
B-SIDH: supersingular isogeny Diffie-Hellman
using twisted torsion

Craig Costello

Microsoft Research, USA
craigco@microsoft.com

Abstract. This paper introduces a new way of instantiating supersingular isogeny-based
cryptography in which parties can work in both the (p+ 1)-torsion of a set of supersingular
curves and in the (p−1)-torsion corresponding to the set of their quadratic twists. Although
the isomorphism between a given supersingular curve and its quadratic twist is not defined
over Fp2 in general, restricting operations to the x-lines of both sets of twists allows all
arithmetic to be carried out over Fp2 as usual. Furthermore, since supersingular twists
always have the same Fp2 -rational j-invariant, the SIDH protocol remains unchanged when
Alice and Bob are free to work in both sets of twists.
This framework lifts the restrictions on the shapes of the underlying prime fields originally
imposed by Jao and De Feo, and allows a range of new options for instantiating isogeny-
based public key cryptography. This includes alternatives that exploit Mersenne, Solinas,
and Montgomery-friendly primes, the possibility of halving the size of the primes of the
Jao-De Feo construction at no known loss of asymptotic security, and more.

Keywords: Post-quantum cryptography, supersingular isogenies, SIDH, SIKE, Montgomery
curves, quadratic twists, Pell’s equation, Størmer’s theorem.

1 Introduction

“His result is very pretty, and there are many applications of it.”

– Louis J. Mordell on Størmer’s theorem [12].

State-of-the-art instantiations of Jao and De Feo’s supersingular isogeny Diffie-Hellman (SIDH)
protocol [31] – including those in the actively secure SIKE variant [30] – fix two public values m and
n such that 2m ≈ 3n and p = 2m3n− 1 is prime. Throughout the protocol, Alice and Bob perform
secret walks in two different graphs that share precisely the same nodes: these nodes are the set
of Fp-isomorphism classes of supersingular elliptic curves in characteristic p, and there are close
to bp/12c of them. Alice’s secret walks take m steps in the 2-isogeny graph, i.e. the graph whose
edges correspond to 2-isogenies, and Bob’s secret walks take n steps in the 3-isogeny graph, i.e.
the graph whose edges correspond to 3-isogenies. Both Alice and Bob begin at the same starting
curve, E0, and the public keys they output contain the respective image curves, EA and EB , that
are the destination nodes of their secret walks. Upon receipt of Bob’s public key, Alice computes
a secret 2m-isogeny from EB to EAB , and computes j(EAB) ∈ Fp2 – the j-invariant representing
the isomorphism class that is the shared secret. Analogously, Bob computes the 3n-isogeny from
EA to his image curve EBA, which is isomorphic to EAB , so he arrives at the same shared value
j(EBA) ∈ Fp2 as Alice.

The best known attacks against SIDH try to either recover Alice’s secret isogeny φA : E0 → EA,
or Bob’s secret isogeny φB : E0 → EB , and both of these problems are instances of the supersingular
isogeny problem: given a finite field K and two supersingular elliptic curves E,E′ defined over K
such that #E = #E′, compute an isogeny φ : E → E′. In general, the best known classical
algorithm for solving the supersingular isogeny problem is the Delfs-Galbraith algroithm [19],
which requires O(p1/2) isogeny operations to find a collision (of walks from E and E′) in the
graph of size O(p). However, the special isogenies computed in SIDH above give rise to appreciably

easier instances of the supersingular isogeny problem; they are of a fixed, known degree close to
p1/2, and this allows for a classical meet-in-the-middle attack that, asymptotically, requires only
O(p1/4) isogeny operations [31, §5]. Roughly speaking, the difference between the difficulty of the
isogeny problems that arise in SIDH and that of the general supersingular isogeny problem is due
to the fact that Alice and Bob only take about half as many steps as the diameters of each of their
graphs. Furthermore, these half-length walks fall short of the length needed to achieve uniform
mixing in the supersingular isogeny graph [31, §5.1].

Jao and De Feo chose primes of the form p = 2m3n−1 and half-length walks so that Alice and
Bob can both compute their isogenies using arithmetic in Fp2 ; they represent each isomorphism
class by a supersingular elliptic curve E/Fp2 with group order E(Fp2) = (p+1)2 = (2m3n)2, which
facilitates a full Fp2-rational 2m-torsion and full Fp2 -rational 3n-torsion. When all of the order 2m

and 3n subgroups are Fp2-rational, so are the corresponding isogeny computations.
A first observation that sets the scene for this work is that there are actually two choices of

supersingular curves over Fp2 : those whose group orders are (p+1)2, and those whose group orders
are (p− 1)2. Moreover, this choice can be made at every node in the supersingular isogeny graph:
although curves from these two sets are not isomorphic (or even isogenous!) to one another over
Fp2 , they do become isomorphic over Fp4 , and therefore share the same j-invariant in Fp2 [49,
Proposition III.1.4]. Indeed, these two sets of curves are the quadratic twists of one another.

The main point of this paper is to show that SIDH protocol does not have to restrict to working
in one of the two sets of quadratic twists: it can stay in Fp2 while working in both the (p+1)-torsion
and the (p−1)-torsion. This allows Alice and Bob to work in the torsion corresponding to opposite
sets of quadratic twists with no change to the protocol. Optimised Montgomery arithmetic [39] in
the SIDH setting only needs the x-coordinates of points [31] and the A coefficient of the curve [16],
and as such is entirely twist-agnostic; in other words, the twisting morphism (which only alters y-
coordinates and the B coefficient) leaves x-coordinates and A coefficients unchanged, so the lifting
to Fp4 described above becomes a mere theoretical technicality that is not visible in cryptographic
implementations (see Section 3).

The price to pay for working with both twists is that at least one of Alice or Bob must now
perform walks comprised of steps in multiple `-isogeny graphs, i.e. switching between multiple
values of `. This changes the underlying hardness assumption for one or both parties, but (as is
discussed at length in Section 6) there is no known reason to believe that switching between many
`’s makes the resulting SIDH problems any easier, so long as the number of destination nodes
remains roughly the same size as the Jao-De Feo instantiation. On the other hand, the proposed
approach gives at least one party the option of walking roughly as far as the diameter of the graph,
heading toward the territory where the theory of expander graphs1 provides concrete results about
rapid mixing.

Allowing torsion from both sets of twists unlocks a number of new options and trade-offs
for isogeny-based public key cryptography; many examples are given throughout this paper to
illustrate these possibilities. At a high level, the options presented fall into two categories: the
first is where Alice gets to computes significantly faster 2m isogenies (than in existing SIDH/SIKE
implementations) at the expense of a heavy slowdown on Bob’s side; the second, and perhaps the
more interesting, is the possibility of halving the sizes of the underlying fields and the SIDH/SIKE
public keys at no known loss of security.

Accelerating Alice, burdening Bob. The Jao-De Feo construction allows Alice and Bob to
achieve roughly the same performance in SIDH and SIKE; the cost of a 2m-isogeny and 3n-
isogeny are similar when 2m ≈ 3n, and the benchmarks for optimized implementations of SIKE
are very similar for key encapsulation and key decapsulation – see [30, Table 2.1]. However, there
are two real-world scenarios where the performance of one side is much more crucial than the
performance on the other. The first is the client-server scenario, where servers are oftentimes
performing many orders of magnitude more runs of the protocol than any individual client(s).
For example, Cloudflare recently announced [34] a large-scale experiment on the performance

1See [21, Proposition 2.1], [24, Theorem 1], or [28].

2

of post-quantum cryptography in the BoringSSL implementation of the TLS handshake, with
SIKEp434 being one of their two chosen key encapsulation mechanisms. At the recent NIST post-
quantum standardization workshop, Sullivan remarked that Google did not clear SIKE for their
side of the experiment due to a “denial of service risk” [51]. While the rationale here seems far-
fetched (it would be worrying if increasing the TLS handshake by a few milliseconds would really
threaten the stability of Google’s online services), it does showcase one example scenario where
server-side performance is the priority. In the SIKE protocol, the decapsulator must compute both
isogenies [30], so it is only the encapsulator that can be sped up using the instantiations below.
In TLS 1.3, the client sends its public key in the initial flow, and as such the server becomes the
encapsulator; thus, if SIKE were to be dropped in to TLS 1.3 using the examples below, servers
would indeed be the ones seeing the Alice’s benefits while clients would be paying the penalty of
being Bob.

An example of the opposite scenario, i.e. when the priority becomes the client’s performance,
is in the arena of lightweight cryptography [55, §1]. Here there are many example scenarios where
resource-constrained devices are communicating with a (relatively unconstrained) server, and af-
fording the client(s) a speedup at the expense of the server would be a welcomed trade-off.

Example 1 (Mersenne-p521). As an illustrative example, let p be the Mersenne prime p = 2521−1,
and consider the prime factorization of p− 1 as

p− 1 = 2 · 3 · 52 · 11 · 17 · 31 · 41 · 53 · 131 · 157 · 521 · 1613 · 2731 · 8191 · 42641 · 51481 · 61681

· 409891 · 858001 · 5746001 · 7623851 · 34110701 · 308761441 · 2400573761 · 65427463921

· 108140989558681 · 145295143558111 · 173308343918874810521923841.

Suppose this prime is chosen as the basis of an implementation geared to match the security
of SIKEp503 from the SIKE submission [30], which has p = 22503159 − 1. Alice can work in the
(p+ 1)-torsion as usual, computing 2250-isogenies as she would in SIKEp503. Bob’s torsion must
be coprime to Alice’s, and thus he must work entirely in the (p − 1)-torsion. To achieve close to
the same level of conjectured security (see Section 6), Bob must compute isogenies of degree

N = 3 · 52 · 11 . . . 5746001 · 7623851 · 34110701.

Compared to the optimal strategy for computing 159 chained 3-isogenies in the SIKEp503 im-
plementation, Bob’s isogeny computation has now become a lot more expensive. Computing a
degree-` isogeny requires O(`) field operations (see Section 2), so the complexity of Bob’s degree-
N isogeny will be dominated by the largest prime(s); the 34110701-isogeny alone will be more
expensive than Alice’s entire 2250-isogeny. Although this example is about as bad as the situation
can get for Bob in this paper, it is not prohibitively bad. The formulas for arbitrary degree Mont-
gomery isogenies [14] allow for managable isogeny computations, even up to degrees this large.
Furthermore, as is detailed in Section 3, Bob has a number of additional options at his disposal
for handling large `, including extensive precomputation, parallelizing the algorithm from [14], or
avoiding the large primes altogether by instead opting to find more smaller order torsion points
at the cost of moving to a higher extension field.

On the other side, Alice’s situation has significantly improved due to her being able to take
advantage of the Mersenne prime. While her speedup (somewhere between a factor 1.4x and a
factor 2x, based solely on optimised underlying prime field arithmetic in both scenarios) is nowhere
near enough to counteract Bob’s slowdown for a single run of the protocol (at least one order of
magnitude), this trade-off may still be preferred in the types of real-world scenarios mentioned
above.

In this example, observe that the same underlying field could be used to scale between more
than one of the proposed SIKE parameter sets. To match SIKEp434 – the smallest SIKE parameter
set with p = 22163137 − 1 – Alice could compute a 2216-isogeny as usual, and Bob’s largest prime
could now go down to ` = 7623851. Or, to move up to match SIKEp610, Alice would compute
her 2305-isogeny and Bob’s largest prime would now be ` = 2400573761; this size of ` is well into
the range of Bob’s slowdown being a deal-breaker, so here the alternatives described at the end

3

of Section 3 would be imperative. On the other hand, observe that this up-and-down scaling of
security over the same field would (1) be welcome news to aggressive software implementers who
are aware that the bulk of the effort in highly-optimised, curve-based cryptographic software goes
into hand-written assembly for the underlying field arithmetic, and (2) allow for easy parameter
shifts to all the intermediate possible parameterizations as well – Alice’s changes are trivial for
implementers and Bob could wrap (tailored) routines for individual large `-isogenies around the
optimised routine for the smallest parameter set.

