give a polynomial time graph algorithm that we call the vertex identification
algorithm, which will be used as a building block in the construction of robust secret sharing. We
start with the description of the model of semi-random graphs the algorithm works for.

Model. Our (directed) graph4 G where |V | = 2t + 1 and a labeling L : EG → {good,bad} is
generated as follows:

• First, the adversary partitions V into three parts H,P,A such that |H| > t+ 1.

• For every u ∈ H and every i ∈ {1, . . . , d}, select a vertex vi ∈ (V \ {u}) uniformly at random
and add an edge (u, vi) to the graph. The label for L(u, vi) of the edge is “good” if vi lies in
H ∪ P , and is “bad” if vi ∈ A.

4We note that our graph allows multi-edges and self-loops.
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• The outgoing edges of A∪P and their labels are generated by the adversary after seeing the
edges and the labels from H.

For notational convenience, we will always think of each vertex v ∈ V as having a self-loop with
label L(v, v) = good. We use n to denote the number of total vertices, i.e. n = 2t + 1. Our main
theorem in this section is the following:

Theorem 3.1 There is a polynomial-time (deterministic) algorithm VertexID that, given G,L gen-
erated as above with d > C log n, outputs a set S ⊆ V that satisfies

|S ∩ (H ∪ P )| > (t+ 1) + 2 · |S ∩A| (3.1)

with probability 1−O(e−βd), where C > 1 and β > 0 are some constants.

The Algorithm. Our algorithm relies on the linear programming (LP) relaxation of the Inde-
pendent Set problem. The LP relaxation for an undirected graph F = (V,EF ) can be stated
as:

max
∑
v∈VF

xv (3.2)

subject to 0 6 xv 6 1 ∀v ∈ V (3.3)

xu + xv 6 1 ∀{u, v} ∈ EF (3.4)

We refer to the above relaxation as LP-IS of F .
As the reader might have noticed, the Independent Set (IS) problem is defined on undirected

graphs, whereas our input graph G is a directed graph. To turn this into an instance of Independent
Set, we create what we will call the conflict graph of G,L:

Definition 3.2 Given a directed graph G = (V,EG) and a labeling L : V → {good, bad}, their
conflict graph is denoted5 by Gconf = (V,Econf). This is an undirected graph on the same vertex set
of G, and there is an edge between two vertices u, v ∈ V iff there exists a common out-neighbor w
of u, v such that L(u,w) 6= L(v, w).

Recall that we always add a self-loop with “good” label to every vertex in G, which means that
{u, v} will always be an edge in the conflict graph if (u, v) ∈ EG and L(u, v) = bad.

There are a couple (straightforward) observations that will be useful to keep in mind. The first
one is that H is an independent set in this conflict graph:

Observation 3.3 H is an independent set in the conflict graph of G,L.

The second is that, for any independent set I of the conflict graph, its vertices never label a ver-
tex inconsistently. This following from the definition of the conflict graph, as such an inconsistency
would create an edge in the graph.

Observation 3.4 Let I be any independent set of a conflict graph of G,L. Then, for any v ∈ V ,
it must fall into one of the following three categories:

5Of course, the conflict graph depends on the labeling. However, we choose not to have L in the notation to avoid
cumbersomeness.
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• v has no in-neighbor (w.r.t G) in I.

• v has at least one in-neighbor (w.r.t G) in I and each of its neighbors labels it with good.

• v has at least one in-neighbor (w.r.t G) in I and each of its neighbors labels it with bad.

With these ready, we can now describe our algorithm, which we call Conflict-LP:

Conflict-LP(G = (V,EG), L)

0. For each vertex v ∈ V , let bv denote the number of vertices labelled bad by it. If the
median of bv’s is at most 0.16d, then output V and terminates.

1. Construct the conflict graph Gconf of G,L (as in Definition 3.2).

2. Solve for an extreme point optimum solution {x∗v}v∈V of LP-IS of Gconf.
Let I denote the set of all vertices u ∈ V such that x∗u = 1.

3. Let S be the set of all vertices v ∈ V that has at least one in-neighbor (w.r.t. G) in I
and is labelled good by the neighbor(s). Output S.

It is obvious to see that the algorithm runs in polynomial time.

Correctness Intuition. Before we proceed with the formal proof of correctness, let us briefly
give an informal intuition behind the proof. First, Step 0 simply helps us deal with the “trivial”
case where |A| is less than6 say 0.3t. In this case, we can simply output the whole vertex set V ;
this is indeed what Step 0 does. Thus, from this point onward, we may assume that |A| > 0.3t.

Next, a priori, it is not even clear that I must be non-empty. To see this, let us first recall a
classic result of Nemhauser and Trotter that an extreme point solution of LP-IS is always half-
integral , meaning that xv ∈ {0, 1/2, 1} for every vertex v.

Theorem 3.5 ( [NT74]) In any extreme point solution of LP-IS, xv ∈ {0, 1/2, 1} for all v ∈ V .

Now, if I were empty, then we would have xv ∈ {0, 1/2}, which would imply that the optimum
of LP-IS is at most |V |/2 = t+ 0.5. This would be a contradiction to Observation 3.3.

Next, let us consider the set T = {v | x∗v = 0}. It is well-known that |I| > |T |; this can be easily
seen because otherwise we can instead assign 1 to T and 0 to I and obtain a valid LP solution with
larger objective value. (In fact, we will use a stronger property between the two sets below.)

