
Batching non-membership proofs with bilinear accumulators

Abstract

In this short paper, we provide a protocol to batch multiple non-membership proofs into a
single proof of constant size with bilinear accumulators via a succinct argument of knowledge
for polynomial commitments.

We use similar techniques to provide a constant-sized proof that a polynomial commitment
as in [KZG10] is a commitment to a square-free polynomial. In the context of the bilinear
accumulator, this can be used to prove that a committed multiset is, in fact, a set. This has
applications to any setting where a Verifier needs to be convinced that no datum was added
more than once.

We have designed all of the protocols so that the Verifier needs to store just four elliptic
curve points for any verification, despite the linear CRS. We also provide ways to speed up the
verification of membership and non-membership proofs and to shift most of the computational
burden from the Verifier to the Prover. Since all the challenges are public coin, the protocols
can be made non-interactive with a Fiat-Shamir heuristic.

1 Introduction

A commitment scheme is a fundamental cryptographic primitive which is the digital analog
of a sealed envelop. Committing to a message m is akin to putting m in the envelop. Opening
the commitment is like opening the envelop and revealing the content within. Commitments are
endowed with two basic properties. The hiding property entails that a commitment reveals no
information about the underlying message. The binding property ensures that one cannot alter
the message without altering the commitment.

A cryptographic accumulator is a succinct binding commitment to a set or a multiset. A
Prover with access to the set/multiset can prove membership or non-membership of an element
with a proof verifiable against the succinct commitment held by a Verifier. Accumulators
have been used for many applications including accountable certificate management [BLL00,
NN98], timestamping [Bd94], group signatures and anonymous credentials [CL02], computations
on authenticated data [ABC+12], anonymous e-cash [STS99b, MGGR13a], privacy-preserving
data outsourcing [Sla12], updatable signatures [PS14, CJ10], and decentralized bulletin boards
[FVY14, GGM14].

In this paper, we study a class of accumulators that is based on bilinear pairings of elliptic
curves. First introduced by Nguyen in [Ngu05], these accumulators have the major advantage
over the better known accumulator of a Merkle tree in that membership proofs are of constant
size and multiple membership proofs can be batched together into a single constant-sized proof.
Furthermore, it was shown in [DT08] that they also allow for non-membership proofs for elements
outside the committed set. In this paper, we provide a protocol to prove non-membership of an
arbitrarily large set with a constant-sized proof.

We use similar techniques as those used in our batched non-membership proof protocol to
provide a protocol to succinctly demonstrate that a polynomial commitment is to a separable
polynomial. This can be used to prove with a constant-sized proof that no element was inserted
more than once into the bilinear accumulator. This is not possible with a Merkle tree or (as far
as we know) with the accumulator based on a hidden order group.

1

Since bilinear accumulators require groups far smaller than RSA groups for the same level
of security, we expect them to be substantially faster than RSA accumulators when it comes
to accumulation, generation of membership proofs (witnesses) and verification. This is borne
out by the implementation in [Tre13] (even though it precedes the number field sieve attack).
Furthermore, the hardness assumptions that underpin bilinear accumulators are the same as
those in pairing-based Snarks and are arguably less brittle than the hardness assumptions for
hidden order groups.

Furthermore, we adapt techniques from [BBF19] and [Wes18] in the bilinear accumulator
setting to speed up verifications of membership/non-membership proofs and to shift most of the
computational and storage burdens from the Verifier to the Prover. In particular, we provide
a protocol to reduce the Verifier’s task of verifying membership proofs to a constant run time
independent of the number of data elements to be batched.

1.1 Structure/contributions of the paper

In section 1, we primarily provide some background and notations for bilinear accumulators
and the KZG polynomial commitment scheme, including the hardness assumptions that underpin
these schemes. In section 2, we describe the protocol PoE for verifiable computation and the
succinct argument of knowledge PoE along with the security proofs.

In section 3, we use the protocols from section 2 to provide a constant-sized non-membership
proof for an arbitrarily large set with respect to the accumulated digest. Such a batched proof is
not possible via the a Merkle tree. While accumulators based on hidden order groups famously
do support batched non-membership proofs ([BBF19]), the groups are substantially larger and
the proof generation times are consequently longer.

In section 4, we use the protocols from section 2 to construct a protocol that succinctly
demonstrates that a KZG polynomial commitment is a commitment to a separable (square-free)
polynomial. In the context of the bilinear accumulator, this can be used to prove - with a
constant-sized proof - that no element was inserted more than once into the accumulator. As
far as we know, this is not possible with a Merkle tree or an accumulator based on hidden order
groups.

We also discuss a protocol to demonstrate a polynomial relation between two discrete logarithms
in section 4. This protocol can be combined with the protocol for separable polynomial commitments
to derive a protocol that succinctly demonstrates that every element element inserted into the
accumulator was inserted with frequency between m and n for puiblic integers m ≤ n.

In the appendix, we describe a vector commitment with constant-sized openings that hinges
on the universal accumulator with constant-sized membership and non-membership proofs.

1.2 Notations and terminology

As usual, Fq denotes the finite field with q elements for a prime power q and Fq denotes its
algebraic closure. F∗q denotes the cyclic multiplicative group of the non-zero elements of Fq. For
polynomials f(X), g(X) ∈ Fq[X], we denote by gcd(f(X), g(X)) the unique monic polynomial
that generates the (principal) ideal of Fq[X] generated by f(X) and g(X).

A polynomial in Fq[X] is said to be separable or square-free if it is not divisible in Fq[X] by the
square of any irreducible polynomial. Since a finite field is a perfect field, f(X) being separable
in Fq[X] is equivalent to f(X) being separable in Fq[X]. A well-known fact is that polynomial
f(X) being separable is equivalent to it being relatively prime with its derivative f ′(X).

We now briefly introduce pairings.

2

Definition 1.1. For abelian groups G1, G2, GT , a pairing

e : G1 ×G2 −→ GT

is a map equipped with the following properties.

1. Bilinearity: e(x1 + x2, y1 + y2) = e(x1, y2) · e(x1, y2) · e(x2, y1) · e(x2, y2)
∀ x1, x2 ∈ G1, y1, y2 ∈ G2.

2. Non-degeneracy: The image of e is non-trivial.

3. Efficient computability.

In pairing-based cryptography, we typically work in settings where the groups G1, G2, GT

are cyclic of order p for some 256-bit prime p so as to have a 128-bit security level. Such pairings
e : G1 ×G2 −→ GT are classified into three types:

- Type I: G1 = G2.

- Type II: G1 6= G2 but there is an efficiently computable isomorphism between G1 and G2.

- Type III: There is no efficiently computable isomorphism between G1 and G2.

1.3 Cryptographic assumptions

We state the computationally infeasible problems that the security of our constructions hinge
on.

Assumption 1.1. n-strong Diffie Hellman assumption: Let G be a cyclic group of prime
order p generated by an element g, and let s ∈ F∗p. Any probabilistic polynomial-time algorithm

that is given the set {gsi : 1 ≤ i ≤ n} can output a pair (a, g1/(s+a)) ∈ F∗p × G with at most
negligible probability.

Assumption 1.2. Knowledge of exponent assumption (KEA):. Let G be a cyclic group of
prime order p generated by an element g, and let s ∈ F∗p. Suppose there exists a PPT algorithm
A1 that given pairs (h1, h

s
1), · · · , (hn, hsn) in G2, outputs a pair (c1, c2) ∈ G2 such that c2 = cs1.

