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Abstract. Outsourcing data to the cloud for personal use is becoming
an everyday trend rather than an extreme scenario. The frequent out-
sourcing of data increases the possible attack window because users do
not fully control their personal files. Typically, once there are established
secure channels between two endpoints, communication is considered se-
cure. However, in the cloud model the receiver–the cloud–cannot be fully
trusted, either because it has been under adversarial control, or because it
acts maliciously to increase its revenue by deleting infrequent accessed file
blocks. One approach used by current literature to address the aforemen-
tioned security concerns is via Remote Data Integrity Checking (RDIC)
protocols, whereby a data owner can challenge an untrusted cloud service
provider (CSP) to prove faithful storage of its data.
Current RDIC protocols assume that the original data format remains
unchanged. However, users may wish to compress their data in order to
enjoy less charges. In that case, current RDIC protocols become impracti-
cal because, each time compression happens on a file, the user has to run
a new RDIC protocol. In this work we initiate the study for Auditable
Compressed Storage (ACS). After defining the new model we instanti-
ate two protocols for different widely used compression techniques: run
length encoding and Huffman encoding. In contrast with conventional
RDIC, our protocols allow a user to delegate the compression to the
cloud in a provably secure way: The client can verify correctness of com-
pression without having to download the entire uncompressed file and
check it against the compressed one.

1 Introduction

The proliferation of information available to individuals, companies and insti-
tutions in conjunction with the adoption of the cloud as the de facto outsourcing
service, drives the delegation of data storage to third party cloud services. As
the cloud may misbehave by not storing data at their entire form or tampering
with it, new mechanisms for remote data integrity checking (RDIC) are vital.
It is almost a decade since the first protocols for RDIC paved the way for se-
cure outsourced storage: Provable Data Possession (PDP) (2; 1) and Proofs of
Retrievability (POR) (9; 11).

Despite the remarkable scientific literature impact of remote data integrity
checking protocols (Google Scholar reports ≈ 6, 300 citations for PDP (2; 1) and
POR (9; 11) at the time of this writing), there is a common restrictive setting
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under which current RDIC protocols operate: A cloud service provider (CSP) can
only provide proofs of data possession for the original data file format that was
initially uploaded. This model can abstract the procedure of outsourcing storage
of archival data in general. However, specific use case scenarios require the trans-
formation of raw data to a different format at the cloud, e.g: compressing the
original data. As the current RDIC protocols do not allow for such versatility,
neither the CSP can take advantage of current compression techniques to re-
duce its storage space, nor the user can demand compression of the original data
without skyrocketing egress costs: The need to download the uncompressed file,
compress it and upload both the new compressed file and the verification meta-
data for the RDIC protocol increases the communication cost and the charges
subsequently.

Motivating Scenario: We consider an online storage service equipped with
backup functionality. At first, the user uploads data with the corresponding
verification metadata. The user engages with the CSP in a challenge-response
protocol part of the RDIC scheme, in order to attest intact storage of its data.
Periodically, at the end of fixed time slots, the CSP compresses the original files
into backup files. The purpose is to allow the user retrieve old versions of its
data and provide also reliability in case of a catastrophic attack of the current
file. The user needs to attest integrity of the compressed file as well, but this is
now impossible based on the current verification metadata which is computed
over the original uncompressed data.

In this paper, we seek to design and analyze protocols for Accountable Com-
pressed Storage (ACS). Such protocols will allow an honest user who uploads its
data to an economically motivated CSP—with adversarial behavior—to attest
faithful and intact storage of the compressed version of the data. The CSP is
motivated to proceed with a wrong compression in order to maximize its profit.
For example, the CSP does not compress the data optimally in order to charge
for more storage; or, it stores an incorrect (i.e., smaller) compressed version of
the data, in order to save on storage. One way to overcome this adversarial be-
havior is to transfer the task of compression to the user, who then engages in a
new RDIC protocol with the CSP based on the compressed data. However, this
results in increased communication costs and, ultimately, higher charges for the
user: The user has to download the uncompressed file and upload the compressed
version thereof. Thus, to accomplish our goal, we need to address two challenges:

Challenge 1: Reduce communication overhead during compression: As the
original uncompressed data is deleted locally at the user side and rests (osten-
sibly) at the cloud side, whenever data needs to be compressed, the user can
retrieve this data, verify its integrity, compress the data and compute the new
verification metadata, and upload the compressed data with the corresponding
metadata to the CSP. This solution incurs high communication costs, as the user
has to download the entire uncompressed data.

Challenge 2: Enable tag versatility according to compression without sacri-
ficing security. To avoid the increased communication costs, a solution could be
to delegate the compression to the cloud service provider. However, as the CSP
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holds only verification metadata for the uncompressed data, the user would not
be able to verify the integrity of the compressed data. The CSP could forward
the compressed data to the user, who can then compute the new verification
metadata, but the user does not hold the original data to check the correctness
of compression. Retrieving the original uncompressed data to verify compression
correctness would also incur increased communication costs.

For the aforementioned reasons, delegating the compression of the data and
the computation of the new verification metadata to the CSP without violating
the security goals, renders the design of an Accountable Compressed Storage
protocol challenging.

Contributions. In this work, we make the following contributions. We first
introduce the framework of Auditable Compressed Storage (ACS). ACS allows
the user to delegate the compression of presumably stored data to an untrusted
CSP. The CSP , however, may not store the correctly compressed data in or-
der to maximize its profits. In contrast with previous work on RDIC protocols,
ACS expands the model with 1) an extra challenge-response protocol whereby
the CSP proves to the user not only that it faithfully stores the compressed
version of the original data, but also that the compression is correct, and 2) a
tag transformation procedure, which allows the untrusted CSP to compute the
new verification metadata for the compressed data without holding secret key
information. Second, we design two protocols for Auditable Compressed Storage:
ACS-RLE for run-length-encoding compression and ACS-HUFF for Huffman en-
coding. We analyze their security in a provable way following the novel security
model for ACS schemes and we make a thorough efficiency analysis thereof.

