
KORGAN: An Efficient PKI Architecture Based on
Permissioned-Blockchain by Modifying PBFT Through

Dynamic Threshold Signatures

Murat Yasin Kubilay1,3, Mehmet Sabir Kiraz2, Haci Ali Mantar1, Ramazan
Girgin

1 Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey,
2 De Montfort University, School of Computer Science and Informatics, Leicester, UK

3 Deutsche Bank, Eschborn, Germany
muratkubilay@gtu.edu.tr, mehmet.kiraz@dmu.ac.uk, hamantar@gtu.edu.tr,

ramazangirgin@gmail.com

Abstract. During the last decade, several misbehaving Certificate Authorities
(CA) have issued fraudulent TLS certificates allowing MITM kinds of attacks
which result in serious security incidents. In order to avoid such incidents, Yakubov
et al. recently proposed a new PKI architecture where CAs issue, revoke, and val-
idate X.509 certificates on a public blockchain. In their proposal, each CA has
a smart contract on the blockchain for publishing the hash values of its issued
certificates and managing their revocation status. However, their proposal has
several security and privacy issues. First, TLS clients can only validate certifi-
cates through either full nodes or web services, but cannot verify the correctness
of the incoming responses. Second, certificate transparency is not fully provided
because CAs do not store the certificates themselves but only their hash values in
the blockchain which makes to detect fake ones impossible.
In this paper, we eliminate the issues of the Yakubov et al.’s scheme and pro-
pose a new PKI architecture based on permissioned blockchain with a modified
PBFT consensus mechanism. In our modified PBFT, the validators (i.e., the con-
sensus nodes) utilize a dynamic threshold signature scheme to generate signed
blocks. In this way, the trust to external entities can be completely eliminated
during certificate validation. More concretely, TLS clients can easily verify the
genuinity of the final state of the TLS certificates using signed block headers and
the Merkle proofs. Also, the privacy of the TLS clients is fully preserved during
validation process by avoiding additional communication with the external enti-
ties. Our scheme enjoys the dynamic property of the threshold signature because
TLS clients do not have to change the verification key even if the validator set
is dynamic. Furthermore, TLS clients are also not required to be a peer of the
blockchain network and avoid communication overhead. We implement our pro-
posal on private Ethereum network to demonstrate the experimental results. The
results show that our proposal has negligible overhead during TLS handshake.
The certificate validation duration is less than the duration in the conventional
PKI and Yakubov et al.’s scheme.

Keywords: SSL/TLS, PKI, Certificate Transparency, PBFT, Dynamic Thresh-
old Signatures
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1 Introduction

TLS is the most widely used protocol in today’s internet providing a secure
channel in terms of authentication, confidentiality, and integrity between two
communicating peers [19]. Authentication of the peers takes place during TLS
handshake protocol using X.509 certificates [9]. These certificates are issued,
revoked, and managed under a set of policies, roles, and cryptographic methods
which have been modelled under the so-called Public Key Infrastructure (PKI).
In conventional PKI, CAs are assumed to be trusted organisations which verify
the identity of subjects (e.g., domain names) and issue certificates to domains.
However, during the last decade, some CAs issued fake but valid certificates
for even the well-known domains such as Google, Facebook, Hotmail, GMail,
Mozilla, Microsoft [12, 23] which could be used to apply MITM kinds of attacks
[11].

In order to reduce the ultimate trust to CAs, several public log based PKI
architectures are proposed such as Certificate Transparency (CT) [13], AKI [8],
and DTKI [28]. The main goal behind these architectures is to store the cer-
tificates in public logs, so that any certificate which has not been added to the
logs would be rejected by TLS clients during certificate validation, and a fake
certificate could be immediately detected since these logs are publicly visible
and monitored by all the related parties. However, these architectures still have
several issues if a strong adversary controls all the trusted entities. For an up-
to-date list of references, we refer to [11]. Recent studies [5, 11, 22, 26] show
that blockchain seems to be a promising technology to eliminate the trust to the
public logs by decentralizing their management.

1.1 Our Contributions

In this paper, we first revisit one of the most recent blockchain-based proposals
for PKI (i.e., the Yakubov et al.’s scheme), and address its security and privacy
issues within their certificate validation during TLS handshake.

