
Blackbox Secret Sharing Revisited: A Coding-Theoretic Approach

with Application to Expansionless Near-Threshold Schemes

Ronald Cramer∗ and Chaoping Xing †

Abstract

A blackbox secret sharing (BBSS) scheme works in exactly the same way for all finite Abelian
groups G; it can be instantiated for any such group G and only black-box access to its group
operations and to random group elements is required. A secret is a single group element and each
of the n players’ shares is a vector of such elements. Share-computation and secret-reconstruction
is by integer linear combinations. These do not depend on G, and neither do the privacy and
reconstruction parameters t, r. This classical, fundamental primitive was introduced by Desmedt
and Frankel (CRYPTO 1989) in their context of “threshold cryptography.” The expansion factor
is the total number of group elements in a full sharing divided by n. For threshold BBSS with
t-privacy (1 ≤ t ≤ n − 1), t + 1-reconstruction and arbitrary n, constructions with minimal
expansion O(log n) exist (CRYPTO 2002, 2005).

These results are firmly rooted in number theory; each makes (different) judicious choices of
orders in number fields admitting a vector of elements of very large length (in the number field
degree) whose corresponding Vandermonde-determinant is sufficiently controlled so as to enable
BBSS by a suitable adaptation of Shamir’s scheme. Alternative approaches generally lead to
very large expansion. The state of the art of BBSS has not changed for the last 15 years.

Our contributions are two-fold. (1) We introduce a novel, nontrivial, effective construction
of BBSS based on coding theory instead of number theory. For threshold-BBSS we also achieve
minimal expansion factor O(log n). (2) Our method is more versatile. Namely, we show, for the
first time, BBSS that is near-threshold, i.e., r−t is an arbitrarily small constant fraction of n, and
that has expansion factor O(1), i.e., individual share-vectors of constant length (“asymptotically
expansionless”). Threshold can be concentrated essentially freely across full range. We also show
expansion is minimal for near-threshold and that such BBSS cannot be attained by previous
methods.

Our general construction is based on a well-known mathematical principle, the local-global
principle. More precisely, we first construct BBSS over local rings through either Reed-Solomon
or algebraic geometry codes. We then “glue” these schemes together in a dedicated manner
to obtain a global secret sharing scheme, i.e., defined over the integers, which, as we finally
prove using novel insights, has the desired BBSS properties. Though our main purpose here is
advancing BBSS for its own sake, we also briefly address possible protocol applications.

1 Introduction

This paper advances the state of the art in blackbox secret sharing (BBSS), a classical, fundamental
primitive first studied by Desmedt and Frankel [15, 16] in the late 1980s, motivated by their context
of “threshold cryptography.” A BBSS scheme works in exactly the same way for all finite Abelian
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groups G. I.e., it can be instantiated for any such group G and only black-box access to its group
operations and to random group elements is required. The secret-space equals G (so the secret is a
single group element) and the share-space for each of n players is a fixed finite product over G (so
each share is a vector). Viewing G additively and using the basic fact that G may be viewed as a
Z-module, 1 each share is obtained by applying Z-linear forms 2 on a vector consisting of secret and
random group elements; likewise for secret-reconstruction from appropriate shares. Whether a given
player set is reconstructing or gives privacy does not depend on structural information on G (e.g.
access to its order), other than it being finite Abelian. This also holds for the integer coefficients
of the forms in share computation and secret reconstruction. In this section, we first discuss the
technical background of BBSS and its history. Then we overview our results and method. We also
argue why our main claim cannot be achieved by previous methods. Finally, we briefly discuss
possible protocol applications.

1.1 Background on BBSS

BBSS is conveniently formalized and elucidated mathematically by Integer Span Programs (ISP).
The latter notion, introduced in [12], is not only sufficient for BBSS but also necessary; it captures
exactly the principles laid out above. In a nutshell, an ISP is characterized by a positive integer e
and Z-submodules V1, . . . , Vn ⊂ Ze. Note that, by standard theory, any such submodule is free, i.e.,
has a basis. Let V0 denote the Z-module spanned by the “target vector” µe = (1, 0, . . . , 0) ∈ Ze,
i.e., V0 consists of all its integer multiples. 3 For a nonempty subset A ⊂ {1, . . . , n} we write
VA =

∑
i∈A Vi, the Z-span of the Vi’s with i ∈ A.. A set A is a reconstructing set if V0 ⊂ VA. It is

a privacy set if there is a Z-linear form φA : Ze → Z such that φA(VA) ≡ 0, whereas φA(V0) = Z.
The latter is equivalent to the condition VA ∩ V0 = {0}. 4

One may easily rephrase this definition in terms of matrices; this way one readily observes that
a matrix whose rows are partitioned into n blocks each constituting a basis of a different space
Vi can be used to define computation of shares by having the matrix act on a vector whose first
coordinate is the secret and whose remaining ones are random group elements. Reconstruction
is derived from the integer coefficients according to a span of the target vector. Privacy can be
verified using the linear form in question, in a way familiar from schemes over finite fields.

Note that there is similarity with Monotone Span Programs or MSP [26], a notion due to
Karchmer and Wigderson known to be intimately connected with linear secret sharing over finite
fields, as first shown by Beimel [2]. In MSPs, the dividing line between the two types sets of sets
is “to span or not to span the target vector.” This is not the case for ISPs. The reconstruction
condition is still equivalent to “the target vector being in the span.” However, the privacy condition
is not simply its negation; since we work over Z and not over a field it could be so that some nonzero
multiple of the target vector is spanned but not the target vector itself. Indeed, write VA∩V0 = (a)µe
for some principal ideal (a) of the ring Z with a 6= 0,±1. Then choose, for instance, a prime number
p dividing a and a prime number p′ not dividing it. Now, if we take G as the cyclic group of order p,
the set A is a privacy set, whereas, if we take G as the cyclic group of order p′, it is a reconstructing

1Briefly, “vectorspace axioms are satisfied except that scalars are defined over Z instead of a field.”
2Owing to Z-module structure, a form maps (g1, . . . , gm) ∈ Gm to

∑
i λigi ∈ G for a fixed vector (λ1, . . . , λm) ∈ Zm.

3In fact, any vector whose coordinates do not have a nontrivial common divisor may be taken as the target vector.
4The implication starting from the form-based definition is trivial. In the other direction, it follows e.g. using

basic structural theory of finitely-generated modules over principal ideal domains, such as Z.
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set. In particular, the ISP definition is not just a verbatim translation of the MSP definition from
finite fields to the integers. For more discussion, see [12, 10].

The expansion factor in BBSS is the length of a full vector of n shares (i.e., the total number
of group elements) divided by n. For threshold BBSS with t-privacy (1 ≤ t ≤ n − 1), t + 1-
reconstruction and arbitrary positive n, Cramer and Fehr [12] show a construction that achieves
expansion O(log n), which is minimal. This improved the O(n) expansion from the earlier construc-
tion due to Desmedt and Frankel [15, 16]. In [14], Cramer, Fehr and Stam prove that absolutely
minimal expansion (up to an additive constant) can be achieved. For the lower bounds, please refer
to [12, 14]. 5

These results are firmly rooted in number theory. More precisely, each makes a judicious
choice of orders in algebraic number fields 6 admitting a finite, large dedicated set of points that
is sufficiently controlled so as to enable BBSS by a suitable adaptation of Shamir’s secret sharing
over finite fields. The choice of order, the control, and the exact way BBSS is realized all vary
across these known results. In a nutshell, these methods all use “polynomials” whose coefficients
are chosen in the tensor-product R ⊗Z G, where R is the order in question. The latter object is
an R-module in a natural way. Thus, such a “polynomial” can be evaluated in a set of points
in R. Getting a theshold BBSS in this way, mimicking Shamir’s scheme to a certain degree,
is down to a Vandermonde-determinant determined by these points satisfying one out of several
possible convenient number-theoretical properties. The central issue in construction is then to find
an infinite family of orders R such that Z-rank of R tends to infinity and such that R admits a
dedicated evaluation-point set constrained as indicated above that is very large compared to the
Z-rank of R, since the number of players n equals the cardinality of this set and the expansion
factor equals the Z-rank of R divided by n. In addition, care must be taken such that each positive
number n of players can be accommodated.

In [15, 16], this determinant attached to the evaluation-point set is required to be a multiplicative
unit of R, so that the Lagrange Interpolation Theorem holds over R. This is best forced by using
cyclotomic number fields. But the resulting expansion is O(n). In [12], two evaluation sets are
required whose attached determinants are co-prime in R. It is shown how to construct orders R
admitting two such sets of cardinality 2k where k is the Z-rank of R. One of these sets can be
taken simply as {1, . . . , n}, the other being more intricate and depending on R. This gives minimal
expansion O(log n). In [14], the two sets are reduced to a single one by requiring the attached
determinant to be primitive, i.e., its only rational integers divisors are ±1. It is shown that orders
R of rank k exist that admit evaluation-point sets of cardinality 2k. So expansion is minimal
here too, in fact, better by an additive constant. The latter result, though, is not explicit and is
significantly more intricate, mathematically. For a full treatment of threshold BBSS, please refer
to [10]. There are alternative, more generic approaches. E.g., one can combine Benaloh-Leichter
secret sharing [20] with Valiant’s result on polynomial-size monotone Boolean formulas for threshold
functions [38]. But this leads to very large expansion (but still polynomial in n). The state of the
art of BBSS has not changed for the last 15 years.

5Note that the case t = 0 is trivial and that the case t = n − 1 is expansionless via “additive n-out-of-n secret
sharing.” Hence the restriction on t above. For those “interesting” t, the first step to lower bounds is the observation
that threshold BBSS gives binary linear secret sharing for threshold access structures.

6An order O in an algebraic number field K of degree k is a subring O of its ring of integers OK such that O has
finite index in OK as a Z-submodule, i.e., |OK/O| is finite. In particular, O has rank k as Z-module, just as OK .
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1.2 Our contributions

Our contributions here are two-fold.