2 Background

2.1 Compression Algorithms

Compression reduces the original size of a transmitted file in order to save storage
when saving it and also reduces time and costs when transmitting it. Below we
elaborate on two popular compression techniques: Run Length Encoding and
Dictionary-based Encoding with Huffman Prefix trees.

2.1.1 Run Length Encoding (RLE)
RLE compresses a stream of data F composed of symbols b from some al-

phabet b ∈ S with a compact representation thereof. The compact represen-
tation consists of tuples of the form (b : frq): where frq is the frequency of
each symbol b in file F. RLE exploits the redundancy that occurs over the
symbols of the stream in order to compactly encode the stream in a format
that can decompress in a lossless manner the compressed stream. Obviously the
higher the redundancy of the stream the higher the compression ratio. Redun-
dancy is considered as a consecutive subset of equal symbols inside the original
stream F. As an example, F = “AAAAAAGGGGTTTTTTTCCCCCEF” then
F′ = (A : 6, G : 4, T : 7, C : 5, E : 1, F : 1).
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2.1.2 Dictionary-based Encoding (DBE)
With DBE, variable length frequent patterns of symbols are replaced with

shorter codewords c from a code alphabet c ∈ Φ. The mapping is implemented
using a dictionary D := (b, frq, c) where c corresponds to a binary codeword for
symbol b ∈ S and frq is the frequency of b in F. Hereafter, we write Di to refer
to the ith row and Di[b], Di[frq], Di[c] to refer to the ith symbol, frequency or
code, correspondingly. With Di[b]k, in case of a block with multiple symbols we
refer to the k symbol of block b in row i. For the implementation of the dic-
tionary the invariant is: the more frequent symbols or patterns are assigned to
shorter codes. Huffman tree prefix encoding avoids the ambiguity of codewords
which share common prefixes for different symbols by building a prefix binary
tree. Leaves of the tree correspond to the symbols/patterns, left path nodes are
assigned the 0 value and right side nodes the 1 value. To ensure the invariant of
DBE, less frequent items are placed at the lowest level of the tree. The order of
elements in a level does not matter for the correctness of the prefix tree encoding.
Huffman (8) proposed a bottom-up approach to recursively build the tree. The
algorithm starts by picking the two less frequent symbols b1, b2. Assign them to
left-0 and right-1 leaf and put them under the parent of the meta symbol b1||b2.
Remove from the original data stream b1, b2, add b1||b2 and recompute the fre-
quencies. The process is repeated until |F| = 2, where the algorithm returns the
left and the right subtree of the root node. The codeword of each symbol is the
path to its leaf. The DBE outputs the dictionary D and the encoded stream F′

according to D. For the stream F = “AAAAAAGGGGTTTTTTTCCCCCEF”
the Huffman Prefix Tree T is shown in Figure 3. The encoding dictionary
D is shown in Table 4 and the compressed stream (in binary) is F′ =
10101010101001101101101111111111111111000000000001000101. The size of the
compressed stream is 6 · 2 + 4 · 3 + 2 · 7 + 2 · 5 + 2 · 4 = 56 bits, while the un-
compressed stream has size 24 · 8 = 192 bits, assuming symbols are 8 bits long.
Thus compression ratio equals 3.42 : 1.
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Fig. 1: Huffman Encoding Prefix Tree.

Symbol Frequency Codeword

T 7 11

A 6 10

C 5 00

G 4 011

E 1 0100

F 1 0101

Table 1: Dictionary Huffman Encod-
ing
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2.2 Related Work

2.2.1 Remote Data Integrity Remote Data Integrity Checking (RDIC)
(2; 9; 11), allows data owners to efficiently audit the integrity of their outsourced
data stored at an untrusted CSP. During a Setup phase, the user preprocesses
its file F and computes verification metadata σ using some secret key informa-
tion. User U then uploads F and σ to the CSP and deletes them from her local
storage. U keeps in storage a small, constant, amount of information related to
her secret key. At a later point in time, the data owner challenges the CSP to
prove possession of a randomly chosen subset of file blocks. The CSP can only
compute a valid proof as long as it stores the challenged file blocks with the
corresponding verification metadata. Finally, the owner checks the correctness
of the proof and is convinced about the faithful storage of the file F by the CSP
when the proof is successfully verified.

2.2.2 Dynamic Remote Data Integrity RDIC was initially designed to
handle static datasets. To handle dynamic data that changes over time (i.e.,
data blocks are altered, new blocks are inserted and existing blocks are deleted),
dynamic RDIC protocols have been proposed.
Dynamic PDP. Ateniese et al. (3) introduced the notion of scalable provable
data possession. Their solution allows deletions, changes and appends of new
data blocks but not insertions. Erway et al. (5) addressed the dynamicity of
existing PDP schemes with an authenticated skip list, which keeps track of
ranking information. The proposed solution enables insertions of blocks as well
without the need to recompute the tags of the existing blocks. Wang et al.
(14) gave a solution for dynamic PDP based on Merkle trees. Other solutions
with extra properties (replication and transparency(7), variable block size (6),
multiple access to shared data (15)) have been presented in the literature.

Dynamic POR. Stefanov et al. (13) proposed Iris, a PoR scheme for authentic
outsourced storage, which supports dynamic datasets. The client has to locally
store erasure-code data to allow edits on the uploaded file. Shi et al. (12) used
a combination of erasure encoded log buffers with authenticated data structures
to achieve dynamicity of data for a proof of retrievability protocol. In contrast
with previous solutions Cast et al. (4) employed an oblivious RAM scheme to
support dynamic data and Etemad et al. (10) presented generic constructions
for DPoR schemes.