More concretely, TLS clients can easily be deceived by fraudulent full nodes
or web services during certificate validation, because they cannot verify the va-
lidity of the incoming responses. Besides, fake but valid certificates also can-
not be detected since only the hash values of the certificates are stored in the
blockchain.

In order to elimate these issues, we improve their scheme and propose a new
PKI architecture. In summary, our scheme provides the following features.

– We use Practical Byzantine Fault Tolerance Algorithm (PBFT) [4] as the
consensus mechanism and modify it in such a way that consensus nodes
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hold a share of the blockchain signing key and a block can only be generated
if a threshold number [6, 20] of them approve the block by signing it by
their key share. Since we use a dynamic threshold signature scheme, once
the TLS clients receive the blockchain verification key they do not require
to change it even if the set of validators is dynamic.

– During TLS handshake, TLS clients can validate the certificates without re-
quiring to be a peer of the blockchain network. Moreover, they do not need
to make any further network connection and query other entities during this
process. In this respect, certificate and revocation transparency is now fully
provided so that the TLS certificates and their revocation status are pub-
licly monitored. Moreover, the privacy of the TLS clients is fully preserved
during certificate validation.

– CAs are not the sole authority to revoke certificates anymore but also cer-
tificate owners can revoke their certificates.

We implement a prototype4 of our proposal on Ethereum, and experiment
certificate validation. Our experimental results show that TLS clients can vali-
date certificates efficiently (in constant time) depending on only their processing
power and memory. Moreover, TLS handshake overhead is insignificant in our
scheme.

1.2 Roadmap

In Section 2, we briefly describe the most recently proposed blockchain based
PKI architectures, and highlight their drawbacks. In Section 3, we revisit Yakubov
et al.’s scheme and elaborate its security and privacy issues. In Section 4, we
first describe our motivation to use dynamic threshold signatures based per-
missioned blockchains in our PKI architecture, and then describe our modified
PBFT consensus mechanism using dynamic threshold signatures. Finally, we
present our new PKI architecture, what we called KORGAN, which eliminates
the highlighted issues and provides a more efficient construction than the exist-
ing schemes. We discuss our implementation and experimental results in Section
5, and conclude the paper with future works in Section 6.

2 Related Work: Blockchain Based PKI Architectures

2.1 Blockchain-based Certificate and Revocation Transparency [22]

Wang et al. in [22] proposed to put all issued TLS certificates and their revo-
cation data (i.e., CRL, OCSP) to the blockchain by their corresponding web

4 Our prototype is available on https://github.com/efficient-pki-blockchain/.

https://github.com/efficient-pki-blockchain/
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servers. Each web server has a publishing key pair which is used to sign trans-
actions. A new publishing key has to be approved by a set of web servers us-
ing previously approved publishing keys. In this architecture, each transaction
has a validity period and the validity period of a certificate addition transaction
is shorter than the lifetime of a certificate. Therefore, a certificate is added to
the blockchain several times throughout its lifetime. If a certificate is revoked,
then the related OCSP response or CRL is also added to the blockchain in a
new transaction. During a TLS handshake, a web server sends the Merkle audit
proof (standard Merkle tree proof) of its latest certificate addition transaction
to the TLS clients. The TLS clients verify the Merkle proof using the block
headers which they receive from the P2P network asynchronously. However,
this architecture is subject to MITM kinds of attacks in the period of certificate
revocation and certificate addition transaction expiration time since certificate
addition transaction can be still valid and used for certificate validation even
though the certificate is revoked.

2.2 CertChain: Public and Efficient Certificate Audit based on
blockchain for TLS Connections [5]

CertChain [5] proposes a certificate management framework to publicly and
efficiently audit TLS certificates on a blockchain. In order to eliminate central-
ization problems of proof-of-work based consensus mechanisms [16, 24], the
authors introduce a new consensus protocol based on Ouroboros [10] which
incentivizes CAs and the miners for their honest behaviour. In this mecha-
nism, they introduce a new transaction structure which makes possible to search
the history of certificates without sequential traversal of all the blocks. Even
though CertChain proposes to find the revocation status of a certificate effi-
ciently through the bloom filters, it is not clear how the implementation of the
bloom filters fit to its transaction structure. TLS clients in CertChain ask the
validity of the certificates to the miners. They have to rely on their responses
which can make them subject to MITM kinds of attacks.