1. We introduce a completely different, nontrivial effective construction of BBSS based on coding
theory instead of number theory. For the threshold case we also achieve minimal expansion
factor O(log n) as before. The threshold can be chosen freely.

2. Our general method is more versatile than previous methods. As an application not attainable
by any previous method (as argued below), we demonstrate, for the first time, BBSS that is
near-threshold, i.e., t-privacy and r-reconstruction are such that r − t is an arbitrarily small
constant fraction of n, and that achieves expansion factor O(1), i.e., a constant number of
group elements per share. Moreover, it is supported for arbitrary n and thresholds can be
chosen essentially freely, for instance, concentrated around n/2. This result is asymptotically
expansionless and minimal for near-threshold, as we also prove (see Main Theorem 1).

We now give a straightforward argument why the latter claim on expansionless, near-theshold
BBSS cannot be fulfilled by previous methods. We restrict to the general approach from [12, 14]
based on “polynomial interpolation” involving number fields (since this approach gives exponen-
tially smaller expansion anyway). Towards a contradiction, suppose, first, that BBSS as claimed
above is achieved by evaluations of a single polynomial with coefficients in R⊗ZG (for some given
R). Then the Z-rank of R must be a constant c (equivalently, the number field in question has
constant degree), since otherwise the O(1) expansion claim is not met. We may assume there are
at least n evaluation points in R used and each share corresponds to one or more (but at most a
constant number of them) evaluations of a given polynomial.

Now fix a prime number p and note that |R/(p)| = pc, also a constant. Suppose n� pc. If we
restrict the assumed BBSS work over G = Z/pZ and consider that, when taken modulo p, the set
of evaluation points used “collapses” to at most pc distinct ones, this set can be partitioned into at
most pc “blocks” such that, within each block, polynomial evaluation gives the same result across
the entire block. In other words, there is just “a constant number of evaluations that matter”;
the others are always duplicates. Combining this with the fact that the assumed BBS ensures, in
particular, that a full vector of shares determines the secret, there is in fact a constant-sized set of
players that can reconstruct the secret jointly in case G = Z/pZ: a contradiction with the assumed
parameters. Second, this argument extends to the case where various polynomials are used instead
of just one 7 and where R may differ per polynomial. Also note that the argument does not depend
on R being an order in a number field; it extends to any commutative ring R that has finite rank
as a Z-module, which exactly represents the minimal requirement on R for the BBSS paradigm
from [12, 14] to make sense anyway.

1.3 Our method

Our general construction is based on a well-known mathematical principle, the local-global principle.
More precisely, we first construct BBSS over local rings through either Reed-Solomon or algebraic
geometry codes. We then “glue” these schemes together in a dedicated manner to obtain a global

7In [12], two polynomials are used, whereas in [15, 16, 14] there is a single one.

4



secret sharing scheme, i.e., defined over the integers, which, as we finally prove, has the desired
BBSS properties.

In some more detail, we start from an observation exploited in [12] and earlier in [34]. Namely,
a weak form of threshold BBSS is achievable simply by taking “polynomials” with coefficients in
G and then evaluating in the integer points 0, 1, . . . , n. Defining ∆ =

∏
0≤i<j≤n(j − i), the free

coefficient is taken as ∆ · s, with s ∈ G equal to the secret. The other coefficients are random
in G. It is now straightforward to show that, using polynomials of degree ≤ t (with 1 ≤ t < n),
there is t-privacy, and, in addition, there is (t+ 1)-reconstruction not of the secret s itself but of a
multiple ∆2 · s, In [12], an order of rank log n is then hand-crafted that admits evaluation points
0, α1, . . . , αn ∈ R such that, also by weak-BBSS with t-privacy, there is (t + 1)-reconstruction of
the value (∆′)2 ·s, where ∆′ is a Vandermonde determinant defined by the αi’s and such that ∆,∆′

are coprime in R. This leads to a “double-sharing” approach: by secret sharing a given secret
independently according to each of these two weak-BBSS schemes, the secret can be reconstructed
by a known linear combination over R (translated into linear combinations over Z). This gives the
desired BBSS. On a high level, we also follow this double-sharing approach, starting with weak-
BBSS from polynomial-evaluation at integer points. However, our approach towards creating the
second weak-BBSS, which, together with the first, shouild enforce the co-primality property, is
completely different.

Let P (n) denote the set of prime numbers p with 2 ≤ p ≤ n. For the moment, fix n arbitrarily.
For each p ∈ P (n), we select an Fp-linear secret sharing scheme with secret-space dimension 1 and
“small” share-space dimension. We construct these schemes from linear codes as in [11], i.e., via
codes with large distance as well as large dual distance (but, in the present case, without consid-
eration of multiplicative properties). We also fix generator matrices for each, or, more precisely,
monotone span programs. The privacy and reconstruction parameters are designed such that they
match (sufficiently well) with the desired values t, r in each case. Note that this influences the
constant in share-space dimension; e.g., if this constant was just 1, then this upperbounds the
achievable r, t just on account of (dual-) distance bounds on binary linear codes.

Now, we glue these |P (n)| schemes together in two steps: First, we apply Chinese Remaindering
to the monotone span programs at hand, and second, we arbitrarily lift the result to the integers.
Somewhat surprisingly, as a result, we obtain a weak-BBSS with t-privacy and r-reconstruction of a
λ-multiple of the secret, where λ is an integer coprime with ∆. Indeed, this is by no means obvious
since, at face value, this procedure does not even seem to account for behavior over groups whose
order is (divisible by) a power of a prime in P (n), a class of groups that is obviously infinite for
each n. But still we get around this issue thanks to novel, nontrivial ideas on lifting of linear secret
sharing over finite fields to rings while preserving the relevant parameters. In the particular case
of ours here, that means lifting schemes over Fp to schemes over Z/pkZ; this is a key ingredient
for making our local-global approach work, i.e., this allows to reduce the “global” problem to
addressing, for each n, just a finite number of “local” problems.

As for recovering log n expansion for threshold BBSS, we may work with Shamir’s scheme defined
over a large enough extension of a prime field Fp with p ∈ L(n) and turn it into a linear scheme
over Fp in a standard way; simply “expand” extension field elements into coordinate-vectors over
the base field, after selection of a basis; this turns out to work for our purposes. Since, in this case,
we need threshold secret sharing over e.g. F2 in particular, it is clear that share-space dimension
(over F2) will be log n in the worst case (as we go through L(n)). Note that the expansion achieved
here matches exactly that of the number-theoretic approach from [12]. We do not necessarily say
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that the approach for threshold-BBSS in the present paper is conceptually/technically simpler than
that of [12]: each feels “mathematically right” albeit seen from different standpoints. However, the
result in [14], also number-theoretic and more intricate than [12], is still better by an additive
constant.

Finally, we get to our claim on expansionless, flexible near-threshold BBSS, which is not attain-
able by previous methods as we have argued. We choose, for each prime p, linear secret sharing
schemes over Fp with appropriate asymptotic properties. Here, asymptotic theory of linear codes
comes into play here; asymptotic results from [11] show at once that all the necessary connections
can be made. Indeed, by choosing a large enough fixed extension of a base field Fp, one gets,
asymptotically, that distance and dual distance can be concentrated around an arbitrary constant
fraction of n, with the difference between distance and dual distance being an arbitrarily small
constant fraction of n. This translates into similar properties for t-privacy and r-reconstruction in
corresponding linear secret sharing schemes with share-space of constant dimension over the base
field. As in the threshold case, schemes over extension fields are turned into schemes over the base
field in a standard way.

It is for these reasons that we can achieve expansionless, flexible near-threshold BBSS. The
gluing procedure is then by a form of diagonalization. I.e., index rows by the positive integers n
and index the columns by the prime numbers. In location (n, p), we have a linear secret sharing
scheme over Fp supporting n players and achieving the desired privacy and reconstruction. Then,
for each n, we glue along the n-th row “up to the diagonal,” i.e., up to location (n, p) where p is
the largest prime p ≤ n. Finally, for the compound BBSS to be explicit (poly-time) the underlying
codes are required to be explicit. This means we need to resort to algebraic-geometric codes (AG).
However, the latter cannot be taken off-the-shelf since we need to ensure that the compound BBSS
works for each and every n and achieves the desired parameters. This leads us to handcraft the
required AG-codes. In addition, we encounter several technical issues of parameter fine-tuning
that have been suppressed in our overview for sake of brevity but that are still necessary for our
approach.

1.4 Brief remarks on possible protocol applications

Though our primary purpose here is to advance the theoretical state of the art in BBSS, we briefly
address some potential applications. Threshold-RSA [15] was eventually realized very effiently
without recourse to BBSS, exploiting specifics of RSA not generally present in cryptosystems over
groups with secret of hard to compute order. Very briefly, “Shamir-sharing over the integers”
can be used here for the purpose of practical threshold-RSA signatures [34]. Even though only
reconstruction of a multiple of the secret can be guaranteed when doing so, this works for RSA if
the constant scalar in this multiple is co-prime both to the public exponent and to the order of
the (sub-group) of the “RSA-group” in question. The latter is by forcing existence of an easily
accessible constant-index subgroup of the “RSA-group” whose order only has very large prime
factors (implied by requiring prime factors of RSA-modulus to be Sophie Germain) and the former
by requiring that the public exponent is a prime exceeding the number of players.

By applying our techniques for expansionless near-threshold BBSS to practical ranges of n
(making some practical substitutions for the codes), one may, in principle remove the lower bound
condition on the public exponent, with the benefit of rendering faster signature verification, while
maintaining “practicality” and active security. In case of passive security only, the Sophie Germain
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requirement may also be removed. Note that, in the active case, the Sophie German condition
facilitates the efficient zero knowledge proofs of correct “partial verification” in the style of Schnorr-
proofs with exponentially large challenge space for exponentially small error probability in a single
run. Without that condition one would have to resort to repetition of proofs supporting a 1-bit
challenge space only (so error 1/2 per run), leading to efficiency loss. However, using amortization
techniques for zero knowledge [8], this effect can be neutralized if many statement are proven
simultaneously. Thus, if many signatures are verified simultaneously, we may also remove the
Sophie-Germain condition in the active case. Alternatively, we may thus also consider deploying
these ideas towards improved threshold-RSA decryption. We suggest that this all merits further
study.

