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Abstract

We show how to generalize lattice reduction algorithms to module lattices in order to reduce
γ-approximate ModuleSVP over module lattices with rank k ≥ 2 to γ′-approximate ModuleSVP
over module lattices with rank 2 ≤ β ≤ k. To do so, we modify the celebrated slide-reduction
algorithm of Gama and Nguyen to work with module filtrations, a higher-dimensional analogue
of the (Z-)basis of a lattice.

The particular value of γ that we achieve depends on the underlying number field K, the
ring R ⊂ K, and the embedding (as well as, of course, k and β). However, for reasonable choices
of these parameters, the approximation factor that we achieve is surprisingly close to the one
achieved by “plain” lattice reduction algorithms, which require an arbitrary SVP oracle in the
same dimension. In other words, we show that ModuleSVP oracles are nearly as useful as SVP
oracles for solving approximate ModuleSVP in higher dimensions.

Our result generalizes the recent independent result of Lee, Pellet-Mary, Stehlé, and Wallet,
which works in the important special case when β = 2 and R = OK is the ring of integers of
K under the canonical embedding. Indeed, at a high level our reduction can be thought of as a
generalization of theirs in roughly the same way that slide reduction generalizes LLL reduction.

1 Introduction

A (rational) lattice L ⊂ Qd is the set of all integer linear combinations of finitely many generating
vectors y1, . . . ,ym ∈ Qd,

L := {z1y1 + · · ·+ zmym : zi ∈ Z} .

For an approximation factor γ ≥ 1, the γ-approximate Shortest Vector Problem (γ-SVP) asks us
to find a non-zero vector y ∈ L whose length is within a factor γ of the minimum possible.

Lattices have played a key role in computer science since Lenstra, Lenstra, and Lovász published
their celebrated LLL algorithm, which solves γ-SVP for γ = 2O(d) in polynomial time [LLL82],
essentially by reducing the problem to many instances of exact SVP in two dimensions. In spite

∗This work was done while being supported by The Center for Science of Information, an NSF Science and
Technology Center, Cooperative Agreement # CCF 0939370.
†Supported by NSF-BSF grant number 1718161 and NSF CAREER Award number 1350619 via Vinod Vaikun-

tanathan.

1



of this very large approximation factor, this algorithm has found innumerable applications [LLL82,
Sha84, Bab86, SE94, NS01, NV10, FS10].

Lattices have taken on an even larger role in recent years because of the growing impor-
tance of lattice-based cryptography [Ajt96, HPS98, GPV08, Reg09, Pei09, SSTX09, LPR10, Pei16,
Mah18]—that is, cryptography whose security relies on the hardness of γ-SVP or a closely related
problem for some γ (typically, γ = poly(d)). These schemes have several advantages, such as worst-
case to average-case reductions, which show that some of these schemes are actually provably secure
under the assumption that γ′-SVP is hard [Ajt96, MR07, Reg09, LPR10, LS15, PRS17]. They are
also thought to be secure against quantum attackers, and for this reason, they are likely to be
standardized by NIST (the United States’ National Institute for Standards and Technology) for
widespread use in the near future [NIS18].

However, one drawback of these schemes is their inefficiency (though, see [BCD+16, ABD+19]
for some improvements). Loosely speaking, this inefficiency arises from the fact that a lattice in
dimension d “is typically specified with d2 numbers”—d generating vectors, each with d coordinates.
To get around this, cryptographers often use lattices with certain additional symmetries [HPS98,
PR06, SSTX09, LPR10, SS11, LS12, DD12, LS15, PRS17].

In particular, they use (variants of) module lattices. For a number field K of degree n (i.e.,
K := Q[x]/p(x) for an irreducible polynomial p(x) of degree n) with a full-rank discrete subring
R ⊂ K (such as Z[x]/p(x) when p ∈ Z[x] is monic, or the ring of integers OK of K), a module lattice
over R is the set of all R-linear combinations of finitely many generating vectors y1, . . . ,ym ∈ Kk,

M := {r1y1 + · · ·+ rmym : ri ∈ R} .

By embedding the number field K into Rn (or, equivalently, by equipping K with an inner product),
we can view module lattices as (k ·n)-dimensional “plain” lattices. We typically think of n as large
(i.e., n→∞) and k as a relatively small constant.

We can then define (γ, k)-ModuleSVP over R as the restriction of γ-SVP to module lattices
M ⊆ Kk over R. Clearly, (γ, k)-ModuleSVP is no harder than γ-SVP over lattices with rank kn.
A key question is whether we can do (significantly) better. In other words, are there (significantly)
faster algorithms for ModuleSVP than there are for SVP? Does the specialization to module lattices
(which yields large efficiency benefits for cryptography) impact security?

Many cryptographic schemes rely on the assumption that no such algorithms exist. E.g., about
half of the candidate encryption schemes under consideration by NIST would be broken in practice
if significantly faster algorithms were found for ModuleSVP [NIS18]. (Just one relies on “plain”
lattices.) We would therefore like to understand the hardness of ModuleSVP as soon as possible.

Until recently, one might have conjectured that (γ, k)-ModuleSVP is essentially as hard as γ-
SVP on rank kn lattices for all γ and k. However, a recent and still active line of work has shown
much faster algorithms for the k = 1 case [CGS14, CDPR16, CDW17, Duc17, DPW19, PHS19],
in which case the problem is called IdealSVP. Most cryptographic schemes are not known to be
broken by these algorithms, or even with access to an oracle for exact IdealSVP. However, simi-
lar improvement for the case k = 2 would yield faster algorithms for both the Ring-LWE prob-
lem [SSTX09, LPR10] and the NTRU problem [HPS98], which would break most of the cryp-
tographic schemes based on structured lattices. (We are intentionally ignoring many important
details here for simplicity. We refer the reader to [Pei15, Duc17, DPW19, PHS19] for a more
careful discussion.)

Therefore, (ignoring a number of important details) the security of many cryptographic schemes
essentially relies on the assumption that (γ, k)-ModuleSVP for k ≥ 2 is qualitatively different than
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γ-IdealSVP = (γ, 1)-ModuleSVP. More generally, this recent line of work in the k = 1 cases suggests
that we need a better understanding of (γ, k)-ModuleSVP for all γ and k.

Much of our understanding of γ-SVP comes from basis reduction algorithms [LLL82, SE94,
GN08, MW16, ALNS19]. These algorithms allow us to reduce γ-SVP in a high dimension d to γ′-
SVP in a lower dimension m (known as the block size) for some approximation factor γ depending
on d, m, and γ′. Indeed, the LLL algorithm is an example of such a reduction for the case
m = 2. For the approximation factors relevant to cryptography, our fastest algorithms rely on
basis reduction. In fact, these are essentially our only non-trivial provably correct algorithms for
not-too-small approximation factors (formally, for any γ �

√
d [ALNS19]).

I.e., to solve γ-SVP (or, for that matter, (γ, k)-ModuleSVP) for not-too-small γ, the best
strategy we have is to reduce the problem to many instances of SVP with a smaller approximation
factor over lower-dimensional “blocks.” The current state of the art, due to [ALNS19] and building
heavily on the work of Gama and Nguyen [GN08], achieves an approximation factor of

γ = γ′ · (γ′
√
βn)

2(k−β)
β−1/n (1)

for block size m := βn and dimension d := kn. For cryptanalysis, we typically must take β = Ω(k)
and γ′ ≤ poly(d) in order to achieve an approximation factor γ that is polynomial in the dimension
d = kn. (We have of course chosen this rather strange parameterization to more easily compare
with our results for ModuleSVP.)

1.1 Our results

1.1.1 Lattice reduction for Modules.

Our primary contribution is the following reduction.

Theorem 1.1 (Informal, see the discussion below and Theorem 5.10). For 2 ≤ β < k with β
dividing k, there is an efficient reduction from (γ, k)-ModuleSVP to (γ′, β)-ModuleSVP, where

γ = (γ′)2n · (γ′
√
βn)

2(k−β)
β−1 .

The case β = 2 is of particular interest because of its relevance to cryptography. We note
that, before this work was finished, Lee, Pellet-Mary, Stehlé, and Wallet published essentially the
same reduction for this important special case [LPSW19]. (Formally, they only showed this for
the canonical embedding for the ring of integers of a number field, but it is easy to see that it
generalizes. They also showed a very interesting algorithm for (γ, 2)-ModuleSVP, which requires
preprocessing. We refer the reader to [LPSW19] for the details.) For this β = 2 case, the reduction
can be viewed as a generalization of the LLL algorithm. (We present the β = 2 case separately in
Section 4.)

In the general case β ≥ 2, we note the obvious resemblance between the approximation factor
achieved by Theorem 1.1 and Eq. (1). Indeed, our reduction can be viewed as a generalization
of Gama and Nguyen’s celebrated slide reduction [GN08] to the module case (see also [ALNS19]).
Therefore, we can interpret Theorem 1.1 as saying that “a ModuleSVP oracle is almost as good as
a generic SVP oracle for basis reduction over module lattices.”