2.3 CertLedger: A new PKI model with Certificate Transparency based
on Blockchain [11]

The authors in [11] propose a new PKI architecture where all the TLS certifi-
cates are validated and stored in the blockchain. The entire certificate revocation
process and trusted certificate management are also conducted in the blockchain.
TLS clients are light nodes of the blockchain network and store block headers to
make a successful TLS handshake. However, becoming a peer of the blockchain
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network brings overhead in terms of storage and network communication for
many of the TLS clients.

2.4 A Blockchain-based PKI Management Framework [26]

Recently, in [26], Yakubov et al. proposed a new blockchain based PKI architec-
ture for issuing, revoking, and validating X.509 certificates. In this architecture,
certificate lifecycle is managed through smart contracts5 on the blockchain. Af-
ter creating a certificate, CA adds its hash value to an issuance list in its smart
contract. Similarly, to revoke a certificate, CA adds its hash value to a revoca-
tion list in the smart contract. More concretely, a CA smart contract stores an
array for all its issued certificates’ hash values, a map for the revoked certificates
which are referenced by the certificates’ hash values, and the CA certificate it-
self. Clients can validate certificates through either sending requests to web ser-
vices or triggering certificate validation smart contract. The CA smart contract
is created in such a way that its methods can only be triggered by its owner CA.

3 Security and Privacy Analysis of the Yakubov et al.’s Scheme

In this section, we first briefly describe the Yakubov et al.’s Scheme and then
point out its security and privacy issues.

3.1 High-Level Description of the Yakubov et al.’s Scheme

In this scheme, each CA has a dedicated smart contract for issuing and revoking
certificates in the blockchain. More concretely, a CA smart contract contains the
following features:

– certList := {< indexi,certHashi,hashAlgi,datei >: 1≤ i≤ α} where indexi is the
auto generated index for the i-th certificate, certHashi is the hash value of
the i-th issued certificate using hashAlgi, datei is the addition date of the
certificate to the blockchain, and α is the number of certificates.

– revocationMap := {< indexi,revokeDatei >: 1≤ i≤ α} where indexi is the in-
dex of i-th certificate in the certList, revokeDatei is the revocation date of
the i-th certificate, and and α is the number of certificates.

– Its CA certificate CertCA.

5 A smart contract [21] is a self enforcing digital application which contains data and an im-
mutable code to manage it. It can be triggered through transactions in the blockchain.
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Once a certificate is issued, the CA adds the hash value of the certificate
to certList. Similarly, to revoke a certificate, CA adds the index of the certList
and the revocation date to the revocationMap. The certificates in this proposal
basically comprise several custom X.509 extensions such as CA key identifier
and Issuer CA identifier:

– CA key identifier is populated with the CA smart contract address in the CA
certificates.

– Issuer CA identifier stores the smart contract address of the issuer of a cer-
tificate. This extension is populated for all the certificates apart from the
root CA certificates. In fact, it is used for building a trusted path and finding
the smart contract address of the issuer of a certificate during the certificate
validation.

Certificate validation can be performed in two different methods.

– In the first scheme, the certificate validation algorithm is implemented in a
smart contract. This smart contract triggers all the CA smart contracts in the
trusted path of a certificate. It validates the existence and the revocation sta-
tus of all the certificates within this path. This scheme can only be triggered
through a full node of the blockchain.

– In the second scheme, certificate validation is delegated to a web service.
The web service queries the revocation status of all certificates in the trust
chain one by one from a full node.

According to the experimental results, the performance of the second certifi-
cate validation scheme has a higher performance than the first one for the trust
chains up to 400 sub-CAs. We depict the TLS system architecture with these
certificate validation schemes in Figure 1.

3.2 Fake but valid certificates cannot be identified

The transparency of the certificates is not fully provided in Yakubov et al.’s
scheme since only certHashis are stored in the CA smart contracts. Since it is
infeasible to derive the subject of a certificate from certList, it would not be pos-
sible for a domain owner to identify and revoke a fraudulent certificate. Conse-
quently, during a TLS handshake, clients could accept fake but valid certificates
allowing MITM kinds of attacks.