Lastly, it is worth pointing out that Alice has the flexibility to scale her own security for any
given run of the protocol, independent of, and unbeknownst to, Bob. This may be of interest in
scenarios where the security of a long-term static key is paramount, e.g. in certain applications
of the SIKE protocol. The torsion basis {PA, QA}, which is part of the public parameters (see
Section 2), could be specified once-and-for-all such that 〈PA, QA〉 = E[2521]. For any run of the
protocol, Alice could choose to work in the 2m-torsion by instead working with {P ′A, Q′A} =
{[2521−m]PA, [2

521−m]QA}, and choosing the length of her secret scalar(s) accordingly. On the
other side, Bob does not need to know Alice’s choice here; the public key obtained under his secret
isogeny φB will contain the basis {φB(PA), φB(QA)} that generates the 2521-torsion on φB(E),
and again Alice can simply modify the basis to generate torsion of her chosen degree, taking
{[2521−m]φB(PA), [2521−m]φB(QA)} instead. This comes at no additional cost to Bob and a very
minor additional cost to Alice. The only additional security caveat to keep in cases like this is
Petit’s attack on unbalanced parameters [42], but current knowledge says this is not applicable if
Alice keeps the bitlength of her isogeny degrees within a factor two of Bob’s, or vice versa.

Bob on both sides. Another possibility explored in this paper is the ability for either (or both)
parties to use isogenies from both the (p+ 1)-torsion and the (p− 1)-torsion.

Example 2 (Goldilocks prime). Consider the prime p = 2448 − 2224 − 1 underlying Hamburg’s
Goldilocks curve [27]. Alice could exceed the security offered by SIKEp434 by computing 2224-
isogenies solely inside the (p+1)-torsion as before. If Bob was to take his kernel subgroups entirely
from the (p− 1)-torsion (as was the case for the Mersenne prime above), he would have to choose
a combinations of the odd primes in the factorization

p− 1 = 2 · 641 · 18287 · 196687 · 1466449 · 2916841 · 6700417 · 1469495262398780123809

· 167773885276849215533569 · 596242599987116128415063

· 37414057161322375957408148834323969.

To match the conjectured security of SIKEp434, Bob would need to compute an `-isogeny with
` = 167773885276849215533569, which is far beyond the practical ranges. However, in this case
Bob can also cherry-pick primes that remain in the (p+ 1)-torsion, taking the odd primes in the
factorization

p+ 1 = 2224 · 3 · 5 · 17 · 29 · 43 · 113 · 127 · 257 · 449 · 2689 · 5153 · 65537 · 15790321

· 183076097 · 54410972897 · 358429848460993.

The largest `-isogeny Bob would now need to compute to match SIKEp434 security is ` =
15790321, which is less than that which was needed in the Mersenne prime setting above. In
this example working on both sides is the only real option for Bob, but this does come with a
caveat – see Section 3.

Hybrid-friendly fields. In [16] it was argued that SIDH is particularly amenable to being paired
with classical ECDH, because one can benefit from choosing a non-supersingular elliptic curve
with a strong ECDLP over the same prime field that underlies SIDH. Moreover, if these curves are
chosen using the best known modern practices for ECDH (cf. [35]), then much of the Montgomery-
style arithmetic needed within SIDH can be reused in the classical ECC computations, or vice

4

versa. However, defining a new, non-standard classical curve over an arithmetically suboptimal
prime field with p = 2m3n − 1 is not as attractive (on the ECC side) as the hybrids that would
result from some of the primes explored in this paper. In particular, both of the primes above (and
several of those explored in Section 4) already support deployed elliptic curves in the current or
future NIST standards, so high-speed libraries for all of the ECDH (and thus the shared field and
curve) arithmetic are already widespread.

Smaller primes. Let M and N be the coprime degrees of Alice and Bob’s respective secret
isogenies. In both the original Jao-De Feo proposal with M = 2m and N = 3n, and in the
two scenarios above where N was instead the product of multiple primes, M and N are both
approximately p1/2. This is the best case scenario if both M and N need to divide p+ 1, but it is
rather wasteful once the (p−1)-torsion is brought into play. The new requirement is that M and N
need to instead divide p2− 1, which (assuming they remain balanced in size) means they can now
lie anywhere in the range of around p1/2 to around p. In Section 4 a number of examples are given
that place M and N somewhere in the middle of this range, i.e. where p1/2 � M,N � p. Based
on the current literature, this paper conjectures that these examples achieve the same asymptotic
security as the Jao-De Feo construction with primes that are significantly smaller.

The optimal case. In terms of the ratio of isogeny degrees to the prime size, the optimal case
is when M ≈ N ≈ p. Here Alice can compute isogenies of degree dividing M = p + 1, and Bob
can compute coprime2 isogenies of degree dividing N = p− 1. From a constructive point of view,
realising this optimal scenario in practice boils down to being able to find primes p for which p−1
and p+1 are smooth enough to allow efficient isogeny computations. At first glance this may seem
like a specific and/or overly restrictive requirement, but finding instances of such primes is made
easier thanks to a beautiful theorem of Størmer from the late 1800’s [50]. For the purposes herein
(see Theorem 1), it says that two numbers differing by 2 are B-smooth if and only if the number
between them, x, is found as a solution (x, y) of the Pell equation x2 − Dy2 = 1, where D is
squarefree, and both D and y are B-smooth. Moreover, Størmer showed that the number of such
x is finite, and he gave a method to find all of them by solving a system of Pell equations. Thus,
applying his method to find primes p for which p− 1 and p+ 1 are B-smooth simplifies to further
stipulating that any solution satisfying the above requirements must also have x as a prime.

As an illustrative example, when B = 53, the largest number x such that x− 1 and x+ 1 are
B-smooth is x = 2907159732049, for which

x− 1 = 24 · 3 · 112 · 132 · 29 · 41 · 47 · 53, and

x+ 1 = 2 · 52 · 76 · 192 · 372.

However, the largest such number that is prime is p = 187753824257, for which

p− 1 = 224 · 192 · 31, and

p+ 1 = 2 · 3 · 7 · 112 · 13 · 29 · 432 · 53.

In this toy example, Alice could compute M -isogenies with M = 224 · 192 · 31, and Bob could
compute N -isogenies with N = 3 · 7 · 112 · 13 · 29 · 432 · 53.

Størmer’s algorithm was improved by Lehmer [36], who showed that if there are t primes less
than or equal to B, all of the solutions can be found by solving the 2t − 1 Pell equations that
correspond to the 2t − 1 possibilities of D being squarefree and B-smooth. Thus, to exhaustively
list the full set of solutions for a given B gets increasingly difficult as B grows large, and indeed
finding attractive examples of cryptographic size becomes a challenging balancing act. It is well
known (see Section 5) that solving the Pell equation generally becomes harder as D grows large,

2Plainly, 2 is the only common factor of p + 1 and p − 1, but once a factor of 2 is removed from the
side that is not divisible by 4, the remaining factors are immediately coprime.

5

but fortunately imposing an upper bound on the size of the desired solutions (since they become
the field characteristic) gives rise to an effective early abort strategy for the simple continued
fraction (SFC) method. The problem then becomes one of searching over B-smooth values of D
until the SCF terminates with a solution (x, y) to the corresponding Pell equation before x grows
too large; furthermore, the desired solutions need to (i) be sieved such that y is B-smooth to
satisfy the requirements of Størmer’s theorem, and (ii) find x as both prime and of the right size
for a target security level.

This search is discussed in detail in Section 5, together with a large-sized example that has so
far been found with it. At present, this example is provided merely as a proof of concept in order
to illustrate that such examples exist. The search has not yet been streamlined and is far from
optimal, and as such, so is the example. In the coming months, as the search is optimised, more
exhaustive, and resources are ramped up, it is expected that many better examples will supercede
that in the current version. The quality of an example is judged solely by the smoothness bound;
if a prime p of a given size is such that p− 1 and p+ 1 are B-smooth, then another example will
be deemed better if it is also around the same size but achieves a smoothness bound less than B;
it is hopeless to try adding any (e.g. arithmetically favourable) properties of the prime p to the
wishlist, beyond the size of p itself.

In terms of classical security, having both M and N around the same size as p brings the
asymptotic complexity of the Delfs-Galbraith algorithm to be the same as the asymptotic com-
plexity of the claw-finding algorithm; both run in O(p1/2) time. However, Delfs-Galbraith does not
have large storage requirements, so when the O(p1/2) storage requirements for the claw-finding
algorithm are factored into the analysis (as in [1]), Delfs-Galbraith becomes the superior algorithm
for breaking the underlying isogeny problem. An analogous situation happens in the quantum se-
curity analysis; the O(p1/4) Biasse-Jao-Sankar algorithm [7] for the general supersingular isogeny
problem (which is essentially the quantum version of Delfs-Galbraith) becomes far superior to
Tani’s quantum claw-finding algorithm [53], and it also has low storage requirements. The full
security analysis is in Section 6.

Naming. The instantiation proposed in this paper is dubbed B-SIDH3 in order to distinguish it
from the original Jao-De Feo SIDH instantiation, and to avoid muddying the waters in the case
that future cryptanalysis weakens any variants described herein. Although Section 6 conjectures
that switching between multiple `-isogeny graphs during one secret isogeny computation does not
decrease security in any known way, it may turn out that using torsion with many prime factors
is a bad idea, or that decreasing p relative to the degrees of the secret isogenies is a bad idea. Of
course, it may also turn out that the one (or both) of the converse statements is true, but in any
case it must be emphasised that the instantiations proposed in this paper rely on different security
assumptions than SIDH and SIKE – see Section 6.

Security of non-commutative vs. commutative schemes. At a high level, there are cur-
rently two main umbrellas of isogeny-based public-key cryptography under public scrutiny: those
like SIDH [31] and SIKE [30] where the curves involved have non-commutative endomorphism
rings, and those like CRS [18,48] and CSIDH [10] where the associated endomorphism rings are
commutative. It is important to note that, while there are similarities between the instantiations
herein and CSIDH (like the use of many different prime isogeny degrees in the same secret com-
putation), this paper falls entirely under the non-commutative umbrella.

At present, the security landscape of these two areas of isogeny interest is very different. In
terms of the known difficulty of the underlying problems, the non-commutatitve endomorphism
ring is what seemingly makes SIDH and SIKE stubborn to quantum adversaries, who currently

3Pronounced “B-side”, in reference to the analogy between the set of supersingular curves of cardinality
(p−1)2 and the less popular, sometimes forgotten ‘flip-side’ of a record. Additionally, unlike the original set
of supersingular curves of cardinality (p+1)2, writing a supersingular curve from the B-side in Montgomery
form cannot be done without specifying a non-trivial value of the B coefficient– see Section 3.

6

have to resort to generic algorithms with exponential complexity. Conversely, Childs, Jao and
Soukharev [13] showed that commutative endomorphism rings allow the application of the Ku-
perberg [33] and Regev [46] subexponential algorithms to CRS and CSIDH. Both areas of crypt-
analysis are currently very active, and there have been a number of very recent papers analysing
the concrete security of SIDH/SIKE and of CSIDH. In December 2018, Lange speculated that
“At this moment I think actually CSIDH has a better chance than SIKE of surviving, but who
knows” [4]; however, recent cryptanalytic efforts seem to paint the opposite picture. A line of pa-
pers cryptanalysing SIDH and SIKE [1,32,17] have shown that the concrete complexity of the best
known attacks is significantly worse than the original asymptotic analyses suggest, and thus the
size of the parameters in the SIKE submission were decreased in the Round 2 update [30]. On the
other hand, the orthogonal line of works cryptanlysing CRS and CSIDH [6,8,5,41] mostly come to
different conclusions. Peikert’s most recent word on the topic concludes that the original CSIDH
analysis was too optimistic, and that “the proposed CSIDH-512 parameters provide relatively lit-
tle quantum security beyond what is given by the cost of quantumly evaluating the CSIDH group
action itself”, and that CSIDH-512 “falls well short of the claimed NIST security level 1”[41], so it
is reasonable to predict that future instantiations of CSIDH will shift the parameters in the other
direction.