Finally, notice that this informal version of Theorem 1.1 does not mention the number field
K, the associated embedding, or the ring R. In fact, the reduction works for any number field K,
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(discrete, full-rank) ring R ⊂ K, and embedding of K into Rn, with two caveats. (See Theorem 5.10
for the precise statement.)

First, the approximation factor that we achieve depends on certain geometric properties of the
ring and the embedding. The approximation factor shown in Theorem 1.1 is (a loose upper bound
on) what we achieve for the canonical embedding of the ring of integers of a cyclotomic number
field.

Second, for β > 2 and ring embeddings that do not satisfy a certain duality condition (which
is, for example, satisfied by any ring in the canonical embedding that is closed under complex
conjugation), our reduction requires a ModuleSVP oracle over dual module lattices as well.

1.1.2 Two variants.

As additional contributions, we note that our reduction can also be used to solve two variants of
ModuleSVP. (Like Theorem 1.1, these two variants also require an oracle over dual module lattices
for β > 2 and insufficiently nice ring embeddings.)

The first variant is known as ModuleHSVP (where the H is in honor of Hermite). This problem
asks us to find a non-zero vector that is short relative to the determinant of the module lattice
M, rather than relative to the shortest non-zero vector. I.e., (γ, k)-ModuleHSVP asks us to find a
non-zero vector x in a rank-k module lattice M with ‖x‖ ≤ γ · det(M)1/(kn). For γ &

√
kn, there

is always a non-zero vector of this weight. In particular, (
√
nγ, k)-ModuleHSVP trivially reduces to

(γ, k)-ModuleSVP, but our reduction achieves a better approximation factor than what one would
obtain by combining this trivial reduction with Theorem 1.1. (The same is true of most “plain”
basis reduction algorithms [GN08, ALNS19], though some only work for Hermite SVP [MW16].)
This variant of SVP is enough for most cryptanalytic applications, so that this better approximation
factor could prove to be quite useful in practice. (In particular, the analogous result for plain basis
reduction algorithms is often used in cryptanalysis.)

Theorem 1.2 (Informal, see Theorem 5.10). For 2 ≤ β < k with β dividing k, there is an efficient
reduction from (γH , k)-ModuleHSVP to (γ′, β)-ModuleSVP, where

γH := γ′
√
n · (γ′

√
βn)

k−1
(β−1)

Again, the approximation factor shown in Theorem 1.2 is what we achieve for the canonical
embedding of the ring of integers of a cyclotomic number field. See Theorem 5.10 for the general
result.

Our second variant has no analogue for plain lattices. We consider the (γ, k)-Dense Ideal
Problem ((γ, k)-DIP), in which the goal is to find a rank-one submodule M′ (i.e., an ideal) such
that det(M′)1/n is within a factor γ of the minimum possible. This problem is in a sense more
natural in our context. Indeed, Theorem 1.1 is perhaps best viewed as a consequence of Theorem 1.3.
We again note the obvious similarity between Theorem 1.3 and Eq. (1). (There is an analogous
result for what we might call “RankinDIP,” which asks us to find an ideal whose determinant is
small relative to det(M)1/(nk), just like ModuleHSVP asks for a vector that is short relative to
det(M)1/(nk). For simplicity, we do not bother to make this formal.)

Theorem 1.3 (Informal, see Corollary 5.8). For 2 ≤ β < k with β dividing k, there is an efficient
reduction from (γ, k)-DIP to (γ′, β)-DIP, where

γ := γ′ · (γ′
√
βn)

2(k−β)
β−1 .
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In fact, Theorem 1.3 holds as stated for any number field, ring, and embedding. I.e., the
approximation factor does not depend on the geometry of the ring.

1.2 Our techniques

From bases to filtrations. Lattice basis reduction algorithms take as input a (Z-)basis
(b1, . . . , bd) of a lattice L ⊂ Qd and they iteratively “shorten” the basis vectors using an ora-
cle for SVP in m < d dimensions. More specifically, let Li be the lattice spanned by b1, . . . , bi.
Basis reduction algorithms work by finding short vectors in lattices of the form L[i,j] := πL⊥i−1

(Lj),
where πL⊥i

represents projection onto the subspace orthogonal to Li. In the basis reduction liter-
ature, the Li and L[i,j] are typically not defined explicitly. Instead, corresponding bases for these
lattices are defined.

To generalize this idea to module lattices, our first challenge is to find the appropriate analogue
of a basis. Indeed, while lattices with rank d over Z have a Z-basis consisting of d (linearly
independent) lattice vectors, the analogous statement is typically not true for more general rings
R. I.e., our module lattice M of rank k will not always have an R-basis consisting of only k
elements. (E.g., rank one module lattices are ideals, and they have an R-basis consisting of a single
element if and only if they are principle. More generally, all rank k module lattices have an R-basis
consisting of k vectors if and only if R is a principle ideal domain.) This means that basis-reduction
techniques do not really make sense over an R-basis, since, for example, the projection orthogonal
to the first i elements in an R-basis is not necessarily a module lattice with rank k − i.

So, instead of generalizing Z-bases themselves, we work directly with the sublattices Li and
blocks L[i,j]. To that end, we define a module filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of M as
a sequence of k (primitive) submodules with strictly increasing ranks (over K). Filtrations have
the nice property that the projection M[i,j] := πM⊥i−1

(Mj) of Mj orthogonal to Mi is itself a

module lattice with rank j − i + 1. They are well-behaved in other ways as well. For example,
the determinant of M is given by the product of the determinants of the rank-one projections
M̃i := πMi−1(Mi), which is analogous to the fact that the determinant of a lattice is given by the

product of the lengths of the Gram-Schmidt vectors b̃i of any basis. These are the key properties
that allow us to perform basis reduction using SVP oracle calls only on module lattices.1

From vectors to ideals (or sublattices). By working with filtrations, our reduction is most
naturally viewed as a “basis reduction algorithm” with Gram-Schmidt vectors πLi−1(bi) replaced
by ideals πM⊥i−1

(Mi), and lengths replaced by the determinant. This naturally gives rise to Theo-

rem 1.3—a reduction from DIP to DIP. Indeed, this DIP-to-DIP reduction actually “never looks at
a vector,” and it can be viewed as a specialization to module lattices of a more general reduction
from the problem of finding dense rank-n sublattices of a kn-dimensional lattice to the problem of
finding dense rank-n sublattices in a βn-dimensional lattice (though we do not bother to show this
formally).

From ideals back to vectors. In order to obtain our main result, we must convert this DIP-
to-DIP reduction into a reduction from ModuleSVP to ModuleSVP. To do so, we use well-known

1In [FS10, LPSW19], the authors work with pseudobases, which consist of vectors b1, . . . , bk ∈ Kk and ideals
I1, . . . , Ik ⊂ K such that M = I1b1 + · · · + Ikbk. These are essentially equivalent to filtrations. E.g., they can be
converted into filtrations by setting Mi := I1b1 + · · ·+ Iibi.

5



relationships between the length of short non-zero vectors and the determinants of dense rank-one
submodules. Specifically, we use (1) Minkowski’s theorem, which states that any dense submodule
must contain a short vector (and holds for all lattices, not just module lattices); and (2) the fact
that the R-span of a short vector must be a relatively dense ideal, which has no analogue for
lattices in general. (The latter property depends on the geometry of the ring, which is why our
approximation factors also depend on this geometry.)

Therefore, a ModuleSVP oracle can be used to find a short vector, which must generate a dense
ideal. And, we may use a DIP oracle to find a low-rank submodule that contains a short vector.
This allows us to move between DIP and ModuleSVP, which yields our main result.

1.3 Related work

The most closely related work to this paper is the recent independent work of Lee, Pellet-Mary,
Stehlé, and Wallet [LPSW19], which was published before this work was finished. [LPSW19] proved
Theorem 1.1 in the important special case when β = 2 and R = OK is the ring of integers of the
number field K under the canonical embedding. Their reduction is essentially identical to ours,
though they use a formally different notion of a reduced basis that seems not to generalize quite
as nicely for larger β.2 They also show a surprising algorithm for (γ, 2)-ModuleSVP (formally, a
reduction from this problem to the Closest Vector Problem over a fixed lattice), which can be used
to instantiate the (γ, 2)-ModuleSVP oracle.

For β > 2, our reductions are generalizations of the slide-reduction algorithm of Gama and
Nguyen [GN08], and our work is largely inspired by theirs. Indeed, both our notion of a reduced
filtration and our algorithm for constructing one are direct generalizations of the corresponding
ideas in [GN08] from bases of Z-lattices to filtrations of module lattices.