For simplicity of exposition, let us assume for now that I only contains honest players, i.e.,
I ⊆ H, and that T only contains active adversary, i.e., T ⊆ A. Observe that, due to condition (3.4)
of the relaxation, we must have NGconf(I) ⊆ T . Notice also that, since every honest player labels
its out-neighbor in A as “bad”, we must have NGconf(I) ⊇ (Nout

G (I) ∩ A). From this and from
the bound |I| > |T | in the previous paragraph, it must be that |I| > |Nout

G (I) ∩ A|. However,
recall that the edges from I to A are (“essentially”) random of degree Ω(d) > 100 log t. Such a

6The constant 0.3 here can be replaced with any constant less than 1/3. We only use 0.3 to avoid introducing an
additional parameter.
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“non-expansion” condition can only hold when Nout
G (I) ∩ A already contains all but o(1) fraction

of A. In other words, we have |I| > |Nout
G (I) ∩ A| > (1 − o(1))|A| > (0.3 − o(1))t, where the last

inequality comes from our assumption that |A| > 0.3t.
Now, note that we never output vertices from Nout

G (I)∩A because they are already labelled as
bad by at least one vertex in I. This means that S ∩ A is small (i.e. o(t)). On the other hand,
we always output all vertices in Nout

G (I) ∩ (H ∩ P ) because they are labelled good by at least one
vertex in I; since we conclude that |I| > (0.1 − o(1))t in the previous paragraph, it follows from
vertex expansion of random graphs that |Nout

G (I)∩ (H ∩P )| > |H ∪P | − o(t) > (t+ 1) + |P | − o(t).
By a more careful calculation of the terms o(t), it is then possible to show that (3.1) holds.

To turn the above intuition into a formal proof, we not only have to make the calculations
more precise, but we also need to deal with the case where I * H (or T * A). Nevertheless, we
can still show, using a more general structural result (see Lemma 3.10), that I ∩ H still satisfies
“non-expansion”. This allows the proof to go through in a similar manner.

3.1 Proof of Correctness of the Algorithm

We now give a formal proof of correctness of our algorithm. We will need several additional
notations:

• Once again, let I = {v ∈ V | x∗v = 1} and T = {v ∈ V | x∗v = 0}. Moreover , let
R = {v ∈ V | x∗v = 1/2}.

• Let IH , TH and RH denote I ∩H,T ∩H and R ∩H respectively. Similarly, let IH , TH and
RH denote I \H, T \H and R \H respectively.

We will prove our main theorem for the constants C = 1010 and β = 10−10. It is henceforth
assumed that d > C log t, and this will not be explicitly stated. We remark that we make no
attempt in optimizing these constants and it is likely that they can be reduced substantially.

Step 0: Dealing with the trivial case. As stated earlier, Step 0 in our algorithm helps us take
care of the “trivial” case where A is already small. In particular, we can show that, if |A| 6 0.3t,
then the algorithm w.h.p. simply outputs V , which is a correct output in this case. Moreover,
it is not hard to see that, when A is larger than t/3 and V is the wrong answer, then we do not
terminate in this step and proceed to the remaining part of the algorithm. This is encapsulated in
the following lemma.

Lemma 3.6 When |A| 6 0.3t, our algorithm outputs V and terminates at Step 0 with probability
1−O(e−βd). On the other hand, when |A| > t/3, our algorithm terminates at Step 0 with probability
only O(e−βd).

It turns out that the above lemma follows easily from the concentration of the number of bad
labels given by each honest vertex. This concentration is stated and proved below.

Observation 3.7 With probability 1 − O(e−βd), for all vertices u ∈ H, we have (µ − 0.001)d 6

|Nout
G (u) ∩A| 6 (µ+ 0.001)d where µ = |A|

2t .
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Proof We will only prove that |Nout
G (u)∩A| > (µ−0.001)d for every u ∈ H with high probability.

The upper bound can be shown analogously. Note that our desired bound is obvious when µ 6
0.001. Hence, we may assume that µ > 0.001, or equivalently |A| > 0.002t.

Let us fix u ∈ H and a vertex v ∈ A. The probability that v belongs to Nout
G (u) is exactly d

2t .
Moreover, from how the graph is generated, the events v ∈ Nout

G (u) for different v’s are independent.
Hence, Chernoff bounds implies that

Pr

[
|Nout

G (u) ∩A| < 0.999 ·
(
d

2t
· |A|

)]
6 exp

(
−10−6

2
· d

2t
· |A|

)
6 exp

(
−10−6

2
· d

2t
· 0.002t

)
6 t−2 · e−βd,

where the second and third inequalities follow from |A| > 0.002t and d > 1010 log t respec-
tively. Furthermore, observe that 0.999 ·

(
d
2t · |A|

)
= 0.999µd > (µ − 0.001)d. Hence, we have

Pr
[
|Nout

G (u) ∩A| < (µ− 0.001)d
]
6 t−2 · e−βd. Using union bound over all u ∈ H concludes our

proof.

Now that we have proved the concentration, we can prove Lemma 3.6 simply as follows.
Proof of Lemma 3.6: Suppose that |A| 6 0.3t. Then, from Observation 3.7, w.p. 1−O(e−βd)

we have |Nout
G (u) ∩A| 6

(
|A|
2t + 0.001

)
d < 0.16d for all u ∈ H. Notice that Nout

G (u) ∩A is exactly

the set of vertices for which u labels bad. As a result, for these |H| > t+ 1 vertices, they label bad
to at most 0.16d vertices. This means that the condition in Step 0 is satisfied and the algorithm
outputs V .

On the other hand, if |A| > t/3, then Observation 3.7 gives the bound |Nout
G (u) ∩ A| >(

|A|
2t − 0.001

)
d > 0.16d with probability 1 − O(eβd). When this event occurs, each u ∈ H la-

bels more than 0.16d vertices as bad. Thus, the condition in Step 0 is not satisfied in this case.