In contrast with all dynamic RDIC protocols, whereby some blocks of data
are inserted, deleted, or changed, our auditable compressed storage framework
requires a different approach. The compressed file is treated as a completely new
file consisting of different blocks. Thus, employing a dynamic RDIC scheme is
not suitable, because the blocks of the compressed file are different compared to
those in the original file.
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3 Model and Security Guarantees

In this section, we describe the model for an Auditable Compressed Storage
(ACS) system. First, we set up the environmental setting with the functional
requirements of an ACS. Next, we analyze the adversarial model and we present
the sufficient security guarantees for an ACS scheme.

3.1 System Model

A user U uploads a file F to an untrusted cloud service provider CSP. The file
F consists of n blocks. Each file block consists of 8-bit ω symbols, and is thus
w = 8 · ω bits long. As the CSP may act maliciously, in order to guarantee
storage integrity for the file F, U uploads verification metadata for each block,
computed with a secret key. This metadata allows U to get guarantees about
faithful storage by running an RDIC protocol such as PDP (2), POR (9; 11).

At a later point in time, the CSP compresses F into F′ using a compression
algorithm (Comp = Encode,Decode). U needs to check the integrity of the com-
pressed file F′ and to get assurances that 1) Decode(Encode(F′)) = F, where F′

is the correct compression encoding of the original uploaded file F, and 2) the
compressed file F′ is faithfully stored. ACS introduces a Compress phase whereby
the CSP compresses F to F′ and transforms the tags of the uncompressed data
blocks to correspond to the compressed blocks. U is also exposed to the tradi-
tional RDIC algorithms: TagFile,ChallengeF,Prove,Verify, whereby U computes
authentication tags on top of each file block b1, . . . , bn and later on during a
challenge response protocol, U challenges the CSP on a random subset of blocks.
The CSP as long as it faithfully stored the blocks of F proves to U that it stores
F and U verifies the proof. In contrast with a traditional RDIC protocol, in ACS
during the ChallengeF′ phase the CSP demonstrates that 1) F′ is the correct com-
pression encoding version of F and 2) it faithfully stores F′ in its entire form.
We can describe an ACS system in 4 phases (also illustrated in Figure 5):

– Setup: The system parameters params are initialized and user U chooses
secret key information sk. U according to params splits the file in n blocks:
F = b1, b2, b3, . . . , bn and computes auxiliary information aux related to the
compression of the file. Some of aux may be stored at the user (auxU ), whereas
some of it may be sent to the CSP (auxC). For each block bi, it calls TagFile,
which computes an authentication tag σi. Finally, U uploads F, {σi}ni=1, and
auxC to the CSP.

– Compress: The CSP compresses F to F′ using the Encode algorithm. Note
that F′ has n′ blocks, where n′ may normally be different than n. The CSP
then transforms the tags σ1, . . . , σn of the uncompressed file blocks into the
ones for the compressed version of the file, S1, . . . , Sn′ .

– ChallengeF′ : The user engages in a challenge-response protocol to verify that
F′ is a correct compression of F and to attest the faithful storage of F′ at the
CSP.

– ChallengeF: The user engages in a challenge-response protocol to attest the
faithful storage of F at the CSP.
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F = b1, . . . , bn
σ = σ1, . . . , σn

CSP

U

F, σ

auxU

,auxC

(a) Setup

F = b1, . . . , bn
σ = σ1, . . . , σn

CSP

U

TransformTags(σ) = S

Compress(F) = F′

F′ = B1, . . . , Bn′

S = S1, . . . , Sn′

(b) Compress

F = b1, . . . , bn
σ = σ1, . . . , σn

CSP

U

F′ = B1, . . . , Bn′

S = S1, . . . , Sn′

ChallengeF′ ChallengeF

(c) ChallengeF′

Fig. 2: ACS model. Interrupted lines during the Compress phase denote that the user
may not need to interact with the CSP.

3.2 Adversarial Model

We assume an adversary A controlling the CSP to be a rational player in the
protocol. That is, it will deviate from the protocol as long as it has some economic
incentive to proceed in a malicious behavior. An ACS adversary A can misbehave
as follows:

AM1 (Incorrect compression): The CSP may claim storage of a file F′′, which
does not correspond to the compressed version F′ of F. The CSP acting rationally
has the economical motivation to compute and store F′′ such that the size of of
F′′ is either smaller (to save on storage costs) or larger (to charge the user for
more storage) than the size of F′. A rational CSP can potentially misbehave in
the following two ways when compressing or transforming the tags: AT1) reduce
the frequency of a block (cf. Figure 6), or AT2) increase the frequency of a block
(cf. Figure 7).

AM2 (Compression Integrity): As in traditional RDIC protocols, the CSP
may discard rarely accessed blocks of the compressed file F′ or it may try to hide
data loss incidents to maintain its reputation.

A A A A C C C C T T T T

B1 =
∑3

i=1 b1,i = 3 ·′ A′

b1,1b1,2b1,3

:Next block for B1 indexed by n=4

b1,3 == b1,4

A

Detect attack with the invariant:

Fig. 3: Remove block attack.

A A A A C C C C T T T T

B1 = 4 ·′ A′ ·′ C′

b1,1b1,2b1,3b1,4b1,5

:Last block for B1 indexed by l=5C

C 6= 4′A′ ·′ C′
Detect attack with the invariant :

Fig. 4: Add block attack.