There are also other, rather different notions of basis reduction for module lattices from prior
work. For example, for certain Euclidean domains, Napias showed that the LLL algorithm (and
Gauss’s algorithm for rank-two lattices) generalizes quite nicely, with no need for an oracle [Nap96].
Follow-up work showed how to extend this to more Euclidean domains [GLM09, KL17]. However,
it seems that algorithms of this type can only work in the Euclidean case [LPL18], and for the
cryptographic applications that interest us most, the ring R is typically not Euclidean—or even a
principle ideal domain. (The algorithm of [LPSW19] for (γ, 2)-ModuleSVP is particularly surprising
precisely because it seems to mimic Gauss’s algorithm even though it works for non-Euclidean rings.)
In another direction, Fieker and Stehlé showed how to efficiently convert an LLL-reduced Z-basis for
a module lattice into an LLL-reduced pseudobasis, which in our language is essentially a filtration
that is reduced in a certain sense [FS10]. I.e., they show how to efficiently convert a relatively short
Z-basis into a relatively short filtration.

Finally, there are many works showing relationships between variants of LWE (an average-case
problem related to SVP) over different rings and other algebraic structures [LS12, DD12, RSSS17,
RSW18, BBPS18, PP19], and other works showing reductions from various worst-case problems on
structured lattices to such variants of LWE and SIS [LM06, PR06, Mic07, SSTX09, LPR10, LS12,
LS15, RSSS17, PRS17, RSW18].

2Specifically, in the notation introduced above, they work with the ratio of det(πM⊥i−1
(Mi)) to det(πM⊥i

(Mi+1)),

while we work with the ratio of det(πM⊥i−1
(Mi)) relative to the minimum possible for a rank-one submodule of

πM⊥i−1
(Mi+1). The distinction is not particularly important for β = 2, but the analogous conditions for β > 2 are

quite different. In particular, the most natural generalization of the first notion seems to only yield a solution to
ModuleHSVP.
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2 Preliminaries

For x ∈ Kk and a subspace W ⊆ Kk, we write πW (x) for the projection of x onto W . I.e., if
b1, . . . , b` is an orthonormal basis of W , then πW (x) = 〈b1,x〉 · b1 + · · ·+ 〈b`,x〉 · b`. We similarly
define πW (S) := {πW (x) : x ∈ S} for subsets S ⊆ Kk.

2.1 Lattices and Rankin’s constants

A lattice L ⊂ Rd with rank m is the Z-span of some basis B := (b1, . . . , bm) of R-linearly indepen-
dent vectors,

L := {z1b1 + · · ·+ zmbm : zi ∈ Z} .

We sometimes call this a Z-basis, and we write m := rankR(L). Equivalently, lattices are additive
subgroups of Rd with at most finitely many points inside any bounded set. Equivalently again, a
lattice L is the Z-span of any (not necessarily linearly independent) vectors y1, . . . ,ym′ ∈ Rd if any
R-linear dependence a1x1 + · · · + a`x` = 0 for ai ∈ R and xi ∈ L is also a Q-linear dependence,
i.e., ai ∈ Q. (E.g., the Z-span of (1, 0) ∈ R2 and (

√
2, 0) ∈ R2 is not a lattice, but the Z-span of

(1, 0) ∈ R2 and (
√

2, 1) ∈ R2 is a lattice.)
The lattice determinant det(L) :=

√
det(BTB) for any basis B of L (the choice of basis does

not matter). A lattice is full rank if m = d, and we sometimes assume that lattices are full rank,
which we may do without loss of generality by identifying spanR(L) with Rm.

We write λ1(L) := miny∈L\{0} ‖y‖ for a length of the shortest non-zero vector in L.
The dual lattice L∗ is the set of vectors in the span of L whose inner product with all lattice

vectors is integral,
L∗ := {w ∈ spanR(L) : ∀y ∈ L, 〈w,y〉 ∈ Z} .

The dual has as a basis B(BTB)−1 for any basis B of L, and in particular, (L∗)∗ = L and
det(L∗) = 1/ det(L). We also have the identity πW (L)∗ = W ∩ L∗ for any subspace W ⊂ Rn,
provided that πW (L) is a lattice. (Equivalently, this holds for any subspace W that is spanned by
dual lattice vectors.)

For a full-rank lattice L ⊂ Rd and 1 ≤ m ≤ d, we write

δm(L) :=
1

det(L)1/d
min
L′⊆L

det(L′)1/m ,

where the minimum is over sublattices with rank m. (The minimum is achieved because the lattice
is discrete.) Then, Rankin’s constants are defined as

δd,m := sup
L⊂Rd

δm(L) ,

where the supremum is over full-rank lattices.
For example, in the case m = 1, Rankin’s constant δd,1 is just Hermite’s constant, i.e., the

maximal value of λ1(L) for determinant-one lattices. For convenience, we write δd := δd,1 for
Hermite’s constant.

Minkowski’s celebrated theorem shows us that δd ≤
√

2d/(πe), and this is known to be tight
up to a small constant factor. For larger m, Rankin’s constant is not known as precisely, but we
do know the following.
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Theorem 2.1. For any n, β ≥ 1

C(βn)(1−1/β)/2 ≤ δβn,n ≤ (βn)(β−1)/2·log((β+1/n)/(β−1+1/n)) ≤
√
βn

for some universal constant C > 0.

The lower bound is from [SW14], and the upper bound is from [HS12, Lemmas 4.2 and 4.3].
We typically think of β as a small constant.

2.2 Number fields and (linear) embeddings

A number field K is an algebraic extension of the rational numbers Q. I.e., K = Q[x]/p(x) for
some irreducible polynomial p(x) ∈ Q[x]. The degree n of the number field is simply the degree of
the polynomial p. In particular, a degree-n number field is isomorphic as a Q-vector space to Qn.
(To see this, notice that the elements 1, x, x2, . . . , xn−1 ∈ K form a Q-basis for K.)

For our purposes, an embedding of a number field K with degree n into Rn is simply an injective
linear map f : K → Rn such that spanR(f(K)) = Rn. (These are linear embeddings, not to be
confused with field embeddings, which must map a field to a field.) E.g., the coefficient embedding
simply maps the polynomial y := y0 + y1x + · · · + yn−1x

n−1 ∈ K = Q[x]/p(x) to the vector
(y0, y1, . . . , yn−1).

We always assume that a number field comes equipped with an embedding, and since the
embedding is injective by assumption, we do not bother to write the map f explicitly. Instead, we
simply make no distinction between a field element y ∈ K and its unique image f(y) under the
embedding. E.g., we write spanR(K) := spanR(f(K)); y = (y1, . . . , yn) := (f(y)1, . . . , f(y)n) ∈ Rn;
‖y‖ := ‖f(y)‖, where ‖ · ‖ is the Euclidean norm on Rn; etc. Notice in particular that this notion
of length extends to vectors y := (y1, . . . , yk) ∈ Kk as

‖y‖ := (‖y1‖+ · · ·+ ‖yk‖)1/2 .

2.3 Rings, ideals, and module lattices

A discrete, full-rank subring R ⊂ K is a subring of K such that (1) R is finitely generated; (2) any
element x ∈ K can be represented as x = r/q for some q ∈ Z \ {0} and r ∈ R. Throughout this
paper, we always assume that our ring has these properties.

A (fractional) ideal I of R is the R-span of finitely many elements y1, . . . , ym ∈ K,

I := {r1y1 + · · ·+ rmym : ri ∈ R} .

More generally, a module latticeM over R is the R-spans of finitely many vectors y1, . . . ,ym ∈ Kk

M := {r1y1 + · · ·+ rmym : ri ∈ R} .

The rank (over K) of a module lattice is the dimension (over K) of its span (over K), rankK(M) :=
dimK(spanK(M)). We abuse language a bit and sometimes refer to rank-one module lattices as
ideals since (as we will see below), rank-one module lattices are isomorphic to ideals. We say that
such an ideal is principal if it is the R-span of a single element x ∈ Kk, and we say that x generates
the ideal.
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As the name suggests, module lattices are themselves lattices (when viewed as subsets of Rkn).
To see this, it suffices to take a Z-basis r1, . . . , rn of R and to observe thatM is the Z-span of riyj .

3

This in particular means that it makes sense to talk about, e.g., det(M), λ1(M), M∗, rankR(M),
etc.

Furthermore, we have rankR(M) = n · rankK(M). To see this, it suffices to notice that for any
S ⊆ Kk, dimR spanR({ry : r ∈ R,y ∈ S}) = n · dimK spanK(S).

We say that a ring R ⊂ K (with some embedding) is dual-closed if for every module lattice
M⊂ Kk, the dual lattice M∗ is also a module lattice.

Notice that for any K-linear transformation T : Kk → Kk′ and any module lattice M ⊂ Kk,
T (M) is also a module lattice. (This is not true for R-linear transformations.)