Step I: Non-Expansion of IH to A. The first step of the remaining part of the proof is to
show that the set IH does not (vertex-)expand in A (w.r.t out-edges in G), as stated below. We
remark here that it also implicitly implies that IH 6= ∅.

Lemma 3.8 |IH | > |Nout
G (IH) ∩A|.

To prove non-expansion of IH , we will resort to a structural result regarding an extreme point
LP solution. It is easiest to state in terms of crown as defined below [CFJ04,ACF+04]:

Definition 3.9 For any undirected graph F = (V,EF ) and disjoint subsets I, T ⊆ F , (I, T ) is said
to be a crown of F if (i) T = N(I) and (ii) there is a matching between T and I such that all
vertices in T are matched.

Lemma 3.10 ( [AFLS07]) For any undirected graph F = (V,EF ), let {x∗v}v∈V be an extreme
point solution, and let I = {v ∈ V | x∗v = 1} and T = {v ∈ V | x∗v = 0}. Then, (I, T ) forms a
crown (w.r.t F ).
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Notice that if (I, T ) is a crown, then it must be that |I| > |T | due to (ii). Hence, the above
result is stronger than the one we used in the informal exposition.
Proof of Lemma 3.8: First, we claim that

|RH | 6 |RH |. (3.5)

This is because otherwise we can instead set x∗v = 1 for v ∈ RH and x∗v = 0 for v ∈ RH , which
would give an LP solution with higher value. (Note that this is a valid LP solution because RH is
an independent set from Observation 3.3, and all neighbors of I lie in T .)

From Lemma 3.10, (I, T ) forms a crown. Consider a matching from T to I such that all vertices
in T are matched (which is guaranteed to exist from the definition of a crown). Notice that there
is no edge from TH to IH in the graph Gconf; hence, all vertices in TH must be matched to vertices
in IH . In other words, we have

|TH | 6 |IH |. (3.6)

From (3.5) and (3.6), we have

|IH | = |H| − |TH | − |RH | > t− |RH | − |IH | = |TH |.

Finally, observe that (Nout
G (IH) ∩A) ⊆ (NGconf(IH) ∩A) ⊆ TH , which yields the desired bound.

Step II: Expansion of Subsets of H in G. Similar to the outline, the second step of the proof is
to observe that most subsets X ⊆ H expands very well into A (or V ), with respect to out-edges in G.
The reason is simply that the graph from H to these sets are (essentially) random bipartite graphs
of out-degree Ω(d). Due to technical reasons, we will also state the vertex expansion properties in
terms of the in-degree graphs to V . The formal statement is as follows.

Lemma 3.11 Suppose that |A| > 0.3t. Then, with probability 1−O(e−βd), the following holds:

1. For any set X ⊆ H such that |X| 6 0.1t, we have

|A ∩Nout
G (X)| > |X|. (3.7)

2. For any set W ⊆ V , we have

|H ∩N in
G (W )| > min{|H| − 0.1t, 10|W |}. (3.8)

We remark here that the above lemma is the main place we use |A| > Ω(t) as guaranteed from
Step 0; otherwise the inequality (3.7) may not be true (some vertex in H might not even have an
outgoing edge to A at all if A is too small).

The proof is via a standard approach to prove vertex/edge expansion of graph: we bound the
probability that each neighbor is a subset of a too-small set and then use union bound in the end.
Proof
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1. Let us consider any sets X ⊆ H and Y ⊆ A. For any vertex u ∈ X, the probability that

(Nout
G (u) ∩ A) ⊆ Y is exactly

(
|H|−1+|Y |

2t

)d
. Since the events Nout

G (u) ⊆ Y are independent

for all u ∈ X, we have

Pr[(Nout
G (X) ∩A) ⊆ Y ] =

(
|H| − 1 + |Y |

2t

)d|X|
6

(
1− |A \ Y |

2t

)d|X|
.

Hence, the undesired event happens with probability at most

∑
X⊆H,Y⊆A

|X|60.1t,|Y |=|X|−1

Pr[(Nout
G (X) ∩A) ⊆ Y ] 6

∑
X⊆H,Y⊆A

|X|60.1t,|Y |=|X|−1

(
1− |A \ Y |

2t

)d|X|
6

∑
X⊆H,Y⊆A

|X|60.1t,|Y |=|X|−1

(0.55)d|X|

=
0.1t∑
i=1

(
|H|
i

)
(0.55)d|X|

6
0.1t∑
i=1

(2t+ 1)i (0.55)di

6
0.1t∑
i=1

t−2 · e−βd

= O(e−βd),

where the second inequality follows from |A| > 0.3t and |Y | 6 0.1t and we use our choice of
d > 1010 log t in the last inequality.

2. Consider any set W ⊆ V and X ⊆ H. We will bound the probability that (H ∩ N in
G (W ))

is a subset of X. Recall from our definition that every vertex has a self-loop. Hence, if
(W ∩H) * X, it is immediate that Pr[(H ∩N in

G (W )) ⊆ X] = 0.

Now, for the case (W ∩H) ⊆ X, we can bound Pr[(H∩N in
G (W )) ⊆ X] as follows. First, notice

that each vertex u ∈ (H\X), u does not belongs to N in
G (W ) (or equivalently Nout

G (u)∩W = ∅)

with probability exactly
(

1− |W |2t

)d
. Since the events u /∈ N in

G (W ) are independent for all

u ∈ (H \X), we have

Pr[(H ∩N in
G (W )) ⊆ X] =

(
1− |W |

2t

)d·|H\X|
6 e−

d|W |·|H\X|
2t = e−

d|W |·(|H|−|X|)
2t .