Then there exists a PPT algorithm A2 that, with overwhelming probability, outputs a vector
(x1, · · · , xn) ∈ Fnp such that

c1 =
n∏
i=1

hxii , c2 =
n∏
i=1

(hsi)
xi

A special case of the KEA assumption is that given the elements {gsi : 0 ≤ i ≤ n}, if a PPT
algorithm A1 is able to output a triplet (c1, c2, f(X)) ∈ G×G× Fp[X] with deg(f(X) ≥ 1 such

that c2 = c
f(s)
1 , then there is a PPT algorithm A2 that with overwhelming probability, outputs a

polynomial e(X) such that
c1 = g

e(s)
1 , c2 = g

e(s)·f(s)
1 .

The KEA assumption implies that breaking the stong Diffie-Hellman is equivalent to computing
the trapdoor s. A PPT adversary A that can compute an element w such that ws+α = g1 can
also generate a polynomial e(X) such that

w = g
e(s)
1 , g1 = g

e(s)·s
1

and hence, s is a zero of the polynomial e(X) · X − 1. So A can use a PPT algorithm such as
[KS98] to factorize e(X) ·X − 1 and extract s in expected polynomial time.

3

Assumption 1.3. Let G be a cyclic group of prime order p generated by an element g, and let
s ∈ F∗p. Any probabilistic polynomial-time algorithm that is given the set {gsi : 1 ≤ i ≤ n} can

output a pair (f(X), g1/(s+a)) ∈ Fp[X]deg≥1 ×G such that

wf(s) = g

with at most negligible probability.

This assumption is stronger than the n-strong Diffie Hellman assumption. However, for cryptosystems
that use the KEA assumption, they are equivalent.

Lemma 1.1. The n-strong Diffie Hellman and KEA assumptions imply Assumption 1.3.

Proof. We show that a PPT adversary A that breaks Assumption 1.3 can break the n-strong
Diffie Hellman with overwhelming probability. Suppose A outputs a non-constant polynomial
f(X) of degree k ≥ 1 and an element w such that wf(s) = g. Write f(X) =

∑k
i=0 ciX

i. Then

(w
∑k

i=1 cis
i−1

)s = g · w−c0

and the KEA assumption implies that with overwhelming probability, A can output a polynomial
e(X) such that

w
∑k

i=1 cis
i−1

= ge(s) , g · w−c0 = ge(s)·s.

So
g =

(
g(1−e(s)·s)·c

−1
0

)f(s)
and hence, f(s)(e(s)·s−1) = c0. Now, A can use the [KS98] algorithm to factorize the polynomial
f(X)(e(X)X − 1)− c0 in expected polynomial runtime. Hence, A can derive the integer s - thus
breaking the n-strong Diffie Hellman asusmption - with overwhelming probability.

1.4 Argument Systems

An argument system for a relation R ⊆ X × W is a triple of randomized polynomial time
algorithms (PGen,P,V), where PGen takes an (implicit) security parameter λ and outputs a
common reference string (CRS) pp. If the setup algorithm uses only public randomness we say
that the setup is transparent and that the CRS is unstructured. The prover P takes as input a
statement x ∈ X, a witness w ∈ W , and the CRS pp. The verifier V takes as input pp and x
and after interactions with P outputs 0 or 1. We denote the transcript between the prover and
the verifier by 〈V(pp, x),P(pp, x, w)〉 and write V〈(pp, x),P(pp, x, w)〉 = 1 to indicate that the
verifier accepted the transcript. If V uses only public randomness we say that the protocol is
public coin.

Definition 1.2. We say an argument system (PGen,P,V) for a relation R is complete if for
all (x,w) ∈ R,

Pr
[
〈V(pp, x) , P(pp, w)〉

)
= 1 : pp

$←− PGen(λ)
]

= 1.

Definition 1.3. We say an argument system (PGen,P,V) is sound if P cannot forge a fake
proof except with negligible probability.

Definition 1.4. We say a sound argument system is an argument of knowledge if for any
polynomial time adversary A, there exists an extractor E with access to A’s internal state that
can, with overwhelming probability, extract a valid witness whenever A is convincing.

4

Definition 1.5. An argument system is non-interactive if it consists of a single round of
interaction between P and V.

The Fiat-Shamir heuristic ([FS87]) can be used to transform interactive public coin argument
systems into non-interactive systems. Instead of the Verifier generating the challenges, this
function is performed by a public hashing algorithm agreed upon in advance.

1.5 Bilinear accumulators

We describe the setup in this section. Let G1,G2,GT be cyclic groups of order p for some
prime p such that there exists a pairing e : G1 × G2 −→ GT which is bilinear, non-degenerate
and efficiently computable. Fix generators g1, g2 of the cyclic groups G1,G2 respectively. Then
e(g1, g2) is a generator of GT . For a trapdoor s ∈ F∗p, the common reference string (CRS) is given
by

[g1, g
s
1, · · · , gs

n

1] , [g2, g
s
2, · · · , gs

n

2]

Unfortunately, the generation of the CRS requires a trusted setup, which can be partially
mitigated by using a secure multi-party computation. For a data set D = {d1, · · · , dn}, we
define the accumulated digest

Acc(g1,D) := g

∏
d∈D

(d+s)

1 ∈ G1.

For a subset D0 ⊆ D, the witness for D0 is defined by

wit(D0) := g

∏
d∈D\D0

(d+s)

1 ∈ G1.

The Verifier then verifies the equation

wit(D0)

∏
d0∈D0

(d0+s)

= Acc(g1,D).

via the pairing check

e
(

wit(D0) , g

∏
d0∈D0

(d0+s)

2

)
= e(Acc(g1,D), g2).

The exponent
∏
d∈D(d+s) can be interpreted as a degree n polynomial in the variable s. The

coefficients of the polynomial are computed with a run time of O(n log(n)) using the Fast Fourier
transform. Furthermore, the set Fp[X] of polynomials with Fp-coefficients is a principal ideal
domain whose maximal ideals are those generated by the irreducible polynomials. For a data set
D, the polynomial f(X) =

∏
d∈D(X+d) is monic of degree n = |D|. Let ci denote the coefficient

of Xi, i.e. f(X) =
∑n

i=0 ciX
i. The coefficients can be computed in run time O(n log(n)) using

the Fast Fourier transform. The elements

g
f(s)
1 =

n∏
i=0

(gs
i

1)ci ∈ G1 , g
f(s)
2 =

n∏
i=0

(gs
i

2)ci ∈ G2

can then be computed by any party that has the CRS. The straightforward approach would be
for the Verifier to compute the element

g̃2 := g

∏
d0∈D0

(d0+s)

2 ∈ G2

and then verify the equation

e(wit(D0), g̃2) = e(Acc(g1,D), g2) ∈ GT .

However, this involves computing polynomial coefficients via the Fast Fourier transform followed
by G2-exponentiations. Furthermore, this straightforward verification mechanism makes it necessary
for the Verifier to store a large portion of the CRS, which is not ideal. In the next section, we
discuss protocols that allow us to sidestep this problem.

5

2 The protocols PoE and PoKE

In this subsection, we provide the protocols PoE and PoKE for bilinear accumulators which
achieve three goals.

1. They speed up the verification process by replacing some exponentiation operations by
polynomial division in Fp[X] which is substantially cheaper.

2. They shift most of the computational burden from the Verifier to the Prover. This is useful
in settings where the Prover has more computational power at his disposal.

3. They reduce the Verifier’s storage burden to the set {g1, gs1, g2, gs2}. This is potentially useful
in settings where the Verifier has a low storage capacity.

Protocol 2.1. Proof of exponentiation with base g1 (PoE∗):

Parameters : A pairing e : G1 ×G2 −→ GT

Inputs: a ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: g

f(s)
1 = a

1. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p (the challenge).

2. The Prover computes a polynomial h(X) ∈ Fp[X] and an element β ∈ F∗p such that

f(X) = (X + α)h(X) + β

and sends Q := g
h(s)
1 to the Verifier.