For example, if T : Kk → Kk′ is an isometry on spanK(M) with k′ := rankK(M), then T allows
us to identify spanK(M) with KrankK(M), and therefore to assume without loss of generality that
M is full rank. For example, if M has rank one, then we may assume without loss of generality
that it lies in K, i.e., that it is a (fractional) ideal. (This justifies our use of the term ideal to refer
to all rank-one module lattices.)

More generally, for any K-subspace V ⊆ Kk and any module lattice M ⊂ Kk, M∩ V is a
module lattice (possibly {0}).

Another important example is when T := π(M′)⊥ is the projection map onto the space orthogo-
nal to some submodule latticeM′ ⊆M, in which case we have det(M) = det(M′) det(π(M′)⊥(M)).

2.4 Some geometric quantities of rings and modules

For a ring R in a particular embedding, we define

αR := min
I⊂R

λ1(I)

det(I)1/n
,

where the minimum is over all ideals I ⊂ R. (Notice that αR depends heavily on the choice of em-
bedding, so perhaps formally we should write αR,f , where f is the embedding. We write αR instead
for simplicity.) The minimum is in fact achieved. Notice that αR also bounds λ1(M)/ det(M)1/n

for any rank-one module lattice M⊂ Kk (since these are just ideals in disguise).
For a module lattice M, we define

τ1(M) := min
I⊂M

det(I)1/n ,

where the minimum is over the rank-one submodules I ⊂ M (i.e., ideals). (Again, the minimum
is achieved because M is discrete.) This quantity can be viewed as a different way to generalize
λ1(L) to module lattices over arbitrary rings. I.e., the rank-one “submodules” of a “module” L
over Z are lattices spanned by a single vector, and the determinant of such a “submodule” is just
the length of this vector (which is unique up to sign). So, over Z, τ1 = λ1. For higher-dimensional
rings R, the rank-one module lattices are n-dimensional lattices, which do not naturally correspond
to a single vector. So, τ1 and λ1 are distinct quantities.

We do, however, have the simple inequality τ1(M) ≤ δkn,n det(M)1/(kn), and the following
relationship between τ1 and λ1, which is governed by αR.

3Since spanR(K) = Rn and K is isomorphic as a vector space to Qn, any R-linear independence in Kk is also a
Q-linear dependence. It follows that the Z-span of any vectors in Kk is a lattice, and in particular, M is a lattice.
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Lemma 2.2. For a module lattice M,

λ1(M)

δn
≤ τ1(M) ≤ λ1(M)

αR
.

Proof. Let I ⊂M be the ideal generated by a non-zero shortest vector inM. I.e., λ1(I) = λ1(M).
Then from the definition of αR, we know

det(I)1/n ≤ λ1(I)

αR
. (2)

Since I ⊂M, we also have that

τ1(M) ≤ det(I)1/n . (3)

Combining Eqs. (2) and (3) yields the upper bound.
For the lower bound, let I ′ ⊂ M be an ideal satisfying det(I ′)1/n = τ1(M). Then by the

definition of Hermite’s constant, we have

λ1(I ′) ≤ δn det(I ′)1/n = δnτ1(M) .

The lower bound follows by noting that λ1(M) ≤ λ1(I ′).

2.5 The canonical embedding

The canonical embedding of a number field K := Q[x]/p(x) is most naturally viewed as an em-
bedding into Cn. (Since the resulting vector space is only n-dimensional over R, this embed-
ding is isometric to a real embedding that is slightly more cumbersome to define, known as the
Minkowski embedding. In the sequel, we make no distinction between the two, since they are
isometric.) Up to a reordering of the coordinates, it is the unique embedding such that field mul-
tiplication between two elements y = (y1, . . . , yn) ∈ K ⊂ Cn and y′ = (y′1, . . . , y

′
n) ∈ K ⊂ Cn

is coordinate-wise, i.e., y · y′ = (y1y
′
1, y2y

′
2, . . . , yny

′
n). Equivalently, the embedding f(y) of y is

f(y) = (σ1(y), . . . , σn(y)) ∈ Cn, where the σi are the n distinct field embeddings of K into C. Al-
ternatively, if we view y := y(x) ∈ Q[x]/p(x) as a polynomial, then the σi correspond to polynomial
evaluation at the n distinct roots in C of the defining polynomial p of K.

We will not discuss the canonical embedding explicitly in the sequel, but it is a very useful and
important example.

Lemma 2.3. For any number field K, any (discrete, full-rank) subring R ⊂ K that is closed under
complex conjugation is dual-closed in the canonical embedding.

Proof. Since ring elements act diagonally in the canonical embedding, we have that for any x ∈M,
w ∈ M∗, and r ∈ R, 〈x, rw〉 = 〈rx,w〉 ∈ Z, where r represents the complex conjugate. So, if
r ∈ R, then rx ∈M and therefore 〈x, rw〉 ∈ Z.

We also have the following well-known property of the canonical embedding. (A lower bound
on αR follows by considering the algebraic norm of the shortest non-zero vector in the ideal and
applying the inequality between arithmetic and geometric means. The matching upper bound is
witnessed by R itself, which must contain the element 1 ∈ K, which has ‖1‖ =

√
n in the canonical

embedding.)
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Lemma 2.4. For any (discrete, full-rank) subring R ⊂ K of any number field K under the canon-
ical embedding, we have

αR =

√
n

det(R)1/n
.

In particular, if R := OK is the ring of integers of a cyclotomic number field K, then det(R)1/n ≤√
n, so that αR ≥ 1.

2.6 ModuleSVP, the Dense Ideal Problem, and their duals

We now provide the formal definition of ModuleSVP, and its variant the Dense Ideal Problem. We
also define certain dual versions, which we will need in the sequel.

Definition 2.5 (ModuleSVP and its dual). For a number field K, (discrete, full-rank) ring R ⊂ K,
rank k ≥ 1, and approximation factor γ = γ(n, k) ≥ 1, (γ, k)-ModuleSVP is defined as follows.
The input is (a generating set for) a module lattice M ⊂ Kk of rank k. The goal is to output a
module element x ∈M such that 0 < ‖x‖ ≤ γλ1(M).

Dual (γ, k)-ModuleSVP has the same input, and the goal is to output a dual module element
x ∈M∗ such that 0 < ‖x‖ ≤ γλ1(M∗).

(γ, k)-ModuleSVP’ is the union of these two problems. I.e., the input is a module and a string s ∈
{PRIMAL, DUAL}. If s = PRIMAL, the goal is to output a valid solution to (γ, k)-ModuleSVP.
If s = DUAL, the goal is to output a valid solution to dual (γ, k)-ModuleSVP.

Definition 2.6 ((γ, k)-DIP and its dual). For a number field K, ring R ⊂ K, rank k ≥ 2, and
approximation factor γ ≥ 1, the (γ, k)-Dense Ideal Problem, or (γ, k)-DIP, is the search problem
defined as follows. The input is a module lattice M ⊂ Kk with rank k, and the goal is to find a
submodule M′ ⊂M with rank one (i.e., an ideal lattice) such that det(M′)1/n ≤ γτ1(M).

Dual (γ, k)-DIP has the same input, and the goal is to output a submodule M′ ⊂ M∗ of the
dual with rank one (i.e., an ideal lattice) such that det(M′)1/n ≤ γτ1(M∗).

(γ, k)-DIP’ is the union of these two problems as above.

Notice that, if the ring R is dual-closed, then ModuleSVP, dual ModuleSVP, and ModuleSVP’
are equivalent problems, as are DIP, dual DIP, and DIP’.

Furthermore, (γ, 2)-DIP, dual (γ, 2)-DIP, and (γ, 2)-DIP’ are equivalent. To see this, let M1 ⊂
M be a primitive rank-one submodule. Of course M1 defines a filtration, M1 ⊂ M2 = M.
Then, det(M) = det(M1) det(M̃2). The corresponding dual filtration is M̃∗2 ⊂ M∗, and we have

det(M̃∗2) = 1/ det(M̃2) = det(M1)/ det(M). Therefore, (1) τ1(M∗) = τ1(M)/ det(M)1/n; and (2)

M1 is a solution to (γ, 2)-DIP on M if and only if M̃∗2 is a solution to dual (γ, 2)-DIP on M∗.

Definition 2.7 ((γ, k)-ModuleHSVP). For a number field K, (discrete, full-rank) ring R ⊂ K,
rank k ≥ 1, and approximation factor γ = γ(n, k) ≥ 1, (γ, k)-ModuleHSVP is defined as follows.
The input is (a generating set for) a module lattice M ⊂ Kk of rank k. The goal is to output a
module element x ∈M such that 0 < ‖x‖ ≤ γ det(M)1/(kn).