For convenience, let µ(|W |) denote dmin{|H| − 0.1t, 10|W |}e− 1. From union bound and the
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previous inequality, the probability of the undesired event is at most∑
W⊆V,X⊆H
|X|=µ(|W |)

Pr[(H ∩N in
G (W )) ⊆ X] 6

∑
W⊆V,X⊆H
|X|=µ(|W |)

e−
d·|W |·(|H|−|X|)

2t

6
∑

W⊆V,X⊆H
|X|=µ(|W |)

e−0.05d|W |

=
2t+1∑
i=1

(
2t+ 1

i

)(
|H|
µ(i)

)
e−0.05di

6
2t+1∑
i=1

(2t+ 1)11ie−0.05di

6
2t+1∑
i=1

t−2 · e−βd

= O(e−βd)

where the second inequality is due to µ(|W |) 6 |H|−0.1t and the last inequality follows from
d > 1010 log t. This completes our proof.

We can deduce from the above lemma the following corollary, which will be more convenient to
use in the main proof.

Corollary 3.12 Suppose that |A| > 0.3t. Then, with probability 1−O(e−βd), for any set X ⊆ H,
at least one of the following must hold: (i) |X| 6 |Nout

G (X) ∩ A| or (ii) |Nout
G (X) ∩ (H ∪ P )| >

(t+ 1) + 2 · |A \Nout
G (X)|.

Proof Suppose for the sake of contradiction that there exists X ⊆ H that violates both in-
equalities. Since X violates (i) and from the first item (i.e. (3.7)) of Lemma 3.11, we must have
|X| > 0.1t, which means

|H \X| < |H| − 0.1t. (3.9)

Let Y = (A \Nout
G (X)) and k = |Y |. From the violation of (i), we have

|X| > |Nout
G (X) ∩A|+ 1 = |A| − k + 1 = (2t+ 1− |H| − |P |)− k + 1

From the above, we have

|H \X| = |H| − |X| 6 |P |+ k + 2(|H| − (t+ 1)).

For convenience, we let Γ = |H| − (t+ 1). We may write the above inequality as

|H \X| 6 |P |+ k + 2Γ (3.10)

Now, from (3.8) in Lemma 3.11 with W = Y , we have

|H \X| > |N in
G (Y ) ∩H| > min{|H| − 0.1t, 10k}.
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From (3.9), it cannot be that |H \X| > |H| − 0.1t. As a result, we have

|H \X| > 10k. (3.11)

Similarly, let Z = (H ∪ P ) \Nout
G (X). From the violation of (ii), we have

|Z| = |H|+ |P | − |Nout
G (X) ∩ (H ∪ P )| > |H|+ |P | − t− 2k = |P | − 2k + 1 + Γ. (3.12)

Moreover, from (3.8) in Lemma 3.11 with W = Z, we have

|H \X| > |N in
G (Z) ∩H| > min{|H| − 0.1t, 10|Z|}.

Once again, (3.9) implies that |H \X| cannot be at least |H| − 0.1t. Hence, we have

|H \X| > 10|Z|
(3.12)

> 10(|P | − 2k + 1 + Γ). (3.13)

By combining (3.10), (3.11) and (3.13), we arrive at

|P |+ k + 2Γ
(3.10)

> |H \X| = 0.8|H \X|+ 0.2|H \X|
(3.11),(3.13)

> 8k + 2(|P | − 2k + 1 + Γ)

= 2|P |+ 4k + 1 + 2Γ,

a contradiction.

Step III: Putting things together. With the above lemmas ready, we now prove our main
theorem by simply plugging them together.
Proof of Theorem 3.1: From Lemma 3.6, if |A| < 0.3t, then we output the entire vertex set V
and terminates with probability 1 − O(e−βd); this is a correct output. Moreover, Lemma 3.6 also
ensures that we w.p. 1−O(eβd) do not terminate here with an incorrect output.

We may now assume for the rest of the proof that |A| > 0.3t. From Lemma 3.8, we have
|IH | > |Nout

G (IH)∩A|. As a result, from Corollary 3.12, we with probability 1−O(e−βd) must have

|Nout
G (IH) ∩ (H ∪ P )| > (t+ 1) + 2 · |A \Nout

G (IH)|. (3.14)

Now, observe that, every vertex in Nout
G (IH) ∩ (H ∪ P ) is labelled good by at least one vertex in

IH ⊆ I; hence, they will be included in S. In other words, S ∩ (H ∪ P ) ⊇ Nout
G (IH) ∩ (H ∪ P ).

On the other hand, all vertices in Nout
G (IH)∩A are labelled bad by at least one vertex in IH ⊆ I;

hence, they will not be included in S. In other words, we have S ∩A ⊆ (A \Nout
G (IH)).

As a result, we arrive at

|S ∩ (H ∪ P )| > |Nout
G (IH) ∩ (H ∪ P )|

(3.14)

> (t+ 1) + 2 · |A \Nout
G (IH)| > (t+ 1) + 2 · |S ∩A|,

which concludes our proof.
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4 Construction of Robust Secret Sharing

Let λ be the robustness parameter. In this section, we give a construction of robust secret sharing
for messages of length m with share size m + O(λ log n(log n + logm)). In Section 4.1, we first
give a construction of a basic robust secret sharing scheme with share size m + O(λ2 + λ(log n +
logm) + log2 n+ log n logm). In the Section 4.2, we use parallel repetition (as was done by Bishop
et al [BPRW16]) to improve the share size of our construction to m+O(λ log n(log n+ logm)).