There are two other important real-world security considerations that arise for which the
commutative and non-commutative isogeny-based schemes come with different pros and cons.
The first is active security, which is obtained out-of-the-box by the commutative CRS and CSIDH
schemes. Validation of public keys is highly efficient in these settings, and this is the main strength
of CSIDH; it allows the use of long-term static keys without any passive-to-active transformations,
and thus serves as a drop-in replacement for existing (EC)DH key exchange. On the other hand, the
non-commutativity of SIDH and SIKE means that auxiliary points are needed (see Section 2) in
the public keys to make the protocol work, and these auxiliary points are what active adversaries
can use to prey on long-term secrets [24]. This is why the original SIDH scheme needed to be
transformed into SIKE, the actively secure variant [30]. The transformation of all of the proposed
instantiations in this paper would be analogous.

In regards to the ease of implementing side-channel resistant implementations of isogeny-based
schemes, the main loop for the isogeny computation in the non-commutative schemes follows a
regular, uniform execution that does not depend on the secret key. Beyond the arithmetic in the
underlying field, the bulk of the work in achieving constant-time software implementations of
SIDH/SIKE is in protecting the initial scalar multiplication that chooses the secret subgroup (see
Section 2); methods for doing this are well-known from the classical ECC literature, and a variant
of the Montgomery ladder [39] – arguably the most simple scalar multiplication to implement
in constant time – is indeed what is used in SIKE [30]. On the other hand, achieving efficient
constant-time implementations of CRS and CSIDH is non-trivial (see [10, Remark 15]), and this
remains an active area of investigation. It must be emphasised that, while the instantiations in
this paper compute chains of isogenies of varying degrees, the chain itself is fixed once-and-for-all
and does not depend on secret key material; thus, all issues concerning side-channel protection in
this paper are also completely analogous to the SIDH and SIKE settings.

Performance vs. SIDH. There is no performance claims made in this paper, except in the
scenarios where Alice’s performance will clearly be improved thanks to a faster underlying prime,
but where it should be reiterated that Bob will almost always suffer a collossal slowdown. The
main performance takeaway of this paper is that the primes and the public keys in the optimal
scenario of Section 5 are significantly smaller than the SIDH/SIKE counterparts. Moreover, the
public keys in Section 5 will remain smaller even when compression techniques [2,15,60,40] are
applied to the SIDH and SIKE public keys. If the ECC+SIDH/SIKE hybrid is used as in [16],
these gaps will widen further.

Time will tell whether the much smaller primes afforded in Section 5 can be exploited enough
to make up for the larger degree isogenies; the first order of business is to find examples where
the smoothness bound is optimised for a given security level (see Section 5). Other issues, such

7

as trying to then find an optimal strategy for the isogeny computation in Algorithm 1 over a
particular example, are left for future work.

2 Twist-agnostic SIDH

The parameter that governs the security of Jao and De Feo’s supersingular isogeny Diffie-Hellman
(SIDH) protocol is the large prime p. As soon as p is chosen, a set of roughly bp/12c elements
is defined: these are the entire set of supersingular j-invariants over Fp, and they are the nodes
on the graphs that Alice and Bob walk on during the protocol. Alice and Bob share this set of
nodes, but their graphs have different edges that depend on the degrees of their individual secret
isogenies. Following [31], for any prime ` - p, there are ` + 1 isogenies (counting multiplicities,
and up to isomorphism) of degree ` that eminate from a given supersingular isomorphism class.
Moreover, Pizer [43,44] showed that this gives rise to a connected (`+ 1)-regular multigraph that
satisfies the Ramanujan property and thus has optimal expansion properties (see Section 6).

The prime p also governs the efficiency of SIDH. Alice and Bob both compute prime power
isogenies whose degrees are of the form `e, where the only restrictions are that their individual
values of ` are coprime and that the size(s) of `e is large enough that recovering the secret isogeny
walks is hard. In theory, Alice and Bob could choose any value of ` they like, but it is more efficient
if the `e-torsion (which is where their secret kernels are chosen from) is defined over Fp2 – the same
field where all of the supersingular j-invariants are defined. Observing that the smallest primes `
give rise to the most efficient `e-isogenies, Jao and De Feo construct the prime p to guarantee this
rationality condition by setting p = f ·2m3n−1 (allowing for a small cofactor f), and representing
nodes in the graph by elliptic curves E/Fp2 with

E(Fp2) ∼= Zp+1 × Zp+1. (1)

For any r ∈ Z with r | p + 1, the entire r-torsion E[r] ∼= Zr × Zr is then contained in E(Fp2).
By choosing p as above, this ensures that the full 2m-torsion E[2m] ∼= Z2m × Z2m , and the full
3n-torsion E[3n] ∼= Z3n × Z3n , are both Fp2 -rational. Since every (seperable) isogeny φ : E → E′

of degree d is in one-to-one correspondence with a kernel subgroup of order d [49, Proposition
III.4.12], and each such isogeny is computed using rational functions of the input curve and the
given kernel subgroup [58], it follows that if both of these inputs are Fp2 -rational, then so is the
isogeny computation.

SIDH. With p = f · 2m3n − 1 as above, the SIDH protocol specifies the following public pa-
rameters: a starting supersingular curve E0/Fp2 , a basis {PA, QA} for E[2m] ∼= Z2m × Z2m , and
a basis {PB , QB} for E[3n] ∼= Z3n × Z3n . To generate her public key, Alice chooses two se-
cret integers (αA, βA) ∈ Z2m × Z2m such that her secret point SA = [αA]PA + [βA]QA is of
order 2m. She then computes m chained 2-isogenies that are composed to give her secret 2m-
isogeny φA : E0 → EA, where EA = E0/〈SA〉. Along the way, she moves the basis points PB and
QB through the isogeny computation, eventually obtaining their images under φA. Her public
key is then PKA = (EA , φA(PB) , φA(QB)) . On Bob’s side, he chooses (αB , βB) ∈ Z3n × Z3n ,
computes his secret point SB = [αB]PB + [βB]QB , and then uses it to compute his secret 3n-
isogeny φB : E0 → EB (via n consecutive 3-isogenies), such that EB = E0/〈SB〉. His public key is
PKB = (EB , φB(PA) , φB(QA)) .

Upon receiving PKB , Alice uses her secret integers to compute a new secret point S′A =
[αA]φB(PA) + [βA]φB(QA) of order 2m on EB , and then uses it to compute the 2m-isogeny
φ′A : EB → EB/〈S′A〉. Bob uses his secret integers and PKA to compute the point S′B = [αB]φA(PB)+
[βA]φA(QB) of order 3n on EA, and then uses it to compute the 3n-isogeny φ′B : EA → EA/〈S′B〉.
Both parties then compute the same shared secret as the j-invariant of their respective image
curves EB/〈S′A〉 and EA/〈S′B〉, since EB/〈S′A〉 ∼= EA/〈S′B〉 [31].

8

Twist-agnostic 2- and 3-isogenies in P1. Jao and De Feo exploited the fact that all of the
arithmetic in the above computations can be performed on the x-line of the associated curves,
i.e. in E/{±1} rather than E, and furthermore that this arithmetic is particularly efficient if the
curves are in Montgomery form [39]

EA,B : By2 = x3 +Ax2 + x.

Henceforth, EA,B or E will be used instead of EA,B/{±1} or E/{±1} for simplicity; unless ex-
plicitly stated, y-coordinates will be ignored (using a ‘—’) since all computations will ultimately
take place on x-lines.

Beyond the three point ladder (see [31]) that is used to compute the secret subgroup genera-
tors, Alice’s 2m-isogenies can be computed using only Montgomery doubling operations [39] and
Montgomery 2-isogeny operations [47]. As such, the only operations she needs in the main loop
are

[2] : EA,B → EA,B ,

(X : —: Z) 7→
(
(X2 − Z2)2 : —: 4XZ(X2 +AXZ + Z2)

)
, and

φ : EA,B → EA′,B′ ,

(X : —: Z) 7→ (X(X2X − Z2Z) : —: Z(Z2X −X2Z)) , and

(A′ : 1) = (2Z2
2 − 4X2

2 : Z2
2), (2)

where (X2 : —: Z2) 6= (0: —: 1) is a point of order 2 on EA,B , where EA′,B′ = EA,B/〈(X2 : —: Z2)〉,
and where (B : 1) = (BX2 : Z2) in P1.

Similarly, the only functions Bob needs in the main loop are Montgomery tripling operations
and Montgomery 3-isogeny operations [21], given as

[3] : EA,B → EA,B ,

(X : —: Z) 7→
(
X(4(A− 2)XZ3 − (X − 3Z)(X + Z)3)2 : —:

Z(4(A− 2)X3Z + (3X − Z)(X + Z)3)2
)
, and

φ : EA,B → EA′,B′ ,

(X : —: Z) 7→
(
X(X3X − Z3Z)2 : —: Z(Z3X −X3Z)2

)
, (3)

where (X3 : —: Z3) is a point of order 3 on EA,B , and where EA′,B′ = EA,B/〈(X3 : —: Z3)〉 with
(A′ : 1) = (X3(AX3Z3 + 6(Z2

3 −X2
3)) : Z3

3) and (B : 1) = (BX2
3 : Z2

3) in P1.
In the same way that Jao and De Feo observed that the y-coordinate can be ignored when

computing the images of points under isogenies, Costello, Longa and Naehrig [16] further observed
that the Montgomery B coefficient can also be ignored when computing the image curves. It is
not used in (2) or (3), so the above formulas work correctly on both twists.

General `-degree isogenies. Costello and Hisil [14] generalised the 3-isogeny formulas of De
Feo, Jao and Plût [21] to give formulas for arbitrary degree `-isogenies in Montgomery form, given
as

φ : EA,B → EA′,B′ ,

(X : —: Z) 7→

X (d∏
i=1

XiX − ZiZ

)2

: —: Z

(
d∏
i=1

ZiX −XiZ

)2
 , (4)

where (Xi : —: Zi) is the i-th multiple of the point P ∈ EA,B of exact order ` = 2d+1, and where
EA′,B′ = EA,B/〈P 〉 (the computation of the image curve EA′,B′ will be discussed in a moment).

Unlike the 2- and 3-isogenies in (2) or (3), for which there is only one x-coordinate found in the
set of kernel points, the formulas in (4) require the coordinates of more than one kernel point in

9

general; for d > 2, the d projective tuples of the form (Xi : —: Zi) can be computed by using the
Montgomery ladder [39] at a cost of 2(d− 1) field squarings and 4(d− 1) field multiplications [5,
§3.4]. This is a one-off cost that is independent of how many points are to be pushed through φ.
Each such point incurs an additional (4d+2) multiplications, 2d+2 additions and 2 squarings [14,
Algorithm 3].

In [14, §4] it was pointed out that the formulas in (4) could also be used to compute the
image curve EA′,B′ : under φ, a 2-torsion point (X2 : —: Z2) 6= (0: —: 1) on EA,B will map
to a 2-torsion point (X ′2 : —: Z ′2) 6= (0: —: 1) on EA′,B′ , from which A′ can be recovered via
(A′ : 1) = (X2

2 +Z2
2 : —: X2Z2). Meyer and Reith [38] showed that using the birational equivalence

to the twisted Edwards form allows for a significantly faster computation of the isogenous curve;
the isogenous Montgomery curve coefficient can be projectively computed as

(A′ : 2) =
(

(A+ 2)`π8
+ + (A− 2)`π8

− : (A+ 2)`π8
+ − (A− 2)`π8

−
)
, where

π+ =

d∏
i=1

(Xi + Zi) and π− =

d∏
i=1

(Xi − Zi), (5)

where the Xi and Zi (and their sums and differences) are already computed during the optimised
computation of (4). Thus, computing π8

+ and π8
− incurs an additional (2d−2) field multiplications

and 6 field squarings, and computing (A + 2)` and (A − 2)` incurs an additional 2 · log2(`) field
squarings and around log2(`) field multiplications.

3 Using torsion from the quadratic twists

Let E/Fpn be an elliptic curve, let tn be the trace of the pn-power Frobenius endomorphism, and
recall that (i) E is supersingular if and only if tn is a multiple of p [49, Exercise V.5.10(a)], and
that (ii) #E(Fpn) = pn + 1 − tn with |tn| ≤ 2

√
pn [49, Theorem V.1.1]. When n = 1, there is

only one possible value of t1 that is a multiple of p such that |t1| ≤ 2
√
p, i.e. t1 = 0, and thus it

follows that E/Fp is supersingular if and only if #E(Fp) = p+ 1. In other words, there is only one
possible group order for supersingular elliptic curves over Fp.