3.3 Certificates may not be revoked in case of corrupted CAs

CAs may have to revoke their issued certificates for several reasons such as
key compromise or information change (e.g., DNS name). However, if a CA is
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Fig. 1: The TLS System of Yakubov et al.’s Scheme

compromised or does not have a proper revocation process, the certificate may
not be revoked in a reasonable time frame or may not be revoked at all. This CA
dependent process makes the TLS clients vulnerable to MITM kinds of attacks
between the compromise and the revocation time of the certificate.

3.4 Certificate validation services can be compromised

The proposed certificate validation schemes (described in Section 3.1) are sub-
ject to MITM kinds of attacks. TLS clients have to rely on either the full nodes
or the web service, and trust their certificate validation responses. Because these
responses do not contain any cryptographic proofs of correctness. Hence, clients
can easily be deceived if the full nodes6 or web services are corrupted.

Building the trust chain of a certificate is one of the critical components of
certificate validation. This process is not fully clarified in the proposal which
may be a cause of MITM attacks as well. Namely, creation of CA smart con-
tracts on the blockchain is not subject to authorization, therefore an adversary

6 Full nodes do not execute a transaction which changes the state of the blockchain while run-
ning certificate validation smart contract, but only queries blockchain data. Therefore, its ma-
licious behaviour does not have any impact on blockchain.
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can deploy a smart contract for a malicious CA which stores fraudulent certifi-
cates issued by this fake CA. In this case, TLS clients could be subject to MITM
kinds of attacks since they are going to validate these fake certificates through
the proposed certificate validation schemes.

3.5 A privacy issue while certificate validation

As said before, TLS clients cannot validate the certificates themselves (trivially,
if they are not a full node of the blockchain). In that case, they have to query
a full node or a web service for this purpose. However, this process is not also
privacy preserving since these intermediary entities can track the web addresses
visited by the TLS clients.

4 Our Proposal: KORGAN

4.1 Our Motivation: Why Dynamic Threshold Signatures based
Permissioned Blockchains?

In order to eliminate the security and privacy issues mentioned in Section 3,
TLS clients should be able to use a publicly available blockchain which would
include all issued certificates as well as their status without relying any external
parties during a certificate validation process. However, this introduces an ex-
tra overhead for both permissionless and permissioned blockchains since they
have to first verify the validity of the blocks (or only the headers) [25]. More
concretely,

– In case of permissionless blockchains, there is going to be a significant
network overhead for TLS clients because they need to be a peer of the
blockchain network to determine the valid blocks due to the underlying con-
sensus mechanism [10, 16, 24].

– In case of permissioned blockchains, they have to query a certain number of
consensus nodes (i.e., 2N + 1 in PBFT [4] which requires 3N + 1 replicas
to tolerate N Byzantine failures). This requirement would also become a
burden with the increasing number of consensus nodes.

Therefore, becoming a peer of the blockchain network or querying consen-
sus nodes would going to be infeasible for many of the TLS clients due to lim-
ited storage capacity, processing power, or low bandwith. In order to eliminate
this overhead, we require authentic blocks which would enable TLS clients to
verify their validity efficiently. However, permissionless blockchains are unfor-
tunately not suitable for generating signed blocks because any peer could join
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the blockchain network and could generate a new block which makes determi-
nation of a signature (private) key and distribution of the verification (public)
key to the TLS clients infeasible. On the other hand, permissioned blockchains
would be more suitable for generating signed blocks since only a limited number
of consensus nodes are authorized to generate the new blocks. Still the following
requirements must be satisfied for an efficient and scalable solution:

1. Management of the verification key should not be a burden for the TLS
clients. Namely, after they receive an authentic verification key they should
not be able to change it frequently.

2. There must be only one signature on a block to be optimally scalable.
3. The verification key should not be also changed with the varying number of

consensus nodes (i.e., in case of adding new nodes or removing the existing
ones). Otherwise, all TLS clients must subsequently update the verification
key which would also make the system practically infeasible.

To tackle these requirements, we propose to use dynamic threshold signature
schemes among the consensus nodes for signing the new blocks [2, 20]. As
in a typical threshold signature scheme, there is going to be only one public
key (for verifying a signature) of the overall system, and the private key shares
will be owned and managed by the corresponding consensus nodes. If at least a
threshold number of consensus nodes agree on a block, then they are going to
sign the new block with their private key shares to generate a valid signature.