3.3 Security Guarantees

We seek to design an ACS system with the following security guarantees:
SG1 (Proof of correct compression): Through an interactive proof the user

can check the correctness of the compression F′.
SG2 (Remote compressed data integrity): The user can detect with high

probability if the CSP stores a large fraction of blocks of the compressed file F′.
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As ACS extends the current RDIC protocols with the compression functional-
ity, we extend the standard RDIC security game in order to capture the proof of
correct compression property. We model the security of an ACS scheme through
the GACS

A game (cf. Figure 8), in which a challenger C interacts with the adver-
sary A with the following interface:

– Setup: C first runs the OSetup which forwards the public parameters to A.
– TagFile: A asks for tags of its choice based on file blocks and gets the correct

authentication tags from the OTagFile oracle. It gets the tags σ1, . . . , σn for
file blocks b1, . . . , bn. Finally, it stores b1, . . . , bn and tags σ1, . . . , σn.

– Compress: After A having asked for the tags of all file blocks, C asks A to
compress the file F. C also transforms the old tags to new ones S1 . . . Sn′

corresponding to the compressed file. That is an interactive process as in the
real protocol the CSP interacts with U to transform the tags in case of the
dictionary based encoding, while in the run-length-encoding protocol there
is no interaction. At the end of the interaction C outputs a bit b = 0, 1. It
sets the bit to 0 if A did not compute the correct compression metadata and
1 otherwise.

– ChallengeF′ : C generates a challenge Q′ for the compressed file F′ and asks A
to provide a proof for the possession of blocks in the challenge.

– ChallengeF: C generates a challenge Q for the uncompressed file F and asks
A to provide a proof for the possession of blocks in the challenge.

GACS
A :

pub = F, n←$AO
Setup()

σi ←$AO
TagFile(bi)

F′ = (B1, . . . , Bn′), (S1 . . . S
′
n)←$AO

Compress(F) ↔ C

β1 = 0/1← C
β2 = 0/1← ChallengeF(CSP : [F, σ1, . . . , σn], C : [sk, a])

β3 = 0/1← ChallengeF′(CSP : [F′, S1, . . . , Sn], C : [sk, a])

if β1 == 1 ∧ β2 == 1 ∧ β3 == 1 return 1 else return 0

Fig. 5: GACS
A game

We say that A wins the GACS
A game if GACS

A outputs 1: GACS
A ⇒ 1. The

advantage of A in winning the game is: AdvACS(A) = Pr[GACS
A ⇒ 1]

Definition 1. A scheme S = (ACS.Setup,ACS.Compress,ACS.ChallengeF′ ,ACS.ChallengeF)
securely instantiates ACS if whenever A wins the GACS

A game with high prob-
ability, then an extractor E can interact with A during the ChallengeF and
ChallengeF′ algorithms to construct the uncompressed and compressed file
respectively.

Intuitively our security definition demonstrates the concept of knowledge extrac-
tor as it has already been presented in the RDIC literature (2; 9; 11), whereby
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whenever A succeeds in the game, then E can extract the files F,F′ or putting
another way: A succeeds in the game GACS

A whenever it successfully stores F,
compresses it and stores the compressed version F′. The difference with the pre-
vious games for remote data integrity protocols is the proof for possession of both
the uncompressed and compressed files F,F′ (check bits β2 and β3 in the GACS

A
game) and also the proof of correct compression, which is embed in the game
through the interaction with the challenger C (check bit β1), which represents a
user U in the system.

4 Auditable Compressed Storage

In this section, we present our two core contributions. A protocol for auditable
compressed storage for run-length encoding dubbed ACS-RLE, and second a pro-
tocol for auditable compressed storage tailored for dictionary-based Huffman en-
coding: ACS-HUFF. Before delving into the details of the the two protocols, we
highlight the challenges and sketch a first attempt with its shortcomings.

Strawman solution 1. During the Compress phase, the user downloads the
uncompressed file, compresses it, computes the authentication tags on the com-
pressed files and finally uploads the tags and the compressed data blocks to
the CSP. Despite its simplicity, this approach is fraught with increased costs.
The user is burdened with increased communication costs as it has to download
the uncompressed file and then upload the compressed one with the new tags.
Moreover, the compression of the file and the computation of the tags on the
compressed blocks is performed entirely by the user, thus amplifying its compu-
tation costs.

Strawman solution 2. The user may try to reduce its computation costs by
delegating to the CSP the compression of the file. The CSP then sends the
compressed file to the user and the user computes the new tags. However, this
approach raises two concerns:

1. The user still has to download compressed file data blocks, but now the
total communication overhead will be less than downloading the entire un-
compressed file.

2. Most importantly the user has no mean of verifying the correctness of com-
pression as it has deleted the uncompressed file. To circumvent that, the
user has to store some metadata in order to check correctness of compres-
sion e.g: sign or tag with an authentication mechanism the original file and
keep the signatures/tags to verify it when it uncompresses the compressed
file. However, that approach incurs extra computation and storage costs.
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(a, sk, b1, . . . , bn, σ1, . . . , σn, aux)← RLE.Setup(1λ):

1 : User runs sk← KeyGen(1λ) to generate uniformly random key sk.

2 : User runs ((σ1, . . . , σn), a)← RLE.TagFile(sk,F)

3 : User runs RLE.Aux to generate the aux auxiliary data.

4 : User uploads b1, . . . , bn and σ1, . . . , σn, to the CSP and stores a, sk, aux.

5 : return (a, sk, b1, . . . , bn, σ1, . . . , σn, aux)

(F′, S1, . . . , Sn′)← RLE.Compress(F):

1 : CSP runs F′ ← RLE(F) to generate the compressed version

F′ = B1, . . . , Bn′ of F.

2 : CSP transforms σ1, . . . , σn to S1, . . . , Sn′ , for the compressed blocks

B1 , . . . , Bn′ by running S1, . . . , Sn′ ← RLE.TransformTags(B1, . . . , Bn′ , σ1, . . . , σn).