4.1 Basic Scheme

The construction is described in Figure 1 and we show the following theorem.7

Theorem 4.1 For some t, d, λ, ρ ∈ N, ε2, ε3 ∈ [0, 1], n = 2t + 1, and message space M, assume
we have the following:

• A (t+1, n, 0, 0) secret sharing scheme (Share,Rec) forM that is (0, s, b(s−(t+1))/2c)-robust
for any s > t+ 1. Further, the shares are strings in {0, 1}ρ.

• A (2d, ε2)-secure private MAC scheme (KeyGen,Tag,Verify) for message space {0, 1}ρ with
randomness length ν, key length κ and tag length λ.

• The vertex identification algorithm VertexID from Theorem 3.1, when run on graphs with
out-degree d, has error probability at most ε3.

Then, the construction in Figure 1 is a (t + 1, n, ne−d/3, 0) secret sharing scheme for M that is
(ndε2 + ε3 + ne−d/3, n, t)-robust. The size of each share is (ρ+ ν + ddlog ne+ d(κ+ λ)) bits.

Proof of Theorem 4.1: The share size may be verified by inspection. We first show the
correctness and privacy properties of our construction and finally show its robustness.

Correctness. Note that in an honest execution of the sharing and the reconstruction algorithm,
in the absence of any corruptions, every edge in the graph G will be labeled as good. Thus, the
algorithm VertexID will output V = [n]. It now follows from the perfect correctness of Rec that
the secret output by BasRobRec will be equal to m∗ with probability 1. We will now bound the
probability that m∗ is not equal to m.

We estimate the probability that the chosen multisets {Si}i∈[n] has the property such that for
v ∈ [n], the multiplicity of v in S1‖ . . . ‖Sn is at most 2d. Let us fix a party v ∈ [n], and call the
event that its multiplicity is more than 2d as Badv. For any i 6= v, v might get selected (possibly
multiple times) in the multiset Si. Thus, there are totally d(n − 1) random draws where v might
get selected. For any i ∈ [d(n− 1)], let Xi be the indicator random variable which is 1 if and only
if v is selected in the i-th draw. Now, for any i ∈ [d(n− 1)],

Pr[Xi = 1] =
1

n− 1
(4.1)

Then, Badv occurs if
∑

iXi > 2d. The variables {Xi}i are independent and hence from Chernoff
bounds,

Pr[Badv] = Pr[
∑
i

Xi > 2d] 6 e−d/3 (4.2)

7Recall the definition of multiplicity of a multiset and ‖ from Section 2.
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BasRobShare(m) : To share a secret m ∈M:

1. For each i ∈ [n], select a multiset Si ⊆ [n] \ {i} of size d uniformly at random with
replacement.

2. If there is an i′ ∈ [n] such that the multiplicity of i′ in (S1‖S2‖ . . . ‖Sn) is greater
than 2d, select m∗ ←M. Else, set m∗ = m.

3. Run Share(m∗) to obtain the shares (Sh1, . . . ,Shn).

4. For each i ∈ [n], choose ri ← {0, 1}ν .

5. For each i ∈ [n] and each j ∈ [d] do:

(a) Let vij be the j-th element in the ordered multiset Si.

(b) Choose a private MAC key kj
i→vij

← KeyGen(1λ).

(c) Compute σj
i→vij

← Tag(kj
i→vij

, (Shvij
, rvij

)).

6. Set sharei = (Shi, ri, S
i, {kj

i→vij
, σj

i→vij
}j∈[d]).

BasRobRec : The reconstruction algorithm proceeds in two rounds.

• Round-1:

1. For each i ∈ [n], party i broadcasts (Shi, ri) to every other party and initializes
an empty list Ni.

2. For every j ∈ [d], party i does:

(a) Let vij be the j-th element in the ordered multiset Si.

(b) Check if Verify(kj
i→vij

, (Shvij
, rvij

), σj
i→vij

) = 1.

(c) If the verification passes, party i adds ((i, vij), good) to Ni. Else, it adds

((i, vij), bad) to Ni.

• Round-2:

1. For each i ∈ [n], party i broadcasts Ni to every other party and initializes an
empty graph G and an empty labeling L.

2. For every i ∈ [n] and every entry ((i, v), labi,v) ∈ Ni, the parties add the edge
(i, v) in G and set L(i, v) = labi,v.

3. The parties (locally) run the algorithm VertexID on G and L to obtain the vertex
set S.

4. The parties then (locally) run Rec({Shi}i∈S) to obtain the secret m.

Figure 1: Basic Construction of Robust Secret Sharing (using terminology from Theorem 4.1)
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Let Bad be the event that there exists at least one v ∈ [n] such that Badv happens. By union
bound,

Pr[Bad] 6
∑
v

Pr[Badv] = ne−d/3 (4.3)

Thus, with probability at least 1− ne−d/3, the chosen multisets {Si}i∈[n] satisfies the property the
multiplicity of every v ∈ [n] in S1‖ . . . ‖Sn is at most 2d. Notice that when this happens, m∗ = m.
Thus, the correctness error is at most ne−d/3. We will call {Si}i∈[n] that satisfies the above property
to be bounded.

Privacy. To show perfect privacy, we need to argue that for every set U of size at most t, for
every pair of secrets m0,m1 ∈ M , the distributions of BasRobShare(m0)U and BasRobShare(m1)U
are identical.8 It is sufficient to show that this is in the case when {Si} is bounded, and when it
is not bounded, by design the output of BasRobShare is independent of the message being shared,
and so the shares of U are identical.