Theorem 2.8. For any number field K, (discrete, full-rank) subring R ⊂ K, rank β ≥ 2, and
approximation factor γ′ ≥ 1, there exists a reduction from (γ, β)-DIP to (γ′, β)-ModuleSVP where

γ := γ′δn
αR

.
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Proof. The reduction takes as input a module M of rank β, and uses the output from the (γ′, β)-
ModuleSVP oracle which is a non-zero short vector x such that 0 < ‖x‖ ≤ γ′λ1(M), to output a
submodule M′ ⊂M such that det(M′)1/n ≤ γτ1(M).

LetM′ := (x), i.e. M′ is a principal ideal generated by x. Note that λ1(M′) ≤ ‖x‖ ≤ γ′λ1(M).
Then using Lemma 2.2, we have

det(M′)1/n ≤ λ1(M′)
αR

≤ γ′λ1(M)

αR
≤ γ′

αR
· δn · τ1(M) ,

as needed.

2.7 On bit representations

Throughout this work, we follow the convention (common in the literature on lattices) of avoiding
discussion of the particular bit representation of elements in K and their embeddings as much as
possible. In practice, one can represent elements in K as polynomials with rational coefficients,
and the coordinates in an embedding can be taken to be, say, algebraic numbers represented as
roots of integer polynomials or sufficiently good rational approximations. The embedding itself is
represented by specifying the embeddings of some basis of K. Since arithmetic operations may be
performed efficiently with these representations, we are largely justified in ignoring such bit-level
details.

There are two issues that arise, however, and we address them briefly here.
First, there is the question of whether the bit lengths of the numbers that we work with can

become superpolynomial after polynomially many operations. This issue is well-studied in the
context of basis reduction, and it may be avoided by, for example, ensuring that the basis remains
LLL reduced at all times. In particular, in our reductions, we say without further explanation
that we update a filtration such that a certain projection πi(Mj) in the new filtration is equal to a
certain module lattice. This operation can always be performed in such a way to keep the bit lengths
bounded (under the assumption, valid in our case, that the target module lattice has determinant
smaller than the corresponding projection πi(Mj) in the filtration before the change)—e.g., by
ensuring that the underlying Z-basis is LLL reduced. We refer the reader to [GN08] for a more
careful analysis in the context of slide reduction and [LPSW19] for discussion of similar issues in
the context of module lattices. With this carefully swept under the rug, we content ourselves in
the sequel with simply bounding the number of such operations performed by our reductions.

Second, we will actually need a minor relationship between the bit length of the representation
of the embedding and the geometry of the ring R. To see why this is necessary, imagine that we
could have a ring R such that λ1(R) < 2−m

ω(1)
, where m is the bit length of the description of R.

Then, we could not even write down λ1(R) in polynomial time. Of course, this cannot happen for
reasonable representations.

Fact 2.9. If the number field K, its embedding, and the ring R are represented as described above,
then for any integer k ≥ 1 and any module M⊂ Kk

2− poly(m,k) ≤ det(M) ≤ 2poly(m,k) ,

where m is the bit length of this description together with the description of a generating set for
M.
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3 Filtrations

For a module lattice M ⊂ K` over R with rank k, a filtration of M is a nested sequence M1 ⊂
M2 ⊂ · · · ⊂ Mk =M of module lattices over R such that

1. Primitivity: Mi =M∩ spanK(Mi);

2. Increasing ranks: rankK(Mi) = i; and

3. Rank-one projections: M̃i := πM⊥i−1
(Mi) is a rank one module lattice over R (i.e., an

ideal).

(In fact, primitivity together with the fact thatMi ⊂Mi+1 is a strict containment already implies
the other two conditions. E.g., this implies that rankK(Mi) < rankK(Mi+1), and since the ranks
are positive integers with rankK(Mk) = k, we must have rankK(Mi) = i. Nevertheless, we find it
helpful to state the other two conditions explicitly.) We also write M[i,j] := πM⊥i−1

(Mj).

Filtrations for module lattices over R are analogues of bases for lattices over Z. Specifically, the
basis b1, . . . , bd ∈ Rd of a lattice corresponds to the filtration given by Li := {z1b1+· · ·+zibi : zj ∈
Z}. The M̃i defined above are the analogues of the Gram-Schmidt orthogonalization b̃1, . . . , b̃d of

a lattice over Q. We therefore call M̃i an R-Gram-Schmidt orthogonalization.

Fact 3.1. For every module lattice M ⊂ Kk over R ⊂ K with rank k, there exists a filtration
M1 ⊂M2 ⊂ · · · ⊂ Mk =M of M.

Furthermore, the Mi can be computed efficiently (given an R-basis for M), and det(M) =

det(M̃1) · · · det(M̃k).

Proof. Let y1, . . . ,y` be an R-basis for M, and suppose without loss of generality that y1, . . . ,yk
are linearly independent over K. We take Mi :=M∩ spanK(y1, . . . ,yi).

The fact about the determinants follows from the analogous fact for general lattices. Specifically,
for any lattice L ⊂ Rd and any sequence of primitive sublattices L1 ⊂ L2 ⊂ · · · ⊂ Lk = L,
det(L) =

∏
i det(Li)/det(Li−1) =

∏
i det(πL⊥i−1

(L)) (where we have used the convention L0 := {0}
and det(L0) := 1).

Finally, each filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of M induces a dual filtration given by
πM⊥k−1

(M)∗ ⊂ πM⊥k−2
(M)∗ ⊂ · · · ⊂ πM⊥1

(M)∗ ⊂ M∗, where the Mi are module lattices over the

dual ring R′. Equivalently, the dual filtration is given by (M∗ ∩M⊥k−1) ⊂ (M∗ ∩M⊥k−2) ⊂ · · · ⊂
(M∗ ∩M⊥1 ) ⊂ M∗. While we will not use the dual filtration explicitly, it is helpful to keep it in
mind. In particular, the R′-Gram-Schmidt orthogonalization of the dual filtration is the reverse of
the R-Gram-Schmidt orthogonalization of the original filtration, in analogy to the reversed dual
basis B−s that is commonly used in basis reduction. (See, e.g., [GN08, MW16].)

4 An LLL-style algorithm for the special case of β = 2

Here, we present our reductions in the special case when β = 2. The results here are strictly
generalized by and subsumed by those in Section 5, and the proofs have many common features.
(Our proofs are also essentially the same as those in [LPSW19].) However, the case β = 2 is
considerably simpler, and we therefore include a separate section for this case. (To make comparison
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easier, we have given this section and Section 5 identical structures. E.g., plugging β = 2 into
Lemma 5.4 yields Lemma 4.4, and the same is true for, e.g., Theorems 5.10 and 4.10.)

In particular, we do not need to mention the dual module lattice at all in this section. We can
instead use the following simple notion of a reduced filtration.

Definition 4.1 (DIP reduction). For γ ≥ 1, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M is γ-DIP-
reduced if det(M1)

1/n ≤ γ · τ1(M).

Definition 4.2 (γ-reduced filtration). For γ ≥ 1, we say that a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk

is γ-reduced if M[i,i+1] is γ-DIP-reduced for all i ∈ [1, k − 1].

We now show a number of properties of γ-reduced filtrations that make them useful for solving
ModuleSVP and its variants.

Lemma 4.3. For any γ-reduced filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk, we have det(M1)
1/n ≤

(γδ2n,n)2(i−1) det(M̃i)
1/n for all 1 ≤ i ≤ k.

Proof. Since M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced,

det(M̃i)
1/n ≤ γ · τ1(M[i,i+1])

≤ γ · δ2n,n · det(M[i,i+1])
1/(2n)

= γ · δ2n,n ·
(

det(M̃i) det(M̃i−1)
)1/(2n)

.

Rearranging, we see that det(M̃i)
1/n ≤ (γδ2n,n)2 det(M̃i+1)

1/n. By a simple induction argument,

we see that det(M1)
1/n ≤ (γδ2n,n)2(i−1) det(M̃i)

1/n.

Lemma 4.4. If a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced, then

det(M1)
1/n ≤ γ · (γδ2n,n)2(k−2) · τ1(M) , and (4)

det(M1)
1/n ≤ (γδ2n,n)(k−1) · det(M)1/kn . (5)

Proof. Let i ∈ [1, k− 1] be such that τ1(Mi+1) = τ1(M) but τ1(Mi−1) 6= τ1(M) (where we use the
convention that τ1(M0) 6= τ1(M)). SinceMk =M, there must exist such an i. In particular, there
exists some rank-one module latticeM′ ⊂Mi+1 withM′ 6⊂ Mi−1 such that det(M′)1/n = τ1(M).
Therefore (since the Mi are primitive), πM⊥i−1

(M′) ⊂ M[i,i+1] is a non-zero rank-one module

lattice. It follows that τ1(M[i,i+1]) ≤ det(πM⊥i−1
(M′))1/n ≤ det(M′)1/n = τ1(M). Then, by the

γ-reduced property of the filtration,

det(M̃i)
1/n ≤ γτ1(M[i,i+1]) ≤ γτ1(M) .