The first observation that sets the scene for this work is that there are actually two possible
values for t2 that correspond to E/Fp2 being supersingular: t2 = −2p and t2 = 2p both satisfy (i)
and (ii). All known instantiations of SIDH and SIKE fall into the former case by default. They
define a starting supersingular curve E0/Fp and lift to work in E0(Fp2); since E0(Fp) | E0(Fp2)
and #E0(Fp) = p+1, it must be that #E0(Fp2) = p2 +1+2p = (p+1)2 and hence that t2 = −2p.

Upon starting on a curve with t2 = −2p, a choice has been made between the two possibilities
for t2; two elliptic curves are Fp2-isogenous if and only if they have the same group order over
Fp2 [54, Theorem 1(c)], so computing Fp2-rational isogeny walks means walking on curves with
the same number of points as E0/Fp2 . However, these two possibilities for t2 correspond to sets of
curves that are the quadratic twists of one another, meaning that they not only become isogenous
over Fp4 , they become isomorphic over Fp4 . Moreover, optimised isogeny arithmetic works correctly
independently of the quadratic twist (see Section 2), so the explicit formulas that are used on the
curves with t2 = −2p can also be used to work on the curves with t2 = 2p.

It is crucial to note that even though two quadratic twists are not isomorphic over Fp2 , they
will still have the same j-invariant in Fp2 [49, Proposition 1.4(b)]. Put another way, every node
(i.e. j-invariant) in the supersingular isogeny graph can actually be represented by two different
Fp2 -isomorphism classes: those with t2 = −2p and the same group structure as E/Fp2 in (1), or
those with t2 = 2p and with group structure

Et(Fp2) ∼= Zp−1 × Zp−1.

Every such supersingular curve with group structure Zp−1 × Zp−1 is the quadratic twist of a
supersingular curve with group structure Zp+1×Zp+1, and vice versa. Moreover, in the same way
that any factor r of p+ 1 gave rise to a full rational r-torsion in E(Fp2), any factor s of p− 1 gives
rise to a full rational s-torsion in Et(Fp2).

10

For Alice and Bob to freely work with points coming from the (p+ 1)-torsion and the (p− 1)-
torsion, it appears that the entire protocol must be lifted to Fp4 . While this is technically true,
the lifting will ultimately not be visible in an optimised implementation4. As was discussed in
Section 2, the point and isogeny-formulas ignore the y-coordinates of points and the B coefficients
of Montgomery curves, and this is where all the twisting arithmetic happens. The upshot is that
while the protocol will be lifted to Fp4 , where E(Fp4) ∼= Et(Fp4) ∼= Zp2−1 × Zp2−1, Alice and
Bob are still in a position to work entirely in Fp2 as usual. They can then choose a secret kernel
point whose order divides p + 1, or whose order divides p − 1, or (more generally) whose order
divides the product p2 − 1.

To make this concrete, let B be a square in Fp2 , let γ be a non-square in Fp2 , take Fp4 = Fp2(δ)
with δ2 = γ, and write

EA,B : By2 = x3 +Ax2 + x and EtA,γB : γBy2 = x3 +Ax2 + x

as models5 for E/Fp2 and Et/Fp2 . The map

σ : EA,γB(Fp4)→ EA,B(Fp4), (x, y) 7→ (x, δy) (6)

is a group isomorphism that leaves x-coordinates unchanged.

Write f(x) = x3 + Ax2 + x. For any u ∈ Fp2 , either (1) f(u) is a square in Fp2 , in which case

(u,
√
f(u)/B) is a point in EA,B(Fp2), (2) f(u) is a non-square in Fp2 , in which case f(u)/(γB)

is a square, and (u,
√
f(u)/(γB)) is a point in EA,γB(Fp2), or (3) f(u) = 0, in which case (u, 0) is

one of the three 2-torsion points (on both EA,B and EA,uB).

Let P1 = (u1,—) be a point corresponding to case (1), let P2 = (u2,—) be a point correspond-
ing to case (2), and suppose φ1 : EA,B → EA,B/〈P1〉 and φ2 : EA,γB → EA,γB/〈P2〉. It does not
make sense to evaluate φ1 at P2 or φ2 at P1 (these points do not even lie on Fp2-isogenous curves,
let alone the same curve), but this is fixed by lifting to Fp4 and precomposing with the twisting
morphisms. Setting φ′1 = φ1 ◦ σ and φ′2 = φ2 ◦ σ−1 gives the isogenies

φ′1 : EA,γB → EA,γB/〈σ(P2)〉, P 7→ (φ1 ◦ σ)(P)

and

φ′2 : EA,B → EA,B/〈σ−1(P1)〉, P 7→ (φ2 ◦ σ−1)(P),

which are well-defined over Fp4 .

The key observation is that σ : (x,—) 7→ (x,—) and σ−1 : (x,—) 7→ (x,—) behave like the
identity map when working on the corresponding Kummer lines, so the twisting morphisms can
simply be ignored in the implementation. Thus, if both parties operate within the x-coordinate- and
A-coefficient-only framework, Alice can take her secret points from the (p+1)-torsion of EA,B(Fp2)
and Bob can take his secret points from the (p− 1)-torsion of EA,γB , and the implementation of
the SIDH protocol can otherwise remain unchanged.

Computing (
∏

`ei

i)-isogenies. Unlike the original Jao-De Feo construction, where Alice com-
putes 2m-isogenies and Bob computes 3n-isogenies, all of the instantiations proposed herein require
that at least one of the two parties computes isogenies whose degree has multiple prime factors.
The general setting is that Alice computes M -isogenies and Bob computes N -isogenies, where
M =

∏a
i=1m

µi

i and N =
∏b
i=1 n

νi
i are coprime, with mi prime for all 1 ≤ i ≤ a, and with ni

4This is reminiscent of Bernstein’s twist-agnostic Curve25519 construction. He also uses a quadratic
extension field in the specification of the Curve25519 function [3, Theorem 2.1], but this extension is a
technicality that is not seen in the implementation.

5The idea works analogously for more general (i.e. short Weierstrass) elliptic curves, but all of the
instantiations discussed in this paper allow for Montgomery form.

11

prime for all 1 ≤ i ≤ b. In what follows, both of these will be treated as instances of the general
situation in which a party is required to compute an isogeny of degree

L =

k∏
i=1

`eii ,

where the `i are all distinct primes.
For now, assume that either L | p + 1 so that E[L] is Fp2 -rational, or that L | (p − 1) so that

Et[L] is Fp2-rational (the more general situation where L | p2 − 1 will be discussed in the sequel).
The number of cyclic subgroups of order `e in E[`e] is (` + 1)`e−1 [21, §3], from which it follows
that the number of cyclic subgroups of order L in E[L] is

k∏
i=1

(`i + 1)`ei−1i . (7)

Let P and Q be points of order L such that the Weil pairing eL(P,Q) is of exact order L, i.e. such
that {P,Q} is a basis for the full L-torsion. To compute secret subgroups, the same simplification
will be made herein as is made in the state-of-the-art SIDH and SIKE implementations; rather
than computing the secret generators as S = [α]P + [β]Q (for combinations of (α, β) ∈ ZL × ZL
that give rise to S being of order L), it is preferable to take

S = Q+ [α]P for α ∈ {0, 1, 2, . . . , L− 1}, (8)

since this guarantees that S is of exact order L, that each α corresponds to a unique kernel
subgroup, and it allows S to be computed using the simple three point ladder [21].

Jao and De Feo gave two simple algorithms for computing `e-isogenies: ‘multiplication based’
and ‘isogeny based’. In their construction, when ` is fixed as 2 or 3, `-isogenies and the multiplication-
by-` map are only a handful of field operations each, so both of these algorithms have roughly
the same complexity. Opting for one over the other will depend on the specific value of `, the ex-
plicit formulas used, and the implementation [31, §4.2]. For general `, however, `-isogenies require
O(`) field operations (see Section 2), while the multiplication-by-` map only requires O(log `) field
operations, meaning that the ‘multiplication based’ approach becomes much more efficient.

Algorithm 1 adopts the multiplication based approach to compute cyclic isogenies of degree
L = `e11 . . . `ekk . Since Alice and Bob must push each other’s basis points through their secret
isogenies during public key generation, it also takes as input a list of points T1, . . . , Tz, and outputs
their image under the isogeny.

Algorithm 1 Computing a cyclic (`e11 . . . `ekk)-isogeny.

Input: Elliptic curve E, a point S ∈ E of order L = `e11 . . . `
ek
k , and (optionally) a list of points T1, . . . , Tz ∈

E to be pushed through the isogeny.
Output: E/〈S〉 = φ(E) and φ(T1), . . . , φ(Tz) ∈ φ(E).

1: Initialise E′ ← E, S′ ← S, (T ′1, . . . , T
′
z)← (T1, . . . , Tz)

2: for i = 1 to k do
3: for e = 0 to ei − 1 do
4: Compute R = [`ei−e−1

i]S′

5: Compute ψ : E′ → E′/〈R〉
6: Evaluate (E′, S′, (T ′1, . . . , T

′
z))← (ψ(E′), ψ(S′), (ψ(T ′1), . . . , ψ(T ′z)))

7: end for
8: end for
9: return E′, (T ′1, . . . , T

′
z)

Algorithm 1 works inside the x-coordinate-only Montgomery framework as follows. In the
examples that arise where Alice or Bob has k > 1 and values of `i > 3, Step 4 of Algorithm 1

12

amounts to calling the Montgomery ladder with the scalar `i, and Steps 5 and 6 are computed
using both (4) and (5). Otherwise, if `i ∈ {2, 3}, then the explicit formulas for multiplication-by-`i
and the `i-isogenies are given in (2) and (3).

For all of the scenarios proposed herein, Algorithm 1 is immediately amenable to constant-
time implementations. For a fixed set of system parameters, it will compute the same sequence of
isogenies for a given party that is independent of their secret. It is during the computation of the
secret (input) point, S, that care needs to be taken to resist simple side-channel attacks.

For prime power isogenies of the form `e, De Feo, Jao and Plût [21, §4.2.2] give optimal strategies
that perform significantly better than the multiplication- or isogeny-based approaches. If a given
example has ei � 1 for some i, then their treatment can be directly applied to replace Steps 3
to 7 in Algorithm 1 and call an optimised subroutine for the `eii -isogeny. However, extending
their approach to compute the full cyclic (`e11 . . . `ekk)-isogeny is non-trivial. Every `i will produce
a different ratio between the cost of the multiplication-by-`i map and the cost of evaluating `i-
isogenies, so there are 2k costs (rather than just 2) that must be factored into the analysis. For
examples where k is large and ei = 1 for most i ∈ {1, . . . k}, implementers will likely find benefits by
deriving ad-hoc strategies that aim to pseudo-optimise according to the 2k costs that are specific
to the example and to the implementation itself. In any case, implementers applying Algorithm 1
as is should be made aware that it is suboptimal in general.

On a related note, it is worth noting that Algorithm 1 permits any (re)ordering of the `i.
For example, if extensive precomputations are employed to deal with large values of `i (more on
this below), then implementers will choose for these isogenies to come first. Conversely, if a more
optimised strategy requires many temporary points to be moved through intermediate isogenies
(as is the case in [21]), then it may make sense to arrange some of the larger primes to be at the
end of the computation, where these points tend to be dropped.

Bob on both sides: a caveat. In scenarios like Example 2, where Bob working entirely in the
(p−1)-torsion would make for unreasonably large `-isogenies, Bob can instead build his N -isogeny
by taking any product N | p2 − 1 where N is coprime to Alice’s M (the most common scenario
being M = 2m so that any odd N suffices). However, in this case points of exact order N will no
longer have their x-coordinates in Fp2 in general; this only happens when the points are of order
dividing p−1, or they are of order dividing p+1. Bob has two options, both of which add overhead
to his and Alice’s computations, and both of which inflate the size of Alice’s public keys.