3 : CSP stores B1, . . . , Bn′ , S1, . . . , Sn′

4 : return (F′, S1, . . . , Sn′)

(1, 0)← RLE.ChallengeF′(CSP : [F′, S1, . . . , Sn′ , σ1, . . . , σn],U : [sk, a]):

1 : User generates the challenge Q = (i, ri) where i ∈ [n′] and ri ∈ Zp
2 : CSP runs RLE.Prove(F′, S1, . . . , Sn′ , σ1, . . . , σn, Q) to generate the

proof = ({µi}i∈Q, S, pcc).

3 : User runs RLE.Verify(proof, sk, Q, a) to verify correct compression

of the compressed blocks.

4 : if RLE.Verify(proof, sk, Q, a) == 1 return 1 else return 0

(1, 0)← RLE.ChallengeF(CSP : [F, σ1, . . . , σn],U : [sk, a]):

1 : User generates the challenge Q = (i, ri) where i ∈ [n] and ri ∈ Zp
2 : CSP runs CPOR.Prove(F, σ1, . . . , σn, Q) to generate the

proof = ({µi}i∈Q, S, pcc)

3 : User runs CPOR.Verify(proof, sk, Q, a) to verify correct data possession

of the compressed blocks

4 : if CPOR.Verify(proof, sk, Q, a) == 1 return 1 else return 0

Fig. 6: ACS-RLE scheme.

4.1 ACS-RLE Scheme

We assume f is a secure pseudorandom function (PRF), indexed by a key sk
$←K.

Let f : {0, 1}∗ × K → Zp, where p is a prime. All operations are computed
modulo p, unless otherwise noted. The ACS-RLE scheme is described in Figure
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10, supported by algorithms in Figures 11 and 13. In the RLE.ChallengeF phase,
we use the CPOR.Prove and CPOR.Verify algorithms from (11).

sk← KeyGen(1λ):

1 : sk
$←{0, 1}λ

2 : return sk

FRQ← RLE.Aux(b1, . . . , bn):

1 : Compute the frequencies FRQ = {ei − si + 1 = frqi} of consecutive blocks

2 : return MIi = (si, ei), 1 ≤ i ≤ n′ =
∑

frqi

({σi}ni=1, a)← RLE.TagFile(sk,F):

1 : Initialize ω, n,w.

2 : User selects uniformly at random a ∈ Zp.
3 : User splits F in n blocks b1, . . . bn of size w = 8 · ω bits each.

4 : for (i = 1, i ≤ n, i+ +) do

5 : σi = fsk(i) +

ω∑
k=1

abik // Compute the verification tag

6 : return {σi}ni=1, a

(S1, . . . , Sn′)← RLE.TransformTags(B1, . . . , Bn′ , σ1, . . . , σn):

Compute the new tags S1, . . . , Sn′ by aggregating identical σi.

1 : for (i = 1, i ≤ n′, i+ +) do

2 : parse Bi = frqi ·
′ b′i

3 : Si =

frqi+i∑
j=i

σj

4 : return (S1, . . . , Sn′)

Fig. 7: ACS-RLE algorithms.
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({µi}i∈Q, S, pcc)← RLE.Prove(F′, S1, . . . , Sn′ , σ1, . . . , σn, Bi, . . . , B
′
n, Q):

1 : foreach (i, ri) ∈ Q do µi =

ω∑
j=1

riBij

2 : S =
∑

(i,ri)∈Q

riSi

Add the checkpoints for each (i, ri) ∈ Q :

3 : foreach i ∈ Q do

map i to i′, i′ is the starting position of the compressed block in the file

4 : i′ ∈ [1 . . . n]← FindRange(i ∈ [1 . . . n′])

// E.g: F=′rrrrree′, then 6← FindRange(2)

5 : pcc+ = σi′+frqi−1, σi′+frqi
, i′, frqi

6 : return proof = ({µi}i∈Q, S, pcc)

(0, 1)← RLE.Verify(proof, sk, Q, a):

1 : parse pcc as (σl, σn, i
′, frqi), l = i′ + frqi − 1, w = i′ + frqi∀i ∈ Q

Check whether the CSP accumulated the correct range for each symbol:

2 : foreach (i, ri) ∈ Q do

Check whether the CSP reduced the frequency:

3 : s = (σw − fsk(w))/

ω∑
j=1

a // Extract the block from the uncompressed

block tag

4 : s′ = µi+1/frqiri

ω∑
j=1

a // Extract the block from the compressed block tag

5 : if s == s′ then return 0

Check whether the CSP increased the frequency:

6 : s = (σl − fsk(l))/
ω∑
j=1

a // Extract the block from the uncompressed

block tag

7 : s′ = µi/frqiri

ω∑
j=1

a // Extract the block from the compressed block tag

8 : if s! = s′ then return 0

Check correctness of mapping ranges to indexes using the MI dictionary

9 : foreach i ∈ Q if MIi 6= (i′, frqi − i = 1)return 0

Check correctness of data possession proof on the compressed blocks:

10 : if S 6=
∑
i,ri∈Q

(rifsk(i) +
ω∑
j=1

aµi) then return 0

11 : return 1

Fig. 8: ACS-RLE algorithms for the challenge protocol of the compressed blocks.
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Intuitively, we mitigate AT1) by requiring the CSP to provide extra in-
formation about the next uncompressed block after the currently challenged
one during the challenge response phase of RLE.ChallengeF′ . Namely, the user
U can extract from the tag S′i, which encodes identical blocks, the encoded
block and check whether it equals the extracted block from the next indexed
uncompressed tag (lines 3− 5, algorithm RLE.Verify, Figure 13). If the check is
correct, U infers that the CSP conducted an AT1 type of attack. For instance,
in Figure 6, a malicious CSP during RLE.Compress(F), computed a wrong block