3. The Verifier computes β := f(X) (mod (X + α)) and accepts if and only if the equation

e(Q, gs+α2) · e(gβ1 , g2)
?
= e(a, g2)

holds.

We refer to this as PoE∗[g1, f(X), a]. The proof consists of a single element of G1 and in
particular, is of constant size. Note that because of the bilinearity of the pairing, we have

Qs+αaβ = b⇐⇒ e(Q, gs+α2) · e(a, gβ2) = e(b, g2).

Thus, the pairing check is equivalent to verifying the equation Qs+αaβ = b.

The asymptotic complexity of the Verifier remains unchanged since computing the Fp-element
β := f(X) (mod (X + α)) has a runtime of O(deg(f)). But this protocol swaps exponentiation
operations in the group G1 with polynomial division operations in Fp[X] which are substantially
cheaper. The most obvious application is that a Prover can use the protocol PoE∗ to convince
a Verifier that an element A ∈ G1 is the accumulated digest Acc(g1,D) of a data set D. The
Verifier just needs the four points {g1, gs1, g2, gs2} to check the veracity of this claim.

Clearly, the protocol can be modified for the proof of an exponentiation g
f(s)
2 = b in the

group G2. In this case, the proof would consist of the G2 element g
h(s)
2 . We refer to this as

PoE∗[g2, f(X), b].

Proposition 2.2. The protocol PoE∗ is sound under the strong Diffie Hellman and KEA assumptions.

Proof. We consider the case where the exponentiation is in G1 and with base g1. The case where
the exponentiation is in G2 and with base g2 is virtually identical.

6

Suppose a PPT adversary A is able to output an accepting transcript Q ∈ G1 such that

e(Q, gs+α2) · e(gβ1 , g2) = e(a, g2) , β := f(X) (mod (X + α))

in response to a challenge α. The pairing check implies that Qs+α ·gβ1 = a. The KEA assumption
implies that with overwhelming probability, A can output a polynomial h(X) such that

Q = g
h(s)
1 , a = g

h(s)(s+α)+β
1 .

Setting e(X) := h(X)(X + α) + β yields g
e(s)
1 = a. Now,

e(X) ≡ β ≡ f(X) (mod (X + α))

and since α was randomly and uniformly sampled from Fp, it follows that with overwhelming
probability, e(X) = f(X).

We now generalize this to bases a ∈ G1 other than g1. We provide two versions. The second
is more efficient (for the Prover) if the Prover knows a polynomial e(X) of a small degree such

that g
e(s)
1 = a. The first is more efficient in all other cases.

Protocol 2.3. Proof of exponent 1 for pairings (PoE− 1):

Inputs: a, b ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: af(s) = b

1. The Prover P sends the element g̃2 := g
f(s)
2 ∈ G2 to the Verifier V.

2. P sends a non-interactive proof for PoE∗[g2, f(X), g̃2] to V.

3. V verifies the proof for PoE∗[g2, f(X), g̃2] and the pairing

e(a, g2)
?
= e(b, g̃2).

V accepts if and only if the pairing check holds and the PoE∗ is valid.

Proposition 2.4. The protocol PoE− 1 is secure under the strong Diffie Hellman and KEA
assumptions.

Proof. Suppose a PPT adversary A is able to output an element g̃2 ∈ G2 such that e(a, g̃2) =
e(b, g2) along with a proof for PoE∗[g2, f(X), g̃2]. The PoE∗ implies that with overwhelming

probability, g
f(s)
2 = g̃2. The pairing check then implies that the discrete logarithms between the

pairs (g2, g̃2) ∈ G2 and (a, b) ∈ G1 coincide and hence, af(s) = b.

When the pairing is type III, the exponentiations in G2 are substantially more expensive than
those in G1. Thus, in cases where the Prover possesses a polynomial e(X) of a small degree such

that a = g
e(s)
1 , it can be cheaper to compute the element ah(s) = g

e(s)·h(s)
1 instead of g

h(s)
2 .

Protocol 2.5. Proof of exponent 2 for pairings (PoE− 2):

Parameters : A pairing e : G1 × G2 −→ GT of groups of prime order p; generators g1, g2
of G1, G2 respectively; a secret element s ∈ F∗p such that the Prover possesses the elements

{gsi1 , gs
i

2 : 0 ≤ i ≤ n}
Inputs: a, b ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: af(s) = b

7

1. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p (the challenge).

2. The Prover computes a polynomial h(X) ∈ Fp[X] and an element β ∈ F∗p such that

f(X) = (X + α)h(X) + β

and sends Q := ah(s) to the Verifier.

3. The Verifier computes β := f(X) (mod (X + α)) and accepts if and only if the equation

e(Q, gs+α2) · e(a, gβ2)
?
= e(b, g2)

holds.

We refer to these protocol as PoE− 1[a , f(X), b] and PoE− 1[a , f(X), b] respectively. We
use the notation PoE[a , f(X), b] to mean one of these two versions.

Proposition 2.6. The protocol PoE− 2 for bilinear accumulators is secure under the n-strong
Diffie Hellman and KEA assumptions.

Proof. Suppose, by way of contradiction, that a PPT adversary A produces fake witnesses Q1,
Q2 in response to challenges α1, α2. Then Qi satisfies the equation

Qs+αi = b · a−βi , βi := f(X) (mod (X + αi)) (i = 1, 2)

The KEA assumption implies that with overwhelming probability, A can output polynomials
e1(X), e2(X) such that

Qi = g
ei(s)
1 , b · a−βi = g

ei(s)(s+αi)
1 , βi ≡ f(X) (mod (X + αi)).

For brevity, we write f1(X) := (β2 − β1)−1 · [e1(X)(X + α1)− e2(X)(X + α2)] and

f2(X) := e1(X)(X + α1) + β1 · f1(X). So a = g
f1(s)
1 , b = g

f2(s)
1 . Furthermore, the equation

g
f2(s)
1 = b = Qs+α1

1 · aβ1 = Qs+α1
1 · gβ1·f1(s)1

and the strong Diffie Hellman assumption imply that with overwhelming probability,

f2(X) ≡ f1(X) · β1 ≡ f1(X) · f(X) (mod (X + α1)).

Since α1 was randomly and uniformly sampled from F∗p, it follows that with overwhelming
probability, f2(X) = f1(X) · f(X).

We use the protocol PoE to modify the proof of membership for a data set. The goal is to reduce
the storage and computational burdens of the Verifier.

Protocol 2.7. Protocol for set membership.

Parameters : A pairing e : G1 × G2 −→ GT of groups of prime order p; generators g1, g2
of G1, G2 respectively; a trapdoor s ∈ F∗p such that the Prover possesses the elements

{gsi1 , gs
i

2 : 0 ≤ i ≤ n} and the Verifier possesses the set {g1, g2, gs1, gs2}
Inputs: Data sets D, D0; the accumulated digest Acc(D)

Claim: D0 ⊆ D.

1. The Prover computes the polynomial f0(X) :=
∏

d0∈D0

(X + d0).

2. The Prover computes

wit(D0) := g

∏
d∈D\D0

(d+s)

1 ∈ G1

and sends it to the Verifier V.

8

3. The Prover sends the Verifier a non-interactive proof of PoE[wit(D0), f0(X), Acc(g1,D)].

4. The Verifier computes f0(X) and accepts if and only if the PoE is valid.

Thus, the proof of membership can be verified by a Verifier who possesses the set {g1, gs1, g2, gs2}.
We next show how the last protocol can be adapted to provide an argument of knowledge of the
logarithm. The goal is to construct a protocol with communication complexity much lower than
simply sending the polynomial to the Verifier. This will be the key ingredient for batching
non-memberships with a constant-sized proof.

Protocol 2.8. Proof of knowledge of the exponent with base g1 (PoKE∗):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Element a ∈ G1

Claim: The Prover possesses a polynomial f(X) ∈ Fp[X] such that g
f(s)
1 = a.

1. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p.
2. P computes the polynomial h(X) ∈ Fp[X] and the element β ∈ Fp such that

f(X) = (X + α)h(X) + β.

P computes Q := g
h(s)
1 and sends (Q, β) ∈ G1 × Fp to V.

3. V then verifies the equations

e(Q, gs+α2) · e(gβ1 , g2)
?
= e(a, g2)

and accepts if and only if both equations hold.

The proof consists of an element of G1 and an element of Fp. We refer to this as PoKE∗[g1, a].
We note that multiple PoKE∗s can be batched together. For elements a1, · · · , ak ∈ G1, a Prover

can demonstrate knowledge of polynomials fi(X) such that g
fi(s)
1 = ai by sending a proof

for PoKE∗[g1,
∏k
i=1 a

γi

i] in response to a randomly generated challenge γ ∈ Fp. This proof is
constant-sized and independent of the number of polynomials or their degrees.

Clearly, the protocol can be modified for the proof of the knowledge of an exponent g
f(s)
2 = b

in G2. In this case, the proof would consist of an element of G2 and an element of Fp. We refer
to this as PoKE∗[g2, b].

Proposition 2.9. The protocol PoKE∗ is an argument of knowledge under the strong Diffie
Hellman and KEA assumptions.

Proof. We address the case where the exponentiation is in G1 and with base g1. The case where
the exponentiation is in G2 and with base g2 is identical. We first show that the protocol is sound
and then demonstrate witness extractability.

Suppose a PPT adversary A is able to output an accepting transcript (Q, β) ∈ G1 × Fp such

that e(Q, gs+α2) · e(gβ1 , g2) = e(a, g2) in response to a challenge α. The pairing check implies that

Qs+α · gβ1 = a. The KEA assumption implies that with overwhelming probability, A can output
a polynomial h(X) such that

Q = g
h(s)
1 , a = g

h(s)(s+α)+β
1 .

Setting f(X) := h(X)(X + α) + β yields g
f(s)
1 = a, which completes the proof.

9

We now demonstrate witness extractability to show that this is an argument of knowledge. An
extractor E with access to the accepting transcripts and to the CRS proceeds as follows. Given
accepting transcripts (Qi, βi) for challenges αi (i = 1, · · · , N), E uses the Chinese remainder
theorem to compute a polynomial eN (X) such that

eN (X) ≡ β (mod (X + αi)) , i = 1, · · · , N.

If g
eN (s)
1 = a, E halts. Otherwise, E samples the next accepting transcript (QN+1, βN+1) and

computes the polynomial eN+1(X) such that

eN+1(X) ≡ eN (X) (mod
N∏
i=1

(X + αi)) , eN+1(X) ≡ βN+1 (mod (X + αN+1)).

via the Chinese remainder theorem. When the number of accepting transcripts sampled exceeds
the degree of f(X), the polynomial obtained by E is f(X) with overwhelming probability.

We now generalize this to bases a ∈ G1 other than g1. We provide two versions. The second
is more efficient (for the Prover) if the Prover knows a polynomial e(X) of a small degree such

that g
e(s)
1 = a. The first is more efficient in all other cases. We will use PoKE∗ as a subprotocol

for PoKE− 1.

Protocol 2.10. Proof of knowledge of the exponent for bilinear accumulators (PoKE− 1):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover possesses a polynomial f(X) ∈ Fp[X] such that af(s) = b.

1. The Prover P computes g̃2 := g
f(s)
2 ∈ G2 and sends it to the Verifier V.

2. P sends a non-interactive proof for PoKE∗[g2, g̃2].

3. V verifies the proof for PoKE∗[g2, g̃2] and the equation

e(a, g̃2)
?
= e(b, g2).

V accepts if and only if the PoKE∗ is valid and the pairing equation holds.

Clearly, a virtually identical proof would work if (a, b) was a pair in G2 instead of G1.
Henceforth, we refer to this succinct proof as PoKE− 1[a, b] for a pair (a, b) in G2

1 or G2
2.

Proposition 2.11. The protocol PoKE− 1 is an argument of knowledge under the strong Diffie
Hellman and KEA assumptions.

Proof. We consider the case where a, b are elements of G1. The case where they are elements of
G2 is virtually identical.

Suppose a PPT adversary A is able to output an element g̃2 ∈ G2 such that e(b, g2) = e(a, g̃2)
along with a proof for PoKE∗[g2, g̃2]. The PoKE∗ implies that with overwhelming probability, A
can output a polynomial f(X) such that g

f(s)
2 = g̃2. The pairing check implies that the discrete

logarithms between g2, g̃2 and a, b coincide and hence, af(s) = b.

An extractor E can simulate the extractor for PoKE∗[g2, g̃2] to extract the polynomial f(X)
in polynomial expected time.

When the pairing is type III, the exponentiations in G2 are substantially more expensive
than those in G1. Thus, in cases where the Prover possesses a polynomial e(X) of a small degree

10

such that a = g
e(s)
1 , it can be cheaper to compute the element ah(s) = g

e(s)·h(s)
1 ∈ G1 instead of

g
h(s)
2 ∈ G2.

Protocol 2.12. Proof of knowledge of the exponent for bilinear accumulators (PoKE− 2):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover possesses a polynomial f(X) ∈ Fp[X] such that af(s) = b.

1. The Prover P computes g̃ := g
f(s)
1 ∈ G1 and sends it to the Verifier V.

2. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p.
3. P computes the polynomial h(X) ∈ Fp[X] and the element β ∈ Fp such that

f(X) = (X + α)h(X) + β.

P computes
Q := ah(s) , ĝ := g

h(s)
1

and sends (Q, ĝ, β) ∈ G2
1 × F∗p to V.

4. V verifies the equations

e(Q, gs+α2) · e(aβ, g2)
?
= e(b, g2)

∧
e(ĝ, gs+α2) · e(gβ1 , g2)

?
= e(g̃, g2)

and accepts if and only if both equations hold.

If the exponentiation is in G2, the protocol PoKE-1 will always be more efficient that protocol
PoKE-2. We now describe an attack to show that the Protocol PoKE-2 needs the Prover to send
out g̃ := g

f(s)
2 before the challenge α is generated..

Attack: Suppose a Prover Pmal possesses polynomials h1(X), h2(X) such that g
h1(s)
1 = a,

g
h2(s)
1 = b and h1(X) does not divide h2(X). With overwhelming probability, the challenge
α ∈ F∗p is such that the polynomials X + α and h1(X) are relatively prime. On receiving the
challenge α, Pmal could simply compute a polynomial q(X) ∈ Fp and an element β ∈ Fp such
that

h1(X)β + (X + α)q(X) = h2(X)

and send Q := aq(s), β to the Verifier. The Verifier then sees that Qs+αaβ = b and is tricked into
believing that the Prover possesses a polynomial f(X) such that af(s) = b.

Note that when h1(X) divides h2(X), this does not constitute an attack since ah2(s)/h1(s) = b.
But in the case where h1(X) does not divide h2(X), this attack shows that it is not sufficient for
the Prover to send the pair (Q, β) ∈ G1 × Fp to the Verifier. It is precisely to address this that

we require the Prover to send the element g̃ := g
f(s)
1 before the challenge α is generated by the

Fiat-Shamir heuristic.

Proposition 2.13. The protocol PoKE− 2 is an argument of knowledge under the n-strong Diffie
Hellman and KEA assumptions.

Proof. Suppose a PPT adversary A is able to output accepting transcripts (g̃, Qi, ĝi, βi)
(i = 1, 2) for challenges α1, α2 generated after g̃ has been sent. Via the pairing checks, the
Verifier verifies the equations

Qs+αi
i = b · a−βi , ĝs+αi

i = g̃ · g−β1 (i = 1, 2).