The first option involves defining the system parameters using two points PB , QB ∈ E(Fp4)
such that 〈PB , QB〉 = E(Fp4)[N], and then proceeding as usual. Bob’s elliptic curve and isogeny
arithmetic will now take place over Fp4 , and he will incur a significant performance penalty.
However, the underlying curves are always minimally defined over Fp2 [20], and Alice’s basis points
will remain in Fp2 even as they are dragged through computations involving elements in Fp4 . Thus,
his public keys will stay the same size (the three elements of Fp2 that are the x-coordinates of
φB(PA), φB(QA), and φB(QA−PA)), while Alice’s will double (they are now three x-coordinates
in Fp4).

The second option is to split PB and QB into sums of two points whose x-coordinates are
in Fp2 . If N ′ | p + 1 and N ′′ | p − 1 are such that N ′ · N ′′ = N with N ′ and N ′′ coprime,
then it is straightforward to find the points P ′B , P ′′B , Q′B and Q′′B such that PB = P ′B + P ′′B and
QB = Q′B + Q′′B , with E(Fp2)[N ′] = 〈P ′B , Q′B〉 and Et(Fp2)[N ′′] = 〈P ′′B , Q′′B〉. Rather than taking
secrets αZN , Bob could now define his secrets as (α′, α′′) ∈ ZN ′×ZN ′′ , and split his secret isogeny
computations into two components: the first would take S′B = P ′B + [α′]Q′B , compute φ′ : E → E′

with E′ = E/〈S′B〉, while also computing φ′(PA), φ′(QA), φ′(P ′′B) and φ′(Q′′B); the second would
compute S′′B = φ′(P ′′B) + [α′′]φ′(Q′′B), then φ′′ : E′ → E′′ with E′′ = E′/〈S′′B〉, together with
φ′′(φ′(PA)) and φ′′(φ′(QA)). Setting φ = φ′′ · φ′, Bob can then output his public key as φ(E),
φ(PA) and φ(QA). The only additional overhead Bob incurs in this case is having to push P ′′B and
Q′′B through the first isogeny φ′, but all of his arithmetic is now in Fp2 . On Alice’s side, she would
need to push the four Fp2 -rational points through her secret isogeny, but this is again likely to be

13

preferred over the Fp4 arithmetic in the first option above. Her public key would again double in
size.

Even if the system parameters are defined as in the first option, Bob can do the splitting in
the second option privately to speed up his computations and keep the arithmetic in Fp2 . Note
that this caveat only applies to some of the examples in Section 4, but not to any instances of the
optimal scenario in Section 5.

Handling large `-degree isogenies Recall from above that, unlike the multiplication-by-` map
which can be computed in log(`) field operations, the computation of a prime degree cyclic `-isogeny
requires O(`) field operations. If `1 < · · · < `k, this can make an `k-isogeny the overwhelming
bottleneck of a full (`e11 . . . `ekk)-isogeny routine. The purpose of this subsection is to describe some
ways that `-isogenies can either be (i) accelerated in practice, or (ii) traded off for smaller degree
isogenies that are defined in extension fields.

Parallelisation. Let P be a point of order ` = 2d+1, write [i]P = (Xi : —: Zi), and recall from (4)
and (5) that the `-isogeny with kernel 〈P 〉 requires (Xi : —: Zi) for 1 ≤ i ≤ d. Computing all
d multiples of the input point is what makes `-isogeny computations become rapidly expensive.
However, this process parallelises almost perfectly: for large `, t processors working in parallel can
reduce the number of (differential) additions required by close to a factor of t. A straightforward
way to achieve this starts by using dt/2e steps of the Montgomery ladder to compute [i]P for
1 ≤ i ≤ t. Three values are then passed to the first t − 1 processors to kickstart the differential
additions: the i-th processor is passed [i]P , [t]P and [t−i]P , for 1 ≤ i ≤ t−1. The last processor only
needs [t]P . The i-th processor can then compute [i+ jt]P as the differential sum of [i+ (j− 1)t]P ,
[t]P , and [i+(j−2)t]P for 1 ≤ j ≤ dd/te (the only exception is the t-th processor which kickstarts
with a doubling to compute [2t]P from [t]P , but thereafter carries on with differential additions
in unison). Each time a new value (Xi+jt : —: Zi+jt) is computed, it can be used to update an
accumulated subproduct (or subproducts, if multiple `-isogeny images are required) that belongs
to the i-th processor. After the initial phase that assigns the three values to each processor, no
communication is required between the processors until the end, where the subproducts can all
be collected and multiplied together. In the case of computing image points as in (4), then one
final squaring and one final multiplication are used to finish the routine; in the case of computing
image curves as in (5), then log(`) final multiplications and squarings are required. Note that this
parallelisation can be exploited across all of the prime degree isogenies (comprising one full secret
isogeny computation) that are large enough to make it worthwhile.

Precomputation. Assume Bob is tasked with large prime degree isogenies and he is the one gener-
ating ephemeral public keys. The runtime of his public key generation procedure can be improved
if storage permits a significant offline precomputation. Recall from Section 3 that he computes his
secret generator point Sα as Sα = QB + [α]PB , where α ∈ {0, 1, 2, . . . , L − 1} for L =

∏k
i=1 `

ei
i ,

and where {PB , QB} is a basis for E0[L]. Let `k be the largest prime dividing L and assume that
ek = 1 (which is the most common scenario when `k is large). Bob can arrange the `k-isogeny
to come first, and can precompute all of the possible first steps by first setting Q′B = [L′]QB ,
P ′B = [L′]PB for L′ = L/`k. For each α′ ∈ {0, 1, 2, . . . `k− 1}, he then computes S′α = Q′B + [α′]P ′B
before computing the isogeny Eα′ = E0/〈S′α〉 = φα′(E0), together with the images of Alice’s
points, φα′(PA) and φα′(QA). The list of `k triples (Eα′ , φα′(PA), φα′(QA)) is stored in memory
and he can now avoid the `k-isogeny at runtime by simply choosing the triple corresponding to
his secret key (or defining the secret key corresponding to his chosen triple).

More torsion from above. There may be scenarios where there are large enough isogeny degrees
that it becomes preferable to instead use torsion points whose coordinates are no longer in Fp2 .
Suppose that Alice takes {PA, QA} as a basis for E0(Fp2)[M] to work over Fp2 as usual (e.g. with

M = 2m), but that Bob, faced with the predicament of at least one large ni in N =
∏b
i=1 n

νi
i , would

prefer to work with Ñ =
∏b̃
i=1 ñ

ν̃i
i , where E0[Ñ] 6⊂ E0(Fp2), but rather E0[Ñ] ⊂ Fp2k ; his rationale

14

being that the ñi are small enough to make computing the Ñ -isogeny in Fp2k faster overall. So long

as Ñ ≈ N (to maintain the requisite security), the SIDH framework allows for this, but with some
caveats that apply to both sides. Bob’s basis points are now PB , QB ∈ E0(Fp2k)[Ñ], and though
the inflated public parameters are not a problem in most practical scenarios, the main drawback is
that Alice’s performance suffers from having to drag larger coordinates through her secret isogenies
during the generation of her public key. Her secret kernel, image curve, and indeterminate isogeny
computations are all in Fp2 , but she must also operate in Fp2k when evaluating her isogenies at
Bob’s points during public key generation. Moreover, her uncompressed public keys are now three
x-coordinates in Fp2k , and the public key compression techniques she would need to perform to

reverse the inflation6 would likely be unweildly inside E(Fpk)[Ñ]. Nevertheless, Bob’s public keys
would stay the same size; the three x-coordinates he produces during key generation are still in the
Fp2 -rational M -torsion, so there may be scenarios (e.g. where a particularly nice prime p produces
an unfortunately large factor of p− 1) where the overall trade-off becomes worthwhile. The group
orders to examine for smaller factors, obtained by lifting up to E(Fp2k), are (pk ± 1)2; again, the
sign choice here corresponds to the two choices of quadratic twists over Fp2k .

Finally, it is worth noting that there are other twists available for the special curves with j = 0
and j = 1728 [49, Proposition X.5.4], and depending on the prime, one or both of these curves are
often supersingular [49, p. 152]. Though these twists can also be used to obtain points with new
orders, unlike σ in (6), the twisting morphisms now move the x-coordinates to the correpsonding
extension field. Nevertheless, it could be that simplifications are possible in the isogeny formulas,
or perhaps that these twists behave more favourably in other curve models, but even if this is the
case it appears that these morphisms can only be exploited during key generation.

4 Accelerating Alice, burdening Bob

This section presents some example instantiations where Alice can compute her 2m-isogenies over
faster primes. These primes are sampled from the pre-existing ECC literature (cf. [27, §3.1]), and
imposing these faster shapes is what ultimately slows Bob down; he is forced to compute isogenies
whose degrees are whatever the other prime factors divide p2 − 1. The list below is far from
exhaustive and it is likely that there are prime shapes offering better trade-offs. Implementers
searching for their own primes should be reminded that p2 − 1 need not be entirely smooth. So
long as Alice and Bob can both compute coprime isogenies of large enough degrees to resist the
known attacks, large prime factors of p2 − 1 can be treated as cofactors within the SIDH/SIKE
frameworks. In what follows, underlines are used to distinguish factors of p+1 and factors of p−1
in examples that are subject to the caveat at the end of Section 3.

The Mersenne prime(s). Example 1 already studied the most attractive example of Mersenne
prime in the interesting ranges: with p = 2521 − 1, the main takeaways were Alice being solidly
faster at the cost of Bob being (probably orders of magnitude) slower, Alice being able to easily
scale her security both with or without Bob, Alice having the option of walking the diameter of
the 2-isogeny graph, and a nice classical/post-quantum hybrid.

There are only two other Mersenne primes worth mentioning. The next largest Mersenne prime
is p = 2607 − 1, for which p2 − 1 = 2608 · 32 · 7 · 607 · `27 · `43 · `59 · `100 · `174 · `190, where the
`b represent b-bit primes; this is clearly an unlucky factorisation offers Bob no combination of
reasonable computability and security. The next smallest Mersenne prime is p = 2127 − 1, which
is far too small to offer any reasonable security in the elliptic curve setting, but it may become
interesting in light of the recent work on genus 2 isogenies. In [22, §4.1], Flynn and Ti conjecture
that a prime of roughly 171 bits would meet the 128-bit security level, but this is under the same
construction as Jao and De Feo, i.e. p = f · 2m3n − 1, with f a small cofactor and M = 2m and

6Compression afficianados should note that the j-invariant is still in Fp2 , and that scalars in ZÑ are
no larger than p.

15

N = 3n both around 85 bits. If, instead, the prime p = 2127 − 1 were to be used7, then Alice
could compute 2m-isogenies (using any m up to 127, if she liked) and Bob could compute secret
isogenies of odd degree dividing

2127 − 2 = 2 · 33 · 72 · 19 · 43 · 73 · 127 · 337 · 5419 · 92737 · 649657 · 77158673929.

Taking N = 33 · 72 · · · · ·92737 · 64965 gives dlog2(N)e = 90. Moreover, Flynn and Ti describe their
algorithms on the Kummer surfaces where arithmetic is also twist-agnostic.

The Ridinghoods. Example 2 studied the prime p = 2448 − 2224 − 1 underlying Hamburg’s
Goldilocks curve, which is an example of a Ridinghood prime of the form p = 22k − 2k − 1;
Hamburg [27] shows that these primes facilitate arithmetic that is particularly Karatsuba-friendly.
The other values of k ∈ {161, 208, 224, 225, 240, 354} give examples that are largely similar to
Example 2, where Alice works in the 2k-torsion and Bob can choose a product of primes from the
remaining odd factors of p2 − 1. The example below is very close to the Goldilocks prime, and
although the prime is not word-aligned, it does give Bob significantly smaller isogeny degrees.

Example 3 (Ridinghood-p450). With p = 2450−2225−1, Alice can compute 2225-isogenies to match
the security of SIKEp434, and Bob can compute N -isogenies, where

N = 34 · 5 · 7 · 11 · 17 · 19 · 29 · 31 · 43 · 73 · 113 · 127 · 151 · 251 · 257 · 331 · 449 · 601

· 631 · 1801 · 2689 · 4051 · 5153 · 23311 · 65537 · 100801 · 115201.