We highlight that the underlying consensus of Facebook Libra also utilizes
threshold signatures [1, 3, 27], however, their solution does not propose dynamic
versions of threshold schemes which would incurs significant overhead to our
scheme.

This is because it does not the meet the above-mentioned third requirement,
and a change in the underlying consensus nodes would result in an update in
the clients’ public (verification) keys. Thanks to the authors of [6, 20], we have
efficient threshold schemes which indeed meet all the requirements and ensure
that the remaining consensus nodes are able to add new consensus nodes or
remove the corrupted nodes efficiently through only updating their secret shares
without changing the overall verification key.

4.2 Our Approach: A Modified PBFT Consensus Mechanism Through
Dynamic Threshold Signatures

The seminal Practical Byzantine Fault Tolerance (PBFT) algorithm aims to
reach consensus through Byzantine nodes that tolerates Byzantine failures with
low overhead [4]. In particular, PBFT basically uses state-machine replication
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and replica voting for changing the state in the network. All nodes acting as
validators7 have equal votes, and validation is executed through multiple rounds
to reach the consensus. PBFT utilizes digital signatures to ensure the authentic-
ity of the messages. Nodes have to verify all the signatures received from their
peers during each phase of the consensus rounds.

In our blockchain architecture, we utilize a dynamic threshold signature
scheme on the PBFT consensus mechanism, and a valid block can only be gen-
erated if at least t-out-of-` consensus nodes sign the new block [6, 20]. A key
generation setup for threshold signature scheme is going to be executed among
predefined consensus nodes as follows:

Threshold Key Generation Setup Among Consensus Nodes We assume that
an existing PBFT blockchain with 3N + 1 consensus nodes has been already
setup [4]. Namely, the key generation ceremony will be completed using the
underlying PBFT consensus mechanism. More concretely,

1. Each i-th consensus node randomly chooses its secret key share SKi and
executes the threshold signature steps (like in [6, 20]), and publishes their
intermediate outputs on the blockchain (as a transaction). In particular, the
consensus nodes use the underlying blockchain as a public bulletin board to
publish and retrieve the necessary data to execute the key generation setup
properly.

2. Each consensus node queries the blockchain until all the consensus nodes
publish their partial signatures. A key generation setup would be completed
only after all the pre-defined consensus nodes participate to the ceremony8.

3. Once all the consensus nodes publish their partial signatures to the blockchain,
the selected leader constructs the overall public key and adds as a new trans-
action. More concretely, once the signature steps are validated through the
consensus mechanism, (PK, (SK1,· · · ,SK`)) become the verification key and
signing key share of the i-th consensus node, respectively.

4. Once the key generation ceremony is completed succesfully, the consensus
nodes (i.e., the signers) will only generate and accept signed blocks.

Block Generation through PBFT with Dynamic Threshold Signatures Now,
we have now a dynamic threshold signature variant of PBFT on our new modi-
fied chain. As in PBFT, the consensus mechanism would run in rounds with one

7 Trivially, as in any permissioned blockchain, we require the validators to be selected from
political and geographical disparate entities.

8 If they do not take part in the ceremony, they will not be able to send signed messages during
the consensus phase.
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Fig. 2: The TLS System of KORGAN

node acting as a leader and others as validators. In order to sign a new block in
our new and modified PBFT, the consensus nodes (i.e., the signers) are going
to execute the following threshold signature generation ceremony to confirm a
block.

– Pre-prepare phase: As in PBFT, the goal of this phase is to ensure that a
majority of honest nodes has agreed on a sequence number for a leader’s
request. In our flow, the leader initiates the consensus process by sending its
partially signed PRE-PREPARE message (using SignSKi) which is a block
proposal containing a certain number of transactions.

– Prepare phase: Upon receiving the PRE-PREPARE message, every node
in the consensus group checks the correctness and validity of the block and
multicasts its partially signed PREPARE message (using SignSKi) to all the
other nodes.

– Commit phase: Based on the received PREPARE messages, each node
combines t signatures, computes a valid signed message, and then multi-
casts a signed COMMIT message (i.e., "YES/NO") to the consensus group.
The new block is committed to the blockchain only if a valid signature gen-
erated.