By combining the expression above with Lemma 4.3, we have

det(M1)
1/n ≤ γ · (γδ2n,n)2(i−1) · τ1(M) , (6)

and recalling that i ≤ k − 1, we obtain Eq. (4).
By taking the product of the expression obtained from Lemma 4.3 over 1 ≤ i ≤ k, we see that

det(M1)
k/n ≤ (γδ2n,n)k(k−1) det(M)1/n .

Raising both sides to the power 1/k yields Eq. (5).
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Corollary 4.5. If a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced, then

λ1(M1) ≤
γδn
αR
· (γδ2n,n)2(k−2) · λ1(M) , and (7)

λ1(M1) ≤ δn(γδ2n,n)(k−1) · det(M)1/kn . (8)

Proof. By combining Eq (4) from Lemma 4.4 with Lemma 2.2, we have

det(M1)
1/n ≤ γ · (γδ2n,n)2(k−2) · τ1(M) ≤ γ · (γδ2n,n)2(k−2) · λ1(M)

αR
.

Using the definition of Hermite’s constant δn, with the above relation, we obtain Eq. (7):

λ1(M1) ≤ δn det(M1)
1/n ≤ δn · γ(γδ2n,n)2(k−2) · λ1(M)

αR
.

Eq. (8) follows by directly applying the definition of Hermite’s constant to Eq. (5) from Lemma
4.4.

4.1 Finding γ-reduced filtrations

We are now ready to show how to find a γ-reduced filtration with access to a (γ, 2)-ModuleSVP
oracle. The reduction is a natural analogue of the LLL algorithm, and essentially identical to the
reduction in [LPSW19].

Definition 4.6 ((γ, k)-RFP). For a number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2,
and approximation factor γ ≥ 1, the (γ, k)-Reduced Filtration Problem, or (γ, k)-RFP, is the search
problem defined as follows. The input is a module lattice M ⊂ Kk with rank k, and the goal is to
find a γ-reduced filtration M1 ⊂M2 ⊂ · · · ⊂ Mk.

Theorem 4.7. For any number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2, approxi-
mation factor γ ≥ 1, and constant ε > 0, there is an efficient reduction from ((1 + ε)γ, k)-RFP to
(γ, 2)-DIP.

Proof. The idea is to use our (γ, 2)-DIP oracle to compute a (1+ε)γ-reduced filtration just like the
LLL algorithm computes a reduced basis. In particular, on input (a generating set for) a module
lattice M ⊂ Kk with rank k, the reduction first computes a filtration M1 ⊂ · · · ⊂ Mk = M of
M. It then repeatedly updates this filtration in places as follows.

For eachM[i,i+1], the reduction calls the (γ, 2)-DIP oracle withM[i,i+1] as input and receives as

output some rank-one ideal M̃′i ⊂M[i,i+1]. We may assume without loss of generality that M̃′i is a

primitive sublattice ofM[i,i+1], i.e., that M̃′i =M[i,i+1]∩spanK(M̃′i). If (1+ε)n det(M̃′i) < det(M̃i)

then the reduction setsMi so that M̃i = M̃′i. (Formally, the reduction can do this by, e.g., picking

any i-dimensional K-subspace W of spanK(Mi+1) such that πM⊥i−1
(W ) = spanK(M̃′i) and setting

Mi := W ∩M.)
The reduction terminates and outputs the current filtration when none of these checks results

in an update to the filtration, i.e., when for all i, (1 + ε)n det(M̃′i) ≥ det(M̃i).
We first observe that the output filtration is indeed (1 + ε)γ-reduced. To see this, notice that

the reduction only terminates if the filtration satisfies

det(M̃i)
1/n ≤ (1 + ε) det(M̃′i)1/n ≤ (1 + ε)γ · τ1(M[i,i+1]) ,
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as needed.
It remains to show that the reduction terminates in polynomial time. Our proof is more-or-less

identical to the celebrated proof in [LLL82] (and the proof in [LPSW19]). Consider the potential
function

Φ(M1, . . . ,Mk) :=

k∏
i=1

det(Mi) .

At the beginning of the reduction, log Φ(M1, . . . ,Mk) is bounded by a polynomial in the input
size (since Φ is efficiently computable). And, by Fact 2.9, − log(Φ(M1, . . . ,Mk)) is bounded by
a polynomial in the input size throughout the reduction. Therefore, it suffices to show that the
potential decreases by at least, say, a constant factor every time that the reduction updates the
filtration.

Consider a step in the reduction in which it updatesMi. Denote M̂0 asMi before the update
and M̂1 as Mi after the update. Then

det(M̂1) = det(Mi−1) det(M̃′i) < det(Mi−1)
det(M̃i)

(1 + ε)n
=

det(M̂0)

(1 + ε)n
.

The other terms det(Mj) for i 6= j in the definition of Φ remain unchanged. Thus, the potential
function decreases by a factor of at least (1 + ε)n after each update, as needed.

Finally, we derive the main results of this section as corollaries of Theorem 4.10.

Corollary 4.8. For any number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2, approx-
imation factor γ′ ≥ 1, and constant ε > 0, there exists an efficient reduction from (γ, k)-DIP to
(γ′, 2)-DIP where

γ := (1 + ε)γ′ · ((1 + ε)γ′ · δ2n,n)2(k−2) .

Proof. The reduction takes as input a module lattice M of rank k and calls the ((1 + ε)γ′, k)-
RFP oracle using the (γ′, 2)-DIP oracle from Theorem 4.7. By Eq. (4) from Lemma 4.4, γ :=
(1 + ε)γ′ · ((1 + ε)γ′ · δ2n,n)2(k−2). This yields as output a rank-one module M1 ⊂ M, such that
det(M1)

1/n ≤ γτ1(M).

Corollary 4.9. For any number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2, approxi-
mation factor γ′ ≥ 1, and constant ε > 0, there exists an efficient reduction from (γR, k)-RFP to

(γ′, 2)-ModuleSVP where γR := (1 + ε)γ
′δn
αR

.

Proof. The (γ, 2)-DIP procedure in Theorem 4.7 calls the (γ′, 2)-ModuleSVP oracle from Theorem

2.8, thereby getting a constant of γ := γ′δn
α(R) . From Theorem 4.7, we get a γR-reduced filtration,

where γR = (1 + ε)γ. In other words, γR := (1 + ε)γ
′δn
αR

.

Theorem 4.10 (Main Theorem). For any number field K, (discrete, full-rank) ring R ⊂ K, rank
k ≥ 2, approximation factor γ′ ≥ 1, and constant ε > 0, there is an efficient reduction from
(γ, k)-ModuleSVP to (γ′, 2)-ModuleSVP where

γ := (1 + ε) ·
(γ′δn
αR

)2
·
(

(1 + ε)γ′ · δnδ2n,n
αR

)2(k−2)
.

There is also an efficient reduction from (γH , k)-ModuleHSVP to (γ′, 2)-ModuleSVP, where

γH := γ′δn ·
(

(1 + ε)γ′ · δnδ2n,n
αR

)(k−1)
.
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Proof. In fact, the reduction is the same for both ModuleSVP and ModuleHSVP. On input (a
generating set for) a module lattice M ⊂ Kk with rank k, the reduction proceeds as follows (for
both ModuleHSVP and ModuleSVP). It obtains a γR-reduced filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk

using (γ′, 2)-ModuleSVP oracle, where γR := (1 + ε)γ
′δn
αR

(by Corollary 4.9). It then calls its (γ′, 2)-
ModuleSVP onM2 which outputs a vector x such that 0 < ‖x‖ ≤ γ′λ1(M2). This vector x is the
output of our (γ, k)-ModuleSVP.

Since M1 ⊂M2, we have

0 < ‖x‖ ≤ γ′λ1(M2) ≤ γ′λ1(M1) .

By Eq. (7) of Corollary 4.5,

λ1(M1) ≤
δnδ

2(k−2)
2n,n γ

(2k−3)
R

αR
· λ1(M) =

δnδ
2(k−2)
2n,n

αR
·
(

(1 + ε)
δnγ
′

αR

)(2k−3)
· λ1(M) .

Combining the above two expressions, we get

0 < ‖x‖ ≤ (1 + ε)(2k−3)δ
2(k−2)
2n,n ·

(
δnγ
′

αR

)2(k−1)
· λ1(M) .

Therefore,

γ = (1 + ε)(2k−3)δ
2(k−2)
2n,n ·

(
δnγ
′

αR

)2(k−1)
,

as needed.
Similarly, by Eq. (8) of Corollary 4.5,

‖x‖ ≤ γ′δn · (γRδ2n,n)(k−1) · det(M)1/kn

= γ′δn · ((1 + ε)γ′δnδ2n,n/αR)(k−1) · det(M)1/kn ,

which gives the reduction from ModuleHSVP.