Moreover, in [18], ISPs are shown to imply “integer linear secret sharing” with statistical privacy,
by selecting secret and randomness from an appropriately large bounded range of integers instead
of blackbox groups. Clearly, ISPs allow for full secret-reconstruction, not just a multiple. Known
applications are to threshold cryptosystems based on class groups. 8 Also results also apply directly
here. We believe there are other useful applications, for instance in MPC over the integers. 9 This
may offer advantages for certain functions, compared to methods which emulate integer operations
by first working over e.g. finite fields. But more research is needed still for this to be conclusive,

1.5 Organization of the paper

In Section 2, we introduce monotone span programs and near-threshold black-box secret sharing
schemes. We also show how to lift a monotone span programs modulo prime powers to a monotone
span program over Z. In Section 3, we show a lower bound on expansion factor on near-threshold
black-box secret sharing schemes. This generalizes the lower bound on threshold black-box secret
sharing schemes. Section 4 presents our glue technique that glues a Vandermonde matrix with a
generator matrix modulo an integer. Section 5 shows how to construct a generator matrix over Z
that gives a linear code with both good minimum distance and dual minimum distance modulo
every small prime p. The last section collects the results prepared in the previous sections to form
our main result of this paper.

2 Monotone span programs and near-threshold black-box secret
sharing schemes

Throughout the paper, we denote by [n] the set {1, 2, 3, · · · , n}. We denote by 2[n] the set of all
subsets of [n]. Then 2[n] has size 2n.

2.1 Monotone span program

Monotone span programs (MSP for short) over finite fields were introduced by Karchmer and
Wigderson [24]. Monotone span program is an efficient tool to construct linear secret sharing

8Whereas these seemed out of fashion for some time, they appear to be making a comeback in the blockchain
context presently.

9a topic which, surprisingly, has not seen much attention lately, especially given the surge in MPC research
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scheme (LSSS for short) for a given access structure. It is well known that there is a one-to-
one correspondence between monotone span programs over finite fields with linear secret sharing
schemes over finite fields (see e.g. [2, 19]). Monotone span programs over rings (in particular over
integers Z) were introduced in [12, 14] and it turns out that they have a similar correspondence with
black-box secret sharing schemes. In addition, monotone span programs over rings are the basis
for multi-party computation over black-box rings, as studied in [13]. In particular, the techniques
of [9] for secure multiplication and VSS apply to this flavor of monotone span program as well.

Definition 1. The pair (Γ,∆) with Γ,∆ ⊆ 2[n] is called an access structure on [n] if ∅ ∈ ∆,
[n] ∈ Γ and Γ ∩∆ = ∅. Furthermore, it is called a monotone access structure if Γ is monotonously
increasing and ∆ is monotonously decreasing, i.e.,

(i) if T1 ∈ Γ and T1 ⊆ T2, then T2 ∈ Γ;

(ii) if S1 ∈ ∆ and S2 ⊆ S1, then S2 ∈ ∆.

A monotone increasing set Γ can be efficiently described by the set Γ− consisting of the minimal
elements (sets) in Γ, i.e., the elements in Γ for which no proper subset is also in Γ. Similarly, the
set ∆+ consists of the maximal elements (sets) in ∆, i.e., the elements in ∆ for which no proper
superset is also in ∆. It is obvious that (Γ−,∆+) generates a monotone access structure (Γ,∆),
i.e., Γ consists of subsets of [n] containing an element of Γ− and ∆ consists of subsets of [n] that
are contained in an element of ∆+.

Definition 2. A monotone access structure (Γ,∆) is said to be complete if Γ ∪ ∆ = 2[n]. Let
t, r, n ∈ Z with 0 < t < r < n. Then Rt,r,n = (∆t,n,Γr,n) is defined to be the access structure
satisfying

(i) ∆t,n = {S ⊆ [n] : |S| ≤ t}, and

(ii) Γr,n = {T ⊆ [n] : |T | ≥ r}.

Thus, if r = t+1, then Rt,r,n is complete. In this case, we say that it is a threshold access structure
and denote Rt,t+1,n by Rt,n.

We provide necessary and sufficient conditions under which a (Γ,∆)-scheme is a black-box secret
sharing scheme for (Γ,∆) . This is a generalization of threshold monotone span programs over rings
introduced in [12], where the latter was a generalization of monotone span program over finite fields
introduced by Karchmer and Wigderson [24]. We will show that monotone span programs in this
paper have a similar correspondence with black-box secret sharing schemes.

Let R be a ring and let (Γ,∆) be a monotone access structure on [n] and M ∈ Rh×e with h ≥ n.
We define a surjective function Ψ : [h] → [n] to group the rows of M. We say that “the j-th row
is labelled by Ψ(j)” or “Ψ(j) owns the j-th row.” For any S ⊆ [n], we write MS to denote the
sub-matrix of M obtained from the rows owned by i ∈ S. Denote by hS the number of rows of
MS . For any vectors x of length n, we define xS analogously. Furthermore, for each S ∈ Γ, there
exists a vector λ(S) ∈ RhS which is called a reconstruction vector. Denote by R the collection of
reconstruction vectors. We denote by B the quadruple (R,M,Ψ,R). Throughout this paper, all
vectors are row vectors and we denote by u′ the transpose of a vector u.
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Definition 3. A Monotone Span Program (MSP) M over a ring R is a quadruple (R,M,Ψ,µe),
where M is a matrix over R (with h rows and n ≤ h columns), Ψ : [h]→ [n] is a surjective function
and µe = (1, 0, 0, . . . , 0) ∈ Re is a vector that is called the target vector. The size of M is the
number h of rows of M and is denoted as size(M). If R = Z, we call it an integer monotone span
program. The expansion factor ofM is defined to be the ratio h/n, where h is the number of rows
of M .

Definition 4. Let R be a ring and let (Γ,∆) be a monotone access structure on [n]. We say that
a monotone span program M = (R,M,Ψ,µe) computes (Γ,∆) if

(P1) for any S ∈ Γ, µe ∈ im(M ′S), where M ′S is the transpose of MS and im(M ′S) stands for the
row space of MS ; and

(P2) for any T ∈ ∆, there exists a vector λ ∈ Re with the first coordinate λ1 = 1 such that
MTλ

′ = 0′.

As noted in [12], if R is a field, then µe 6∈ im(M ′S) implies that there exists a vector λ ∈ Re
with the first coordinate λ1 = 1 such that MSλ

′ = 0′. If R is not a field this does not necessarily
hold.

Using representations of monotone access structures as monotone Boolean formulas and using
induction in a similar style as in [20], it is straightforward to verify that for every monotone access
structure (Γ,∆), there is an integer monotone span program that computes (Γ,∆).

Lemma 1. A monotone span program M = (R,M,Ψ,µe) computes (Γ,∆) if and only if

(R1) for any S ∈ Γ, the equation xMS = µe is solvable in R;

(R2) for any T ∈ ∆, the equation
(µe
MT

)
x = µ′hT+1 is solvable in R.

Proof. It is clear that (P1) and (R1) are equivalent. To see the equivalence of (P2) and (R2), we
note that µe · x = 1 implies that the first coordinate of x is 1.

The above result converts a monotone span program M = (R,M,Ψ,µe) computing (Γ,∆) to
solvability of linear equations in R. If R is the integer ring, then we can reduce solvability of linear
equations in Z to solvability of linear equations in Zp` for every prime p and integer ` ≥ 1.

Lemma 2. Let N ∈ Zm×n and b ∈ Zm. Then Nx′ = b′ is solvable over Z if and only if it is
solvable over Zp` for all prime p and integer ` ≥ 1.

Proof. The “only if” part is clear.

Now we prove the “if” part. By [12, Lemma 1], it is sufficient to show that Nx′ = b′ is solvable
modulo k for every integer k ≥ 2. Let k have the canonical factorization k =

∏r
i=1 p

ei
i . Assume that

ui is a solution of Nx′ ≡ b′ (mod peii ). By the Chinese Remainder Theorem, we can find a vector
u ∈ Zk such that u ≡ ui (mod peii ). This implies that u is a solution of Nx′ ≡ b′ (mod k).

Theorem 1. Let (Γ,∆) be a monotone access structure on [n]. Then M = (Z,M,Ψ,µe) is a
monotone span program computing (Γ,∆) if and only if Mp` = (Zp` ,M,Ψ,µe) is a monotone span
program computing (Γ,∆) for every prime p and integer ` ≥ 1, where M and µe in Mp are viewed
as a vector and a matrix modulo p`, respectively.

9



Proof. Assume that M = (Z,M,Ψ,µe) is a monotone span program computing (Γ,∆). By taking
modulo p`, we can easily show that Mp = (Zp` ,M,Ψ,µe) is a monotone span program computing
(Γ,∆) for every prime p and integer ` ≥ 1.

Now we prove the other direction. By Lemma 1, the conditions (R1) and (R2) are satisfied
for R = Zp` for every prime p and integer ` ≥ 1. By Lemma 2, the conditions (R1) and (R2) are
satisfied for R = Z. By Lemma 1 again,M = (Z,M,Ψ,µe) is a monotone span program computing
(Γ,∆).

This is an interesting mathematical result that obeys the local-global principle, also known as
the Hasse principle. In mathematics (in particular number theory), the local-global principle says
that a phenomenon is true globally if and only if it is true locally. A well-known example obeying
this the local-global principle is the Hasse-Minkowski theorem which states that the local-global
principle holds for the problem of representing 0 by quadratic forms over the rational numbers. Of
course, there are also some examples that do not obey the local-global principal. A counterexample
by Ernst S. Selmer shows that the Hasse-Minkowski theorem cannot be extended to forms of degree
3 (see [29, pp.250-258]).