When {Si} is bounded, we show this by the following hybrid argument. Fix any choice of the
multisets {Si}i∈[n] such that it is bounded. For every i ∈ [n], we define T i to be the sequence of
(v, j) ∈ [n] × [d] such that the j-th entry of the multiset Sv is equal to i. From the choice of the
fixed {Si}i∈[n], each |T i| 6 2d. We first fix all the MAC keys chosen during the share phase, and
make the following argument for any such set of keys. We now argue that BasRobShare(m0)U is
identical to BasRobShare(m1)U , going through the following hybrid distributions over the shares of
U :

• Hyb1 : This is the same as BasRobShare(m0)U .

• Hyb2 : In this hybrid, during the share phase, for every i 6∈ U , we generate σjv→i (for any

j ∈ [d] and v ∈ [n]) as Tag(kjv→i, (0
ρ, ri)). We finally output the shares corresponding to U .

Note that Hyb1 is identical to Hyb2 from the perfect privacy property of the private MAC
scheme, which is (2d, ε2)-secure, since |T i| 6 2d for every i ∈ [n].

• Hyb3 : In this hybrid, during the share phase, instead of running Share(m∗) to get the Shi’s, we
run Share(0).9 We run the rest of the sharing normally and output the shares corresponding to
U . Hyb3 is identical to Hyb2 by the perfect privacy of the secret sharing scheme (Share,Rec).

Note that via a similar argument we can show that BasRobShare(m1)U is also identical to Hyb3,
and thus to BasRobShare(m0)U , proving perfect privacy.

Robustness. We now argue the robustness of our construction. Consider an interactive adversary
A that adaptively corrupts a set T of parties. The adversary is given {sharei}i∈T . Let H be the
set of honest parties. Consider the interactive reconstruction algorithm.

• In the first round of the reconstruction algorithm, the party i broadcasts (Shi, ri) to every
other party. Now, every party i ∈ T might broadcast the correct (Shi, ri) or a modified (Sh′i,
r′i). Based on this, we partition T into two sets P and A. P consists of the parties that send

8From Remark 2.2, we also satisfy the stronger notion of adaptive privacy.
90 denoting some universally fixed element in M
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the unmodified (Shi, ri) whereas the parties in A modify the shares and send (Sh′i, r
′
i) 6= (Shi,

ri). Note that at the end of the first round, the adversarial parties learn no information
about the multisets Si of the honest parties and conditioned on the information available to
the adversary at the end of the first round, the multisets Si are still random.

• At the end of the first round, the parties will verify the tags of the MAC. Every i ∈ H will
generate the set Ni as follows:

– Let Si = (vi1, . . . , v
i
d).

– For every j ∈ [d] such that vij ∈ H ∪ P , party i adds ((i, vij), good) to Ni.

– For every j ∈ [d] such that vij ∈ A, party i adds ((i, vij),bad) toNi except with probability
at most ε2. The ε2 error probability follows directly from the ε2-unforgeability of the
private MAC.

By standard union bound, the probability that there exists an i ∈ H such that for some
v ∈ A, party i adds ((i, v), good) to Ni is at most ndε2 since each multiset Si has size d.

• Conditioned on the above event not happening, the graph G = (V,E) with V = [n] and the
edge labeling L is effectively generated as follows.

1. The adversary partitions V into H,P,A where |H| > t+ 1.

2. For every u ∈ H, choose a multiset Su uniformly at random from [n] \ {u} with re-
placement and let Su = (vu1 , . . . , v

u
d ). For every j ∈ [d], add an edge (u, vuj ) and set

L(u, vuj ) = good if and only if vuj ∈ H ∪ P . This is identically distributed to the distri-
bution where we choose Su uniformly at random during the sharing phase since at the
end of the first round, the adversary learns no information about the multisets of the
honest parties.

3. The outgoing edges and their labels of A∪P can be generated adversarily after looking
at the outgoing edges and the labels of the vertices in H.

This is exactly same as the graph generation procedure given in Section 3.

• It now follows from the correctness of the VertexID algorithm that its output S when run
on this graph satisfies the property that |S ∩ (H ∪ P )| > (t + 1) + 2 · |S ∩ A| except with
probability ε3. The fact that Rec({Shj}j∈S) = m∗ follows from robustness of secret sharing
(Fact 2.6).

• Finally, as in the correctness argument, m∗ is equal to the actual secret m except with proba-
bility ne−d/3. Thus, by the union bound, the probability of error of the whole reconstruction
procedure is at most (ndε2 + ε3 + ne−d/3).

This completes the proof of the theorem.
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4.1.1 Instantiation

We now provide the following instantiation of the building blocks of our robust secret sharing
scheme. Let us fix the robustness parameter λ, and the length m of the secret to be shared (if
m < dlog ne, replace it with dlog ne in the following).

• We set d = 10λ/β + 3C log n/β, where C (> 1) and β (∈ (0, 1)) are constants from Theo-
rem 3.1.

• We instantiate the secret sharing with Shamir secret sharing over GF[2m]. This gives ρ = m.

• We instantiate the private MAC with the (`, ε2)-secure MAC for message space {0, 1}ρ from
Theorem 2.2, with ` = 2d and ε2 = 2−λ/(2nd). The randomness, tag and key lengths are,
respectively, 2d(λ+ log(2nd(ρ+ 2d))), λ+ log(2nd(ρ+ 2d)), and 2(λ+ log(2nd(ρ+ 2d))).

• The VertexID algorithm has error probability ε3 < 2−10λ.