B1 =
∑3

i=1 b1,i = 3 · A. It transforms the tags that correspond to b1,1, b1,2, b1,3
into a singleton tag S = σ1+σ2+σ3, excluding the block b1,4, which should have
been included in the transformation. However, the user during the challenge re-
sponse protocol can detect the malicious behavior of the CSP by demanding the
tag σ4 and checking whether the encoded symbol ’A’ equals the symbol of the
tag returned by the CSP for the compressed block B1. Notice that the tags σi
for the uncompressed blocks are unforgeable and incorporate the block index.
To mitigate AT2), a similar detection mechanism is adopted: By obtaining next
block tag, U can check whether the last symbol of the block does not match with
the block of the challenged block (lines 6− 8, algorithm RLE.Verify, Figure 13).
In the case of a mismatch, U detects a malicious behavior by the CSP. Those
two invariant checks are incorporated in the RLE.ChallengeF′ phase which follows
a challenge-response approach of probabilistically checking intact storage of the
compressed file F′.

4.2 ACS-HUFF Scheme

Our ACS-HUFF scheme is based on Huffman encoding to create a dictionary,
which assigns shorter codes to blocks. As the mapping translates symbols-blocks
of the uncompressed file to the new ones with different codes, the aggregate
technique of uncompressed tags to compute the new tags will be inconsistent
with the new codes of the blocks-symbols. A naive approach would be the user
to compute the new tags on the compressed blocks based on the compressed
file and the dictionary the cloud provides to her. However, that increases the
communication costs of the protocol overall. In our approach, the user stores a
small state during the Setup phase, which allows her to validate the correctness
of the Huffman dictionary. The user then computes some auxiliary information
for each new tag which is used by the CSP to convert the tags of uncompressed
file to the compressed ones.

The details of the ACS-HUFF scheme are given in Figures 14 and 15. We use
the same conventions with the ACS-RLE scheme regarding the PRF f and the
encoding of each block to a number in Zp. All operations are performed modulo
p. For the DBE.ChallengeF and DBE.ChallengeF′ phases, we use the CPOR.Prove
and CPOR.Verify algorithms from (11).
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(a, sk, b1, . . . , bn, σ1, . . . , σn, aux)← DBE.Setup(1λ):

1 : User runs sk← KeyGen(1λ) to generate uniformly random key sk.

2 : User runs ((σ1, . . . , σn), a)← DBE.TagFile(sk,F)

3 : User runs DBE.Aux to generate the aux auxiliary data

4 : User uploads data b1, . . . , bn and authentication tags σ1, . . . , σn, to the CSP

and stores a, sk, aux.

5 : return (a, sk, b1, . . . , bn, σ1, . . . , σn, aux)

(F′, S1, . . . , Sn)← DBE.Compress(F):

1 : CSP runs D ← HuffmanTree(F) and sends D to U
2 : U verifies if D is correct by calling Check(aux,D)

3 : if Check(aux, D) == 0 then return ;

4 : else U runs T ← DBE.Metatag(D)

5 : CSP runs F′ ← DBE(F, D) to generate the compressed version

F′ = B1, . . . , Bn

6 : CSP transforms σ1, . . . , σn to S1, . . . , Sn, for the compressed blocks

B1 , . . . , Bn by running S1, . . . , Sn ← TransformTags(σ1, . . . , σn, T ).

7 : CSP stores B1, . . . , Bn, S1, . . . , Sn

8 : return (F′, S1, . . . , Sn)
(1, 0)← DBE.ChallengeF′(CSP : [F′, S1, . . . , Sn′ ],U : [sk, a]):

1 : User generates the challenge Q = (i, ri) where i ∈ [n], ri
$← Zp, |Q| = m ≤ n.

2 : CSP runs CPOR.Prove(F′, S1, . . . , Sn, Q) to generate the proof = ({µi}i∈Q, S).

3 : User runs CPOR.Verify(proof, sk, Q, a) to verify correct compression

(1, 0)← DBE.ChallengeF(CSP : [F, σ1, . . . , σn],U : [sk, a]):

1 : User generates the challenge Q = (i, ri) where i ∈ [n], ri
$← Zp, |Q| = m ≤ n.

2 : CSP runs CPOR.Prove(F, σ1, . . . , σn, Q) to generate the proof = ({µi}i∈Q, S).

3 : User runs CPOR.Verify(proof, sk, Q, a) to verify data possession

Fig. 9: ACS-HUFF scheme.

4.3 Differences between ACS-RLE and ACS-HUFF

Notice that ACS-RLE and ACS-HUFF have a different algorithmic design, which
nonetheless follows our unified model for ACS as presented in Section 3. Namely,
due to the nature of the RLE compression technique and the transformation of
the tags by the CSP, the Compress algorithm is non-interactive and does not
demonstrate any proof of compression correctness. The proof of compression
correctness is embedded in the ChallengeF′ phase, whereby U is convinced not
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{σi}ni=1 ← DBE.TagFile(sk,F):

1 : Initialize ω, n,w.

2 : User selects uniformly at random a = {ak}, k ∈ [1 . . . ω] ∈ Zp.
3 : User splits F in n blocks b1, . . . bn of size w = 8 · ω bits each.

4 : for (i = 1, i ≤ n, i+ +) do

5 : σi = fsk(i) +

ω∑
k=1

akbik // Compute the verification tag

6 : return {σi}ni=1, a

FRQ← DBE.Aux(b1, . . . , bn):

1 : Compute the frequencies FRQ = {frqi}∀si ∈ F

2 : return FRQ

(1, 0)← DBE.Check(aux, D):

1 : parse aux as FRQi

2 : for i = {1, . . . , |D|}

3 : if Di[frq]
?
= FRQi

(T )← DBE.Metatag(D):

1 : U selects uniformly at random a′ ∈ Zp.