12 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar, Ramazan Girgin

At the end of the commit phase, all honest nodes in the consensus group
would have the same view regarding to the state of blockchain by either accept-
ing or rejecting the block proposal, thereby achieving the confirmed transaction.
Consequently, the authenticity of a block (or a block header) can easily be veri-
fied by any TLS cilent using the verification key PK. Since the underlying con-
sensus mechanism relies on PBFT, up to N nodes could suffer from Byzantine
failure. Therefore, t = N+1 out of 3N+1 nodes would be sufficient to preserve
the same security level of the underlying consensus mechanism.

Note that the feasibility of our consensus mechanism does not change if
the validator set is dynamic because it only relies on an arbitrary set of signers
participating in the signature process. Moreover, a correct leader, once selected,
sends messages to only O(n) validators to reach the consensus as in [27].

4.3 The architecture of KORGAN

In our PKI model, we use a permissioned blockchain with a modified PBFT
consensus mechanism which enables TLS clients to easily verify the final state
of a certificate.

To achieve this, consensus nodes maintain a State Merkle Tree (SMT)9

which is used to store and verify the state of all accounts, smart contract codes
and the data within the smart contracts. SMT is updated with each block accord-
ing to the block transactions and its Merkle root is put into the generated block
header10. Since we store all the issued certificates and their revocation status
in the smart contracts, their state can also be tracked in every block. Moreover,
their state can be verified using the Merkle proof generated from the SMT and
the Merkle root. Since Merkle root is stored in the signed block header and its
authenticity can be verified by PK, TLS clients can easily check the validity of
a certificate without relying any parties during TLS handshake.

In order to implement our PKI model, we modify the CA smart contract
in Yakubov et al.’s scheme in such a way that, instead of storing an array with
certificate hash values and a map for the revoked certificates, we store two maps
in it. The first map is certURIMap := {(urii,< certHashi, j >) : 1≤ i≤ α,1≤
j ≤ β} where urii is the i-th certificate subject (or subject alternative name),
certHashi, j is the hash of the j-th certificate of the i-th uri, and α,β ∈N+. This
map provides the transparency of the certificates, and the domain owners can

9 Modified Merkle Patricia Tree [7] can be used for this purpose where search, insert and update
operations can be performed in logarithmic time.

10 A sample block header of KORGAN’s architecture is depicted in Figure 2.
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use it to monitor11 the blockchain if a fraudulent certificate is issued for their
web servers.

The second map is used to track the revocation status of the certificates and
represented as certRevocationMap := {< certHashk, rsk >: 1 ≤ k ≤ γ} where
certHashk is the k-th certificate hash, rsk is the revocation status (“revoked",
“valid") of the k-th certificate, and γ ∈ N+.

In our CA smart contract, a certificate can only be added to the blockchain
by its issuing CA. However, the status of the certificate can be changed as “re-
voked" by both its issuing CA and owner. A certificate owner can only trigger
the revocation method of the smart contract if he can prove his ownership to the
certificate. Therefore, this method requires a signature generated by the private
key of the certificate.

Note that block confirmation time must be short enough to discourage adver-
saries to perform a MITM kind of attack during block time. In this respect, due
to the underlying PBFT mechanism and dynamic threshold signature scheme,
our consensus scheme provides high throughput and low transaction latency
similar to LibraBFT [14] which meets our requirements.

Algorithm 1 Verify Header

.header denotes the block header of the block which will be used to validate the state of the
certificates, PK denotes the public key of the blockchain, latestAcceptableTime denotes the
latest generation date of the header acceptible by the TLS client
function VERIFYHEADER(header, PK, latestAcceptableTime)

.verify that the block header is genuine
if verifyBCHeaderSgn(header.signature,PK) = false then

return f alse
end if
.verify that the block header is not too old
if (header.timestamp≥ latestAcceptableTime AND

header.timestamp < tnow) = f alse then
return f alse

end if
.otherwise return true
return true

end function

11 Event listeners can be used for this purpose which triggers certain events (e.g., SMS, e-mail
etc.) in case a certain condition is satisfied in the smart contract.
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Algorithm 2 Validate Certificate Chain