11

The KEA assumption implies that there is a PPT algorithmA that with overwhelming probability
outputs polynomials hi(X) such that

g
hi(s)
1 = Qi , g

hi(s)·(s+α)
1 = b · a−βi

Furthermore,

a = g
(β1−β2)−1·(h1(s)−h2(s))
1 , b = g

β1·[(β1−β2)−1(h1(s)−h2(s))]+h1(s)
1

For brevity, we write

f1(X) := (β1 − β2)−1[h1(X)− h2(X)] , f2(X) := β1 · [(β1 − β2)−1 · [h1(X)− h2(X))] + h1(X).

So a = g
f1(s)
1 , b = af2(s) and a PPT adversary that can output h1(X), h2(X) can also efficiently

output the polynomials f1(X), f2(X).

Since the equations ĝs+αi
i = g̃1 · g−β1 (i = 1, 2) hold, the KEA assumption implies that with

overwhelming probability, A can output polynomials ei(X) (i = 1, 2) such that

g
ei(s)
1 = ĝ1 , g

ei(s)(s+αi)+βi
1 = g̃.

Set f(X) := e1(X)(X + α1) + β1. Then g̃ = g
f(s)
1 . We argue that f(X) · f1(X) = f2(X)

with overwhelming probability, which in turn will imply that af(s) = b except with negligible
probability.

Note that f(X) ≡ β1 (mod (X + α1)). In particular,

f(X) · f1(X) ≡ f2(X) (mod (X + α1))

and since α1 is randomly and uniformly sampled from F∗p after g̃ has been sent, it follows that

with overwhelming probability, f(X) · f1(X) = f2(X). Thus, b = af(s)

We now demonstrate witness extractability to show that this is an argument of knowledge.
The extractor E with access to the accepting transcripts and to the CRS proceeds as follows.
Given accepting transcripts (Qi, βi) for challenges αi (i = 1, · · · , N), E uses the Chinese remainder
theorem to compute the polynomial eN (X) such that

eN (X) ≡ β (mod (X + αi)) , 1 = 1, · · · , N.
If the equation

e(a, g
en(s)
2) = e(b, g2)

holds, E halts. Otherwise, E samples the next accepting transcript (QN+1, βN+1) and computes
the polynomial eN+1(X) such that

eN+1(X) ≡ eN (X) (mod
N∏
i=1

(X + αi)) , eN+1(X) ≡ βN+1 (mod (X + αN+1)).

via the Chinese remainder theorem. When the number of accepting transcripts sampled exceeds
the degree of f(X), the polynomial obtained by E is f(X) with overwhelming probability.

We now discuss a zero-knowledge variant of the protocol PoKE for bilinear accumulators. This
is a honest verifier zero-knowledge argument system. It just requires the Prover to add a blinding
factor to his PoKE proof.

Protocol 2.14. ZK Proof of knowledge of the exponent for bilinear accumulators (ZKPoKE):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover possesses a polynomial f(X) ∈ Fp[X] such that af(s) = b.

1. The Prover P chooses a random k ∈ F∗p and sends u := ak ∈ G1 to the Verifer V.

2. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p.

12

3. P generates a non-interactive proof for the PoKE[a, bα · u] and sends it to V.

4. V independently computes bα ·u ∈ G1 and accepts if and only if the proof for PoKE[a, bα ·u]
is valid.

As was the case with the protocol PoKE, the protocol ZKPoKE can be easily modified for the
setting where the exponentiation is in the group G2 instead of the group G1.

3 Batching non-membership proofs

In this subsection, we show that we can have non-membership proofs of constant size with
bilinear accumulators. As before, let D be the set of accumulated elements and let D0 be a set
of elements disjoint from D. For brevity, we write

f(X) :=
∏
d∈D

(X + d) , f0(X) :=
∏
d0∈D0

(X + d0).

Since the polynomials f(X), f0(X) are relatively prime, we may compute polynomials h(X), h1(X) ∈
Fp[X] such that

f0(X)h0(X)− f(X)h(X) = 1 ∈ Fp[X] , deg h(X) < deg f0(X).

Set w(D0) := g
h0(s)
1 ∈ G1. Then

w(D0)
f0(s) = Acc(g1,D)h(s)g1.

We use the pair (w(D0), g
h(s)
2) ∈ G1×G2 as the (constant-sized) non-membership witness for D0.

The problem that arises here is that a malicious Prover could provide a false witness since
the Verifier does not know the polynomial h(X). The most obvious solution to this would be to
require the Prover to send h(X) to the Verifier. However, that would require witnesses of size
linear in the size of the set D0. Instead, adapting the idea presented in [BBF19] for our bilinear
setting , we use the non-interactive PoKE for pairings to demonstrate that the element gh(s) was
computed in an honest manner.

Protocol 3.1. Protocol for non-membership proofs with the bilinear accumulator

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: The accumulated digest Acc(g1,D) for a data set D; a data set D0

Claim: D0 ∩ D = ∅.
1. The Prover P computes the polynomials

f(X) :=
∏
d∈D

(X + d) , f0(X) :=
∏
d0∈D0

(X + d0).

2. P computes polynomials h0(X), h(X) ∈ Fp[X] such that

f0(X)h0(X)− f(X)h(X) = 1 ∈ Fp[X] , deg h(X) < deg f0(X).

3. P computes w1 := g
h0(s)
1 , w2 := g

h(s)
2 and sends the pair

(w1, w2) := (g
h0(s)
1 , g

h(s)
2) ∈ G1 ×G2

to the Verifier V along with non-interactive proofs for PoKE∗[g2, w2], PoKE
∗[g1, w1].

4. P computes g̃2 := g
f0(s)
2 and sends g̃2 to V along with a non-interactive PoE∗ for the

equation g̃2 = g
f0(s)
2 .

13

5. V verifies the equation

e(w1, g̃2)
?
= e(Acc(g1,D), w2) · e(g1, g2).

V then verifies the non-interactive proofs for PoKE∗[g2, w2], PoKE
∗[g1, w1] and the

non-interactive PoE∗[g2, f0(X), g̃2]. V accepts if and only if all of these proofs are valid.

Note that

w
f0(s)
1 = Acc(g1,D)h(s)g1 ⇐⇒ e(w1, g̃2) = e(Acc(g1,D), g

h(s)
2)·e(g1, g2)

∧
PoE∗[g2, f0(X), g̃2]

Thus, the pairing check in Step 5 would be equivalent to verifying the the equation

w
f0(s)
1 = Acc(g1,D)h(s)g1

if the Prover sent the polynomial h(X) in the clear. However, the Verifier does not need the
polynomial h(X) in order to be convinced of the non-membership of D0 in D. It suffices for the

Verifier to know that w2 = g
h(s)
2 for some polynomial h(X) known to the Prover.

The Verifier needs just the four points {g1, gs1, g2, gs2} to perform the verification. His computational
burden is reduced to computing two pairings in addition to verifying a non-interactive PoE and
a non-interactive PoKE. We now prove the security of this protocol under the n-strong Diffie
Hellman and KEA assumptions.

Theorem 3.2. The protocol for nonmembership proofs with the bilinear accumulator is secure
under the n-strong Diffie Hellman and KEA assumptions.

Proof. Set
f(X) =

∏
d∈D

(X + d) , f0(X) =
∏
d∈D0

(X + d0).

As in the protocol, let g1 be a randomly generated element of G1 and Acc(g1,D) the accumulated
digest

Acc(g1,D) := g

∏
d∈D

(s+d)

1 .