Here dlog2Ne = 228 and the largest isogeny Bob would need to compute has ` = 115201, which
is much smaller than the largest isogeny with ` = 15790321 in Example 2.

Solinas primes. It may be also fruitful to search over primes of the form p = 2α−2β±· · ·±2κ±1,
particularly if κ is large enough that Alice can take M = 2κ. As usual, the search is looking for a
large odd factor, N , of p2 − 1 that is smooth enough for Bob to be able to compute N -isogenies.
The only such instances that were checked in the preparation of this paper were the six primes
underlying the NIST curves, none of which had κ large enough and favourable factorisation of
p2 − 1.

Montgomery-friendly primes. While there are only a handful of Mersenne and Ridinghood
primes, there are vastly more Montgomery-friendly primes, which are usually defined (see [9, §3.2]
or [27]) as being of the form p = 2k · c− 1. For a fixed k and an upper bound on the bitlength of

p, this gives many values of c that can be searched over until N | c(̇p − 1) is both large enough
for Bob to be secure, and smooth enough that he can compute the isogenies. A quick search with
k = 216 (to match SIKEp434 exactly) and 1 ≤ c < 240 found the following two examples.

Example 4. Over the 254-bit Montgomery-friendly prime p = 2216 · c− 1 with c = 137439113067,
Alice can compute 2216-isogenies as usual and Bob can compute N -isogenies, with

N = 33 · 5 · 167 · 613 · 2543 · 5167 · 96443 · 204509 · 778769 · 3357979 · 30481063

· 172664567 · 955640417.

Example 5. Over the 254-bit Montgomery-friendly prime p = 2216 · c− 1 with c = 1030791469290,
Alice can compute 2216-isogenies as usual and Bob can compute N -isogenies, with

N = 3 · 5 · 7 · 11 · 31 · 137 · 7411 · 421483 · 467431 · 765031 · 1511737 · 119055253

· 179824133 · 332548273 · 617693863.

7Here the starting curve has been changed from their choice to C/Fp2 : y2 = x5 + x, the Jacobian of
which is supersingular with #JC(Fp2) = (p+ 1)4.

16

Note that both of these examples have Bob taking torsion from both sides, taking factors from
both c and p− 1. To avoid the caveat in Section 3, similar searches could disallow factors of c so
that Bob can work solely with torsion from the twists. Note that the search that found the above
examples was far from exhaustive; there are likely to be much better examples with k = 216 and
almost certainly better examples if k is varied.

On the other hand, allowing torsion from both sides and searching over larger (smooth) c can
give rise to much smoother N -isogenies.

Example 6. With c = 483391221329795497767604162993036577, p = 2256 · c− 1 is a 375-bit prime
p. Here Alice can take M = 2216 to exactly match the 2m-torsion used in SIKEp434, and Bob can
take

N = 3 · 5 · 107 · 263 · 401 · 409 · 1249 · 1451 · 1493 · 1693 · 8011 · 8423 · 10331 · 10501 · 11519

· 12829 · 13049 · 13477 · 14149 · 14411,

which has dlog2(N)e = 213, roughly matching the 3n-torsion used in SIKEp434. Again, this would
found with a naive search that impatiently doubled the smoothness bound B until an example
with a large enough N was found within a few minutes; this example was found with B = 16384.

Example 7. The previous value of B = 8192 found a 383-bit prime p = 2256 · c − 1 with c =
149129193885612563981396585707851113249. In this case Alice can again take M = 2216, and
Bob can take

N = 3 · 7 · 401 · 431 · 557 · 1117 · 1151 · 2027 · 2801 · 2861 · 2879 · 3623 · 3803 · 4271 · 5393

· 6301 · 6343 · 7013 · 7039 · 7879,

which has dlog2(N)e = 209, sacrificing a few bits of security over the previous example for what
would be a much faster N -isogeny computation.

In Examples 4–7, Alice will benefit from smaller primes that come with additional arithmetic
advantages over the SIKEp434 setting. Bob’s isogeny would be much more expensive than Alice’s
(and his 3137-isogeny in SIKEp434), but he too gains some performance back from the under-
lying field. Note that the public keys in these examples would be smaller than those offered by
uncompressed SIKEp434.

In all of the above examples, the prime p is still significantly larger than the degree of Alice
and Bob’s secret isogenies. This means that, asymptotically, the O(M1/2) ≈ O(N1/2) claw-finding
algorithm would still be preferred over the O(p1/2) Delfs-Galbraith algorithm to find Alice and
Bob’s secret isogenies. When the sizes of M and N start to get closer to the size of p, as in
Examples 4 and 5, determining the best attack may require a closer examination of the concrete
complexity in (11) compared to the concrete complexity of the Delfs-Galbraith algorithm – see
Section 6.

5 Optimal public keys

In terms of the size of isogeny degrees compared to the size of the prime p, the optimal scenario
is when M ≈ N ≈ p. In theory, the construction described in Section 3 allows Alice to compute
isogenies inside the (p+ 1)-torsion and Bob to compute isogenies inside the (p− 1)-torsion using
only arithmetic in Fp2 , for any prime p. For this to work in practice, however, both (p + 1) and
(p− 1) need to be smooth enough that these isogenies are computable. Recall that once a factor
2 is removed from whichever of (p+ 1) and (p− 1) is not divisible by 4, the remaining two values
are immediately coprime.

17

Størmer’s theorem. The naive way to look for instances where this is possible is by searching
through primes p of the appropriate size (more on this in a moment) until p2 − 1 is smooth
enough; note that non-smooth cofactors are tolerable in the SIDH framework but this sacrifices
optimality. It is possible to do much better than the naive search thanks to a beautiful theorem of
Størmer from 1897 [50] that provides exactly what is needed. Given an upper smoothness bound
B, Størmer’s theorem describes the full set of integers that are sandwiched between two B-smooth
numbers. Moreover, he shows that this set is finite, and gives a way to find it via solving a system
of Pell equations. In 1964, Lehmer [36] improved Størmer’s algorithm to minimize the number of
Pell equations that need solving and presented a version of the theorem specific to the situation
at hand.

Theorem 1 ([36]). Let
q1 < q2 < · · · < qt

be a given set of t primes, and let Q be the set of numbers generated by them. Let Q′ be the subset
of all square-free members of Q. Let S be a number such that S and S + 2 belong to Q. Then
S = xn − 1 where (xn, yn) is a solution of the Pell equation

x2 −Dy2 = 1 (9)

in which

1 < D ∈ Q′, 1 ≤ n ≤ max {3 , (qt + 1)/2} , yn ∈ Q. (10)

Conversely. if (xn, yn) is a solution of (9) subject to (10), then both S = xn − 1 and S + 2 belong
to Q.

In other words, Theorem 1 says that two integers S and S + 2 are B-smooth if and only if the
number between them, xn = S + 1, is a solution (xn, yn) to the Pell equation in (9), where D is
squarefree, and both D and yn are B-smooth. Only one additional stipulation is needed in order
to apply this theorem to the present context: that the solution xn = S + 1 is a prime.

Theorem 1 allows an arbitrary set of primes qi. However, it is immediately clear that if S + 1
is to be prime, then q1 = 2 and q2 = 3 must be included (since S and S + 2 must both belong to
Q). Moreover, if qt is the largest prime up to B, then the main bottleneck in finding applicable
solutions is that yn factors over Q; thus, it does not help to exclude any primes below qt in the
search below, so henceforth qj will always be the j-th prime.

It is helpful to see Theorem 1 in action by means of a toy example. Let B = 19 so that t = 8
and {q1, q2, . . . , q7, q8} = {2, 3, . . . , 17, 19}. The set Q is the infinite set of 19-smooth numbers,
while the set Q′ is the squarefree subset of Q, containing the 2t − 1 = 255 elements of the form
qβ1

1 qβ2

2 . . . qβ8

8 with βi ∈ {0, 1}. To collect all of the integers x such that x − 1 and x + 1 are B-
smooth, there are 255 Pell equations to solve. For each D ∈ Q′, Equation (9) must be solved for
the fundamental solution (x1, y1) [29], which can then be used to generate the solutions (xn, yn)
up to n = (qt + 1)/2 = 10, via the recurrence (xm+1, ym+1) = (2x1xm − xm−1, 2x1ym − ym−1),
with (x0, y0) = (1, 0) [36, §6].

Whenever a solution (xn, yn) to any of the Pell equations is found, if yn is B-smooth then xn
is such that xn − 1 and xn + 1 are also B-smooth. With D = 176358 = 2 · 3 · 7 · 13 · 17 · 19, the
first 10 solutions are

(x1, y1) = (8399, 20),

(x2, y2) = (141086401, 335960),

(x3, y3) = (2369969355599, 5643456060),

...

(x10, y10) = (15024614355942635770826837814049126295549816399,

35777150761840526645502984218838604303680220).

18

Sieving the yi yields that y1 is the only B-smooth number, and hence x1 = 8399 is the only value
found with D = 176358 such that x1−1 = 2 ·13 ·17 ·19 and x1 + 1 = 24 ·3 ·52 ·7 are B-smooth. In
reference to the present context, x1 is not prime, so this D provides no solutions to the problem
at hand.

When D = 9690 = 2 · 3 · 5 · 17 · 19, (x1, y1) = (330751, 3360) has y1 = 25 · 3 · 5 · 7 as B-smooth,
so that x1 = 330751 has x1 − 1 ∈ Q and x1 + 1 ∈ Q; this is the largest x1 found over all of the
D ∈ Q′, and is thus the largest such integer that is sandwiched between two 19-smooth numbers.

The largest such prime integer is p = 4751, found as the fundamental solution (x1, y1) =
(4751, 60) to (9) with D = 6270 = 2 · 3 · 5 · 11 · 19, which is such that p − 1 = 2 · 53 · 19 and
p+ 1 = 24 · 33 · 11.

Searching for prime sandwiches on smooth buns. For the primes from B = 19 to B = 43,
Table 1 lists both the largest xn such that xn − 1 and xn + 1 are B-smooth, and the largest such
xn that is a prime, as well as their bitlengths.

Table 1. The largest integers xn that are sandwiched between two B-smooth numbers, together with the
largest prime such integers, for various B.

B largest xn bits largest p bits

19 330751 19 4751 13

23 657019 20 22541 15

29 3704401 22 2470337 22

31 740512499 30 2470337 22

37 740512499 30 14209999 24

41 127855050751 37 61889827 26

43 842277599279 40 842277599279 40

For such small B, searches that solve all of the required Pell equations can be done in a matter
of seconds or minutes. In looking for cryptographically sized p, however, exhaustively solving the
full set of 2t − 1 Pell equations becomes infeasible. Lehmer points out that the upper bounds
obtained for the sizes of the xn one can expect to find for a given B are “very weak” [36, §5], so
there is no real gauge on how large B needs to become to expect to find a prime p of a given size.

As was mentioned in Section 1, a naive and very unoptimised search was performed on a
desktop computer to obtain a placeholder example as a proof of concept. In the coming months,
as this search is optimised and resources are ramped up, it is expected that much better examples
will be more readily found at the target security levels. As is detailed in the next section, the best
known classical attacks over optimal parameters with M ≈ N ≈ p run in O(p1/2) time and the
best known quantum attacks run in O(p1/4) time. Thus, as a very rough gauge on the size of the
desired parameters, a prime geared towards NIST’s security level 1 [56] should lie somewhere in
the range from 200 to 300 bits. For a given size of p, the quality of an example is judged solely by
the smoothness bound; if a prime p is such that p−1 and p+1 are B-smooth, then another example
will be deemed better if it is also around the same size but achieves a smoothness bound less than
B; beyond the size of p itself, it is hopeless to try adding any (e.g. arithmetically favourable)
properties of the prime p to the wishlist.

Two excellent references for methods of solving the Pell equation are the book by Jacobson
and Williams [29] and the survey of Lenstra [37]. It is well known that solving the Pell equation
generally becomes harder as D grows large; Lenstra notes that any method that produces the
fundamental solution (x1, y1) is exponentially slow for infinitely many D. Fortunately, the simple
continued fraction (SCF) method is all that is needed for the application at hand; moreover,
imposing an upper bound on the sizes of the primes p means that this method can be aborted
rapidly once the SCF exceeds this bound.