The robustness error is ndε2 +ε3 +ne−d/3 < 2−λ/2+2−10λ+n2−3λ−logn 6 2−λ. The correctness
error is ne−d/3 6 2−λ. The size of each share is ρ + 2d(λ + log(2nd(ρ + 2d))) + d log n + 3d(λ +
log(2nd(ρ+2d))) = m+5dλ+O(d log(2nd(m+2d))) = m+O(λ2)+O(λ log n)+O((λ+log n)(log n+
log λ+ logm)) = m+O(λ2 + λ(log n+ logm) + log2 n+ log n logm).

Corollary 4.2 For any λ, t,m, n ∈ N with n = 2t+1, there exists a (t+1, n, 2−λ, 0)-secret sharing
scheme that is (2−λ, n, t)-robust and, for secrets of length m bits, has shares of size m + O(λ2 +
λ(log n+ logm) + log2 n+ log n logm) bits.

4.2 Improved Parameters via Parallel Repetition

In this subsection, we improve the share size of our basic construction tom+O(λ log n(log n+logm))
to achieve robustness error of 2−λ via parallel repetition. This is similar to the ideas explained
in [BPRW16]. Before we describe the construction, we start with some notation.

Notation. We split BasRobRec into two steps. The first step BasRobRec1 is an interactive protocol
comprising of the first two rounds of BasRobRec and the output of the protocol is the set S which
is the output of VertexID algorithm on the constructed graph G and the labeling L. The second
step consists of running Rec on {Shi}i∈S and outputting the message.

Construction. The construction of robust secret sharing (RobShare,RobRec) with improved pa-
rameters is described in Figure 2.

Theorem 4.3 For any λ, t,m, n ∈ N, with n = 2t+ 1, the construction in Figure 2 is a (t+ 1, n,
0, 0) secret sharing scheme (with expected polynomial time sharing algortithm) for secrets of length
m that is (e−λ/24, n, t)-robust. The size of each share is m+O(λ log n(log n+ logm)).

Proof We first show that the sharing algorithm is expected polynomial time. Notice that in
any trial q, the probability that the multiplicity of an i′ in Sq,1‖Sq,2‖ . . . ‖Sq,n is greater than 2d,
is bounded by e−d/3 (from the correctness argument in Theorem 4.1). Thus, by standard union
bound, the probability that there exists some i′ with multiplicity more than 2d in Sq,1‖Sq,2‖ . . . ‖Sq,n
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Set λ′ = 2, and d = 10λ′/β + 3C log n/β, where C and β are the constants from Theorem 3.1.
In the following, (Share,Rec) represents Shamir secret sharing over GF[2m]. The private MAC
(KeyGen,Tag,Verify) used for the message space {0, 1}m is the (`, ε)-secure MAC from Theo-
rem 2.2 with ` = 2d and ε = 2−λ

′
/2nd. The protocol BasRobRec is from the construction in

Figure 1.

RobShare(m) : To share a secret m ∈ {0, 1}m:

1. Run Share(m) to obtain the shares (Sh1, . . . ,Shn).

2. For each q in 1 to λ do:

(a) For each i ∈ [n], select a multiset Sq,i ⊆ [n] \ {i} of size d uniformly at random
with replacement.

(b) If there is an i′ ∈ [n] such that the multiplicity of i′ in Sq,1‖Sq,2‖ . . . ‖Sq,n is
greater than 2d, then go back to step (2a).

3. For each q ∈ [λ], i ∈ [n] and each j ∈ [d] do:

(a) For each i ∈ [n], choose rqi ← {0, 1}ν .

(b) Let vq,ij be the j-th element in the ordered multiset Sq,i.

(c) Choose a private MAC key kq,j
i→vq,ij

← KeyGen.

(d) Compute σq,j
i→vq,ij

← Tag(kq,j
i→vq,ij

, (Sh
vq,ij
, rq
vq,ij

)).

4. Set sharei =

(
Shi, {rqi }q∈[k], {Sq,i}q∈[k], {k

q,j

i→vq,ij
, σq,j

i→vq,ij
}j∈[d],q∈[k]

)
.

RobRec :

1. For each q in 1 to λ do in parallel:

(a) Run BasRobRec1

({
Shi, r

q
i , S

q,i, {kq,j
i→vq,ij

, σq,j
i→vq,ij

}j∈[d]

}
i∈[n]

)
to obtain the set

Γq.

(b) Set mq := Rec({Shi}i∈Γq).

2. If there is a majority value m in the sequence (m1, . . . ,mλ) then output m. Else,
output ⊥.

Figure 2: Improved Construction of Robust Secret Sharing

is bounded by ne−d/3 6 2−λ
′

= 1/4. Thus, in expectation, for each q, we find the required
Sq,1‖Sq,2‖ . . . ‖Sq,n in a constant number of trials. We can also make this running time strictly
polynomial at the expense of 2−λ additional correctness and robustness error by limiting the number
of trials to be O(λ) and setting all the shares to be empty if these trials are not sufficient.
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Privacy. The privacy of the construction is argued similarly to the basic construction. Fix any
choice of the multisets {Sq,i}i∈[n] output by RobShare. For every q ∈ [λ], i ∈ [n], we define T q,i

to be the sequence of (v, j) ∈ [n] × [d] such that the j-th entry of the multiset Sq,v is equal to i.
Note that each |T q,i| 6 2d. We first fix all the MAC keys chosen during the share phase, and make
the following argument for any such set of keys. We now argue that RobShare(m0)U is identical to
RobShare(m1)U .

• Hyb1 : This is identical to RobShare(m0)U .