2 : U for i = {1, . . . , |D|} computes ti =

ω∑
k=1

a′Di[b]k −
ω∑
k=1

aDi[s]k

and sends T = {ti}|D|i=1

3 : return T

(S1, . . . , Sn)← DBE.TransformTags(σ1, . . . , σn, T ):

1 : parse T = {ti}|D|i=1

2 : for (i = 1, i ≤ n, i+ +) do

3 : CSP computes Si = σi + ti

4 : return (S1, . . . , Sn′)

Fig. 10: ACS-HUFF algorithms.

only about the faithful storage of F′, but also about the valid compression of
F′. This is possible because RLE encoding does not change the codes of the new
compressed blocks. We changed the challenge-response protocol of CPOR in or-
der to establish the following: correct proof of faithful storage of F′ demonstrates
correctness during compression. With the ACS-HUFF this is not doable and a
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different treatment was needed. Basically, the ACS-HUFF.Compress is interac-
tive and deviates from ACS-RLE.Compress because 1) U checks the correctness
of intermediate compression information: the Huffman dictionary and 2) U pro-
vides the metatags to CSP in order the latter to compute the new tags on F′.
Moreover since the proof of correct compression is established at this step, in the
ACS-HUFF.ChallengeF′ phase there is no need to demonstrate a proof of correct
compression and a standard CPOR challenge-response protocol is called for the
proof of intact storage of F′.

5 Analysis

In this section we analyze both ACS-RLE and ACS-HUFF protocols. We start
with the security analysis before exploring the efficiency.

5.1 Security

Theorem 1. ACS-RLE is a secure accountable compressed storage system ac-
cording to Definition 1 against a PPT adversary A and a polynomial extractor
E, as long as f is a secure PRF.

Proof. Throughout, n′ is the number of blocks of the compressed file F′, m is
the size of the challenge Q, and s is the number of blocks A stores. Advf (B) is
a negligible quantity on the success probability of probabilistic polynomial time
adversary B against the security of the underlying PRFf : fixed on a key, the
output of the PRF should be indistinguishable from a truly random function.

Learning phase Adversary A plays the GACS
A game with a challenger C. C

first calls the OSetup oracle which returns pk = n, ω,w and sk. C forwards the
public key information pk to A. A chooses a file F and asks the tags σi for each
block bi from C. A forwards tuples (i, bi) to C, who calls OTagFile(bi) and forwards
the tags to A. There are no restrictions here at the side of A. From those tags
it can extract a and forge the tags. When A finishes with queries on tags, then
it stores all tags σi and blocks bi.

Compress phase C asks A to compress the file F. A runs
RLE.Compress(F) to compress file F to F′ and S1, . . . , Sn′ ←
RLE.TransformTags(B1, . . . , Bn′ , σ1, . . . , σn) to transform tags σ1, . . . , σn to
S1, . . . , Sn′ .

Challenge phase C creates a random challenge Q = (i, ri), i ∈ [1 . . . n′]
and sends it to A. A constructs the proof = ({µi}i∈Q, S, pcc) calling the
RLE.Prove(F′, S1, . . . , Sn′ , σ1, . . . , σn, Q) algorithm and returns it to C.

We consider two events bad1 and bad2. bad1 = 1 happens whenever A con-
vinces C during the challenge protocol without holding the required challenged
blocks and bad2 = 1 when A does not transform correctly the blocks for the
compressed blocks or does not store them at all. We categorize bad2 event with
two possible cases: bad21 considers the remove block attack event and bad21 the
event when add block attack occurs. The success probability of A in winning the
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GACS
A game without storing the requested blocks or compressing and transform-

ing the tags without being detected by a benign verifier (C, or user in the real
protocol) is bounded by:

Pr[bad1 = 1] + Pr[bad21 = 1] + Pr[bad22 = 1] (1)

= 2 ·
m∑

i=0

i

m
· Advf (B) + 1− n′ − s

m
(2)

= 2 · m(m− 1)

2m
· Advf (B) + 1− n′ − s

m
(3)

= (m− 1) · Advf (B) + 1− n′ − s
m

(4)

Thus the success probability of an extractor E to extract the file equals:

Pr[E ⇒ 1] = 1− (Pr[GACS
A ⇒ 1] ∧ (Pr[A not store F′]

∨ Pr[A not compress correctly]))

= 1− (Pr[bad1 = 1] + Pr[bad21 = 1] + Pr[bad22 = 1])

= 1− (m− 1) · Advf (B) + 1− n′ − s
m

≤ 1− negl(λ)

Theorem 2. ACS-HUFF is a secure accountable compressed storage system ac-
cording to Definition 1 against a PPT adversary A and a polynomial extractor
E, as long as f is a secure PRF.

Proof. Similarly with the ACS-RLE proof, we analyze the success probabilities
of an extractor to extract the correct file or providing proofs of compression.