Theorem 1 is a bridge to connect integer monotone span programs with monotone span programs
over p`. This in turns allows us to construct integer monotone span programs via monotone span
programs over finite fields.

Theorem 2. Let (Γ,∆) be a monotone access structure on [n]. Let p be a prime and let (Zp,M,Ψ)
be a triple defined in Subsection 2.1. If M ∈ Zh×ep and

(O1) for any S ∈ Γ, the Fp-rank of MS is e; and

(O2) for any T ∈ ∆, the Fp-rank of NT is hT , where N is the n× (e− 1) matrix obtained from M
by removing the first column,

Then for any integer ` ≥ 1, (Zp` ,M (`),Ψ,µe) a monotone span program computing (Γ,∆), where

M (`) is viewed as a lifting of M modulo p`.

Proof. By Lemma 1, it is sufficient to show that the conditions (R1) and (R2) hold for the quadruple
(Zp` ,M (`),Ψ,µe). Let S ∈ Γ, then by (O1) the Fp-rank of MS is e, there is an e × e submatrix

A of MS such that det(A) 6≡ 0 mod p. This implies that A (mod p`) is invertible. Thus, there
exists a vector u ∈ Ze

p`
such that uA ≡ µe (mod p`). Without loss of generality, we may assume

that M (`) =
(
A
C

)
for some (h − e) × e matrix C over Fq. Then (u,0)M (`) = (u,0)

(
A
C

)
= uA ≡ µe

(mod p`). This proves (R1) for the quadruple (Zp` ,M (`),Ψ,µe).

Let M = (b′|N). By (O2), for any T ∈ ∆, the Fp-rank of NT is hT . Hence, there is an hT ×hT
submatrix E of NT such that det(E) 6≡ 0 mod p. This implies that E (mod p`) is invertible. Thus,
there exists a vector v ∈ ZhT

p`
such that Ev′ ≡ −b′ (mod p`). Without loss of generality, we may

assume that M
(`)
T = (b′|E,F ). Then M

(`)
T (1,v,0)′ = (b′|E,F )(1,v,0)′ = b + Ev′ = 0 (mod p`).

This proves (R2) for the quadruple (Zp` ,M (`),Ψ,µe).

We are interested in the smallest size of a monotone span program M computing (Γ,∆). This
is because this number determines the secret size (see Theorem ).
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Definition 5. For a given (Γ,∆), denote by mspR(Γ,∆) the smallest size of a monotone span
program M over R computing (Γ,∆). We also denote mspZ(Γ,∆) by msp(Γ,∆).

The main purposes of this papers are (i) to derive a lower bound on msp(Γ,∆); and more
importantly (ii) to explicitly construct an MSP over Z with expansion factor achieving this lower
bound up to a constant multiplicative factor.

2.2 Black-box secret sharing scheme

In this subsection, we will prove a one-to-one correspondence between black-box secret sharing
schemes and integer monotone span programs. Now we introduce black-box secret sharing schemes.

Definition 6. Let (Γ,∆) be a monotone access structure on [n]. A black-box secret sharing scheme
(BBSSS for short) for (Γ,∆) is a quadruple B = (Z,M,Ψ,R) defined in Subsection 2.1 satisfying the
following requirement. Let G be an arbitrary finite Abelian group and S ⊆ [n] be a non-empty set.
For a uniformly distributed s ∈ G,g = (g1, · · · , ge) ∈ Ge given that g1 = s, define s = gM ′ ∈ Zh.
Then:

(Q1) (Completeness) If S ∈ Γ, then λ(S) · s′S = s with probability 1.

(Q2) (Privacy) If T ∈ ∆, then sT contains no Shannon information on s.

If (Γ,∆) = Rt,r,n, we say B is a near-threshold black-box secret sharing scheme with privacy t and
reconstruction r. Furthermore, if (Γ,∆) = Rt,n, we say B is a threshold black-box secret sharing
scheme.

In [12], it was proved that there is a one-to-one correspondence between threshold black-box
secret sharing schemes and integer monotone span programs. We also note that [12] gives a char-
acterization on threshold black-box secret sharing schemes.

Theorem 3. Let (Γ,∆) be a monotone access structure on [n]. Then there is a black-box secret
sharing scheme B = (Z,M,Ψ,R) for (Γ,∆) if and only if there exists an integer monotone span
program M = (Z,M,Ψ,µe) computing (Γ,∆).

Proof. Assume that M = (Z,M,Ψ,µe) is an integer monotone span program computing (Γ,∆),
i.e., the conditions (P1) and (P2) are given. Now we want to show that the conditions (Q1) and
(Q2) are satisfied.

Let us fix a finite Abelian group G. Sample s ∈ G uniformly at random and sample g =
(s, g2, · · · , ge) uniformly at random from {s} × Ge−1. Lastly, let s = gM ′. Let S ∈ Γ, by (P1),
there exists a vector u ∈ ZhS such that uMS = µe. This gives s = µe · g′ = (uMS) · g′ = u · s′S .
To prove (Q2), we have to show that for any T ∈ ∆ and any s1, s2 ∈ G, given a vector g1 ∈ Ze
with the first coordinate of g1 equal to s1, there exists g2 such that s2 is the first coordinate of
g2 and MTg′1 = MTg′2. Let v ∈ Ze with the first coordinate equal to 1 such that MTv′ = 0′.
Put g2 = g1 + (s2 − s1)v. Then the first coordinate of g2 is s2. Furthermore, we have MTg′2 =
MT (g1 + (s2 − s1)v)′ = MTg′1 + (s2 − s1)MTv′ = MTg′1.

Now we prove the other direction. We prove one by one. For any S ∈ Γ, let λ(S) ∈ R. Choose
a prime p such that p is bigger than all entries of λ(S)MS . Set G = Zp and let gi ∈ Ge be the
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vector such that the ith position of gi is 1 and the rest are 0. Then for j ∈ [e], we have

δ1,j ≡ λ(S)MSg′i (mod p),

where δ1,j is the Kronecker-delta function. Combining these e equations together, we obtain µe ≡
λ(S)MS (mod p). As p is bigger than all entries of λ(S)MS , we get µe = λ(S)MS ∈ im(M).

Suppose that T ∈ ∆. Recall that we want to show the existence of v = (1, v2, · · · , ve) ∈ Ze such
that MTv′ = 0′. Let MT = (b′|NT ), where b′ ∈ ZhT is the first column of MT and NT ∈ ZhT×(e−1).
Then the existence of such v is equivalent to the solvability of −b′ = NTx in Z. So by Lemma 2,
to show that −b′ = NTx is solvable over Z, it is equivalent to showing that it is solvable modulo
k for any integer k ≥ 2.

Fix k ≥ 2 and set G = Zk. Now for T ∈ ∆, it follows from the privacy condition (Q2) that
there exists g1 ∈ Ze such that the first coordinate of g1 is s − 1 and g1(MT )′ = g(MT )′. Setting
v = g − g1, Then the first coordinate of v is 1 and MTv′ = 0′, i.e., −b′ = NTx is solvable over
Zk.

Definition 7. Let (Γ,∆) be a monotone access structure on [n]. The expansion factor % of a
black-box secret sharing scheme B = (Z,M,Ψ,R) for (Γ,∆) is defined to be the ratio h

n , where h
is the number of rows of M .

3 A lower bound on expansion factors

In this section, we are going to derive a lower bound on the expansion factor so that we know how
far our construction of BBSSS is away from optimality. The idea is to obtain a lower bound on
monotone span programs over finite fields Fp for primes p. As an integer monotone span program
gives rise to a monotone span program modulo a prime with the same expansion factor, any lower
bound on expansion factors of monotone span programs modulo primes is also a lower bound on
integer monotone span programs. As one can expect, the worst lower bound on expansion factors
of monotone span programs are from modulo 2. Thus, by deriving a lower bound on monotone
span programs modulo 2 for the access structure Rt,r,n, we obtain a lower bound on the expansion
factor of BBSSS.

Let write msp2(Γ,∆) for mspF2
(Γ,∆). We first provide a lower bound on msp2(R1,r,n).

Proposition 3. One has msp2(R1,r,n) ≥ n log n
r−1 .

Proof. LetM = (Z2,M,Ψ,µe) be a monotone span program computing R1,r,n. For M ∈ Zh×e2 , we

write Mi ∈ Zhi×e2 and hi to represent M{i} and h{i}, respectively. Since we are going to find a lower
bound on h, we want to bound them when hi is minimized. So we assume that all rows of Mi are
Z2-linearly independent for any 1 ≤ i ≤ n.

Define H0 = {(0, v2, · · · , ve) ∈ Ze2} and H1 = {(1, v2, · · · , ve) ∈ Ze2}. Since {i} ∈ ∆(R1,r,n),
there exists c ∈ ker(Mi) with the first coordinate equal to 1, where ker(Mi) denotes the solution
space of Mix

′ = 0′. Hence, ker(Mi) ∩H1 6= ∅. We claim that | ker(Mi) ∩H0| = | ker(Mi) ∩H1| =
2e−1−hi . Note that ker(Mi) ⊆ H0 ∪ H1 = Ze2 and | ker(Mi)| = 2hi . To prove our claim, it is
sufficient to show that | ker(Mi) ∩H0| = | ker(Mi) ∩H1|. This is true as one can easily verify that
c + ker(Mi) ∩H0 = | ker(Mi) ∩H1.
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Let S be a subset of [n] of size r, we have S ∈ Γ(R1,r,n). Thus, µe belongs to im(M ′S). In
other words, the first column of MS is not a linear combination of the others. This implies that
ker(MS) ∩ H1 = ∅. This means that for any v ∈ H1, it can appears in ker(Mi) ∩ H1 for at most
(r − 1) of i ∈ S. This gives the following inequality

(r − 1)2e−1 = (r − 1)|H1| ≥
n∑
i=1

|ker(Mi) ∩H1| =
n∑
i=1

2e−1−hi ,

i.e.,
∑n

i=1 2−hi ≤ r − 1.