.certChain denotes the CA certificates in TLS certificate trust chain, proo f ForCertStatusList
denotes the list of Merkle proofs for the status of each certificate in the trust chain except root
CA certificate
function VALIDATECERTIFICATECHAIN(certChain, proo f List, trustedCAList, header)

.verify that the root CA in the certificate chain is in the trusted CA address list
if certChain[certChain.length].caKeyIdenti f ier /∈ addrTrustedCAList then

return f alse
end if
.verify that the certificates in the TLS chain (except root CA certificate) are not revoked.

note that if the certificates doesn’t exist in the smart contract merkle proofs can not be verified
for i← 1 to certChain.length−1 do

cert ← certChain[i]
certCA← certChain[i+1]
if ValidateCertificate(cert, certCA, proo f List[i], header.stateRoot) = false then

return f alse
end if

end for
.otherwise return true
return true

end function

4.4 Certificate Validation of KORGAN in SSL/TLS

TLS clients are not required to be full or light nodes of the blockchain, thus do
not have to retrieve any blocks (or headers) from the blockchain network. For
certificate validation, they only need to store PK to verify the authenticity of the
block headers and the trusted root CAs’ smart contract addresses to construct
the trust chain. On the other hand, TLS servers have to periodically retrieve the
block headers and the Merkle proofs associated with their TLS certificate chain
from a full node of the blockchain. The retrieval process is independent of the
TLS handshake and can be conducted asynchronously.

KORGAN does not change the TLS handshake protocol but introduces new
TLS extensions to be used during the ServerCertificate step of the protocol (see
Figure 2). In these extensions, a TLS server sends the latest block header, cer-
tificate chain, and a list of Merkle proofs for the revocation status of each cer-
tificate in the chain to the TLS client. A TLS client performs the following steps
to validate the TLS certificate.

1. Verifies the signature of the block header by PK, and reads the authentic
block generation time and the SMT root from the block header.

2. Checks whether the block generation time is fresh enough according to its
security settings. However the acceptable freshness period should not be
shorter than the block time and it should not reject the latest block header.
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Algorithm 3 Validate Certificate

.cert denotes the certificate to be validated, certCA denotes the certificate of cert’s issuer,
merkleProo f is the merkle proof generated from SMT for cert, smtRoot denotes the root hash
value of SMT
function VALIDATECERTIFICATE(cert, certCA, merkleProo f , smtRoot)

caScAddr← cert.issuerCAIdenti f ier
certHash← Hash(cert)
.check whether certCA is the the issuer of cert
if caSCAddr 6= certCA.caKeyIdenti f ier then

return f alse
end if
.verify that certificate is valid using the state proof generated for the certificate
if verifyStateMerkleProof (merkleProo f , smtRoot,

certHash, caScAddr) 6= “valid" then
return f alse

end if
.otherwise return true
return true

end function

3. Checks whether the TLS certificate is issued from a trusted root CA by
searching the smart contract address (CA key identifier) of the root CA in its
trusted list.

4. Validates each certificate in the trust chain by validating the Merkle proofs
using the certificate’s hash value, its issuing CA’s smart contract address
(Issuer CA identifier) and the SMT root.

5. Checks the revocation status of each certificate in the trust chain (except root
CA certificate) and verifies that none of them are revoked.

Table 1: TLS Handshake Experimental Results
Number of TLS Certificates
in the CA Smart Contract

Header Data Size
(bytes)

Account Proof Data Size
(bytes)

Storage Proof Data Size
(bytes)

TLS Handshake Overhead Total
(bytes)

1 535 758 590 1883

100 535 758 1089 2382

1.000 535 758 1557 2850

10.000 535 758 2027 3320

The first and second step of our certificate validation algorithm is described
in more detail in Algorithm 1, third step in Algorithm 2, and finally fourth and
fifth steps in Algorithm 2 and 3. We would like to highlight that our algorithm
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does not require any further network connections, thus the privacy of the TLS
clients is also fully preserved. The execution time of the algorithm is not effected
from the network latency and only depends on the processing capability of the
TLS clients.