• Hyb2,q : Let (Sh′1, . . . ,Sh
′
n) be such that Sh′U = ShU and for any i 6∈ U , Sh′i = 0. For q ∈ [λ], in

this hybrid, during the share phase, for q′ < q, we generate σq
′,j
v→i (for any j ∈ [d] and v ∈ [n])

as Tag(kq
′,j
v→i, (Sh

′
i, r

q
i )). For q′ > q, the iterations are run normally as specified in RobShare.

We finally output the shares corresponding to U from all the iterations. Note that Hyb1 is
identical to Hyb2,1 and for any q, Hyb2,q is identical to Hyb2,q+1 from the privacy property of
the private MAC scheme, which is (2d, ε2)-secure, since |T q,i| 6 2d for every i ∈ [n].

• Hyb3 : In this hybrid, during the share phase, we generate ShU as a secret sharing of message 0
instead of m0, and do the rest according to Hyb2,λ. We finally output the shares corresponding
to U . Hyb3 is identical to Hyb2,λ by the privacy of the secret sharing scheme.

Similarly, we can also show that RobShare(m1)U is identical to Hyb3, thus proving the privacy
of the construction.

Robustness. Let us fix any choice of (Sh1, . . . .Shn) that is in the support of Share(m) as well
as (rq1, . . . , r

q
n)q∈[λ]. We will argue robustness conditioned on this fixing. Consider an interactive

adversary A that adaptively corrupts a set T of parties. The adversary is given {sharei}i∈T . Let H
be the set of honest parties. Consider the interactive reconstruction algorithm given in Figure 2. For
every q ∈ [λ], we will show that except with probability 2−λ

′
, mq obtained during the reconstruction

is equal to m.

• We first consider an alternate sharing algorithm where we remove the criterion that there
exists no i′ ∈ [n] such that multiplicity of i′ in Sq,1‖Sq,2‖ . . . ‖Sq,n is greater than 2d. In
particular, we also allow sets that do not satisfy this property. We note that the probability
that the sets do not satisfy this property is at most ne−d/3 and hence, the distribution of the
shares in the real sharing and this alternate sharing is ne−d/3 far apart in statistical distance.

• In the first round of the reconstruction algorithm, the party i broadcasts (Shi, r
q
i ) to every

other party for q ∈ [λ]. Now, every party i ∈ T might broadcast the correct (Shi, r
q
i ) or a

modified (Sh′i, r
′q
i ). Based on this, we partition T into two sets P and A. P consists of the

parties that send the unmodified (Shi, r
q
i ) whereas the parties in A modify the shares and

send (Sh′i, r
′q
i ) 6= (Shi, r

q
i ). Note that at the end of the first round, the adversarial parties

learn no information about the multisets Sq,i of the honest parties and conditioned on the
information available to the adversary at the end of the first round, the multisets Sq,i for
every i ∈ H are still random.

• At the end of the first round, the parties will verify the tags of the MAC. Every i ∈ H will
generate the set N q

i as follows:
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– Let Sq,i = (vq,i1 , . . . , vq,id ).

– For every j ∈ [d] such that vq,ij ∈ H ∪ P , party i adds ((i, vq,ij ), good) to N q
i .

– For every j ∈ [d] such that vq,ij ∈ A, party i adds ((i, vq,ij ),bad) to N q
i except with

probability at most ε. The ε error probability follows directly from the ε-unforgeability
of the private MAC.

By standard union bound, the probability that there exists an i ∈ H such that for some
v ∈ A, party i adds ((i, v), good) to Ni is at most ndε since each multiset Si has size d.

• Conditioned on the above event not happening, the graph G = (V,E) with V = [n] and the
edge labeling L is effectively generated as follows.

1. The adversary partitions V into H,P,A where |H| > t+ 1.

2. For every u ∈ H, choose a multiset Sq,u uniformly at random from [n] \ {u} with
replacement and let Sq,u = (vq,u1 , . . . , vq,ud ). For every j ∈ [d], add an edge (u, vq,uj ) and
set L(u, vq,uj ) = good if and only if vq,uj ∈ H ∪ P . This is identically distributed to the
distribution where we choose Sq,u uniformly at random during the sharing phase since
at the end of the first round, the adversary learns no information about the multisets of
the honest parties.

3. The outgoing edges and their labels of A∪P can be generated adversarily after looking
at the outgoing edges and the labels of the vertices in H.

This is exactly same as the graph generation procedure given in Section 3.

• It now follows from the correctness of the VertexID algorithm (Theorem 3.1) that its output
Γq when run on this graph satisfies the property that |Γq ∩ (H ∪ P )| > (t + 1) + 2 · |Γq ∩ A|
except with probability 2−10λ′ . The fact that Rec({Shj}j∈Γq) = m in this case follows from
robustness of secret sharing (Fact 2.6 since the error is 0 and it is correct on every choice of
(Sh1, . . . ,Shn) in the support).

• Thus, the probability of error of the whole reconstruction procedure is at most (ndε+2−10λ′+
ne−d/3) 6 2−λ

′
.

Thus, in each of the λ iterations, except with probability 2−λ
′

= 1/4, we recover the correct
message m, whether there is an adversary corrupting t parties or not. And further, the iterations are
independent of each other. From standard Chernoff bounds, it follows that except with probability
exp(−λ/24), majority of the values in the sequence (m1, . . . ,mλ) will be equal to the message m.

Share size. Note that we have set λ′ = O(1) and d = O(log n). The share size is seen to be:
m + λ [2d(λ′ + log(2nd(m+ 2d))) + d log n+ 3d(λ′ + log(2nd(m+ 2d)))] 6 m + O(λ log n(log n +
logm)).
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