5 Slide-reduced filtrations for modules

Throughout this section, p will always denote the number of β-blocks in a filtration of a rank k
module, i.e., k = βp. We also write δ := δβn,n ≤

√
βn for Rankin’s constant.

As in [GN08], we will need a dual notion of DIP-reduced filtrations (in analogy with the notions
of SVP-reduced and DSVP-reduced bases in [GN08]), which we will combine together with DIP-
reduced filtrations to define our notion of slide reduction. While in [GN08], reduction is defined by
comparing lengths of certain vectors to λ1 of a particular lattice, we compare the determinants of
certain ideals to τ1 of the analogous module. I.e., our definitions are a high-dimensional analogue
of those in [GN08], replacing lengths of vectors with determinants of high-dimensional (ideal)
sublattices.

Definition 5.1 (DualDIP reduction). For γ ≥ 1, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M is

γ-DualDIP-reduced if γ · det(M̃k)
1/n ≥ 1/τ1(M∗).
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This is in fact the dual notion of DIP reduction, which we can see by recalling the notion of
the dual filtration, as defined in Section 3. We then see that a filtration is DualDIP-reduced if and
only if its dual filtration is DIP-reduced, and in particular, a dual DIP oracle is sufficient to obtain
a DualDIP-reduced filtration.

We can now “glue” DIP-reduced and DualDIP-reduced filtrations together to obtain a notion
of slide-reduced filtration, which is of course a generalization of the notion of a slide-reduced basis
from [GN08]. Indeed, once we have the right primitive notions of reduced filtrations, the right
generalization of slide-reduced filtrations is clear.

Definition 5.2 ((γ, β)-slide-reduced filtration). For an approximation factor γ ≥ 1 and an integer
block size β ≥ 2, a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk of a rank k module lattice M where k = βp is
(γ, β)-slide reduced if it satisfies the following two conditions:

• Primal Conditions. For all i ∈ [0; p− 1], the block M[iβ+1,iβ+β] is γ-DIP-reduced.

• Dual Conditions. For all i ∈ [0; p− 2], the block M[iβ+2,iβ+β+1] is γ-DualDIP-reduced.

The following lemma shows how the primal and dual conditions combine to guarantee nice
behavior of the R-Gram-Schmidt orthogonalization M̃i.

Lemma 5.3. If a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is (γ, β)-slide-reduced, then

det(M1)
1/n ≤ (γδ)2iβ/(β−1) · det(M̃iβ+1)

1/n ,

for i ∈ [1, p− 1].

Proof. From the primal condition of Definition 5.2,

det(M̃iβ+1)
β/n ≤

(
γ · τ1(M[iβ+1,iβ+β])

)β
≤
(
γδ · det(M[iβ+1,iβ+β])

1/(βn)
)β

= (γδ)β · det(M̃iβ+1)
1/n det(M[iβ+2,iβ+β])

1/n .

Therefore, we have

det(M̃iβ+1)
(β−1)/n ≤ (γδ)β · det(M[iβ+2,iβ+β])

1/n . (9)

From the dual condition of Definition 5.2,

γβ · det(M̃iβ+β+1)
β/n ≥ 1

τ1(M∗[iβ+2,iβ+β+1])
β

≥ δ−β · det(M[iβ+2,iβ+β+1])
1/n

= δ−β · det(M[iβ+2,iβ+β])
1/n · det(M̃iβ+β+1)

1/n .

Therefore, we have

det(M[iβ+2,iβ+β])
1/n ≤ (γδ)β · det(M̃iβ+β+1)

(β−1)/n . (10)

By combining Eqs. (9) and (10), for i ∈ [0, p− 2],

det(M̃iβ+1)
1/n ≤ (γδ)2β/(β−1) · det(M̃iβ+β+1)

1/n .
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Then, by a simple induction argument, we see that

det(M1)
1/n ≤ (γδ)2iβ/(β−1) · det(M̃iβ+1)

1/n ,

for i ∈ [0, p− 1].

This next lemma and its corollary show why slide-reduced filtrations are useful for solving
ModuleSVP, ModuleHSVP, and DIP. In particular, the submoduleM1 of a slide-reduced filtration
is guaranteed to have small determinant (as we show in Lemma 5.4) and to contain a short non-
zero vector (as we show in Corollary 5.5). Lemma 5.4 is a direct high-dimensional generalization
of [GN08, Theorem 1]. Indeed, setting R = Z and therefore n = 1, which in particular implies that
τ1 = λ1, directly recovers [GN08, Theorem 1].

On the other hand, Corollary 5.5 has no obvious analogue over Z. In particular, Eq. (16) of
Corollary 5.5 is identical to Eq. (12) of Lemma 5.4 over Z, while the proof of Eq. (15) of Corollary 5.5
relies on the particular geometry of module lattices.

Lemma 5.4. If a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is (γ, β)-slide-reduced, then

det(M1)
1/n ≤ γ · (γδ)

2(k−β)
β−1 · τ1(M) , and (11)

det(M1)
1/n ≤ (γδ)

k−1
β−1 · det(M)

1
kn . (12)

Proof. Let us pick the first i ∈ [0, p− 1] such that τ1(Miβ+β) = τ1(M). In particular, there exists
some rank-one module lattice M′ ⊂ Miβ+β with M′ 6⊂ Miβ such that det(M′)1/n = τ1(M).
Therefore (since theMi are primitive), πM⊥iβ

(M′) ⊂M[iβ+1,iβ+β] is a (non-zero) rank-one module

lattice so that

τ1(M[iβ+1,iβ+β]) ≤ det(πM⊥iβ
(M′))1/n ≤ det(M′)1/n = τ1(M) .

Therefore, by the primal property,

det(M̃iβ+1)
1/n ≤ γ · τ1(M[iβ+1,iβ+β]) ≤ γ · τ1(M) .

Eq. (11) then follows by Lemma 5.3:

det(M1)
1/n ≤ γ

2iβ
β−1

+1 · δ
2iβ
β−1 · τ1(M) ≤ γ

2(p−1)β
β−1

+1 · δ
2(p−1)β
β−1 · τ1(M) .

In order to derive Eq. (12), we take the product of Lemma 5.3 over 0 ≤ i ≤ p− 1,

det(M1)
p/n ≤ (γδ)

p(p−1)β
β−1 ·

p−1∏
i=0

det(M̃iβ+1)
1/n . (13)

Using the primal condition, we also have,

det(M̃iβ+1)
1/n ≤ γδ · det(M[iβ+1,iβ+β])

1/(βn) . (14)

By combining Eqs. (13) and (14), we see that

det(M1)
p/n ≤ (γδ)

p(p−1)β
β−1 · (γδ)p ·

p−1∏
i=0

det(M[iβ+1,iβ+β])
1/(βn)

= (γδ)
p(k−1)
β−1 · det(M)1/(βn),

and the result follows.
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Corollary 5.5. If a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is (γ, β)-slide-reduced, then

λ1(M1) ≤
γδn
αR
· (γδ)

2(k−β)
β−1 · λ1(M) , and (15)

λ1(M1) ≤ δn(γδ)
k−1
β−1 · det(M)

1
kn . (16)

Proof. Combining Lemma 2.2 and Eq. (11) from Lemma 5.4, we obtain

det(M1)
1/n ≤ γ

2(k−β)
β−1

+1 · δ
2(k−β)
β−1 · λ1(M)

αR
.

By the definition of Hermite’s constant δn, we obtain Eq. (15).
Eq. (16) is follows directly from applying the definition of Hermite’s constant to Eq. (12) from

Lemma 5.4.

5.1 Finding slide-reduced filtrations

We now show how to use a DIP oracle to build a slide-reduced filtration and then derive our main
results.

Definition 5.6 ((γ, k, β)-RFP). For a number field K, ring R ⊂ K, rank k ≥ 2, block size β ≥ 2
dividing k, and approximation factor γ ≥ 1, the (γ, k, β)-Reduced Filtration Problem, or (γ, k, β)-
RFP, is the search problem defined as follows. The input is a module lattice M⊂ Kk with rank k,
and the goal is to find a (γ, β)-slide-reduced filtration M1 ⊂M2 ⊂ · · · ⊂ Mk.

Theorem 5.7. For any number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2, block size
β ≥ 2 dividing k, and approximation factor γ ≥ 1, there is an efficient reduction from ((1+ε)γ, k, β)-
RFP to (γ, β)-DIP’.

In particular, if R is dual-closed or β = 2, then there is a reduction from ((1 + ε)γ, k, β)-RFP
to (γ, β)-DIP (as opposed to DIP’).

Proof. On input (a generating set for) a module lattice M ⊂ Kk with rank k, the reduction first
computes a filtration M1 ⊂ · · · ⊂ Mk = M of M. It then repeatedly updates this filtration in
place as follows.

1. Primal reduction. For each M[iβ+1,iβ+β] where i ∈ [0, p− 1], the reduction calls its (γ, β)-
DIP oracle (i.e., it calls its DIP’ oracle with s = PRIMAL) with M[iβ+1,iβ+β] as input,

receiving as output M̃′iβ+1 ⊂ M[iβ+1,iβ+β]. We may assume without loss of generality that

M̃′iβ+1 is primitive, i.e., M̃′iβ+1 = M[iβ+1,iβ+β] ∩ spanK(M̃′iβ+1). If (1 + ε)n det(M̃′iβ+1) <

det(M̃iβ+1), then the reduction updates the filtration so that M̃iβ+1 = M̃′iβ+1, leaving
the full block M[iβ+1,iβ+β] unchanged. (Formally, to do this, the reduction can, e.g., pick

any (iβ + 1)-dimensional K-subspace W1 of Miβ+β such that πM⊥iβ
(W1) = spanK(M̃′iβ+1)

together with a nested sequence of subspaces W1 ⊂ W2 ⊂ · · · ⊂ Wβ = spanK(Miβ+β) and
set Miβ+j =M∩Wj for j = 1, . . . , β.)

2. Dual reduction. For each M[iβ+2,iβ+β+1] where i ∈ [0, p − 2], the reduction calls the dual

(γ, β)-DIP oracle with M∗[iβ+2,iβ+β+1] as input, receiving as output (M̃′)∗iβ+β+1.

If det(M̃′iβ+β+1) > (1 + ε)n det(M̃iβ+β+1), then it updates the filtration so that M̃iβ+β+1 =

M̃′iβ+β+1, leaving the full dual block M[iβ+2,iβ+β+1] unchanged.
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If no update is made in Step 2, then the algorithm terminates and outputs the filtration.
Our proof is more-or-less identical to the proof in [GN08]. We first observe that the output is

in fact a ((1+ε)γ, β)-reduced slide filtration of rank k. In order to see this, observe that the primal
conditions are satisfied,

det(M̃iβ+1)
1/n ≤ (1 + ε) det(M̃′iβ+1)

1/n ≤ (1 + ε)γτ1(M[iβ+1,iβ+β]) ,

after the end of Step 1. If no updates happen in Step 2, then clearly the primal conditions remain
satisfied.

If no update happens in Step 2, this means that

det(M̃iβ+β+1)
1/n ≥ 1

(1 + ε)
det(M̃′iβ+β+1)

1/n

≥ 1

(1 + ε)γτ1(M∗[iβ+2,iβ+β+1])
,

i.e., the dual conditions are satisfied.
It remains to show that the reduction terminates efficiently. We will analyze the following

potential function,

Φ(M1, . . . ,Mk) =

p−1∏
i=1

det(Miβ) .

At the beginning of the reduction, log Φ(M1, . . . ,Mk) is bounded by a polynomial in the input
size (since Φ is efficiently computable). And, by Fact 2.9, − log(Φ(M1, . . . ,Mk)) is bounded by a
polynomial in the input size throughout the reduction. Furthermore, the potential does not change
at all in Step 1. Therefore, it suffices to show that the potential decreases by at least, say, a constant
factor every time that the reduction updates the filtration in Step 2.

Observe that Φ strictly decreases after each dual step in which the filtration is updated. In
order to see this, suppose such an update occurs on the dual blockM[iβ+2,iβ+β+1], and notice that
all elements in Φ remain unchanged except det(Miβ+β), where

det(Miβ+β) = det(Miβ+1) det(M[iβ+2,iβ+β]) .

Let M̂0 beM[iβ+2,iβ+β] before the update and let M̂1 beM[iβ+2,iβ+β] after the update. Since
det(M[iβ+2,iβ+β+1]) remains unchanged after the dual reduction step, we have

det(M̂1) det(M̃′iβ+β+1) = det(M̂0) det(M̃iβ+β+1)

≤ det(M̂0) ·
det(M̃′iβ+β+1)

(1 + ε)n
.

Therefore,

det(M̂1) ≤
det(M̂0)

(1 + ε)n
.

It follows that det(Miβ+β) decreases by at least a factor of (1 + ε)n.
Notice that no other terms in the potential change after such an update in Step 2. Therefore,

the potential Φ decreases by a factor of at least (1 + ε)n after the occurrence of each dual update,
as needed.
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Corollary 5.8. For any number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2, block size
β ≥ 2 dividing k, constant ε > 0, and approximation factor γ′ ≥ 1, there is an efficient reduction
from (γ, k)-DIP to (γ′, β)-DIP’, where

γ := (1 + ε)γ′ · ((1 + ε)γ′δ)
2(k−β)
β−1 .

If R is dual-closed or β = 2, then there is a reduction from (γ, k)-DIP to (γ′, β)-DIP (as opposed
to DIP’).

Proof. The reduction takes as input a module lattice M of rank k and solves the corresponding
((1 + ε)γ′, k, β)-RFP instance using its (γ′, β)-DIP oracle as in Theorem 5.7. I.e., it finds a ((1 +
ε)γ′, β)-slide-reduced filtration M1 ⊂ · · · ⊂ Mk = M. It then outputs M1. Then, by Eq. (11)
from Lemma 5.4,

det(M1)
1/n := ((1 + ε)γ′)

2(k−β)
β−1

+1 · δ
2(k−β)
β−1 · τ1(M) ,

as needed.

Corollary 5.9. For any number field K, (discrete, full-rank) ring R ⊂ K, rank k ≥ 2, block size
β ≥ 2 dividing k, constant ε > 0, and approximation factor γ′ ≥ 1, there is an efficient reduction
from (γR, β, k)-RFP to (γ′, β)-ModuleSVP’, where

γR := (1 + ε)γ′δn/αR .

If R is dual-closed or β = 2, then there is a reduction from (γR, β, k)-RFP to (γ′, β)-ModuleSVP
(as opposed to ModuleSVP’).

Proof. The reduction instantiates the (γ, β)-DIP’ oracle needed in Theorem 5.7 using its (γ′, β)-
ModuleSVP oracle and the reduction from Theorem 2.8, where γ := γ′δn/αR. This yields a
γR-reduced filtration, where γR = (1 + ε)γ = (1 + ε)γ′δn/αR.

Theorem 5.10 (Main Theorem). For any number field K, (discrete, full-rank) ring R ⊂ K, rank
k ≥ 2, block size β ≥ 2 dividing k, constant ε > 0, and approximation factor γ′ ≥ 1, there is an
efficient reduction from (γ, k)-ModuleSVP to (γ′, β)-ModuleSVP’, where

γ := (1 + ε) ·
(
γ′ · δn

αR

)2
·
(

(1 + ε) · γ′ · δδn
αR

) 2(k−β)
β−1

.

There is also an efficient reduction from (γH , k)-ModuleHSVP to (γ′, β)-ModuleSVP’, where

γH := γ′δn ·
(

(1 + ε)γ′ · δδn
αR

) k−1
(β−1)

.

If R is dual-closed or β = 2, then there is a reduction from (γ, k)-ModuleSVP and from (γH , k)-
ModuleHSVP to (γ′, β)-ModuleSVP (as opposed to ModuleSVP’).

Proof. In fact, the reduction is the same for both ModuleSVP and ModuleHSVP. On input (a
generating set for) a module lattice M ⊂ Kk with rank k, the reduction proceeds as follows. It
first obtains a γR-reduced filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk using its (γ′, β)-ModuleSVP oracle,

where γR := (1+ε)γ′δn
αR

(by Corollary 5.9). It then calls its (γ′, β)-ModuleSVP oracle on Mβ, which
returns a vector x ∈Mβ ⊆M such that 0 < ‖x‖ ≤ γ′λ1(Mβ). Finally, our reduction outputs x.
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Since M1 ⊂Mβ, we have

0 < ‖x‖ ≤ γ′λ1(Mβ) ≤ γ′λ1(M1) .

By Eq. (15) of Corollary 5.5,

λ1(M1) ≤
γRδn
αR

· (γRδ)
2(k−β)
β−1 · λ1(M)

= (1 + ε) · γ
′δ2n
α2
R

· ((1 + ε)γ′δnδ/αR)
2(k−β)
β−1 · λ1(M) .

Combining the above two expressions, we get

0 < ‖x‖ ≤ γλ1(M) ,

as needed.
Similarly, by Eq. (16) of Corollary 5.5,

‖x‖ ≤ γ′δn(γRδ)
k−1

(β−1) · det(M)
1
kn

= γ′δn((1 + ε)γ′δδn/αR)
k−1

(β−1) · det(M)
1
kn ,

as needed.
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