5 Implementation and Experimental Results

We have implemented KORGAN by updating the CA smart contract of Yakubov
et al.’s scheme12 [26] and experimented certificate validation with our scheme.
For the experiments, we deployed two smart contracts on private Ethereum net-
work so that we had two CAs in the trust chain. For generation and verification
of the state Merkle proofs, we used Eth-proof node-js API [29]. We executed
our experiments on a Macbook Pro with Intel Core i7 (3.1 Ghz) CPU, 16 GB of
memory and macOS Majove OS.

We demonstrate the experimental results for TLS handshake overhead in Ta-
ble 1 and elaborate them as follows. First, Header denotes the size of the block
header in Ethereum, therefore its size is constant and independent of certificates
in the smart contract. Second, AccountProo f is the proof generated to validate
the overall state of the smart contract (i.e., the account) comprising its balance,
code, and the stored data. Note that its size grows logarithmically with the num-
ber of smart contracts in the blockchain due to its Patricia Tree structure [7]. In
our first experiment, there was only one CA smart contract, therefore, the size of
the AccountProo f size is the same independently of number of TLS certificates.
Third, StorageProo f is also generated from Storage Merkle-Patricia Tree which
is different for all smart contracts in Ethereum. The root value of this tree is also
used while computing the state of the account. The size of the StorageProo f is
log2 n × c1 + c2 where n is the number certificates in an account, c1 is a con-
stant calculated by adding hash length forming the Merkle proof with the path
length between the nodes, and c2 is the size of input where its hash is calculated
to generate a leaf node in the Merkle tree. Hence, the overall TLS Handshake
overhead in our scheme is calculated as

|Header|+(|AccountProo f |+ |StorageProo f |)×n

where n is the number of CAs in the TLS certificate chain.
We note that certificate validation network overhead is not given in Yakubov

et al.’s scheme. On the other hand in the conventional PKI, the size of a CRL
changes with respect to the number of certificates issued by the CA. Even though
there are CRLs ranging up to 28 MB13, the CRL size for the median certificate is
12 https://github.com/snt-sedan/pki-blockchain
13 Apple hosts 28MB of CRL at http://crl.apple.com/wwdrca.crl
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Table 2: Certificate Validation Durations I
Number of TLS Certificates
in the CA Smart Contract

Certificate Validation
Duration (ms)

1 55,56

100 56,37

1.000 59,24

10.000 60,45

calculated as 51 KB in [15]. In case of OCSP usage for revocation checking, the
average size for an OCSP response is about ~4KB. Moreover, the total network
overhead increases with respect to the length of the trust chain.

Our experimental results in Table 2 demonstrate that the number of certifi-
cates in a CA smart contract does not significantly effect the certificate valida-
tion duration. On the other hand, in conventional PKI, if the revocation check
of a certificate is performed through OCSP, then the latency only due to the net-
work traffic is around 200 ms [18]. The total duration increases with respect to
the number of certificates in the trust chain. Since the size of CRLs are much
bigger than OCSP responses, their average downloading latency is also greater
then OCSP [17].

Table 3: Certificate Validation Durations II
Trustchain Length

(number of CA smart contracts*)
Certificate Validation

Duration (ms)

1 59,24

2 59,85

3 60,13

5 60,67

* There are 1000 certificates in each smart contract.
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6 Conclusion and Future Work

There have been recent serious security incidents due to misbehaving CAs which
have issued fraudulent certificates. To make CAs more transparent, various pub-
lic log based and blockchain based PKI models are proposed. In this paper,
we point out the security and privacy issues of one of the most recent propos-
als (belonging to Yakubov et al.) and eliminate them by proposing a new PKI
architecture, what we called KORGAN. KORGAN is based on permissioned
blockchain with a modified PBFT where the blocks are signed through dynamic
threshold signature scheme among consensus nodes. Due to the signed blocks,
TLS clients can now easily verify the final states of certificates without requiring
to be a peer of the blockchain network. Our experimental results on Ethereum
demonstrate that KORGAN does not bring any significant computational and
network overhead during certificate validation. Even more, the duration of our
certificate validation is less than the previous schemes.

Further research work mainly includes modifying KORGAN in such a way
that generating CA smart contracts could be restricted to only trustworthy CAs.
For this purpose, an international board can be established to audit the CAs
and sign the smart contract generation transaction using a threshold signature
scheme as well.
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