Recall that by the Log Sum Inequality, for any non-negative a1, · · · , an, b1, · · · , bn, we have

n∑
i=1

ai log
ai
bi
≥ a log

a

b
,

where a =
∑n

i=1 ai and b =
∑n

i=1 bi. Let ai = 1 and bi = 2−hi . Then a = n and b =
∑n

i=1 2−hi ≤
r − 1. Then

h =
n∑
i=1

hi =
n∑
i=1

1 · log
1

2−hi
≥ n log

n∑n
i=1 2−di

≥ n log
n

r − 1
.

To find lower bounds on the expansion factor of the access structure Rt,r,n, let us consider the
dual of Rt,r,n.

Definition 8. The dual (Γ∗,∆∗) of a monotone access structure (Γ,∆) on [n] is defined by

(i) ∆∗ = {T ⊆ [1, n] : T̄ ∈ Γ}, where T̄ is the complement of T , i.e., (T̄ ) = [n] \ T .

(ii) Γ∗ = {S ⊆ [1, n] : S̄ ∈ ∆}.

It is easy to verify that (Γ∗,∆∗) is a monotone access structure [n] as long as (Γ,∆) is.

Remark 1. One has R∗t,r,n = Rn−r−1,n−t−1,n.

Lemma 4 (See [24]). For any finite field F and monotone access structure (Γ,∆), we have the
equality mspF(Γ,∆) = mspF(Γ∗,∆∗).

Remark 2. It follows from Lemma 4 that mspF(Rt,r,n) = mspF(Rn−t−1,n−r−1,n). Thus, to find
mspF(Tt,r,n), we can always assume that r ≥ n−1

2 .

Theorem 4. msp2(Rt,r,n) ≥ n log n+1
2(r−t) .

Proof. By Remark 2, we may assume that r ≥ n−1
2 . Consider any MSP M = (F2,M,Ψ, ε) com-

puting Rt,r,n. Without loss of generality, we may assume that h1 ≤ h2 ≤ · · · ≤ hn. It is clear that
(M ′1|M ′2| · · · |M ′r+1)

′ is an MSP computing Rt,r,r+1. So we have
∑r+1

i=1 hi ≥ msp2(Rt,r,r+1). Note

that for any j > r + 1, hj ≥ hr+1 ≥ msp2(Rt,r,r+1)
r+1 . Hence,

h =

r+1∑
i=1

hi +

n∑
j=r+2

hi ≥ msp2(Rt,r,r+1) +
n− (r + 1)

r + 1
msp2(Rt,r,r+1)

=
n

r + 1
msp2(Rt,r,r+1).
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This gives

msp2(Rt,r,n) ≥ n

r + 1
msp2(Rt,r,r+1) =

n

r + 1
msp2(R1,r−t,r+1)

≥ n log
r + 1

r − t
≥ n log

n+ 1

2(r − t)
and the proof is completed.

By considering modulo 2, we obtain the following lower bound.

Theorem 5. For all integers r, t, n with 0 < t < r < n,msp(Rt,r,n) ≥ n · log n+1
2(r−t) .

4 Gluing method

In Subsection 2.1, we witnessed that an integer monotone span program obeys the local-global
principle. Thus, given an access structure Rt,r,n, construction of an integer monotone span program
computing Rt,r,n is equivalent to construction of a monotone span program computing Rt,r,n modulo
every prime power. However, it is usually not easy to directly construct an integer monotone span
program computing Rt,r,n that is also a monotone span program computing Rt,r,n modulo every
prime power. On the other hand, it is much easier to develop a monotone span program computing
Rt,r,n modulo one given prime power. Thus, by the Chinese Remainder Theorem, for any given
finite number n, we can lift monotone span programs computing Rt,r,n modulo all prime p ≤ n to
an integer monotone span program. The question is how to make it into an integer monotone span
program modulo all prime p > n.

Our idea is to glue two integer monotone span programs, one is a monotone span program
modulo primes p ≤ n and other one modulo primes p > n. The first one can be obtained by lifting
monotone span programs modulo every prime power p ≤ n. The other one can be constructed
via an integer Vandermonde matrix. As a result, the integrated matrix gives an integer monotone
span program that is also a monotone span program modulo every prime power. Hence, by the
local-global principal, we obtain an integer monotone span program.

For positive integers x1, x2, . . . , xn, let us define the Vandermonde matrix

∆i(x1, x2, . . . , xn) =


xi1 x1+i1 x2+i1 . . . xn−1+i1

xi2 x1+i2 x2+i2 . . . xn−1+i2
...

...
...

...
...

xin x1+in x2+in . . . xn−1+in

 .

We further denote by δ(x1, x2, . . . , xn) the determinant of ∆1(x1, x2, . . . , xn), i.e., δ(x1, x2, . . . , xn) =

(
∏n
i=1 xi)

(∏
1≤i<j≤n(xj − xi)

)
. It is clear that every prime divisor of δ(x1, x2, . . . , xn) is at most

max{x1, x2, . . . , xn}. The matrix defined in the following lemma gives a threshold black-box secret
sharing scheme modulo large primes.

Lemma 5. Define the matrix

L =


1 1 1 . . . 1
2 22 23 . . . 2t

...
...

...
...

...
n n2 n3 . . . nt

 ∈ Zn×t. (1)
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Then we have

(i) For every subset T of [n] of size t, the equation

(
1 0
δ1′ LT

)
x′ = µ′t+1 is solvable modulo p`

for any prime p > n and integer ` ≥ 1, where δ = δ(1, 2, . . . , n).

(ii) For every subset S of [n] of size r with r ≥ t + 1, the equation x(δ1′, LS) = µt+1 is solvable
modulo p` for all primes p > n and integers ` ≥ 1.

Proof. To prove part (i), we let |T | = t with T = {i1, i2, . . . , it}. Then the matrix LT is in fact the
matrix ∆1(i1, i2, . . . , it). As det(∆1(i1, i2, . . . , it)) = δ(i1, i2, . . . , it) is co-prime to p` for every prime
p > n and ` ≥ 1, we can find a matrix A ∈ Zt×t such that ∆1(i1, i2, . . . , is)A is the identity matrix
It modulo p`, thus we have δ1′ ≡ δLTA1′ (mod p`), i.e, (1,−δ1A′) ∈ Zt+1

p`
(mod p`) is a solution

of (δ1′,∆1(i1, i2, . . . , it))x
′ ≡ 0′ modulo p`. Thus, it is also a solution of

(
1 0
δ1′ LT

)
x′ = µ′t+1

modulo p`.

Now let |S| = r ≥ t+ 1 and denote S = {i1, i2, . . . , ir}. Then

(δ1′, LS) =

(
∆(δ)(i1, . . . , it+1)

B

)
, (2)

for a matrixB in Z(r−t−1)×(t+1), where ∆(δ)(i1, . . . , it+1) is the matrix obtained from ∆0(i1, . . . , it+1)
by multiplying δ to the first column. As ∆0(i1, . . . , it+1) is invertible modulo p`, ∆(δ)(i1, . . . , it+1) is
also invertible modulo p`. Hence, there is a solution c ∈ Zt+1

p`
of the equation x∆(δ)(i1, i2, . . . , it+1) =

µt+1 modulo p`. Thus, (c,0) ∈ Zr is a solution of the equation x(δ1′, LS) ≡ µt+1 modulo p`.

We now present our gluing method.

Proposition 6. Let Ni ∈ Zm×(l−1) with mt < l ≤ mr be a matrix for 1 ≤ i ≤ n. Let ci ∈ Zm. Put

G =


c′1 N1

c′2 N2
...

...
c′n Nn

 , N =


N1

N2
...
Nn

 .

Suppose that for every prime p ≤ n, every subset T of [n] of size t and every subset S of [n] of size r,
the Zp-ranks of NT and GS are mt and l, respectively. Then there exists a monotone span program
M = (Z,M,Ψ,µt+l) computing Rt,r,n with M ∈ Z(m+1)n×(t+l). As a result, msp(Rt,r,n) ≤ (m+1)n.

Proof. Define the product

ρN =
∏

S⊂[n],|S|=t

 ∏
A∈Mt(NS),det(A)6=0

det(A)

 ,

where Mt(NS) stands for the set of mt × mt submatrices of NS . By the given condition, we
know that ρN is well defined and it is a nonzero integer. We write the above ρN into the product
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ρN = ζN × ηN such that gcd(ζN ,
∏
p≤n p) = 1, and all prime divisors of ηN are less than or equal

to n.

Define

M =



δ 0 e1
ζNc′1 N1 0

δ 0 e2
ζNc′2 N2 0

...
...

...

δ 0 en
ζNc′n Nn 0


, (3)

where δ = δ(1, 2, . . . , n) and ei = (i, i2, . . . , it) for 1 ≤ i ≤ n. Let Ψ be the map splitting M into the
blocks of (3). We claim thatM = (Z,M,Ψ,µt+l) is an integer monotone span program computing
Rt,r,n.

To prove privacy, by Lemma 1, it is sufficient to show that for every subset T = {i1, i2, . . . , it}
of [n] of size t and every prime power p`, the equation(

µt+l
MT

)
x′ ≡ µ′(m+1)t+1 (mod p`) (4)

has solutions in Zt+l
p`

. For p ≤ n, we let L be the matrix defined in (1). Then LT = ∆1(i1, i2, . . . , it).

As det(LT ) is a divisor of δ, one can find D ∈ Zt×t such that LTD ≡ det(LT )It (mod p`). Thus,

(1,− δ
det(LT )1D

′) is a solution of the equation

(
1 0
δ1′ LT

)
x′ ≡ µt (mod p`). On the other hand,

it follows from the given condition that there exists an mt × mt submatrix A of NT such that
gcd(det(A), p`) = 1. Then there exists an integer g such that g det(A) ≡ 1 (mod p`). Without
loss of generality, we may assume that NT = (A,B) with B ∈ Zmt×(l−mt). Let H ∈ Zmt×mt

p`

such that AH = det(A)Imt. Then (1,−gcH ′,0) is a solution of the equation

(
1 0
c′ NT

)
x′ =(

1 0 0
c′ A B

)
x′ = µl modulo p`, where c = ζN (ci1 , ci2 , . . . , cit). In conclusion, the vector (1,−gcH ′,0,− δ

det(LT )1D
′)

is a solution of (4).