19

The example below was found with the SCF exactly8 as described in [29, p. 59], with an upper
bound of 2256 imposed on the running value Gi−1. The search impatiently doubled the smoothness
bound B and, noting that smaller values of D tend to give smaller SCF periods and thus produce
solutions, searched through values of D = 2 · 3 · q3 · q4 · q5 with q3, q4, q5 < 210 (and where q3, q4
and q5 are allowed to be 1) until a solution was found. With B = 222, a solution was found with
D = 5960598 = 2 · 3 · 7 · 139 · 1021. In this case, the fundamental solution of the Pell equation is

(x1, y1) = (200083968456294491108408953601, 81953475550525305524071920),

for which y1 is B-smooth but x1 is not prime. However, the subsequent values (x2, y2) and (x3, y3)
were also returned as both have xi < 2256. The value of y3 is not B-smooth, but the solution

(x2, y2) = (80067188866438897846454051644627670308348650805727541734401,

32795153233870014069122017732204061523056363527733967840)

does have y2 being B-smooth, and moreover, p = x2 is a 196-bit prime. In this case

p− 1 = 210 · 33 · 52 · 7 · 172 · 412 · 432 · 532 · 139 · 5232 · 1021 · 245472 · 956512 · 1750612, and

p+ 1 = 2 · 112 · 312 · 20112 · 72072 · 227092 · 230412 · 422572 · 18310212.

In this example the 175061- and 1831021-isogenies are managable but still highly suboptimal.
Over the coming months, exhaustive searches over much smaller smoothness bounds are expected
to supercede this one, and to produce much faster isogenies in the scenario where the sizes of
public keys are optimsed.

Note that, once a 256-bit example p is found, the uncompressed public keys will be three
elements of Fp2 (as in uncompressed SIDH/SIKE), i.e. around 192 bytes. This is significantly less
than the 330-byte public keys of uncompressed SIKEp434, and is even less than the 196-byte
compressed public keys of SIKEp434.

6 Security analysis

At a high level, there are two main changes to the usual computational isogeny problems underlying
SIDH and SIKE [21, Problems 5.1–5.4] that are implicit in this paper. The first is that the isogeny
walks now use multiple values of `; the vertex set of a given graph stays fixed, but the edges
now change between successive steps. The second is that the walks are no longer half-length (i.e.
around half the bitlength of p); lowering the size of the primes relative to the length of the walks
means that other avenues of attack become relevant with respect to the usual meet-in-the-middle
attacks. This section studies the implications of these changes with respect to known attacks from
the literature.

Before focusing on the underlying computational problems, the following remark briefly revisits
the two other practical security notions discussed in Section 1.

Remark 1 (Active adversaries). Recall from Section 3 that protecting Algorithm 1 implementa-
tions against side-channel adversaries is analogous to protecting pre-existing SIDH/SIKE algo-
rithms for 2m- and 3n-isogenies – see [30, §5.3]. While it is stressed that static keys in the pro-
posed instantiations should be safeguarded analogously to SIDH static keys (i.e. by using SIKE),
it is worth pointing out a peculiarity that arises when large prime `-isogenies are on the side of
the party re-using a static key. In the case of actively attacking a static secret 2m-isogeny, the
Galbraith-Petit-Shani-Ti attack [24] recovers one bit of the key during every protocol interaction;
it only requires around m malicious interactions with the static key holder to compute their entire
secret key. However, an active adversary seems to get far less bang for their buck when applying
this attack to the case where the computation of the static key involves large prime isogenies. Let

8Note that the errata of [29] replaces Qi with Qi+1 in the line that assigns qi+1.

20

L =
∏k
i=1 `

ei
i with `1 < · · · < `k. At each point of the attack, the adversary maliciously chooses

points P̃ and Q̃, sends the basis {P + P̃ , Q + Q̃} instead of the honestly generated basis {P,Q},
and then checks (i.e. queries the oracle – see [24, §3]) to see if 〈Q+ Q̃+ [α](P + P̃)〉 ?

= 〈Q+ [α]P 〉.
If the final isogeny in the computation of the static public key is an `k-isogeny, then the adver-
sary’s first step involves trying P̃ = [

∏k−1
i=1 `

ei
i]P with Q̃ = [−x ·

∏k−1
i=1 `

ei
i]P for 0 ≤ x < `k until

the key exchange succeeds (i.e. the oracle in [24, §3] returns “1”) , at which point he has found
0 ≤ α` < `k such that that α` ≡ α mod `k, and he can then move onto solving α mod `k−1 (or
α mod `2k if ek > 1). On average, the attacker would need `k/2 oracle queries to find α`, so when
`k � m (as it is for most of the examples in this paper) he is using many more queries to recover
what is only a small fraction of the entropy he can recover in the 2- or 3-power case (note that
the attacker learning less information per oracle query for larger ` was already pointed out in [24,
Remark 2]). Although it is both outside the scope of this paper and not recommended without a
more detailed analysis, the types of large ` that arise in some of the examples do hint towards a
potential trade-off where SIDH keys could be reused for a small number of protocol runs that is
upper-bounded by some tolerable security loss. In the case of the original SIDH protocol reusing
2m-isogenies, one bit of security can be presumed lost every time a static key is (re)used, but in
the case of a secret L-isogeny with `k > 2κ and κ = κ1 + κ2 + 1, one might be willing to trade
off the 2−κ2 probability of losing κ bits of security in order to reuse a single key up to 2κ1 times,
particularly if the parameters are chosen to account for this trade-off.

Multiple edge sets. Based on current knowledge, there is no reason to believe that a walk
consisting of many different prime degree isogenies makes the underlying problem appreciably
easier than that of a walk in a fixed `-isogeny graph, provided the number of possible destination
nodes is around the same size. When computing L-isogenies with L =

∏
`eii , the number of cyclic

subgroups of order L inside any given group E(Fp2) is
∏

(`i+1)`ei−1i , and so long as this is around
the same size as (`+ 1)`e−1, the difficulty of recovering an L-isogeny appears to be no easier than
that of recovering an `e-isogeny. The generalisation of the problems underlying SIDH to isogenies
of multiple degrees has already been considered in prior works (e.g. [42] and [25, §2.3]), where the
same conclusion was drawn (or the same assumption was made).

Classical cryptanalysis. The remainder of this section focusses on the upshot of computing
secret L-isogenies, where L is much larger than p1/2. When L ≈ p1/2, as in the original SIDH
proposal, the meet-in-the-middle or claw-finding algorithms [21, §5.3] stand alone as the best
known attacks against SIDH and SIKE. However, the most interesting instantiations proposed in
this paper have L� p1/2, and as L tends towards p, algorithms other than the meet-in-the-middle
attacks become relevant.

In what follows it will be assumed that L = `eii ≈ p, as was the case in Section 5, since this is
the extreme case where the alternative attack avenues are most relevant. The underlying problem
is to find the isogeny

φ : E1 → E2

of degree L, where E1/Fp2 and E2/Fp2 are supersingular. Let {P1, Q1} be a basis for E1[L], and
recall from (8) that the number of distinct order L subgroups that can be generated by points of
the form S1 = Q1 + [α]P1 is exactly L.

Meet-in-the-middle algorithms. Let L1 ≈ L2 ≈ p1/2 with L1L2 = L. The claw-finding algorithm
cited by Jao and De Feo [31, §5.2] uses O(L1) time to compute a table of all of the curves L1-
isogenous to E1, and stores them using O(L1) memory. It then proceeds by trying one L2-isogeny
at a time, this time emanating from E2, until a match is found in the table and the problem is
solved; this stage requires O(L2) time and essentially no memory. It follows that the claw-finding
algorithm runs in O(p1/2) time and requires O(p1/2) memory.

Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1] proposed that
the van Oorschot-Wiener (vOW) parallel collision finding algorithm [57] has a lower overall cost for

21

finding φ, and thus should be used to assess the security of SIDH and SIKE. Their implementation
confirmed that the original vOW runtime analysis [57, Equation (4)] is sharp in the context of
finding the isogeny φ. If w is the number of entries that can be stored in the table above, m is the
number of processors running in parallel, and t is the time taken to compute L1 and L2 isogenies,
then the vOW algorithm finds φ in expected runtime

T =
2.5

m
·
(
p3/4

w1/2

)
· t. (11)

Adj et al. conclude that w > 280 is infeasible, so conduct their analysis by setting w = 280. In
the discussion below it helps to observe that (with this choice of w) the runtime in (11) becomes
T = 2.5 · t ·p1/2 when p = 2160. For p larger than this size (as it is in all of the proposed examples)
and with w fixed, the runtime becomes significantly larger than p1/2. Following the work of Adj et
al., two subsequent papers [32,17] conducted separate analyses that confirmed the runtime in (11).

When the degree of the isogenies is much less than p (as in SIDH and SIKE), the above
claw-finding meet-in-the-middle algorithms are the superior classical algorithms; although their
asymptotic complexities are often cited (or rewritten) in terms of p, they are actually dependent
on the length of the walk, so (as was done for (11)) this length is typically used in the derivation
of the runtime before it is replaced with p1/2. However, when L ≈ p, Galbraith’s original meet-in-
the-middle algorithm [23] becomes asymptotically competitive with the claw-finding algorithms.
Just like claw-finding, it requires O(p1/2) memory and runs in O(p1/2) time.

It is important to note that when L ≈ p it is possible that the secret isogeny φ is no longer
the shortest path between E1 and E2. It is reasonable to assume that the table collision found via
the claw-finding algorithm will correspond to φ, but running Galbraith’s algorithm (as it stands)
may return a different path between E1 and E2. Nevertheless, if this path (or the algorithm itself)
cannot be modified to find the correct path, other paths can presumably be discarded at no loss
of asymptotic efficiency. For the examples in this paper where there is still a comfortable margin
between the size of L and the size of p, the correct path is again likely to be the shortest, so
Galbraith’s (unmodified) algorithm is likely to terminate with φ.

Random walk algorithms for any path. There are two styles of applicable random walk algorithms
that can be used to solve the general supersingular isogeny problem: both Pollard rho [45] and
Delfs-Galbraith [19] find some path between E1 and E2. The former finds an isogeny between
E1 and E2 by taking two pseudo-random walks in the graph of size O(p); the number of steps
required until these two walks collide is O(p1/2) by the birthday paradox. The latter algorithm,
which is preferred in practice (see [19, §4] or [7]), uses two self-avoiding random walks to find
paths from each curve to two subfield curves, Ẽ1/Fp and Ẽ2/Fp, and then connects these two
subfield curves. Since there are O(p1/2) subfield curves in the graph of size O(p), the first step
requires O(p1/2) steps, and since connecting the two subfield curves requires O(p1/4) steps [19],
the entire algorithm takes O(p1/2) steps to find an isogeny connecting E1 and E2. Like vOW, the
Delfs-Galbraith algorithm parallelises perfectly, but unlike vOW, it does not have large storage
requirements.

Both of these algorithms are likely to terminate with a path that is not the secret path cor-
responding to φ. However, since E1 is typically a special curve with a known endomorphism ring
End(E1), it is prudent to assume that this can be used to modify the path into the correct one
via the techniques discussed at length in [25, §4].

Quantum cryptanalysis. The best known quantum algorithm for solving SIDH and SIKE
instances is, asymptotically, Tani’s algorithm [53]. Roughly speaking, as p→∞, Tani’s algorithm
solves the claw-finding problem for secret isogenies of degree O(p1/2) in time O(p1/6) on a quantum
computer. Translating to the setting of isogenies of degree L ≈ p, this would give an O(p1/3)
quantum claw-finding algorithm; note that recent work of Jaques and Schanck [32] shows that (even
under the assumption of a large amount of quantum resources) the concrete complexity of Tani’s
algorithm is much closer to the classical claw-finding complexity. Nevertheless, when L ≈ p, Tani’s

22

algorithm is no longer than superior algorithm for solving the corresponding isogeny problem.
In [7], Biasse, Jao and Sankar give a quantum algorithm for the general supersingular isogeny
problem (in characteristic p) that runs in time O(p1/4). Their algorithm is essentially the Delfs-
Galbraith algorithm (from above) ported to the quantum setting; they use Grover’s algorithm [26]
to get a quadratic speedup from O(p1/2) to O(p1/4) on the phase that finds the two supersingular
subfield curves Ẽ1/Fp and Ẽ2/Fp, and then develop a subexponential algorithm (based on the
Childs-Jao-Soukharev subexponential algorithm [13] for the ordinary case) to connect the subfield
path. The memory requirements of this algorithm are small; Biasse, Jao and Sankar define a set
of N isogenies of degree 3λ, where λ ∈ O(log(p)) is chosen large enough so that this set contains a
walk that passes through a subfield curve with probability 1/2. As long as there are enough (i.e.
O(log(p))) qubits to encode such a path, then this algorithm succeeds with probability 1/4 [7,
Proposition 2].