Suppose there exists a PPT adversary A that outputs a non-membership witness for a set D0

that is not disjoint from D. Thus, A outputs elements (w1, w2, g̃2) ∈ G1 ×G2
2 such that

e(w1, g̃2) = e(Acc(g1,D), w2) · e(g1, g2)

along with non-interactive proofs for PoKE∗[g2, w2] , PoKE
∗[g1, w1] , PoE

∗[g2, f0(X), g̃2].

The non-interactive PoE∗[g2, f0(X), g̃2] implies that with overwhelming probability, g
f0(s)
2 =

g̃2. The non-interactive PoKE∗[g2, w2] (in the group G2) implies that with overwhelming probability,

the Prover possesses a polynomial h(X) ∈ Fp[X] such that w2 = g
h(s)
2 . Similarly, the non-interactive

PoKE∗[g1, w1] (in the group G1) implies that with overwhelming probability, the Prover possesses

a polynomial h0(X) ∈ Fp[X] such that w1 = g
h0(s)
1 . Lastly, the pairing check implies that

w
f0(s)
1 = Acc(g1,D)h(s) · g1.

Pick an element d0 in D0 ∩ D. The PPT adversary A can compute the product

e(X) :=
(∏
x∈(D∩D0)\{d0}

(X + d)
)
· h0(X) ∈ Fp[X]

and subsequently the element

14

w := w

∏
x∈(D∩D0)\{d0}

(s+x)

1 = g
e(s)
1 ∈ G1

using the CRS. Thus,

ws+d0 = Acc(g1,D) · g1 = g

∏
d∈D

(s+d)

1 · g1
and hence,

g1 =

(
g

∏
d∈D\{d0}

(s+d)

1 · w−1
)s+d0

.

Thus, a PPT adversary who can create a fake proof of non-membership with non-negligible
probability can also successfully break either the strong Diffie Hellman assumption or the KEA
assmption with non-negligible probabilty.

A different (but fundamentally similar) approach would be to send the element
a0 := Acc(g1,D0) ∈ G1 and prove that a0 and Acc(g1,D) are commitments (with base g1) to
relatively prime polynomials. After computing polyomials h(X), h0(X) such that

f(X)h(X) + f0(X)h0(X) = 1,

the Prover can send the elements g
h(s)
2 , g

h0(s)
2 along with the respective PoKE∗s and the PoE∗[g1, a0, f0(X)].

The Verifier the verifies these proofs and the pairing equation

e(a0, g
h0(s)
2) · e(Acc(g1,D), g

h(s)
2)

?
= e(g1, g2).

4 Non-repetition in committed sets

The non-membership proof in the preceding section boils down to succinctly proving that for
elements a1, a2 ∈ Fp[X], the Prover possesses relatively prime polynomials f1(X), f2(X) such

that a1 = g
f1(s)
1 , a2 = g

f2(s)
1 . For the non-membership proof of D0 in D, this is achieved by setting

a1 := Acc(g1,D) , a2 := Acc(g1,D0).

The same technique can also be used to show that for an element a ∈ G1, the Prover possesses a

separable polynomial f(X) such that a = g
f(s)
1 . An obvious application is that the protocol can

be used to demonstrate that a multiset commitment is actually a commitment to a set rather
than to a multiset with some elements of multiplicity ≥ 2. We note that Fp is a perfect field.
Hence, a polynomial f(X) being separable in Fp[X] is equivalent to f(X) being separable in
Fp[X].

This does not seem possible (or at least not easy) with the other families of cryptographic
accumulators: Merkle trees or the accumulators based on hidden order groups. In the former
case, the proofs cannot be batched. In the later case, it boils down to proving that a committed
integer is squre-free, which seems difficult.

Our protocol hinges on the simple fact that a polynomial f(X) ∈ Fp[X] is square-free if and
only if it is relatively prime with its derivative f ′(X). To this end, we first need a protocol to

show that for polynomial commitments a, b ∈ G1, there is a polynomial f(X) such that a = g
f(s)
1 ,

b = g
f ′(s)
1 where f ′(X) is the derivative of f(X).

4.1 Protocol for the derivative of a polynomial

The protocol to prove that a committed polynomial is separable boils down to showing that
the polynomial is relatively prime with its derivative. Thus, an important subprotocol is to

15

succinctly show that for elements a, b in G1, the Prover knows a polynomial f(X) such that

a = g
f(s)
1 , b = g

f ′(s)
1 .

Our protocol hinges on the following observation. For any element α ∈ Fp, the polynomial
f(X)− f ′(α)(X −α) is ≡ β (mod (X −α)2) for some β ∈ Fp. We argue that the converse holds.

Let f(X), h(X) be polynomials and suppose, for a randomly generated α ∈ Fp, we have

f(X)− h(α)(X − α) ≡ β1 (mod (X − α)2)

for some β1 ∈ Fp. Now,

f(X)− f ′(α)(X − α) ≡ β2 (mod (X − α)2)

for some β2 ∈ Fp. Hence,

(f ′(X)− h(X)) · (X − α) ≡ β2 − β1 (mod (X − α)2),

which is only possible if β1 = β2 and f ′(α) = h(α). Since α was randomly generated, the
Schwartz-Zippel lemma implies that with overwhelming probability, f ′(X) = h(X).

Protocol 4.1. Protocol for the derivative of a polynomial (PoDer)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that:

- g
f(s)
1 = a, g

f ′(s)
1 = b

1. The Fiat-Shamir heuristic generates a challenge α.

2. The Prover P computes a polynomial q(X) and an element β ∈ Fp such that

f(X) = q(X)(X − α)2 + f ′(α) · (X − α) + β

and sends Q := g
q(s)
1 ∈ G1, β ∈ Fp to the Verifier V along with non-interactive proof for

PoKE∗[g1, Q].

3. P computes
γ := f ′(α) , b1 := g

[f ′(s)−γ]/(s−α)
1

and sends (b1, γ) ∈ G1 × Fp to V along with non-interactive proof for PoKE∗[g1, b1].

4. V verifies the equations

e(a · g−β1 , g2)
?
= e(Q, g

(s−α)2
2) · e(gγ1 , g

s−α
2)

∧
e(b · g−γ1 , g2)

?
= e(b1, g

s−α
2)

and accepts if and only if both hold.

We will refer to this protocol as PoDer[g1, (a, b)]. Clearly, a virtually identical protocol would
work if (a, b) were a pair in G2 instead of G1.

The pairing check requires the Verifier to store gs
2

2 . This can be avoided by using a PoE∗ for

the exponentiation g
(s−α)2
2 (at the cost of one more G2-element in the proof).

Proposition 4.2. The protocol for the derivative of a polynomial is secure under the n-strong
Diffie Hellman and KEA assumptions.

Proof. Suppose a PPT adversary A outputs an accepting transcript in response to a challenge
α generated by the Fiat-Shamir heuristic.

16

The pairing check e(b · g−γ1 , g2)
?
= e(b1, g

s−α
2) and the subprotocol PoKE∗[g1, b1] imply that

with overwhelming probability, A can output a polynomial h(X) such that b · g−γ1 = g
h(s)(s−α)
1 .

Setting e(X) := h(X)(X − α) + γ yields b = g
e(s)
1 , e(α) = γ.

The pairing check

e(a, g2)
?
= e(Q, g

(s−α)2
2) · e(gγ1 , g

s−α
2) · e(gβ1 , g2)

and the subprotocol PoKE∗[g1, Q] imply that with overwhelming probability, A can output a
polynomial q(X) such that

a = g
(s−α)2q(s)+γ(s−α)+β
1 .

Setting f(X) := (X − α)2q(X) + γ(X − α) + β yields a = g
f(s)
1 . Now,

f(X) ≡ γ(X − α) + β ≡ e(α) · (X − α) + β (mod (X − α)2)

and hence, e(α) ≡ f ′(α) (mod (X − α)2), which implies e(α) = f ′(α). Since α was randomly
and uniformly sampled from Fp, the Schwartz-Zippel lemma implies that with overwhelming
probability, e(X) = f ′(X).