If p > n, by Lemma 5 the equation

(
1 0
δ1′ LT

)
x′ ≡ µ′t+1 (mod p`) has a solution (1,u) ∈ Zt+1.

On the other hand, by the given condition, there exists an mt×mt submatrix E of NT such that
det(E) 6= 0. Without loss of generality, we may assume that NT = (E,F ) with F ∈ Zmt×(l−mt).
Assume that e ≥ 0 is an integer such that pe| det(E) and pe+1 - det(E). Then by the definition
of ζN , we have pe|ζN . Let ζ = pea and let det(E) = peb with gcd(b, p) = 1. Then there exists an
integer d such that bd ≡ 1 (mod p`). Let C ∈ Zmt×mt

p`
such that AC = det(E)Imt = pebImt. Hence,

(1,−advC ′,0) is a solution of the equation

(
1 0
c′ NS

)
x′ =

(
1 0 0
c′ E F

)
x′ ≡ µmt+1 (mod p`),

where c = ζN (ci1 , ci2 , . . . , cit) and v = (ci1 , ci2 , . . . , cit). Thus, the vector (1,−aevC ′,0,u) is a
solution of (4).

To prove reconstruction, by Lemma 1, it is sufficient to show that for every subset S =
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{i1, i2, . . . , ir} of [n] of size r and every prime power p`, the equation

xMS ≡ µl+e (mod p`) (5)

is solvable. If p ≤ n, then Zp-rank of GS is l. Without loss of generality, we may write GS =
(
b′ E
c′ F

)
such that (b′, E) is ann l × l invertible matrix modulo p`. As ζN is co-prime with p, (ζNbT , E) is
also an l × l invertible matrix modulo p`. Thus, there exists a vector v ∈ Zl such that vE ≡ µl
(mod p`). Hence, (v,0) is a solution of (5).

If p > n, let S1 = {i1, i2, . . . , it+1} ⊆ S. By Lemma 5, there is a vector a ∈ Zt+1
p`

such that

a(δ1, LS1) ≡ µt+1 (mod p`). This implies that (5) is solvable modulo p`.

5 Lifting codes over prime fields

As we have seen in the previous section, to construct a monotone span program, it is sufficient to
construct a matrix G satisfying the conditions in Proposition 6. Our idea is to construct generator
matrices over Zp of the same size for every prime p such that each of generator matrices over Zp
satisfies the conditions in Proposition 6. Then we lift these matrices using the Chinese Remainder
Theorem to obtain the desired matrix G in Proposition 6.

It has been known that linear secret sharing schemes with same secret and share spaces are
equivalent to linear codes (see e.g. [7, 27]).

Let us first review some notions from coding theory (see e.g. [31, 30]) that are relevant to this
work. Let Fq be a finite field of q elements. A q-ary linear code C of length n is an Fq-subspace
of Fnq . Then dimension of this code is defined to be the dimension of C as an Fq-linear space. We
denote by [n, k]q a q-ary linear code of length n and dimension k. In case there is no confusion, we
just denote [n, k]q by [n, k] or q-ary [n, k]-linear code. The (Euclidean) dual code of C, denote by
C⊥, is defined to be the set {x ∈ Fq : 〈c,x〉 = 0 for all c ∈ C}, where 〈·, ·〉 is the Euclidean inner
product. Then it is well known from linear algebra that C⊥ is a q-ary [n, n− k]-linear code. Apart
from length and dimension, there is a third parameter d, called minimum distance which plays an
important role in coding theory. We denote by [n, k, d]q a q-ary linear code of length n, dimension
k and minimum distance d. We use d⊥ to denote the minimum distance of the dual code. We also
call d⊥ the dual distance of C. The distance d and dual distance d⊥ are closely related to privacy
and reconstruction of the linear secret sharing scheme arising from this code (see e.g. [7, 27]).

For an [n, k]q-linear code C, a matrix G is called a generator matrix of C if the columns of G
form an Fq-basis of C (note that this is different from the usual definition in which rows of G form
an Fq-basis of C). Thus, G has the size n × k. A generator matrix of C⊥ is called a parity-check
matrix of C. Hence, H has size n× (n− k). It is clear that a linear code C is uniquely determined
by either a generator matrix or a parity-check matrix. Therefore, all three parameters of a linear
code C are completely determined by a generator matrix G or a parity-check matrix H. The length
and dimension of C are determined by size of G or H in an obvious way. The following result shows
how the minimum distance is determined by G or H.

Lemma 7 (see [30, 39]). Let C be a q-ary [n, k]-linear code with a generator matrix G or a parity-
check matrix H. Then

(i) C has minimum distance d if and only if every (n − d + 1) × k submatrix of G has rank k;
and there is a (n− d)× k submatrix of G with rank less than k.
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(ii) C has minimum distance d if and only if every (d − 1) × (n − k) submatrix of H has rank
d− 1; and there is a d× (n− k) submatrix of H with rank less than d.

In coding theory, there is a well-known propagation rule to construct new codes from given
codes, called concatenation rule. Let C1 be a pk0-ary [n1, k1, d1]-linear code and let C0 be a p-ary
[n0, k0, d0]-linear code. We fix an Fp-isomorphism τ between Fpk0 and C0. Then the concatenated
code C is defined by {(τ(c1), τ(c2), . . . , τ(cn)) : (c1, c2, . . . , cn) ∈ C1}. Furthermore, C is an
[n0n1, k0k1,≥ d0d1]p-linear code (see e.g. [30]). However, usually C has small dual distance. In
fact, the dual distance of C is at most the dual distance of C0. On the other hand, if C0 is the trivial
code Fk0q , then the dual distance of C is the least the dual distance of C1

Fix an Fp-basis γ1, γ2, . . . , γm of Fpm . Let β1, β2, . . . , βm be an orthogonal balsas of γ1, γ2, . . . , γm,
i.e, Tr(αiβj) = δij , where Tr is the trace map from Fpm to Fp and where δi,j is the Kronecker-
delta function. We define maps ϕ and ψ from Fpm to Fmp by setting ϕ(α) = (a1, a2, . . . , am) if
α =

∑m
i=1 aiγi and ψ(α) = (b1, b2, . . . , bm) if α =

∑m
i=1 biβi, respectively. Then both maps are Fp-

isomorphisms from Fpm to Fmp . Furthermore, we have 〈ϕ(α), ψ(β)〉 = Tr(αβ). We can extend these
two Fp-isomorphisms: Fnpm → Fmnp by defining ϕ(α1, α2, . . . , αn) = (ϕ(α1), ϕ(α2), . . . , ϕ(αn)) and
ψ(α1, α2, . . . , αn) = (ψ(α1), ψ(α2), . . . , ψ(αn)), respectively. Then they become Fp-isomorphisms
from Fpmn to Fmnp .

Lemma 8. If C is a pm-ary [n, k, d]-linear code with dual distance d⊥. Then ϕ(C) is a p-ary
[nm, km]-linear code with distance at least d and dual distance at least d⊥. Furthermore, the dual
code of ϕ(C) is ψ(C⊥).

Proof. ϕ(C) (and ψ(C⊥), respectively) is the concatenated code with the outer code C (and C⊥, re-
spectively) and trivial inner code Fmp . Thus, ϕ(C) is a p-ary linear code with the desired parameters.

It remains to prove that ϕ(C)⊥ is ψ(C⊥).

Since the Fp-dimension of ϕ(C)⊥ is nm−dimFp ϕ(C) = nm−dimFp C = nm−mk = dimFp ψ(C⊥),
it is sufficient to show that codewords of ϕ(C) and those of ψ(C⊥) are orthogonal. Let u =
(ϕ(α1), ϕ(α2), . . . , ϕ(αn)) ∈ ϕ(C) with (α1, α2, . . . , αn) ∈ C. Let v = (ψ(λ1), ψ(λ2), . . . , ψ(λn)) ∈
ψ(C⊥) with (λ1, λ2, . . . , λn) ∈ C⊥. Then the inner product of these vectors are

〈u,v〉 =

n∑
i=1

〈ϕ(αi), ψ(λi)〉 =

n∑
i=1

Tr(αiλi) = Tr

(
n∑
i=1

αiλi

)
= 0.

This completes the proof.

Corollary 9. Let C be a pm-ary [n, k, d]-linear code with dual distance d⊥. Let (aij)1≤i≤n,1≤j≤k be
a generator matrix of C. Then the matrix in Fmn×kmp given below

G =


ϕ(γ1a11) ϕ(γ2a11) · · · ϕ(γma11) · · · · · · ϕ(γ1a1k) ϕ(γ2a1k) · · · ϕ(γma1k)
ϕ(γ1a21) ϕ(γ2a21) · · · ϕ(γma21) · · · · · · ϕ(γ1a2k) ϕ(γ2a2k) · · · ϕ(γma2k)

...
...

...
...

...
...

...
...

...
...

ϕ(γ1an1) ϕ(γ2an1) · · · ϕ(γman1) · · · · · · ϕ(γ1ank) ϕ(γ2ank) · · · ϕ(γmank)


(6)

is a generator matrix of ϕ(C), where each ϕ(γiajl) is viewed as a column vector of length m.
Furthermore, define Ψ to be the map from [mn] to [n] such that the first m numbers of [mn] are
mapped to 1 and the second m numbers of [mn] are mapped to 2 and so on. Then
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(i) for any S ⊆ [n] with |S| ≥ n− d+ 1, ϕ(GS) has Fp-rank equal to mk;

(ii) for any T ⊆ [n] with |T | ≤ d⊥ − 1, ϕ(GT ) has Fp-rank equal to mt.

Proof. It is clear that every column of G is a codeword of ϕ(C). By Lemma 8, ϕ(G) has dimen-
sion mk. Thus, to show that ϕ(G) is a generator matrix of ϕ(C), it is sufficient to show that all
columns of ϕ(C) are linearly independent. Let g′1,g

′
2, . . . ,g

′
k be column vectors of G. We wan-

t to show that {ϕ(γigj)}1≤i≤m,1≤j≤k are Fp-linearly independent. Suppose that
∑m

i=1

∑k
j=1 λij

ϕ(γigj) = 0 for some λij ∈ Fp, i.e., ϕ
(∑m

i=1

∑k
j=1 λijγigj

)
= 0. As ϕ is an isomorphism, we

get
∑m

i=1

(∑k
j=1 λijγi

)
gj = 0. Since g1,g2, . . . ,gk are Fpm-linearly independent, this forces that∑k

j=1 λijγi = 0 for i = 1, 2, . . . , k. This gives γij = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ k.

Now let S ⊆ [n] with |S| ≥ n − d + 1. Consider the new code C1 that is obtained from C by
deleting n − |S| positions at i ∈ [n] \ S. Then C1 is pm-ary [n − |S|, k,≥ d − n + |S|]-linear code.
By the first part of this lemma, we know that of ϕ(GS) is a generator matrix of ϕ(C1). Hence, it
has rank mk.

Let T ⊆ [n] with |T | ≤ d⊥ − 1. If uT ∈ Fmtp is a solution of xϕ(GT ) = 0. Then (uT ,0[n]\T ) is a

solution of xϕ(G) = 0. By Lemma 8, (uT ,0[n]\T ) is a codeword in ψ(C⊥). Hence ψ−1(uT ,0[n]\T ) is

a codeword of C⊥. As the Hamming weight of ψ−1(u,0[n]\T ) is at most |T | ≤ d⊥ − 1, we conclude
that u = 0. This implies that the Zp-rank of ϕ(G′T ) is mt. The proof is completed.

Given a matrix A = (aij)1≤i≤n,1≤j≤k ∈ Fn×kpm , we denote by ϕ(A) the matrix given in (6).

5.1 Reed-Solomon codes

In this subsection, we are going to make use of Reed-Solomon codes to construct a matrix G
satisfying the conditions of Proposition 6.

Let m = dlog ne. Then for any prime p, we have n ≤ 2m ≤ pm. Choose n distinct elements
α1, α2, . . . , αn ∈ Fpm . We denote by Fpm [x]<t the set of polynomials in Fpm [x] of degree less than
t. Then Fpm [x]<t is an Fpm-space of dimension t with a canonical basis {1, x, , x2, . . . , xt−1}. A
Reed-Solomon code is defined below

RS[n, t] := {(f(αi), f(α2), . . . , f(αn)) : f ∈ Fpm [x]<t}.

The code RS[n, t] is a pm-ary [n, t]-linear code with distance d = n − t + 1 and dual distance
d⊥ = t+ 1, respectively.

Fix an Fpm-basis f2, f3, . . . , ft+1 of Fpm [x]<t. Extend this basis to an Fpm-basis {fi}t+1
i=1 of

Fpm [x]≤t. Define the matrix

A(p) =


f1(α1) f2(α1) f3(α1) · · · ft+1(α1)
f1(α2) f2(α2) f3(α2) · · · ft+1(α2)

...
...

...
...

...
f1(αn) f2(αn) f3(αn) · · · ft+1(αn)

 (7)

Then A(p) is a generator matrix of RS[n, t+ 1] = [n, n− t− 1]pm .
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Lemma 10. Put G(p) = ϕ(A(p)). Then

(i) for any subset S of [n] of size t+ 1, G
(p)
S has Fp-rank equal to (t+ 1)m; and

(ii) for any subset T of [n] of size t, NT has Fp-rank mt, where N is obtained from G(p) by
removing the first column from the left.

Proof. As A(p) is a generator matrix of RS[n, t+ 1] whose distance is n− t, Part (i) directly follows
from Corollary 9 (i). To prove Part (ii), we consider B(p) that is obtained from A(p) by removing
the first column. Then B(p) is a generator matrix of RS[n, t] whose dual distance is t + 1. By

Corollary 9 (ii), ϕ(B
(p)
T ) has Fp-rank mt. Furthermore, ϕ(B(p)) is in fact obtained from NT by

removing the first m− 1 columns. As a result, NT has Fp-rank mt as well.

Corollary 11. For any integer n ≥ 2 and any integer t with 0 < t < n, there exists a triple
(Z, G,Ψ) defined in Subsection 2.1 such that G ∈ Znm×(t+1)m with m ≥ dlog ne and |Ψ−1(j)| = m
for all 1 ≤ j ≤ n such that, for every prime p ≤ n, if G is viewed a matrix modulo p, then

(i) for any subset S of [n] of t+ 1, GS has Fp-rank equal to (t+ 1)m; and

(ii) for any subset T of [n] of t, NT has Fp-rank mt, where N is obtained from G by removing
the first column from the left.

Proof. By Lemma 10, for every prime p ≤ n, we can construct a matrix G(p) ∈ M ∈ Znm×(t+1)m

satisfying the two conditions in Lemma 10. By the Chinese Remainder Theorem, we can lift
all G(p)’s to one matrix G ∈ Znm×(t+1)m such that G ≡ G(p) (mod p). Then G is the desired
matrix.

5.2 Algebraic geometry codes

In the previous section, we made use of Reed-Solomon codes to construct a matrix G satisfying the
conditions in Proposition 6. This would give a threshold BBSSS (see Theorem 6). However, the
expansion factor h = nm = ndlog ne, i.e., the ratio is h

n = dlog ne is unbounded. If we want to get a

bounded ratio h
n , then the lower bound in Theorem 5 indicates that we have to use a near-threshold

BBSSS. As in the case of linear secret sharing schemes, we can use algebraic geometry codes to get
a bounded ratio h

n .

Let us first introduce an algebraic geometry codes very briefly. The reader may refer to the
books [35, 37] for the details on this topic. For convenience of the reader, we start with some
background on global function fields over finite fields. The reader may refer to [35, 32] for detailed
background on function fields and algebraic-geometric codes.

For a prime power q, let Fq be the finite field of q elements. An algebraic function field over Fq
in one variable is a field extension F ⊃ Fq such that F is a finite algebraic extension of Fq(x) for
some x ∈ F that is transcendental over Fq. The field Fq is called the full constant field of F if the
algebraic closure of Fq in F is Fq itself. Such a function field is also called a global function field.
From now on, we always denote by F/Fq a function field F with the full constant field Fq.

A discrete valuation of F/Fq is a map from F to Z ∪ {+∞} satisfying certain properties (see
[35, Definition 1.19]). Then each discrete valuation ν from F/Fq to Z ∪ {+∞} defines a valuation
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ring O = {f ∈ F : ν(f) ≥ 0} that is a local ring [35, Theorem 1.1.13]. The maximal ideal P of
O is given by P = {f ∈ F : ν(f) > 0} and it is called a place. We denote the valuation ν and
the local ring O corresponding to P by νP and OP , respectively. The residue class field OP /P ,
denoted by FP , is a finite extension of Fq. The extension degree [FP : Fq] is called degree of P ,
denoted by deg(P ). A place of degree one is called a rational place. For a nonzero function z ∈ F ,
the principal divisor of z is defined to be div(z) =

∑
P∈PF

νP (z)P . The zero and pole divisors of
z are defined to be div(z)0 =

∑
νP (z)>0 νP (z)P and div(z)∞ = −

∑
νP (z)<0 νP (z)P , respectively.

Then we have deg(div(z)) = 0, i.e, deg(div(z)0) = deg(div(z)∞). For two functions f, g ∈ F and
a place P , we have νP (f + g) ≥ min{νP (f), νP (g)} and the equality holds if νp(f) 6= νP (g) (note
that νP (0) = +∞). This implies that f + g 6= 0 if νP (f) 6= νP (g).

If F is the rational function field Fq(x), then every discrete valuation of F/Fq is given by either
ν∞ or νp(x) for an irreducible polynomial p(x), where ν∞ is defined by ν∞(f/g) = deg(g)− deg(f)

and νp(x)(f/g) = a − b with p(x)a||f and p(x)b||g for two nonzero polynomials f, g ∈ Fq[x]. It
is straightforward to verify that the degrees of places corresponding to ν∞ and νp(x) are 1 and
deg(p(x)), respectively.

Let PF denote the set of places of F . The divisor group, denoted by Div(F ), is the free abelian
group generated by all places in PF . An element D =

∑
P∈PF

nPP of Div(F ) is called a divisor
of F , where nP = 0 for almost all P ∈ PF . We denote np by νP (D). The support, denoted by
Supp(D), of D is the set {P ∈ PF : nP 6= 0}. Thus, Supp(D) of a divisor D is always a finite
subset of PF . For a divisor D of F/Fq, we define the Riemann-Roch space associated with D by

L(D) := {f ∈ F ∗ : div(f) +D ≥ 0} ∪ {0},

where F ∗ denotes the set of nonzero elements of F . Then L(D) is a finite dimensional space over
Fq and its dimension dimFq L(D) is determined by the Riemann-Roch theorem which gives

dimFq L(D) = deg(D) + 1− g + dimFq L(W −D),

where g is the genus of F and W is a canonical divisor of degree 2g− 2. Therefore, we always have
that dimFq L(D) ≥ deg(D) + 1− g and the equality holds if deg(D) ≥ 2g− 1 [35, Theorems 1.5.15
and 1.5.17].

Let p be a prime and let n > l ≥ 2 be two integers. Let F/Fpm be a function field with genus
g and n + 1 distinct Fpm-rational places P∞, P1, P2, . . . , Pn. Put P = {P1, P2, . . . , Pn}. Denote by
C(lP∞,P) the algebraic geometric code defined by

C(lP∞,P) = {(f(P1), f(P2), . . . , f(Pn)) : f ∈ L(lP∞)}. (8)

Lemma 12. (see [35, Theorem 2.2.4]) Let g < k < n− g. Then C((k + g − 1)P∞,P) is a pm-ary
[n, k,≥ n−k−g+1]-linear code and C⊥((t+2g−1)P∞,P) is a pm-ary [n, n−k,≥ k−g+1]-linear
code. Furthermore, the matrix

A =


f1(P1) f2(P1) f3(P1) · · · fk(P1)
f1(P2) f2(P2) f3(P2) · · · fk(P2)

...
...

...
...

...
f1(Pn) f2(Pn) f3(Pn) · · · fk(Pn)

 (9)

is a generator matrix of C((k+g−1)P∞,P) whenever f1, f2, . . . , fk are a basis of L((k+g−1)P∞).
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Similar to Corollary 11, we have the following result.

Lemma 13. Let g < k < n − g. Let f2, f3, . . . , fk−1 be a Fpm-basis of L((k + g − 2)P∞) and let
f1, f2, f3, . . . , ft+g+1 be an Fpm-basis of L((k+g−1)P∞). Let A be the matrix defined in (9) and put
G(p) = ϕ(A). Furthermore, define Ψ to be the map from [mn] to [n] such that the first m numbers
of [mn] are mapped to 1 and the second m numbers of [mn] are mapped to 2 and so on. Then

(i) for any subset S of [n] of size at least k + g, G
(p)
S has Fp-rank equal to (t+ g + 1)m; and

(ii) for any subset T of [n] of size at most k − g − 1, NT has Fp-rank mt, where N is obtained
from G(p) by removing the first column from the left.

Proof. Note that A is a generator matrix of L((t+ 2g)P∞) with minimum distance at least n− 2g.
Part (i) follows from Corollary 9.

Let B be the matrix of A obtained from A by removing the first column of A. Then B is a
generator matrix of C((k + g − 2)P∞,P). By mimicking proof of Corollary 11(ii), we can Part
(ii).

Corollary 14. Let m ≥ 2 be an even integer. Then for any integer n ≥ 2 and any integer k
with 2(n+1)

2m/2−1 < k < n − 2(n+1)

2m/2−1 , there exists a triple (Z, G,Ψ) defined in Subsection 2.1 such that

G ∈ Znm×km and |Ψ−1(j)| = m for all 1 ≤ j ≤ n such that, for every prime p ≤ n, if G is viewed
as a matrix modulo p, then

(i) for any subset S of [n] of size r with r ≥ k + 2(n+1)

2m/2−1 , GS has Fp-rank equal to km; and

(ii) for any subset T of [n] of size t with t ≤ k − 2(n+1)

2m/2−1 − 1, NT has Fp-rank mt, where N is
obtained from G by removing the first column from the left.

Proof. If pm ≥ n, then the desired result follows from Corollary 11. Now we assume that pm < n.

Define

i(p,m, n) =

⌈
logp

(
n

pm − 1

)⌉
. (10)

We claim that
pi(p,m,n)−1(pm − 1) < n ≤ pi(p,m,n)(pm − 1). (11)

To prove (11), it is sufficient to verify that pi(p,m,n)−1 < n
pm−1 ≤ pi(p,m,n), i.e, i(p,m, n)− 1 <

logp

(
n

pm−1

)
≤ i(p,m, n) for all primes p.

Define
i(m,n) = max

pm≤n
pi(p,m,n)(pm/2 + 1). (12)

For pm ≤ n, we have

pi(p,m,n)(pm/2 + 1) ≤ p
1+logp

(
n+1

pm−1

)
(pm/2 + 1) ≤ p

(
n+ 1

pm − 1

)
(pm/2 + 1)

=
p(n+ 1)

pm/2 − 1
≤ 2(n+ 1)

2m/2 − 1
.
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For every p with pm ≤ n, by Lemma 15, there exists an algebraic function field F/Fpm of genus
g ≤ i(m,n) such that it has at least n + 1 distinct Fpm-rational points. We label these n + 1
pairwise distinct Fpm-rational points P∞, P1, P2, . . . , Pn. Let f2, f3, . . . , ft+g+1 be a Fpm-basis of
L((t+ 2g− 1)P∞) and extend to a Fpm-basis f1, f2, f3, . . . , ft+g+1 of L((t+ 2g)P∞). Let A be the
matrix defined in (9) and put G(p) = ϕ(A).

By Corollary 14, for any subset S of [n] or size r with r ≥ k+ 2(n+1)

2m/2−1 ≥ k+ g, G
(p)
S has Fp-rank

equal to km; and for any subset T of [n] of size t with t ≤ k − 2(n+1)

2m/2−1 − 1 ≤ k − g − 1, NT has

Fp-rank mt. Now by the Chinese Remainder Theorem, we can lift all G(p) to a matrix G ∈ Znm×km
such that G ≡ G(p) (mod p). The desired result follows.

6 The main results

We are ready to state our final results by collecting some previous results.

Theorem 6. For any 0 < t < n, there is a threshold BBSSS over the access structure Rt,n whose
expansion factor % satisfies log n+1

2 ≤ % ≤ 1 + dlog ne.

Proof. The lower bound follows Theorem 5 directly. By applying the matrixG obtained in Corollary
11 to Proposition 6, we obtain the desired upper bound.

The above upper bound is better than the one given in [12] by an additive constant and worse
than the one given in [14] by an additive constant.

Theorem 7. Let m ≥ 2 be an even integer. Then for any integer n ≥ 2 and any integer k with

2(n+ 1)

2m/2 − 1
< k < n− 2(n+ 1)

2m/2 − 1
, r ≥ k +

2(n+ 1)

2m/2 − 1
, t ≤ k − 2(n+ 1)

2m/2 − 1
− 1,

one has msp(Rt,r,n) ≤ n(1 + m). As a result, for any 0 < t < n − 2
⌈

2(n+1)

2m/2−1

⌉
and r with r =

t+2
⌈

2(n+1)

2m/2−1

⌉
+1, there is a near-threshold BBSSS over the access structure Rt,r,n whose expansion

factor % satisfies
m

2
− 3 ≈ log

n+ 1

2(r − t)
≤ % ≤ m+ 1.

Proof. The lower bound on msp(Rt,r,n) follows Theorem 5 directly. By applying the matrix G
obtained in Corollary 14 to Proposition 6, we obtain the desired upper bound msp(Rt,r,n).

An immediate consequence of Theorem 7 is the following result showing that our near-threshold
black-box secret sharing schemes are expansionless.

Main Theorem 1. For any odd integer % ≥ 3, there exists a near-threshold BBSSS over the
access structure Rt,r,n with expansion factor % and r − t = exp(−O(%))n. Furthermore, this is
expansionless, i.e., every near-threshold BBSSS over the access structure Rt,r,n with expansion
factor % must obey r − t = exp(−Ω(%))n.

Proof. The first part follows from Theorem 7, while the second part follows from Theorem 5.
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A The subfields of the Garcia-Stichtenoth tower

In the original Garcia-Stichtenoth tower {Ei/Fpm}∞i=1 (see [21, 22], the extension degree [Ei+1 :
Ei] = pm for all i ≥ 1. However, in order to have a tower of slowly growing genus, we split each
extension Ei+1/Ei into m extensions of degree p.

Lemma 15. Let m be an even number and let p be a prime. Then there exists a function field
family {Fi/Fpm}∞i=1 such that, for every i ≥ 1, the genus g(Fi) is upper bounded by pi(pm/2 + 1)
and the number N(Fi) is lower bounded by pi(pm − 1).

Proof. Put r = pm/2. Let E1 ⊆ E2 ⊆ . . . be the tower of global function fields over Fpm constructed
by Garcia and Stichtenoth [21], that is, E1 = Fpm(x1) is a rational function field and En+1 =
En(zn+1) for n = 1, 2, . . . with

zrn+1 + zn+1 = xr+1
n and xn+1 =

zn+1

xn
.

Then En+1/En is a Galois extension of degree r and Gal(En+1/En) ' Zm/2p for each n ≥ 1. Hence
there exists a chain of fields

En = Kn,0 ⊂ Kn,1 ⊂ . . . ⊂ Kn,m/2 = En+1

such that [Kn,i+1 : Kn,i] = p for 0 ≤ i ≤ m/2− 1. From results in [21] we know that for all n ≥ 1
we have

g(En) ≤ rn + rn−1, N(En) ≥ (pm − 1)rn−1 + 1.

The last inequality implies

N(Kn,i) ≥
N(En+1)

[En+1 : Kn,i]
≥ pi(pm − 1)rn−1 + 1 for 0 ≤ i ≤ m/2.

Next we establish an upper bound for g(Kn,i). From [21] we know that for each place P of
En that is ramified in the extension En+1/En we have νP (xn) = −1, and therefore we obtain
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νP (xr+1
n ) = −r− 1. It follows that P is totally ramified in En+1/En. According to [21], the sum of

the degrees of these places P is equal to rbn/2c, and so the same holds for the sum of the degrees
of the places P ′ of Kn,i that are ramified in En+1/Kn,i, where 0 ≤ i ≤ m/2 − 1. For any such P ′

and the unique place P ′′ of En+1 lying over it we have

d(P ′′|P ′) = (pm/2−i − 1)(r + 2).

By combining these facts with the Hurwitz genus formula, we obtain

2g(En+1)− 2 = pm/2−i(2g(Kn,i)− 2) + rbn/2c(r + 2)(pm/2−i − 1)

for 0 ≤ i ≤ m/2, and so

g(Kn,i) ≤
pi

r
(g(En+1)− 1)− 1

2
rbn/2c−1(r + 2)(r − pi) + 1 ≤ pi

(
rn + rn−1

)
.

Taking {Fi} be the family {K0,0,K0,1, . . . ,K0,m/2,K1,0,K1,1, . . . ,K1,m/2, . . . } gives the desired re-
sult.
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