Pr[E ⇒ 1] = 1− (Pr[GACS
A ⇒ 1] ∧ (Pr[A not store F′]∨

Pr[A not compress correctly]))

= 1− (Pr[bad1 = 1] + Pr[bad2 = 1])

= 1− (

m∑

i=0

i

m
· Advf (B) + 1− n′ − s

m
)

= 1− (
(m− 1)

2
· Advf (B) + 1− n′ − s

m
)

≤ 1− negl(λ)

5.2 Performance

We perform a theoretical performance analysis of ACS-RLE and ACS-HUFF, two
vanilla protocols V1 and V2 as baseline. V1 consists of a straightforward approach
in which the user U whenever seeks to compress its already outsourced data file F,
downloads the entire file F, compresses it to F′, computes the new tags {S}ni=1
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Protocol PreComputation Storage Compress [U|CSP|C]

V1 O(n) O(1) O(n+ n′ ) 0 O(n+ 2n′ )
V2 O(n) O(1) O(n′ ) O(n) O(2n′ )
ACS-RLE O(n) O(n′ ) 0 O(n+ n′ ) 0
ACS-HUFF O(n) O(|D|) O(|D|) O(n+ |D|) O(|D|)

Table 2: Comparison table. PreComputation depicts the computation time for the
user U for the Setup phase. Storage is the space overhead for U after uploading file F
and tags. Compress shows computation time for U and CSP, and the communication
overhead (C) needed for the compression at the CSP.

Protocol Challenge Prove Verify

V1 O(1) O(m) O(1)
V2 O(1) O(m) O(1)
ACS-RLE O(1) O(m) O(m)
ACS-HUFF O(1) O(m) O(1)

Table 3: Comparison table. Challenge, Prove and Verify present the computation
overhead to compute the Challenge, the proof time of the CSP and the time U spends
to verify the proof respectively. n is the number of blocks in the uncompressed file F,
n′ is the number of the compressed blocks, m is the size of the challenge and |D| is the
size of entries for the dictionary of Huffman encoding for ACS-HUFF scheme.

and finally uploads both F′ and {S}ni=1 to the CSP. In V2, the user asks the
CSP to compress the file F′, downloads it to check correctness of compression,
computes the new tags {S}ni=1 and uploads them to the CSP.

Tables ?? and ?? show the comparison. We take into account the follow-
ing factors in order to compare the protocols: The PreComputation time
for the user during the Setup phase. The Storage overhead after the Setup
U needs to allocate. The computation time for the Compress algorithm for U
and the CSP, denoted as Compress in the table. The communication overhead
(Compress.C) that is required for compression. And finally, the running time
overhead during the challenge response protocol ChallengeF′ for the computation
of the Challenge, the Prove and the verification (Verify).

PreComputation is the same O(n) for all protocols as it consists of split-
ting the file F in n blocks and computing n tags with the same mechanism
(CPOR tags). The Storage in both vanilla protocols is O(1). In ACS-RLE, the
user storage cost is increased to O (n′ ) due to the auxiliary table MI, which
stores ranges of symbols. In ACS-HUFF, U has to store the frequencies of all
symbols of the file F in order to check for the correctness of compression during
the ACS-HUFF.Compress phase. This results in a storage complexity of O(|D|).
Notice that |D| is considerably smaller than n and depends only on the vocab-
ulary of the file F and the block size w of each block. The latter is due to the
heuristic that the bigger the w the less unique patterns, thus entries, in D.

The advantages of our two auditable compressed storage protocols ACS-RLE
and ACS-HUFF are obvious during the Compress algorithm which is assessed in
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the Compress column of ??. As in both ACS-RLE and ACS-HUFF the compres-
sion is delegated to the CSP, U ’s computation time complexity is minimal: 0 for
ACS-RLE and O(|D|) for ACS-HUFF. V1 requires O(n+ n′ ) computation time
for U as the user compresses the file and computes the new tags. It also results
in O(n+ 2n′ ) total communication complexity. V2 splits the computation over-
head for compression in O (n′ ) for U and O (n) for the CSP. Recall that in V2
the user computes the new tags for the compressed file and the CSP compresses.
In contrast with the vanilla protocols, ACS-RLE and ACS-RLE demand constant
communication complexity for compression. ACS-RLE communication complex-
ity is reduced to 0, whereas in ACS-HUFF the complexity is slightly increased
to O(|D|) due to the extra check U has to perform to check the correctness of
Huffman based compression. Finally, during the ChallengeF′ phase the verifica-
tion time for the ACS-RLE protocol is increased from O(1) to O(m) due to the
extra checks for compression correctness. Note that m refers to the size of the
challenge Q on the compressed file F′. ACS-RLE verification time is the same as
with the vanilla protocols, as it is a conventional CPOR verification (11). We
let as future work the design of an auditable compress storage protocol which
will enjoy the low Compress complexity user running time and communication
overhead as with ACS-RLE, with the constant verification time of ACS-HUFF.

Another baseline method could use an existing RDIC scheme for the uncom-
pressed file and one for the compressed one. The asymptotic performance of such
a scheme would be optimal in terms of compression costs compared with all the
aforementioned ones. However, there is a metric which is not included in that
case. The Cloud has to store 2n tags instead of n tags, which asymptotically is
equivalent with the existing baselines but for large files it might be a prohibitive
solution for the CSP.

Notice also that for high entropy files both ACS-RLE and ACS-HUFF require
the client to store up to O(n) information. That however imposes that the com-
pression ratio would be very small due to high entropy; so the client would not
have any incentive a-priori to use any compression techniques.

6 Conclusion

We initiated the study of Auditable Compressed Storage, whereby the original
data changes format during its lifetime, when outsourced to a cloud infrastruc-
ture. This setting poses new threats and challenges in secure outsourcing storage
as the task of compressing the data is delegated to the cloud, who is in charge of
transforming the authentication tags of the original data to tags corresponding
to the compressed data. As the Cloud Service Provider is economically moti-
vated to cheat by not applying a correct compression to the original data, we
demonstrate how to extend existing Remote Data Integrity Check protocols to
encompass a proof of correct compression in conjunction with proofs of faith-
ful storage. We designed and analyzed two protocols: ACS-RLE for Run Length
Encoding compression and ACS-HUFF for Huffman Dictionary-based encoding.



Our protocols fulfill the security guarantees for correct compression and faithful
storage.
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