4.2 Protocol for a separable polynomial commitment

We now turn to the main protocol of this section. Given a polynomial commitment in G1, we
provide a protocol whereby a Prover can succinctly show that it is a commitment to a separable
polynomial. In the context of a bilinear accumulator, this amounts to showing that no data
element was inserted more than once.

Protocol 4.3. Protocol for separable polynomial commitment (PoSep)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Element a ∈ G1

Claim: The Prover knows a separable polynomial f(X) ∈ Fp[X] such that g
f(s)
1 = a

1. The Prover computes the derivative f ′(X) and sends a′ := g
f ′(s)
1 to the Verifier along

with a non-interactive proof for PoDer[g1, (a, a′)].

2. P computes polynomials h1(X), h0(X) such that

f(X)h(X) + f ′(X)h1(X) = 1 ∈ Fp[X] , deg(h(X)) < deg(f ′(X)).

3. P computes w := g
h(s)
2 , w′ := g

h1(s)
2 and sends them to V along with non-interactive

proofs for PoKE∗[g2, w], PoKE∗[g2, w
′].

4. V verifies the two PoKE∗s and the PoDer and verifies the equations

e(a,w) · e(a′, w′)
?
= e(g1, g2).

V accepts if and only if the two PoKE∗s are valid and both of the pairing equations hold.

We denote this protocol by PoSep[g1, a]. The Verifier just needs the four points {g1, gs1, g2, gs2}
to efficiently verify the proof. Clearly, the protocol is easy to modify if the element a lies in the
group G2 instead of G1.

Theorem 4.4. The protocol for separable polynomial commitments is secure under the n-strong
Diffie Hellman and KEA assumptions.

17

Proof. It suffices to show that in case of an accepting transcript, a PPT adversary can - with

overwhelming probability- output a polynomial f(X) ∈ Fp[X] such that a = g
f(s)
1 and f(X) is

relatively prime with its derivative f ′(X).

Suppose a PPT adversary A is able to output an accepting transcript. The subprotocol
PoDer[g1, (a, a′)] implies that with overwhelming probability, the Prover possesses a polynomial

f(X) such that a′ = g
f ′(s)
1 and a = g

f(s)
1 .

Since the proofs for PoKE∗[g2, w], PoKE∗[g2, w
′] are valid, it follows that with overwhelming

probability, A possesses polynomials h(X), h1(X) such that

w = g
h(s)
2 , w′ = g

h1(s)
2 .

The pairing check
e(a,w) · e(a′, w′)

?
= e(g1, g2)

implies that f(s)h(s) + f ′(s)h1(s) = 1. The strong Diffie-Hellman assumption now implies
that with overwhelming probability, f(X)h(X) + f ′(X)h1(X) = 1. Thus, with overwhelming
probability, the polynomials f(X) and f ′(X) are relatively prime.

4.3 A protocol for a polynomial relation between discrete logarithms

In this subsection, we discuss a protool that allows a Prover to demonstrate a polynomial
relation between two discrete logarithms. The protocol PoSep can be combined with this protocol
to generate a succinct proof that each element was inserted into the accumulator was inserted
precisely n times, which generalizes the protocol PoSep.

Protocol 4.5. Protocol for polynomial relation between logarithms (PoPolyRel)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Elements a, b ∈ G1; a public polynomial e(X) ∈ Fp[X]

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that:

- g
f(s)
1 = a, g

e(f(s))
1 = b

1. The Fiat-Shamir heuristic generates a challenge α.

2. The Prover computes polyonmials h1(X), h2(X) and Fp-elements β1, β2 such that

f(X) = h1(X)(X + α) + β1 , e(f(X)) = h2(X)(X + α) + β2.

P computes Q1 := g
h1(s)
1 , Q2 := g

h2(s)
1 and sends (Q1, β1, Q2) to V.

3. The Verifier computes β2 := e(β1) ∈ Fp and verifies the equations

e(Q1, g
s+α
2) · e(gβ11 , g2)

?
= e(a1, g2)

∧
e(Q2, g

s+α
2) · e(gβ21 , g2)

?
= e(b, g2).

V accepts if and only if both equations hold.

We refer to this protocol as PoPolyRel[g1, (a, b), f(X)]. The two pairing equations in the
last step can be batched so that the Verifier computes three pairings instead of six.

The pairing checks and the strong Diffie-Hellman assumption imply that with overwhelming

probability, the Prover knows polynomials f(X), f1(X) such that a = g
f(s)
1 , b = g

f1(s)
1 . Furthermore,

f1(X) ≡ β2 ≡ e(β1) ≡ e(f(X)) (mod (X + α)).

Since α was randomly and uniformly sampled from Fp it follows that with overwhelming probability,
f1(X) = e(f(X).

18

Theorem 4.6. The protocol for a polynomial relation between logarithms is secure under the
n-strong Diffie Hellman and KEA assumptions.

Proof. (Sketch) Suppose a PPT adversary A is able to output an accepting transcript. The
protocol has PoKE∗[g1, a] and PoKE∗[g1, b] (with the shared challenge α) as subprotocols and
hence A can, with overwhelming probability, output polynomials f(X), h(X) such that

f(X) ≡ β1 (mod (X + α)) , h(X) ≡ β2 (mod (X + α)) , a = g
f(s)
1 , b = gh1(s).

Now,
h(X) ≡ β2 ≡ e(β1) ≡ e(f(X)) (mod X + α)).

Since α was randomly and uniformly sampled from Fp, it follows that with overwhelming probability,
e(f(X) = h(X).

Example of an application: Let D be a data multiset and let A := Acc(g1,D) be its
accumulated digest which is known to a Verifier. The last protocol (setting e(X) = Xn) can
be used to prove that an element A1 ∈ G1 is the accumulated digest of the multiset n ·D (i.e. the
multiset such that every x ∈ D has multiplicity n ·mul(x,D)). The Verifier just needs access to
the element Acc(g1,D) and the elements {g1, gs1, g2, gs2} to verify this proof in constant runtime.

4.4 Generalizing the protocol PoSep

The protocol PoSep can be combined with the protocol PoPolyRel to demonstrate that an
element of G1 is a polynomial commitment to the n-th power of a separable polynomial. In
the context of a bilinear accumulator, this demonstrates that any element inserted was inserted
precisely n times. Furthermore, these protocols an also be used to prove that any element inserted
into the accumulator was inserted no fewer than m times and no more than n times. We describe
the protocol below.

The basic idea is that if a polynomial f(X) is sandwiched between polynomials f0(X)m and
f0(X)n in that it is divisible by f0(X)m and divides f0(X)n for a separable polynomial f0(X),
then each irreducible factor of f(X) divides it with some multiplicity between m and n (inclusive).
The special case where m = n entails succinctly proving that the multiplicity of each irreducible
factor in Fp[X] is n.

Protocol 4.7. Protocol for multiplicities of irreducible factors (PoFreq)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Element a ∈ G1; integers m, n with m ≤ n.

Claim: The Prover knows a separable polynomial f0(X) ∈ Fp[X] and a polynomial f(X) ∈
Fp[X] such that:

- g
f(s)
1 = a

- f0(X)m divides f(X)

- f0(X)n is divisible by f(X)

1. The Prover P computes the radical f0(X) of f(X) and sends a0 := g
f0(s)
1 , am := g

f0(s)m

1 ,

an := g
f0(s)n

1 to the Verifier V.

2. P generates a non-interactive proof for PoSep[g1, a0] and sends it to V.

3. P generates non-interactive proofs for PoPolyRel[a0, am, X
m], PoPolyRel[a0, an, X

n]
and sends them to V.

19

4. P generates non-interactive proofs for PoKE[am, a], PoKE[a, an] and sends them to V.

5. V accepts if and only if all of the proofs are valid.

The radical of a polynomial is the product of all of its distinct irreducible factors. It can be
efficiently computed by dividing f(X) by its GCD with its derivative.

References

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat and Brent Waters.
Computing on authenticated data. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 1-20.Springer,
Heidelberg, March 2012.

[BBF19] D. Boneh, B. Bunz, B. Fisch, Batching Techniques for Accumulators with Applications to IOPs and
Stateless Blockchains, In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

[BGG17] S. Bowe, A. Gabizon, M. Green, A multi-party protocol for constructing the public parameters of the
Pinocchio zk-SNARK

[BGM17] S. Bowe, A. Gabizon, I. Myers, Scalable Multi-party Computation for zk-SNARK Parameters in the
Random Beacon Model Cryptology ePrint Archive, Report 2017/1050, 2017. http://eprint.iacr.org/2017/1050.

[CF13] D. Catalano, D. Fiore, Vector commitments and their applications, In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72. Springer, Heidelberg, February / March 2013

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61-76. Springer,
Heidelberg, August 2002.

[CPZ18] A. Chepurnoy, C. Papamanthou, Y. Zhang, EDRAX : A Cryptocurrency with Stateless Transaction
Validation, Cryptology ePrint Archive, Report 2018/968, 2018. https://eprint.iacr.org/2018/968.

[DT08] I. Damgard, N. Triandopolous, Supporting Non-membership Proofs with Bilinear-map Accumulators, Cryptology
ePrint Archive, Report 2008/538, 2008. http://eprint.iacr.org/2008/538.

[FVY14] C. Fromknecht, D. Velicanu, and S. Yakoubov. A decentralized public key infrastructure with identity
retention. Cryptology ePrint Archive, Report 2014/803, 2014. http://eprint.iacr.org/2014/803.

[FST06] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves

[FS87] A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987

[GGM14] Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous credentials. In NDSS
2014.

[KS98] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Mathematics of
computation, 67(223):1179–1197, 1998

[KZG10] A. Kate, G. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg,
December 2010.

[LM18] R. Lai, G. Malavolta, Optimal succinct arguments via hidden order groups, Cryptology ePrint Archive,
Report 2018/705, 2018. https://eprint.iacr.org/2018/705

[Mil86] V. Miller, Short Programs for functions on Curves

[MGGR13a] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed
E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397411. IEEE Computer Society
Press, May 2013

[Ngu05] L. Nguyen, Accumulators from bilinear pairings and applications, CT-RSA, 3376:275–292, 2005

[PST13] C. Papamanthou, E. Shi and R. Tamassia, Signatures of correct computation, in: Theory of Cryptography
2013, Lecture Notes in Comput. Sci. 7785, Springer, Heidelberg (2013), 222–242.

20

[Sla12] Daniel Slamanig. Dynamic accumulator based discretionary access control for outsourced storage with
unlinkable access - (short paper). In Angelos D. Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 215222.
Springer, Heidelberg, February / March 2012.

[STS99b] Tomas Sander and Amnon Ta-Shma. Flow control: A new approach for anonymity control in electronic
cash systems. In Matthew Franklin, editor, FC’99, volume 1648 of LNCS, pages 46-61. Springer, Heidelberg,
February 1999

[Tre13] Edward Tremel, Real world performance of cryptographic accumulators

[Wes18] B. Wesolowski, Efficient verifiable delay functions, In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 379–407. Springer, 2019.

A Vector Commitments

The aim of this section is to construct a Vector Commitment with constant sized openings
using the accumulator constructed in the preceding section. Informally, a Vector Commitment is
a binding commitment to a vector in the same way that an accumulator is a binding commitment
to a set.

The first Vector Commitment with public parameters as well as openings of constant size was
constructed in [BBF19] using their universal accumulator based on groups of unknown order.
Unfortunately, this does not seem feasible for a bilinear Vector Commitment since the bilinear
accumulator has linear public parameters. But our construction does yield a bilinear VC with
linear public parameters and openings of constant size which we expect to have a significant speed
advantage over a group-based VC. Furthermore, rather than storing the entire public parameter,
the Verifier only needs to store the set {g1, gs1, g2, gs2} in addition to the membership proofs which
are of constant size. Thus, his total amount of storage is of constant size.

Definition A.1. A Vector Commitment (VC) is a tuple consisting of the following PPT algorithms:

1. VC.Setup(λ, n,M): Given security parameter λ, length n of the vector and message spaceM
of vector components, output public parameters pp which are implicit inputs to all the following
algorithms.

2. VC.Com(m) −→ τ : Given an input m = (m1, · · · ,mn) output a commitment com.

3. VC.Update(com,m, i, τ): Given an input message m and a position i, output a commitment
com and advice τ .

4. VC.Open(com,m, i, τ): On input m ∈ M and i ∈ [1, n], the commitment com and advice τ ,
output an opening π that proves m is the i-th committed element of com.

5. VC.Verify(com,m, i, τ)−→ 0/1: On input commitment com, an index i ∈ [1, n] and an
opening proof π, output 1 (accept) or 0 (reject).

A vector commitment is said to be a subvector commitment (SVC) if given a vector m and a
subvector m′, the committer may open the commitments at all the positions of m′ simultaneously.
This notion was first introduced in [LM18]. It is necessary for each opening to be of size
independent of the length of m′, since otherwise it would be no more efficient than opening
the positions separately. For instance, a Merkle tree is an example of a Vector Commitment
that is not a subvector commitment since its position openings are not constant sized and the
openings of several positions cannot be compressed into a single proof. In the rest of this section,
we construct a SVC using the accumulator constructed in Section 2.

21

We start by constructing a bilinear accumulator as in the last section. The message space
M is the set {0, 1}∗. Our construction associates the element i + pZ ∈ F∗p for each index i of
the vector. We now define a bit-vector m = (m1, · · · ,mp−1) of length p− 1 as follows. For each
index i, we set

mj =

{
1 if j + pZ was accumulated .

0 otherwise.

The bit-vector m is sparse, i.e. most of its entries are 0. The opening of the i-th index
is a membership proof of i + pZ if mi = 1 and a non-membership proof if mi = 0. With the
accumulator we constructed in the last section, each opening is of constant size. Furthermore,
the openings of multiple indices can be batched into a constant sized proof by aggregating
all the membership witnesses for F∗p-elements on the indices opened to 1 and batching all the
non-membership witnesses for elements at the indices opened to 0.

We use our accumulator to commit to the set of elements corresponding to indices such that
mi = 1. The opening of the i-th index to mi is an inclusion proof for di and the opening to
mi = 0 is an exclusion proof for di. With our bilinear accumulator, the opening of each index is
constant-size. Furthermore, the openings of multiple indices can be batched into a single constant
sized proof using membership proofs for elements on the indices opened to elements of F∗p and
non-membership proofs for elements opened to 0.

A.1 A key-value map commitment

Following the ideas of [BBF19], we use our sparse VC to construct a key-value map commitment
as follows. The key-space is represented by positions in the vector and the associated value is the
data at the keys position. The vector length is exponential in the key length and most positions
are zero. The complexity of the commitment is proportional to the number of bit indices that
are set to 1 and hence, is independent of the length of the vector.

22

	Introduction
	Structure/contributions of the paper
	Notations and terminology
	Cryptographic assumptions
	Argument Systems
	Bilinear accumulators

	The protocols PoE and PoKE
	Batching non-membership proofs
	Non-repetition in committed sets
	Protocol for the derivative of a polynomial
	Protocol for a separable polynomial commitment
	A protocol for a polynomial relation between discrete logarithms
	Generalizing the protocol PoSep

	Vector Commitments
	A key-value map commitment