As in the classical algorithms, since End(E1) is typically known, the path obtained by the above
process can presumably be modified into the path corresponding to φ at no additional asymptotic
cost.

Security summary. When φ : E1 → E2 is an isogeny between two supersingular curves E1/Fp2
and E2/Fp2 of degree L =

∏k
i=1 `

ei
i ≈ p, the best known classical algorithm for finding φ is the

Delfs-Galbraith algorithm; it runs in O(p1/2) time and (unlike claw-finding or vOW) does not have
large storage requirements. Applying Grover’s speedup to the Delfs-Galbraith algorithm also gives
the best known quantum algorithm; it requires O(log(p)) qubits, run in time O(p1/4), and does not
have large storage requirements. In the classical case, Delfs-Galbraith parallelises perfectly, where
as Grover’s algorithm is well-known to give a

√
m speedup when parallelised across m quantum

processors [59].

References

1. G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-Henŕıquez. On the
cost of computing isogenies between supersingular elliptic curves. In C. Cid and M. J. Jacobson,
editors, Selected Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer
Science, pages 322–343. Springer, 2018.

2. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key compression for isogeny-
based cryptosystems. In K. Emura, G. Hanaoka, and R. Zhang, editors, Proceedings of the 3rd ACM
International Workshop on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May
30 - June 03, 2016, pages 1–10. ACM, 2016.

3. D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In International Workshop on Public
Key Cryptography, pages 207–228. Springer, 2006.

4. D. J. Bernstein and T. Lange. Towards Post-Quantum Cryptography in TLS. The year in
post-quantum crypto, December 2018. Slides: https://cr.yp.to/talks/2018.12.28/slides-dan+

tanja-20181228-pqcrypto-16x9.pdf, Video: https://www.youtube.com/watch?v=ZCmnQR3_qWg&t=

3010s.
5. D. J. Bernstein, T. Lange, C. Martindale, and L. Panny. Quantum circuits for the CSIDH: optimiz-

ing quantum evaluation of isogenies. In Y. Ishai and V. Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume 11477 of
Lecture Notes in Computer Science, pages 409–441. Springer, 2019.

6. J. Biasse, A. Iezzi, and M. J. Jacobson. A note on the security of CSIDH. In Chakraborty and Iwata
[11], pages 153–168.

7. J. Biasse, D. Jao, and A. Sankar. A quantum algorithm for computing isogenies between supersingular
elliptic curves. In W. Meier and D. Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT
2014 - 15th International Conference on Cryptology in India, New Delhi, India, December 14-17, 2014,
Proceedings, volume 8885 of Lecture Notes in Computer Science, pages 428–442. Springer, 2014.

8. X. Bonnetain and A. Schrottenloher. Quantum security analysis of CSIDH and ordinary isogeny-based
schemes. Cryptology ePrint Archive, Report 2018/537, 2018. https://eprint.iacr.org/2018/537.

23

https://cr.yp.to/talks/2018.12.28/slides-dan+tanja-20181228-pqcrypto-16x9.pdf
https://cr.yp.to/talks/2018.12.28/slides-dan+tanja-20181228-pqcrypto-16x9.pdf
https://www.youtube.com/watch?v=ZCmnQR3_qWg&t=3010s
https://www.youtube.com/watch?v=ZCmnQR3_qWg&t=3010s
https://eprint.iacr.org/2018/537

9. J. W. Bos and P. L. Montgomery. Montgomery Arithmetic from a Software Perspective, page 10–39.
Cambridge University Press, 2017.

10. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: an efficient post-quantum
commutative group action. In T. Peyrin and S. D. Galbraith, editors, Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III, volume
11274 of Lecture Notes in Computer Science, pages 395–427. Springer, 2018.

11. D. Chakraborty and T. Iwata, editors. Progress in Cryptology - INDOCRYPT 2018 - 19th Inter-
national Conference on Cryptology in India, New Delhi, India, December 9-12, 2018, Proceedings,
volume 11356 of Lecture Notes in Computer Science. Springer, 2018.

12. S. Chapman. Fredrik Carl Mälertz Størmer, 1874-1957. Biographical memoirs of fellows of the Royal
Society, 1958. https://doi.org/10.1098/rsbm.1958.0021.

13. A. M. Childs, D. Jao, and V. Soukharev. Constructing elliptic curve isogenies in quantum subexpo-
nential time. J. Mathematical Cryptology, 8(1):1–29, 2014.

14. C. Costello and H. Hisil. A simple and compact algorithm for SIDH with arbitrary degree isogenies.
In Takagi and Peyrin [52], pages 303–329.

15. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. Efficient compression of SIDH
public keys. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer
Science, pages 679–706, 2017.

16. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular isogeny Diffie-Hellman.
In M. Robshaw and J. Katz, editors, Advances in Cryptology — CRYPTO 2016 — 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part I, volume 9814 of Lecture Notes in Computer Science, pages 572–601. Springer, 2016.

17. C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia. Improved classical cryptanalysis of the
computational supersingular isogeny problem. IACR Cryptology ePrint Archive, 2019:298, 2019.

18. J. M. Couveignes. Hard homogeneous spaces. IACR Cryptology ePrint Archive, 2006:291, 2006.

19. C. Delfs and S. D. Galbraith. Computing isogenies between supersingular elliptic curves over Fp.
Designs, Codes and Cryptography, 78(2):425–440, 2016.

20. M. Deuring. Die typen der multiplikatorenringe elliptischer funktionenkörper. In Abhandlungen aus
dem mathematischen Seminar der Universität Hamburg, volume 14, pages 197–272. Springer, 1941.

21. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. J. Mathematical Cryptology, 8(3):209–247, 2014.

22. E. V. Flynn and Y. B. Ti. Genus two isogeny cryptography. In J. Ding and R. Steinwandt, editors,
Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019, Chongqing, China,
May 8-10, 2019 Revised Selected Papers, volume 11505 of Lecture Notes in Computer Science, pages
286–306. Springer, 2019.

23. S. D. Galbraith. Constructing isogenies between elliptic curves over finite fields. LMS Journal of
Computation and Mathematics, 2:118–138, 1999.

24. S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of supersingular isogeny cryp-
tosystems. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and Information Secu-
rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in
Computer Science, pages 63–91, 2016.

25. S. D. Galbraith, C. Petit, and J. Silva. Identification protocols and signature schemes based on super-
singular isogeny problems. In T. Takagi and T. Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes
in Computer Science, pages 3–33. Springer, 2017.

26. L. K. Grover. A fast quantum mechanical algorithm for database search. In G. L. Miller, editor,
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.

27. M. Hamburg. Ed448-Goldilocks, a new elliptic curve. IACR Cryptology ePrint Archive, 2015:625,
2015.

28. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006.

29. M. J. Jacobson and H. C. Williams. Solving the Pell equation. Springer, 2009.

24

https://doi.org/10.1098/rsbm.1958.0021

30. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali, B. Koziel,
B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and D. Urbanik. SIKE: Supersin-
gular Isogeny Key Encapsulation. Manuscript available at sike.org/, 2017.

31. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies. In B. Yang, editor, Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011, Taipei, Taiwan, November 29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011.

32. S. Jaques and J. M. Schanck. Quantum cryptanalysis in the RAM model: Claw-finding attacks
on SIKE. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part I, volume 11692 of Lecture Notes in Computer Science, pages 32–61. Springer, 2019.

33. G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup problem.
SIAM J. Comput., 35(1):170–188, 2005.

34. K. Kwiatkowski. Towards post-quantum cryptography in TLS. The Cloudflare blog, June 2019
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/.

35. A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. Internet Research Task Force
(IRTF) RFC7748, January 2016 https://tools.ietf.org/html/rfc7748.

36. D. H. Lehmer. On a problem of Störmer. Illinois Journal of Mathematics, 8(1):57–79, 1964.
37. H. W. Lenstra. Solving the Pell equation. Notices of the AMS, 49(2):182–192, 2002.
38. M. Meyer and S. Reith. A faster way to the CSIDH. In Chakraborty and Iwata [11], pages 137–152.
39. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of

computation, 48(177):243–264, 1987.
40. M. Naehrig and J. Renes. Dual isogenies and their application to public-key compression for isogeny-

based cryptography. In To appear in Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings. Preprint: https: // eprint. iacr. org/ 2019/ 499. pdf , 2019.

41. C. Peikert. He gives C-Sieves on the CSIDH. IACR Cryptology ePrint Archive, 2019:725, 2019.
42. C. Petit. Faster algorithms for isogeny problems using torsion point images. In Takagi and Peyrin

[52], pages 330–353.
43. A. K. Pizer. Ramanujan graphs and Hecke operators. Bulletin of the American Mathematical Society,

23(1):127–137, 1990.
44. A. K. Pizer. Ramanujan graphs. AMS/IP Stud. Adv. Math., 7:159–178, 1998.
45. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of computation,

32(143):918–924, 1978.
46. Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup problem with poly-

nomial space. arXiv preprint https: // arxiv. org/ abs/ quant-ph/ 0406151 , 2004.
47. J. Renes. Computing isogenies between Montgomery curves using the action of (0, 0). In T. Lange

and R. Steinwandt, editors, Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, volume 10786 of Lecture Notes in
Computer Science, pages 229–247. Springer, 2018.

48. A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isogenies. Cryptology ePrint
Archive, Report 2006/145, 2006. https://eprint.iacr.org/2006/145.

49. J. H. Silverman. The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts in Mathematics.
Springer, 2009.

50. C. Størmer. Quelques théorèmes sur l’équation de Pell x2−dy2 = ±1 et leurs applications. Christiania
Videnskabens Selskabs Skrifter, Math. Nat. Kl, (2):48, 1897.

51. N. Sullivan. Measuring TLS key exchange with post-quantum KEM. Talk at the NIST Sec-
ond PQC Standardization Conference, August 2019 https://csrc.nist.gov/Presentations/2019/

measuring-tls-key-exchange-with-post-quantum-kem.
52. T. Takagi and T. Peyrin, editors. Advances in Cryptology - ASIACRYPT 2017 - 23rd International

Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science.
Springer, 2017.

53. S. Tani. Claw finding algorithms using quantum walk. Theor. Comput. Sci., 410(50):5285–5297, 2009.
54. J. Tate. Endomorphisms of abelian varieties over finite fields. Inventiones mathematicae, 2(2):134–144,

1966.
55. The National Institute of Standards and Technology (NIST). Submission requirements and

evaluation criteria for the lightweight cryptography standardization process, August, 2018.
URL: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/

final-lwc-submission-requirements-august2018.pdf.

25

sike.org/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://tools.ietf.org/html/rfc7748
https://eprint.iacr.org/2019/499.pdf
https://arxiv.org/abs/quant-ph/0406151
https://eprint.iacr.org/2006/145
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

56. The National Institute of Standards and Technology (NIST). Submission requirements
and evaluation criteria for the post-quantum cryptography standardization process, De-
cember, 2016. URL: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

57. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. J.
Cryptology, 12(1):1–28, 1999.

58. J. Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB, 273:A238–A241, 1971.
59. C. Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746, 1999.
60. G. Zanon, M. A. Simpĺıcio Jr., G. C. C. F. Pereira, J. Doliskani, and P. S. L. M. Barreto. Faster key

compression for isogeny-based cryptosystems. IEEE Trans. Computers, 68(5):688–701, 2019.

26

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

	B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion

