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Abstract

Distributional collision resistance is a relaxation of collision resistance that only requires that
it is hard to sample a collision (x, y) where x is uniformly random and y is uniformly random
conditioned on colliding with x. The notion lies between one-wayness and collision resistance,
but its exact power is still not well-understood. On one hand, distributional collision resistant
hash functions cannot be built from one-way functions in a black-box way, which may suggest
that they are stronger. On the other hand, so far, they have not yielded any applications beyond
one-way functions.

Assuming distributional collision resistant hash functions, we construct constant-round sta-
tistically hiding commitment scheme. Such commitments are not known based on one-way func-
tions and are impossible to obtain from one-way functions in a black-box way. Our construction
relies on the reduction from inaccessible entropy generators to statistically hiding commitments
by Haitner et al. (STOC ’09). In the converse direction, we show that two-message statisti-
cally hiding commitments imply distributional collision resistance, thereby establishing a loose
equivalence between the two notions.

A corollary of the first result is that constant-round statistically hiding commitments are
implied by average-case hardness in the class SZK (which is known to imply distributional
collision resistance). This implication seems to be folklore, but to the best of our knowledge has
not been proven explicitly. We provide yet another proof of this implication, which is arguably
more direct than the one going through distributional collision resistance.
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1 Introduction

Distributional collision resistant hashing (dCRH), introduced by Dubrov and Ishai [DI06], is a
relaxation of the notion of collision resistance. In (plain) collision resistance, it is guaranteed that
no efficient adversary can find any collision given a random hash function in the family. In dCRH,
it is only guaranteed that no efficient adversary can sample a random collision given a random
hash function in the family. More precisely, given a random hash function h from the family, it is
computationally hard to sample a pair (x, y) such that x is uniform and y is uniform in the preimage
set h−1(x) = {z : h(x) = h(z)}. This hardness is captured by requiring that the adversary cannot
get statistically-close to this distribution over collisions.1

The power of dCRH. Intuitively, the notion of dCRH seems quite weak. The adversary may
even be able to sample collisions from the set of all collisions, but only from a skewed distribution,
far from the random one. Komargodski and Yogev [KY18] show that dCRH can be constructed
assuming average-case hardness in the complexity class statistical zero-knowledge (SZK), whereas a
similar implication is not known for multi-collision resistance.2 (let alone plain collision resistance).
This can be seen as evidence suggesting that dCRH may be weaker than collision resistance, or
even multi-collision resistance [KNY17, BDRV18, BKP18, KNY18].

Furthermore, dCRH has not led to the same cryptographic applications as collision resistance,
or even multi-collision resistance. In fact, dCRH has no known applications beyond those implied
by one-way functions.

At the same time, dCRH is not known to follow from one-way functions, and actually, cannot
follow based on black-box reductions [Sim98]. In fact, it can even be separated from indistinguisha-
bility obfuscation (and one-way functions) [AS16]. Overall, we are left with a significant gap in our
understanding of the power of dCRH:

Does the power of dCRH go beyond one-way functions?

1.1 Our Results

We present the first application of dCRH that is not known from one-way functions and is provably
unachievable from one-way functions in a black-box way.

Theorem 1. dCRH implies constant-round statistically hiding commitment scheme.

Such commitment schemes cannot be constructed from one-way functions (or even permuta-
tions) in a black-box way due to a result of Haitner, Hoch, Reingold and Segev [HHRS15]. They
show that the number of rounds in such commitments must grow quasi-linearly in the security
parameter.

The heart of Theorem 1 is a construction of an inaccessible-entropy generator [HRVW09,
HRVW18] from dCRH.

1There are some subtleties in defining this precisely. The definition we use differs from previous ones [DI06, HN10,
KY18]. We elaborate on the exact definition and the difference in the technical overview below and in Section 3.4.

2Multi-collision resistance is another relaxation of collision resistance, where it is only hard to find multiple elements
that all map to the same image. Multi-collision resistance does not imply dCRH in a black-box way [KNY18], but
Komargodski and Yogev [KY18] give a non-black-box construction.
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An implication of the above result is that constant-round statistically hiding commitments can
be constructed from average-case hardness in SZK. Indeed, it is known that such hardness implies
the existence of a dCRH [KY18].

Corollary 1. A Hard-on-average problem in SZK implies a constant-round statistically hiding
commitment scheme.

The statement of Corollary 1 has been treated as known in several previous works (c.f. [HRVW09,
DGRV11, BDV17]), but a proof of this statement has so far not been published or (to the best
of our knowledge) been publicly available. We also provide an alternative proof of this statement
(and in particular, a different commitment scheme) that does not go through a construction of a
dCRH, and is arguably more direct.

A limit on the power of dCRH. We also show a converse connection between dCRH and
statistically hiding commitments. Specifically, we show that any two-message statistically hiding
commitment implies a dCRH function family.

Theorem 2. Any two-message statistically hiding commitment scheme implies dCRH.

This establishes a loose equivalence between dCRH and statistically hiding commitments. In-
deed, the commitments we construct from dCRH require more than two messages. Interestingly,
we can even show that such commitments imply a stronger notion of dCRH where the adver-
sary’s output distribution is not only noticeably far from the random collision distribution, but is
(1− negl(n))-far.

1.2 Related Work on Statistically Hiding Commitments

Commitment schemes, the digital analog of sealed envelopes, are central to cryptography. More
precisely, a commitment scheme is a two-stage interactive protocol between a sender S and a receiver
R. After the commit stage, S is bound to (at most) one value, which stays hidden from R, and in
the reveal stage R learns this value. The immediate question arising is what it means to be “bound
to” and to be “hidden”. Each of these security properties can come in two main flavors, either
computational security, where a polynomial-time adversary cannot violate the property except
with negligible probability, or the stronger notion of statistical security, where even an unbounded
adversary cannot violate the property except with negligible probability. However, it is known that
there do not exist commitment schemes that are simultaneously statistically hiding and statistically
binding.

There exists a one-message (i.e., non-interactive) statistically binding commitment schemes
assuming one-way permutations (Blum [Blu81]). From one-way functions, such commitments
can be achieved by a two-message protocol (Naor [Nao91] and H̊astad, Impagliazzo, Levin and
Luby [HILL99]).

Statistically hiding commitments schemes have proven to be somewhat more difficult to con-
struct. Naor, Ostrovsky, Venkatesan and Yung [NOVY92] gave a statistically hiding commitment
scheme protocol based on one-way permutations, whose linear number of rounds matched the lower
bound of [HHRS15] mentioned above. After many years, this result was improved by Haitner,
Nguyen, Ong, Reingold and Vadhan [HNO+09] constructing such commitment based on the min-
imal hardness assumption that one-way functions exist. The reduction of [HNO+09] was later
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simplified and made more efficient by Haitner, Reingold, Vadhan and Wee [HRVW09, HRVW18]
to match, in some settings, the round complexity lower bound of [HHRS15]. Constant-round
statistically hiding commitment protocols are known to exist based on families of collision resis-
tant hash functions [NY89, DPP93, HM96]. Recently, Berman, Degwekar, Rothblum and Vasude-
van [BDRV18] and Komargodski, Naor and Yogev [KNY18] constructed constant-round statistically
hiding commitment protocols assuming the existence of multi -collision resistant hash functions.

Constant-round statistically hiding commitments are a basic building block in many funda-
mental applications. Two prominent examples are constructions of constant-round zero-knowledge
proofs for all NP (Goldreich and Kahan [GK96]) and constant-round public-coin statistical zero-
knowledge arguments for NP (Barak [Bar01], Pass and Rosen [PR08]).

Statistically hiding commitment are also known to be tightly related to the hardness of the
class of problems that posses a statistical zero-knowledge protocol, i.e., the class SZK. Ong and
Vadhan [OV08] showed that a language in NP has a zero-knowledge protocol if and only if the
language has an “instance-dependent” commitment scheme. An instance-dependent commitment
scheme for a given language is a commitment scheme that can depend on an instance of the
language, and where the hiding and binding properties are required to hold only on the YES and
NO instances of the language, respectively.

1.3 Directions for Future Work

The security notions of variants of collision resistance, including plain collision resistance and
multi-collision resistance, can be phrased in the language of entropy. For example, plain collision
resistance requires that once a hash value y is fixed the (max) entropy of preimages that any efficient
adversary can find is zero. In multi-collision resistance, it may be larger than zero, even for every
y, but still bounded by the size of allowed multi collisions. In distributional collision resistance, the
(Shannon) entropy is close to maximal.

Yet, the range of applications of collision resistance (or even multi-collision resistance) is sig-
nificantly larger than those of distributional collision resistance. Perhaps the most basic such ap-
plication is succinct commitment protocols which are known from plain/multi-collision resistance
but not from distributional collision resistance (by succinct we mean that the total communica-
tion is shorter than the string being committed to). Thus, with the above entropy perspective in
mind, a natural question is to characterize the full range or parameters between distributional and
plain collision resistance and understand for each of them what are the applications implied. A
more concrete question is to find the minimal notion of security for collision resistance that implies
succinct commitments.

A different line of questions concerns understanding better the notion of distributional collision
resistance and constructing it from more assumptions. Komargodski and Yogev constructed it
from multi-collision resistance and from the average-case hardness of SZK. Can we construct it, for
example, from the multivariate quadratic (MQ) assumption [MI88] or can we show an attack for
random degree 2 mappings? Indeed, we know that random degree 2 mappings cannot be used for
plain collision resistant hashing [AHI+17, Theorem 5.3].
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2 Technical Overview

In this section, we give an overview of our techniques. We start with a more precise statement of
the definition of dCRH and a comparison with previous versions of its definition.

A dCRH is a family of functions Hn = {h : {0, 1}n → {0, 1}m}. (The functions are not neces-
sarily compressing.) The security guarantee is that there exists a universal polynomial p(·) such
that for every efficient adversary A it holds that

∆ ((h,A(1n, h)), (h,Col(h)) ≥ 1

p(n)
,

where ∆ denotes statistical distance, h← Hn is chosen uniformly at random, and Col is a random
variable that is sampled in the following way: Given h, first sample x1 ← {0, 1}n uniformly at
random and then sample x2 uniformly at random from the set of all preimages of x1 relative to
h (namely, from the set {x : h(x) = h(x1)}). Note that Col may not be efficiently samplable and
intuitively, the hardness of dCRH says that there is no efficient way to sample from Col, even
approximately.

Our definition is stronger than previous definitions of dCRH [DI06, HN10, KY18] by that we
require the existence of a universal polynomial p(·), whereas previous definitions allow a different
polynomial per adversary. Our modification seems necessary to get non-trivial applications of
dCRH, as the previous definitions are not known to imply one-way functions. In contrast, our notion
of dCRH implies distributional one-way functions which, in turn, imply one-way functions [IL89]
(indeed, the definition of distributional one-way functions requires a universal polynomial rather
than one per adversary).3 We note that previous constructions of dCRH (from multi-collision
resistance and SZK-hardness) [KY18] apply to our stronger notion as well.

2.1 Commitments from dCRH and Back

We now describe our construction of constant-round statistically hiding commitments from dCRH.
To understand the difficulty, let us recall the standard approach to constructing statistically hiding
commitments from (fully) collision resistant hash functions [NY89, DPP93, HM96]. Here to commit
to a bit b, we hash a random string x, and output (h(x), s, b ⊕ Exts(x)), where s is a seed for a
strong randomness extractor Ext and b is padded with a (close to) random bit extracted from x.
When h is collision resistant, x is computationally fixed and thus so is the bit b. However, for a
dCRH h, this is far from being the case: for any y, the sender might potentially be able to sample
preimages from the set of all preimages.

The hash h(x), however, does yield a weak binding guarantee. For simplicity of exposition, let
us assume that any y ∈ {0, 1}m has exactly 2k preimages under h in {0, 1}n. Then, for a noticeable
fraction of commitments y, the adversary cannot open y to a uniform x in the preimage set h−1(y).
In particular, the adversary must choose between two types of entropy losses: it either outputs a
commitment y of entropy m′ noticeably smaller than m, or after the commitment, it can only open
to a value x of entropy k′ noticeably smaller than k. One way or the other, in total m′ + k′ must
be noticeably smaller than n = m+ k. This naturally leads us to the notion of inaccessible entropy
defined by Haitner, Reingold, Vadhan and Wee [HRVW09, HRVW18].

3The previous definition is known to imply a weaker notion of distributional one-way functions (with a different
polynomial bound per each adversary) [HN10], which is not known to imply one-way functions.
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Let us briefly recall what inaccessible entropy is (see Section 4.1 for a precise definition). The
entropy of a random variable X is a measure of “the amount of randomness” that X contains.
The notion of (in)accessible entropy measures the feasibility of sampling high-entropy strings that
are consistent with a given random process. Consider the two-block generator (algorithm) G that
samples x ← {0, 1}n, and then outputs y = h(x) and x. The real entropy of G is defined as the
entropy of the generator’s (total) output in a random execution, and is clearly equal to n, the length
of x. The accessible entropy of G measures the entropy of these output blocks from the point of
view of an efficient G-consistent generator, which might act arbitrarily, but still outputs a value in
the support of G.

Assume for instance that h had been (fully) collision resistant. Then from the point of view of
any efficient G-consistent generator G̃, conditioned on its first block y, and its internal randomness,
its second output block is fixed (otherwise, G can be used for finding a collision). In other words,
while the value of x given y may have entropy k = n−m, this entropy is completely inaccessible for
an efficient G-consistent generator. (Note that we do not measure here the entropy of the output
blocks of G̃, which clearly can be as high as the real entropy of G by taking G̃ = G. Rather,
we measure the entropy of the block from G̃’s point of view, and in particular, the entropy of
its second block given the randomness used for generating the first block.). Haitner et al. show
that any noticeable gap between the real entropy and the inaccessible entropy of such an efficient
generator can be leveraged for constructing statistically hiding commitments, with a number of
rounds that is linear in the number of blocks.

Going back to dCRH, we have already argued that in the simple case that h is regular and onto
{0, 1}m, we get a noticeable gap between the real entropy n = m + k and the accessible entropy
m′ + k′ ≤ m+ k − 1/poly(n). We prove that this is, in fact, true for any dCRH:

Lemma 1. dCRH implies a two-block inaccessible entropy generator.

The block generator itself is the simple generator described above:

output h(x) and then x, for x← {0, 1}n .

The proof, however, is more involved than in the case of collision resistance. In particular, it
is sensitive to the exact notion of entropy used. Collision resistant hash functions satisfy a very
clean and simple guarantee — the maximum entropy, capturing the support size, is always at most
m < n. In contrast, for dCRH (compressing or not), the maximum entropy could be as large as n,
which goes back to the fact that the adversary may be able to sample from the set of all collisions
(albeit from a skewed distribution). Still, we show a gap with respect to average (a.k.a Shannon)
accessible entropy, which suffices for constructing statistically hiding commitments [HRVW18].

From commitments back to dCRH. We show that any two-message statistically hiding com-
mitment implies a dCRH function family. Let (S,R) be the sender and receiver of a statistically
hiding bit commitment. The first message sent by the receiver is the description of the hash func-
tion: h← R(1n). The sender’s commitment to a bit b, using randomness r, is the hash of x = (b, r).
That is, h(x) = S(h, b; r).

To argue that this is a dCRH, we show that any attacker that can sample collisions that are close
to the random collision distribution Col can also break the binding of the commitment scheme. For
this, it suffices to show that a collision (b, r), (b′, r′) sampled from Col, translates to equivocation —
the corresponding commitment can be opened to two distinct bits b 6= b′. Roughly speaking, this
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is because statistical hiding implies that a random collision to a random bit b (corresponding to a
random hash value) is statistically independent of the underlying committed bit. In particular, a
random preimage of such a commitment will consist of a different bit b′ with probability roughly
1/2. See details in Section 4.3.

2.2 Commitments from SZK Hardness

We now give an overview of our construction of statistically hiding commitments directly from
average-case hardness in SZK. Our starting point is a result of Ong and Vadhan [OV08] showing
that any promise problem in SZK has an instance-dependent commitment. These are commitments
that are also parameterized by an instance x, such that if x is a yes instance, they are statistically
hiding and if x is a no instance, they are statistically binding. We construct statistically hiding
commitments from instance-dependent commitments for a hard-on-average problem Π = (ΠN ,ΠY )
in SZK.

A first attempt: using zero-knowledge proofs. To convey the basic idea behind the con-
struction, let us first assume that Π satisfies a strong form of average-case hardness where we can
efficiently sample no-instances from ΠN and yes-instances from ΠY so that the two distributions
are computationally indistinguishable. Then a natural protocol for committing to a message m is
the following: The receiver R would sample a yes-instance x ← ΠY , and send it to the sender S
along with zero-knowledge proof [GMR89] that x is indeed a yes-instance. The sender S would
then commit to m using an x-dependent commitment.

To see that the scheme is statistically hiding, we rely on the soundness of the proof which
guarantees that x is indeed a yes-instance, and then on the hiding of the instance-dependent
scheme. To prove (computational) binding, we rely on zero knowledge property and the hardness
of Π. Specifically, by zero knowledge, instead of sampling x from ΠY , we can sample it from any
computationally indistinguishable distribution, without changing the probability that an efficient
malicious sender breaks binding. In particular, by the assumed hardness of Π, we can sample x
from ΠN . Now, however, the instance-dependent commitment guarantees binding, implying that
the malicious sender will not be able to equivocate.

The main problem with this construction is that constant-round zero-knowledge proofs (with
a negligible soundness error) are only known assuming constant-round statistically hiding commit-
ments [GK96], which is exactly what we are trying to construct.

A second attempt: using witness-indistinguishable proofs. Instead of relying on zero-
knowledge proofs, we rely on the weaker notion of witness-indistinguishable proofs and use the
independent-witnesses paradigm of Feige and Shamir [FS90]. (Indeed such proofs are known for all
of NP, based average-case hardness in SZK [GMW87, Nao91, OW93], see Section 5 for details.) We
change the previous scheme as follows: the receiver R will now sample two instances x0 and x1 and
provide a witness-indistinguishable proof that at least one of them is a yes-instance. The sender,
will secret share the message m into two random messages m0,m1 such that m = m0 ⊕m1, and
return two instance-dependent commitments to m0 and m1 relative to x0 and x1, respectively.

Statistical hiding follows quite similarly to the previous protocol — by the soundness of the
proof one of the instances xb is a yes-instance, and by the hiding of the xb-dependent commitment,
the corresponding share mb is statistically hidden, and thus so is m. To prove binding, we first
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note that by witness indistinguishability, to prove its statement, the receiver could use xb for either
b ∈ {0, 1}. Then, relying on the hardness of Π, we can sample x1−b to be a no-instance instead of
a yes-instance. If b is chosen at random, the sender cannot predict b better than guessing. At the
same time, in order to break binding, the sender must equivocate with respect to at least one of the
instance-dependent commitments, and since it cannot equivocate with respect to the no-instance
x1−b, it cannot break binding unless it can get an advantage in predicting b.

Our actual scheme. The only gap remaining between the scheme just described and our actual
scheme is our assumption regarding the strong form of average-case hardness of Π. In contrast, the
standard form of average-case hardness only implies a single samplable distribution D, such that
given a sample x from D it is hard to tell whether x is a yes-instance or a no-instance better than
guessing.

This requires the following changes to the protocol. First, lacking a samplable distribution
on yes-instances, we consider instead the product distribution Dn, as a way to sample weak yes
instances — n-tuples of instances where at least one is a yes-instance in ΠY . Unlike before, where
everything in the support of the yes-instance sampler was guaranteed to be a yes-instance, now
we are only guaranteed that a random tuple is a weak yes instance with overwhelming probability.
To deal with this weak guarantee, we add a coin-tossing into the well phase [GMW87], where the
randomness for sampling an instance from Dn is chosen together by the receiver and sender. We
refer the reader to Section 5 for more details.

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For a distribution D we denote by
x← D an element chosen from D uniformly at random. For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. We denote by Un the uniform distribution over n-bit strings. We denote by ◦ the
string concatenation operation. A function negl : N → R+ is negligible if for every constant c > 0,
there exists an integer Nc such that negl(n) < n−c for all n > Nc.

3.1 Cryptographic Primitives

A function f , with input length m1(n) and outputs length m2(n), specifies for every n ∈ N a
function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider functions with polynomial input lengths
(in n) and occasionally abuse notation and write f(x) rather than fn(x) for simplicity. The function
f is computable in polynomial time (efficiently computable) if there exists a probabilistic machine
that for any x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

A function family ensemble is an infinite set of function families, whose elements (families) are
indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N stand for an ensemble of function
families, where each f ∈ Fn has domain Dn and range Rn. An efficient function family ensemble
is one that has an efficient sampling and evaluation algorithms.

Definition 1 (Efficient function family ensemble). A function family ensemble F = {Fn : Dn →
Rn}n∈N is efficient if:

• F is samplable in polynomial time: there exists a probabilistic polynomial-time machine that
given 1n, outputs (the description of) a uniform element in Fn.
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• There exists a deterministic algorithm that given x ∈ Dn and (a description of) f ∈ Fn, runs
in time poly(n, |x|) and outputs f(x).

3.2 Distance and Entropy Measures

Definition 2 (Statistical distance). The statistical distance between two random variables X,Y
over a finite domain Ω, is defined by

∆(X,Y ) ,
1

2
·
∑
x∈Ω

|Pr[X = x]−Pr[Y = x]| .

We say that X and Y are δ-close (resp. -far) if ∆(X,Y ) ≤ δ (resp. ∆(X,Y ) ≥ δ).

Entropy. Let X be a random variable. For any x ∈ supp(X), the sample-entropy of x with
respect to X is

HX(x) = log

(
1

Pr[X = x]

)
.

The Shannon entropy of X is defined as:

H(X) = E
x←X

[HX(x)] .

Conditional entropy. Let (X,Y ) be a jointly distributed random variable.

• For any (x, y) ∈ supp(X,Y ), the conditional sample-entropy to be

HX|Y (x | y) = log

(
1

Pr[X = x | Y = y]

)
.

• The conditional Shannon entropy is

H(X | Y ) = E
(x,y)←(X,Y )

[
HX|Y (x | y)

]
= E

y←Y
[H(X|Y=y)] = H(X,Y )− H(Y ).

Relative entropy. We also use basic facts about relative entropy (also known as , Kullback-
Leibler divergence).

Definition 3 (Relative entropy). Let X and Y be two random variables over a finite domain Ω.
The relative entropy is

DKL(X‖Y ) =
∑
x∈Ω

Pr[X = x] · log

(
Pr[X = x]

Pr[Y = x]

)
.

Proposition 1 (Chain rule). Let (X1, X2) and (Y1, Y2) be random variables. It holds that

DKL((X1, X2)‖(Y1, Y2)) = DKL(X1‖Y1) + E
x←X1

[DKL(X2|X1=x‖Y2|Y1=x)] .
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A well-known relation between statistical distance and relative entropy is given by Pinsker’s
inequality.

Proposition 2 (Pinsker’s inequality). For any two random variables X and Y over a finite domain
it holds that

∆(X,Y ) ≤
√

ln 2

2
·DKL(X‖Y ).

Another useful inequality is Jensen’s inequality.

Proposition 3 (Jensen’s inequality). If X is a random variable and f is concave, then

E[f(X)] ≤ f(E[X]).

3.3 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender S and a receiver R.
The goal of such a scheme is that after the first stage of the protocol, called the commit protocol,
the sender is bound to at most one value. In the second stage, called the opening protocol, the
sender opens its committed value to the receiver. Here, we are interested in statistically hiding and
computationally binding commitments. Also, for simplicity, we restrict our attention to protocols
that can be used to commit to bits (i.e., strings of length 1).

In more detail, a commitment scheme is defined via a pair of probabilistic polynomial-time
algorithms (S,R,V) such that:

• The commit protocol: S receives as input the security parameter 1n and a bit b ∈ {0, 1}. R
receives as input the security parameter 1n. At the end of this stage, S outputs decom (the
decommitment) and R outputs com (the commitment).

• The verification: V receives as input the security parameter 1n, a commitment com, a decom-
mitment decom, and outputs either a bit b or ⊥.

A commitment scheme is public coin if all messages sent by the receiver are independent random
coins.

Denote by (decom, com) ← 〈S(1n, b),R〉 the experiment in which S and R interact with the
given inputs and uniformly random coins, and eventually S outputs a decommitment string and R
outputs a commitment. The completeness of the protocol says that for all n ∈ N, every b ∈ {0, 1},
and every tuple (decom, com) in the support of 〈S(1n, b),R〉, it holds that V(decom, com) = b.
Unless otherwise stated, V is the canonical verifier that receives the sender’s coins as part of the
decommitment and checks their consistency with the transcript.

Below we define two security properties one can require from a commitment scheme. The
properties we list are statistical-hiding and computational-binding. These roughly say that after
the commit stage, the sender is bound to a specific value but the receiver cannot know this value.

Definition 4 (binding). A commitment scheme (S,R,V) is binding if for every probabilistic
polynomial-time adversary S∗ there exits a negligible function negl(n) such that

Pr

[
V(decom, com) = 0 and

V(decom′, com) = 1
: (decom, decom′, com)← 〈S∗(1n),R〉

]
≤ negl(n)

for all n ∈ N, where the probability is taken over the random coins of both S∗ and R.
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Given a commitment scheme (S,R,V) and an adversary R∗, we denote by view〈S(b),R∗〉(n) the
distribution on the view of R∗ when interacting with S(1n, b). The view consists of R∗’s random
coins and the sequence of messages it received from S. The distribution is taken over the random
coins of both S and R. Without loss of generality, whenever R∗ has no computational restrictions,
we can assume it is deterministic.

Definition 5 (hiding). A commitment scheme (S,R,V) is statistically hiding if there exists a
negligible function negl(n) such that for every (deterministic) adversary R∗ it holds that

∆
(
{view〈S(0),R∗〉(n)}, {view〈S(1),R∗〉(n)}

)
≤ negl(n)

for all n ∈ N.

3.4 Distributional Collision Resistant Hash Functions

Roughly speaking, a distributional collision resistant hash function [DI06] guarantees that no effi-
cient adversary can sample a uniformly random collision. We start by defining more precisely what
we mean by a random collision throughout the paper, and then move to the actual definition.

Definition 6 (Ideal collision finder). Let Col be the random function that given a (description) of
a function h : {0, 1}n → {0, 1}m as input, returns a collision (x1, x2) with respect to h as follows: it
samples a uniformly random element, x1 ← {0, 1}n, and then samples a uniformly random element
that collides with x1 under h, x2 ← {x ∈ {0, 1}n : h(x) = h(x1)}. (Note that possibly, x1 = x2.)

Definition 7 (Distributional collision resistant hashing). Let H = {Hn : {0, 1}n → {0, 1}m(n)}n∈N
be an efficient function family ensemble. We say that H is a secure distributional collision resis-
tant hash (dCRH) function family if there exists a polynomial p(·) such that for any probabilistic
polynomial-time algorithm A, it holds that

∆ ((h,A(1n, h)), (h,Col(h))) ≥ 1

p(n)
,

for h← Hn and large enough n ∈ N.

Comparison with the previous definition. Our definition deviates from the previous defini-
tion of distributional collision resistance considered in [DI06, HN10, KY18]. The definition in the
above-mentioned works is equivalent to requiring that for any efficient adversary A, there exists
a polynomial pA, such that the collision output by A is 1

pA(n) -far from a random collision on av-

erage (over h). Our definition switches the order of quantifiers, requiring that there is one such
polynomial p(·) for all adversaries A.

We note that the previous definition is, in fact, not even known to imply one-way functions. In
contrast, the definition presented here strengthens that of distributional one-way functions, which in
turn implies one-way functions [IL89]. Additionally, note that both constructions of distributional
collision resistance in [KY18] (from multi-collision resistance and from SZK hardness) satisfy our
stronger notion of security (with a similar proof).
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On compression. As opposed to classical notions of collision resistance (such as plain collision
resistance or multi-collision resistance), it makes sense to require distributional collision resistance
even for non-compressing functions. So we do not put a restriction on the order between n and
m(n). As a matter of fact, by padding, the input, arbitrary polynomial compression can be assumed
without loss of generality.

4 From dCRH to Statistically Hiding Commitments and Back

We show distributional collision resistant hash functions imply constant-round statistically hiding
commitments.

Theorem 3. Assume the existence of a distributional collision resistant hash function family.
Then, there exists a constant-round statistically hiding and computationally binding commitment
scheme.

Our proof relies on the transformation of Haitner et al. [HRVW09, HRVW18], translating
inaccessible-entropy generators to statistically hiding commitments. Concretely, we construct ap-
propriate inaccessible-entropy generators from distributional collision resistant hash functions. In
Section 4.1, we recall the necessary definitions and the result of [HRVW18], and then in Section 4.2,
we prove Theorem 3.

We complement the above result by showing a loose converse to Theorem 3, namely that two
message statistically hiding commitments (with possibly large communication) imply the existence
of distributional collision resistance hashing.

Theorem 4. Assume the existence of a binding and statistically hiding two-message commitment
scheme. Then, there exists a dCRH function family.

This proof of Theorem 4 appears in Section 4.3.

4.1 Preliminaries on Inaccessible Entropy Generators

The following definitions of real and accessible entropy of protocols are taken from [HRVW18].

Definition 8 (Block generators). Let n be a security parameter, and let c = c(n), s = s(n) and
m = m(n). An m-block generator is a function G : {0, 1}c × {0, 1}s 7→ ({0, 1}∗)m. It is efficient if
its running time on input of length c(n) + s(n) is polynomial in n.

We call parameter n the security parameter, c the public parameter length, s the seed length,
m the number of blocks, and `(n) = max(z,x)∈{0,1}c(n)×{0,1}s(n),i∈[m(n)] |G(z, x)i| the maximal block
length of G.

Definition 9 (Real sample-entropy). Let G be an m-block generator over {0, 1}c × {0, 1}s, let
n ∈ N, let Zn and Xn be uniformly distributed over {0, 1}c(n) and {0, 1}s(n), respectively, and let
Yn = (Y1, . . . , Ym) = G(Zn, Xn). For n ∈ N and i ∈ [m(n)], define the real sample-entropy of
y ∈ Supp(Y1, . . . , Yi) given z ∈ Supp(Zn) as

RealHG,n(y|z) =
i∑

j=1

HYj |Zn,Y<j
(yj |z,y<j).

11



We omit the security parameter from the above notation when clear from the context.

Definition 10 (Real entropy). Let G be an m-block generator, and let Zn and Yn be as in Defi-
nition 9. Generator G has real entropy at least k = k(n), if

E
(z,y)←(Zn,Yn)

[RealHG,n(y|z)] ≥ k(n)

for every n ∈ N.
The generator G has real min-entropy at least k(n) in its i’th block for some i = i(n) ∈ [m(n)],

if
Pr

(z,y)←(Zn,Yn)

[
HYi|Zn,Y<i

(yi|z,y<i) < k(n)
]

= negl(n).

We say the above bounds are invariant to the public parameter if they hold for any fixing of the
public parameter Zn.4

It is known that the real Shannon entropy amounts to measuring the standard conditional
Shannon entropy of G’s output blocks.

Lemma 2 ([HRVW18, Lemma 3.4]). Let G, Zn and Yn be as in definition 9 for some n ∈ N, then

E
(z,y)←(Zn,Yn)

[RealHG,n(y|z)] = H(Yn|Zn).

Toward the definition of inaccessible entropy, we first define online block-generators which are
a special type of block generators that toss fresh random coins before outputting each new block.

Definition 11 (Online block generator). Let n be a security parameter, and let c = c(n) and
m = m(n). An m-block online generator is a function G̃ : {0, 1}c×({0, 1}v)m 7→ ({0, 1}∗)m for some
v = v(n), such that the i’th output block of G̃ is a function of (only) its first i input blocks. We
denote the transcript of G̃ over random input by T

G̃
(1n) = (Z,R1, Y1, . . . , Rm, Ym), for Z ← {0, 1}c,

(R1, . . . , Rm)← ({0, 1}v)m and (Y1, . . . , Ym) = G̃(Z,R1, . . . , Ri).

That is, an online block generator is a special type of block generator that tosses fresh ran-
dom coins before outputting each new block. In the following, we let G̃(z, r1, . . . , ri)i stand for
G̃(z, r1, . . . , ri, x

∗)i for arbitrary x∗ ∈ ({0, 1}v)m−i (note that the choice of x∗ has no effect on the
value of G̃(z, r1, . . . , ri, x

∗)i).

Definition 12 (Accessible sample-entropy). Let n be a security parameter, and let G̃ be an online
m = m(n)-block online generator. The accessible sample-entropy of t = (z, r1, y1, . . . , rm, ym) ∈
Supp(Z,R1, Y1 . . . , Rm, Ym) = T

G̃
(1n) is defined by

AccH
G̃,n

(t) =
m∑
i=1

HYi|Z,R<i
(yi|z, r<i).

Again, we omit the security parameter from the above notation when clear from the context.
As in the case of real entropy, the expected accessible entropy of a random transcript can be

expressed in terms of the standard conditional Shannon entropy.

4In particular, this is the case when there is no public parameter, i.e., c = 0.
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Lemma 3 ([HRVW18, Lemma 3.7]). Let G̃ be an online m-block generator and let (Z,R1, Y1, . . . ,
Rm, Ym) = T

G̃
(1n) be its transcript. Then,

E
t←T

G̃
(Z,1n)

[
AccH

G̃
(t)
]

=
∑
i∈[m]

H(Yi|Z,R<i).

We focus on efficient generators that are consistent with respect to G. That is, the support of
their output is contained in that of G.

Definition 13 (Consistent generators). Let G be a block generator over {0, 1}c(n) × {0, 1}s(n). A
block (possibly online) generator G′ over {0, 1}c(n) × {0, 1}s′(n) is G consistent if, for every n ∈ N,
it holds that Supp(G′(Uc(n), Us′(n))) ⊆ Supp(G(Uc(n), Us(n))).

Definition 14 (Accessible entropy). A block generator G has accessible entropy at most k = k(n)
if, for every efficient G-consistent, online generator G̃ and all large enough n,

E
t←T

G̃
(1n)

[
AccH

G̃
(t)
]
≤ k.

We call a generator whose real entropy is noticeably higher than it accessible entropy an inac-
cessible entropy generator.

We use the following reduction from inaccessible entropy generators to constant round statisti-
cally hiding commitment.

Theorem 5 ([HRVW18, Thm. 6.24]). Let G be an efficient block generator with constant number of
blocks. Assume G’s real Shannon entropy is at least k(n) for some efficiently computable function
k, and that its accessible entropy is bounded by k(n)−1/p(n) for some p ∈ poly. Then there exists a
constant-round statistically hiding and computationally binding commitment scheme. Furthermore,
if the bound on the real entropy is invariant to the public parameter, then the commitment is receiver
public-coin.

Remark 1 (Inaccessible max/average entropy). Our result relies on the reduction from inaccessible
Shannon entropy generators to statistically hiding commitments, given in [HRVW18]. The proof of
this reduction follows closely the proof in previous versions [HV17, HRVW09], where the reduction
was from inaccessible max entropy generators. The extension to Shannon entropy generators is
essential for our result.

4.2 From dCRH to Inaccessible Entropy Generators – Proof of Theorem 3

In this section we show that there is a block generator with two blocks in which there is a gap
between the real entropy and the accessible entropy. Let H = {Hn : {0, 1}n → {0, 1}m}n∈N be
a dCRH for m = m(n) and assume that each h ∈ Hn requires c = c(n) bits to describe. By
Definition 7, there exists a polynomial p(·) such that for any probabilistic polynomial-time algorithm
A, it holds that

∆ ((h,A(1n, h)), (h,Col(h))) = E
h←Hn

[∆ (A(1n, h),Col(h))] ≥ 1

p(n)

for large enough n ∈ N, where h← Hn.
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The generator G : {0, 1}c × {0, 1}n → {0, 1}m × {0, 1}n is defined by

G(h, x) = (h(x), x).

The public parameter length is c (this is the description size of h), the generator consists of two
blocks, and the maximal block length is max{n,m}. Since the random coins of G define x and x is
completely revealed, the real Shannon entropy of G is n. That is,

E
y←G(Uc,Un)

[RealHG(y)] = n.

Our goal in the remaining of this section is to show a non-trivial upper bound on the accessible
entropy of G. We prove the following lemma.

Lemma 4. There exists a polynomial q(·) such that for every G-consistent online generator G̃, it
holds that

E
t←T

G̃
(Z,1n)

[
AccH

G̃
(t)
]
≤ n− 1

q(n)

for all large enough n ∈ N.

Proof. Fix a G-consistent online generator G̃. Let us denote by Y a random variable that corre-
sponds to the first part of G’s output (i.e., the first m bits) and by X the second part (i.e., the
last n bits). Denote by R the randomness used by the adversary to sample Y . Denote by Z the
random variable that corresponds to the description of the hash function h. Fix q(n) , 4 · p(n)2

Assume towards contradiction that for infinitely many n’s it holds that

E
t←T

G̃
(Z,1n)

[
AccH

G̃
(t)
]
> n− 1

q(n)
.

By Lemma 3, this means that

H(Y | Z) + H(X | Y,Z,R) > n− 1

q(n)
(1)

We show how to construct an adversary A that can break the security of the dCRH. The
algorithm A, given a hash function h← H, does the following:

1. Sample r and let y = G̃(h, r)1

2. Sample r1, r2 and output x1 = G̃(h, r, r1)2 and x2 = G̃(h, r, r2)2.

In other words, A tries to create a collision by running G to get the first block, y, and then
running it twice (by rewinding) to get two inputs x1, x2 that are mapped to y. Indeed, A runs
in polynomial-time and if G̃ is G-consistent, then x1 and x2 collide relative to h. Denote by Y A,
XA

1 , and XA
2 be random variables that correspond to the output of the emulated G̃. Furthermore,

denote by (XCol
1 , XCol

2 ) a random collision that Col(h) samples. To finish the proof it remains to
show that

E
h←Hn

[
∆((XA

1 , X
A
2 ), (XCol

1 , XCol
2 ))

]
≤ 1

p(n)
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which is a contradiction.
By Pinsker’s inequality (Proposition 2) and the chain rule from Proposition 1, it holds that

∆
((
XA

1 , X
A
2

)
,
(
XCol

1 , XCol
2

))
≤
√

ln(2)

2
·DKL(XA

1 , X
A
2 ‖XCol

1 , XCol
2 )

=

√
DKL

(
XA

1 ‖XCol
1

)
+ E
x1←XA

1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]

≤
√

DKL

(
XA

1 ‖XCol
1

)
+

√
E

x1←XA
1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]
.

Hence, by Jensen’s inequality (Proposition 3), it holds that

E
h←Hn

[
∆((XA

1 , X
A
2 ), (XCol

1 , XCol
2 ))

]
≤
√

E
h←Hn

[
DKL(XA

1 ‖XCol
1 )
]
+√√√√ E

h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]
.

We complete the proof using the following claims.

Claim 1. It holds that

E
h←Hn

[
DKL(XA

1 ‖XCol
1 )
]
≤ 1

p(n)2
.

Claim 2. It holds that

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]
≤ 1

p(n)2
.

Proof of Claim 1. Recall that XCol
1 is the uniform distribution over the inputs of the hash function

and thus

DKL(XA
1 ‖XCol

1 ) =
∑
x

Pr
[
XA

1 = x
]
· log

Pr
[
XA

1 = x
]

2−n
= n− H(XA

1 ).

To sample XA
1 , the algorithm A first runs G̃(r)1 to get y and then runs G(r, r1) to get x1. Thus,

by Equation (1), it holds that

E
h←Hn

[
H(XA

1 )
]

= E
h←Hn

[H(X)] = H(X,Y | Z) = H(Y | Z) + H(X | Y,Z,R) ≥ n− 1

q(n)
,

where the second equality follows since G̃ is G-consistent and thus X fully determines Y . This
implies that

E
h←Hn

[
DKL(XA

1 ‖XCol
1 )
]
≤ 1

q(n)
=

1

p(n)2
,

as required.
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Proof of Claim 2. For x1 ∈ supp(XA
1 ), it holds that

DKL(XA
2 |XA

1 =x1
‖XCol

2 |XCol
1 =x1

) =
∑
x

Pr
[
XA

2 = x|XA
1 =x1

]
· log

Pr
[
XA

2 = x|XA
1 =x1

]
|h−1(h(x1))|−1

= log |h−1(h(x1))| − H(XA
2 |XA

1 =x1
).

Hence,

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]

= E
h←Hn

x1←XA
1

[
log |h−1(h(x1))| − H(XA

2 |XA
1 =x1

)
]
.

Notice that the distribution of XA
2 only depends on y = h(x1), that is, XA

2 |XA
1 =x1

is distributed

exactly as XA
2 |XA

1 =x′1
for every x1 and x′1 that such that y = h(x1) = h(x′1). Thus, we have

that XA
2 |XA

1 =x1
is distributed exactly as X|Y=y and the distribution of h(X1) is distributed as Y .

Namely,

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]

= E
h←Hn

x1←XA
1

[
log |h−1(y)|

]
− E
h←Hn

[H(X | Y,R)]

= E
h←Hn

x1←XA
1

[
log |h−1(y)|

]
− H(X | Y, Z,R)

≤ E
h←Hn

x1←XA
1

[
log |h−1(y)|

]
+ H(Y | Z)− n+

1

q(n)

=
1

q(n)
,

where the first inequality follows by Equation (1) and the second follows since

E
h←Hn
y←Y

[
log |h−1(y)|

]
+ H(Y | Z) = E

h←Hn
y←Y

[
log |h−1(y)|+ HY (y)

]
= E

h←Hn
y←Y

[
log

|h−1(y)|
Pr[Y = y]

]

≤ log E
h←Hn
y←Y

[
|h−1(y)|

Pr[Y = y]

]
= n,

where the inequality is by Jensen’s inequality (Proposition 3). Thus, overall

E
h←Hn

x1←XA
1

[
DKL(XA

2 |XA
1 =x1
‖XCol

2 |XCol
1 =x1

)
]
≤ 1

q(n)
=

1

p(n)2
,

as required.
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4.3 From Statistically Hiding Commitments to dCRH– Proof of Theorem 4

Let π = (S,R,V) be a binding and statistically hiding two-message commitment scheme. We show
that there exists a dCRH family H.

To sample a hash function in the family with security parameter n, we use the receiver’s first
message of the protocol. Namely, we set the hash function as h← R(1n). Then, to evaluate h on
input x we first parse x as x = (b, r), where b is a bit, and output a commitment to the bit b using
randomness r, with respect to the receiver message h. That is, we set

h(x) = S(h, b; r).

Since π is efficient, then sampling and evaluating h are polynomial-time procedures. This
concludes the definition of our family H of hash functions. (Note that the functions in the family
are not necessarily compressing.)

We next argue security. Suppose toward contradiction that H is not a dCRH according to
Definition 7. Then, for any δ(n) = n−O(1) there exists an adversary A, such that

∆ ((h,A(1n, h)), (h,Col(h))) ≤ δ, (2)

for infinitely many n’s. From hereon, we fix δ to be any function such that n−O(1) < δ < 1
2−n

−O(1).
We show how to use A to break the binding property of the commitment scheme. Our cheating

receiver R∗ is defined as follows: On input h, R∗ runs A(h) to get x and x′, interprets x = (b, r)
and x′ = (b′, r′) and outputs b and b′ along with their openings r and r′, respectively. Our goal is
to show that x = (b, r) and x′ = (b′, r′) are two valid distinct openings to the commitment scheme.

By Equation (2), it suffices to analyze the success probability when the pair (x, x′) is sampled
according to the distribution Colh, and show that it is at least 1/2 − negl(n). From the definition
of Colh, we have that h(x) = h(x′) and thus S(h, b; r) = S(h, b′; r′) := y. In other words, the
second message of the protocol for b with randomness r and b′ with randomness r′ are the same,
and thus both pass as valid openings in the reveal stage of the protocol: V(h, y, b, r) = 1 and
V(h, y, b′, r′) = 1.

We are left to show that these are two distinct openings for the commitment, namely, b 6= b′.
To show this, we use the statistically hiding property of the commitment scheme. The following
claim concludes the proof.

Claim 1. Fix any h. Then for ((b, r), (b′, r′))← Col(h) it holds that Pr[b 6= b′] ≥ 1/2− negl(n) .

Proof. Let B be the uniform distribution on bits and R the uniform distribution on commitment
randomness. For every commitment c, let Bc be the distribution on bits given by sampling (b, r)←
(B,R) conditioned on S(h, b; r) = c. Let C be the distribution on random commitments to a
random bit.

By the statistical hiding property of the commitment scheme,

∆((S(h,B,R), B), (S(h,B′, R), B)) ≤ ε ,

where B′ is an independent copy of B, and ε = negl(n) is a negligible function. Furthermore,

∆((S(h,B,R), B), (S(h,B′, R), B)) = ∆((C,BC), (C,B)) = E
c←C

[∆(Bc, B)] .
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By Markov’s inequality, it holds that

Pr
c←C

[
∆(Bc, B) ≥

√
ε
]
≤
√
ε .

To conclude the proof note that

Pr
[
b = b′ : (b, r), (b′, r′)← Colh

]
= Pr

b = b′ :
(b, r)← (B,R)
c = S(h, b; r)
b′ ← Bc

 ≤

Pr

b = b′ :

(b, r)← (B,R)
c = S(h, b; r)
b′ ← Bc
∆(Bc, B) ≤

√
ε

+ Pr
c←C

[
∆(Bc, B) ≥

√
ε
]
≤

(
1

2
+
√
ε

)
+
√
ε =

1

2
+ negl(n) .

Overall, the success probability of A is at least 1/2− negl(n)− δ ≥ n−O(1).

Using string commitments. The above proof constructs dCRH from statistically hiding bit
commitment schemes. For schemes that support commitments to strings, following the above proof
gives a stronger notion of dCRH, where the adversary’s output distribution is (1−negl(n))-far from
a random collision distribution.

Technically, the change in the proof is to interpret b in x = (b, r) as a string of length n,
rather than as a single bit. The proof remains the same except that the probability that b = b′

is (negligibly close to) 2−n instead of 1/2. Thus, overall the success probability of A is at least
1− negl(n)− δ. To ensure a polynomial success probability we can allow any δ = 1− n−O(1).

5 From SZK-Hardness to Statistically Hiding Commitments

In this section, we give a direct construction of a constant-round statistically hiding commitment
from average-case hardness in SZK. This gives an alternative proof to Corollary 1.

5.1 Hard on Average Promise Problems

Definition 15. A promise problem (ΠY ,ΠN ) consists of two disjoint sets of yes instances ΠY and
no instances ΠN .

Definition 16. A promise problem (ΠY ,ΠN ) is hard on average if there exists a probabilistic
polynomial-time sampler Π with support ΠY ∪ ΠN , such that for any probabilistic polynomial-time
decider D, there exists a negligible function negl(n), such that

Pr
r←{0,1}n

[
x ∈ ΠD(x) | x← Π(r)

]
≤ 1

2
+ negl(n) .
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5.2 Instance-Dependent Commitments

Definition 17 ([OV08]). An instance-dependent commitment scheme IDC for a promise problem
(ΠY ,ΠN ) is a commitment scheme where all algorithms get as auxiliary input an instance x ∈
{0, 1}∗. The induced family of schemes {IDCx}x∈{0,1}∗ is

• statistically binding when x ∈ ΠN ,

• statistically hiding when x ∈ ΠY .

Theorem 6 ([OV08]). Any promise problem (ΠY ,ΠN ) ∈ SZK has a constant-round instance-
dependent commitment.

5.3 Witness-Indistinguishable Proofs

Definition 18. A proof system WI for an NP relation R is witness indistinguishable if for any
x,w0, w1 such that (x,w0), (x,w1) ∈ R, the verifier’s view given a proof using w0 is computationally
indistinguishable from its view given a proof using w1.

Constant-round WI proofs systems are known from any constant-round statistically-binding
commitments [GMW87]. Statistically-binding commitments can be constructed from one-way func-
tions [Nao91], and thus can also be obtained from average-case hardness in SZK [OW93].

Theorem 7 ([GMW87, Nao91, OW93]). Assuming hard-on-average problems in SZK, there exist
constant-round witness-indistinguishable proof systems.

5.4 The Commitment Protocol

Here, we give the details of our protocol. Our protocol uses the following ingredients and notation:

• A WI proof for NP.

• A hard-on average SZK problem (ΠY ,ΠN ) with sampler Π.

• An instance-dependent commitment scheme IDC for Π.

We describe the commitment scheme in Figure 1.

5.5 Analysis

Proposition 4. Protocol 1 is computationally binding.

Proof. Let S∗ be any probabilistic polynomial-time sender that breaks binding in Protocol 1 with
probability ε. We use S∗ to construct a probabilistic polynomial-time decider D for the SZK
problem Π with advantage ε/4n− negl(n).

Given an instance x← Π, the decider D proceeds as follows:

• It samples at random i∗ ∈ [n] and b∗ ∈ {0, 1}.

• It executes the protocol (S∗,R) with the following exceptions:

– The instance xi∗,b∗ , generated by R, is replaced with the instance x, given to D as input.
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Protocol 1

Sender input: a bit m ∈ {0, 1}.
Common input: security parameter 1n.

Coin tossing into the well

• R samples 2n independent random strings ρi,b ← {0, 1}n, for i ∈ [n], b ∈ {0, 1}.

• The parties then execute (in parallel) 2n statistically-binding commitment protocols SBC
in which R commits to each of the strings ρi,b. We denote the transcript of each such
commitment by Ci,b.

• S samples 2n independent random strings σi,b ← {0, 1}n, and sends them to R.

• R sets ri,b = ρi,b ⊕ σi,b.

Generating hard instances

• R generates 2n instances xi,b ← Π(ri,b), using the strings ri,b as randomness, and sends
the instances to S.

• The parties then execute a WI protocol in which R proves to S that there exists a
b ∈ {0, 1} such that for all i ∈ [n], xi,b was generated consistently. That is, there exist
strings {ρi,b}i∈[n] that are consistent with the receiver’s commitments {Ci,b}i∈[n], and
xi,b = Π(ρi,b ⊕ σi,b).
As the witness, R uses b = 0 and the strings {ρi,0}i∈[n] sampled earlier in the protocol.

Instance-binding commitment

• The sender samples 2n random bits mi,b subject to m =
⊕

i,bmi,b.

• The parties then execute (in parallel) 2n instance-dependent commitment protocols
IDCxi,b in which S commits to each bit mi,b using the instance xi,b.

Figure 1: A constant round statistically hiding commitment from SZK hardness.

– In the WI protocol, as the witness we use 1⊕ b∗ and the strings {ρi,1⊕b∗}i∈[n] (instead
of 0 and the strings {ρi,0}i∈[n].

• Then, at the opening phase, if S∗ equivocally opens the (i∗, b∗)-th instance-dependent commit-
ment, D declares that x ∈ ΠY . Otherwise, it declares that x ∈ Πβ for a random β ∈ {Y,N}.

Analyzing D’s advantage. Denote by E the event that in the above experiment S∗ equivocally
opens the (i∗, b∗)-th instance-dependent commitment. We first observe that the advantage of D in
deciding Π is at least as large as the probability that E occurs.
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Claim 3. Pr
[
x ∈ ΠD(x)

]
≥ 1+Pr[E]

2 − negl(n).

Proof. By the definition of D,

Pr
[
x ∈ ΠD(x) | E

]
= Pr[x ∈ ΠY | E] = 1−Pr[x ∈ ΠN | E] ≥ 1− Pr[E | x ∈ ΠN ]

Pr[E]
,

Pr
[
x ∈ ΠD(x) | E

]
=

1

2
.

Furthermore, if x ∈ ΠN (namely, it is a no instance), then IDCx is binding, and thus

Pr[E | x ∈ ΠN ] = negl(n) .

Claim 3 now follows by the law of total probability.

From hereon, we focus on showing that E occurs with high probability.

Claim 4. Pr[E] ≥ ε
2n − negl(n).

Proof. To prove the claim, we consider hybrid experiments H0, . . . ,H4, and show that that the view
of the sender S∗ changes in a computationally indistinguishable manner throughout the hybrids.
We then bound the probability that E occurs in the last hybrid experiment.

H0: In this experiment, we consider an execution of D(x) as specified above.

H1: Here x is not sampled ahead of time, but rather first the value σi∗,b∗ is obtained from S∗, then
a random value ρ′ ← {0, 1}n is sampled, and x is sampled using randomness ri∗,b∗ = σi∗,b∗⊕ρ′.
Since ρ′ is sampled independently of the rest of the experiment, the sender’s view in H1 is
identically distributed to its view in H0.

H2: Here the (i∗, b∗)-th commitment to ρi∗,b∗ is replaced with a commitment to ρ′. By the (com-
putational) hiding of the commitment SBC, the sender’s view in H2 is computationally in-
distinguishable from its view in H1.

H3: Here, in the WI protocol, instead of using as the witness 1 ⊕ b∗ and the strings {ρi,1⊕b∗}i,
we use 0 and the strings {ρi,0}i. By the (computational) witness-indistinguishability of the
protocol, the sender’s view in H3 is computationally indistinguishable from its view in H2.

H4: In this experiment, we consider a standard execution of the protocol between S∗ and R (with-
out any exceptions). The sender’s view in this hybrid is identical to its view in H3 (by
renaming ρ′ = ρi∗,b∗ and x = xi∗,b∗).

It is left to bound from below the probability that E occurs in H4. That is, when we consider a
standard execution of (S∗,R) and sample (i∗, b∗) independently at random.

Indeed, note that since the plaintext bit m is uniquely determined by the bits {mi,b}i,b. When-
ever S∗ equivocally opens the commitment to two distinct bits, there exists (at least one) (i, b)
such that S∗ equivocally opens the (i, b)-th instance-dependent commitment. Since in a standard
execution S∗ equivocally opens the commitment with probability at least ε, and (i∗, b∗) is sampled
independently, E occurs in this experiment with probability at least ε

2n .
Claim 4 follows.
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This completes the proof that the scheme is binding.

Proposition 5. Protocol 1 is statistically hiding.

Proof. Let R∗ be any (computationally unbounded) receiver. We show that the view of R∗ given a
commitment to m = 0 is statistically indistinguishable from its view given a commitment to m = 1.

For this purpose, consider the view of the receiver R∗ after the coin tossing and instance-
generation phase (and before the instance-dependent commitment phase). We shall refer to this as
the preamble view. We say that the preamble view is admissible, if either of the following occurs:

• Let {xi,b}i,b be the instances sent by R∗. Then there exists i∗, b∗ such that xi∗,b∗ ∈ ΠY .

• The sender S rejects the WI proof that {xi,b}i,b were properly generated.

To complete the proof, we show that the preamble view is admissible with overwhelming probability,
and that conditioned on any admissible preamble view, the view ofR∗ given a commitment to m = 0
is statistically indistinguishable from its view given a commitment to m = 1. Since the preamble
view is completely independent of m, the above two conditions are sufficient to establish statistical
indistinguishability of the total views.

Claim 5. The probability that the preamble view is not admissible is negligible.

Proof. Let A be the event that theWI proof is accepted and let Y be the event that for some (i, b),
xi,b is a yes instance. To show that the preamble view is not admissible with negligible probability,
we would like to prove that

Pr
[
A ∧ Y

]
≤ negl(n) .

Let T be the event that the statement proven by R∗ in the WI protocol is true. Namely, there
exists b ∈ {0, 1} such that all {xi,b}i are generated consistently with the coin-tossing phase (and in
particular where the coin-tossing phase consists of valid commitments {Ci,b}i).

First, note that by the soundness of the WI system, the probability that the preamble is
admissible, and in particular the proof is accepted, when the statement is false, is negligible:

Pr
[
A ∧ T

]
≤ negl(n) .

We now show:
Pr
[
Y ∧ T

]
≤ negl(n) .

For this purpose, fix any SBC commitments {Ci,b}i,b. Let F = F [{Ci,b}i,b] be the event, over the
sender randomness {σi,b}i,b, that there exists β ∈ {0, 1} such that {Ci,β}i are valid commitments
to strings {ρi,β}i and for all i, Π(ρi,β ⊕ σi,β) = xi,β ∈ ΠN . We show

Pr[F ] ≤ 2−Ω(n) .

This is sufficient since
Pr
[
Y ∧ T

]
≤ max

C1,0...Cn,0

C1,1...Cn,1

Pr[F ] ≤ 2−Ω(n) .

To bound the probability that F occurs, fix any β and commitments {Ci,β}i to strings {ρi,β}i.
Then the strings ρi,β ⊕ σi,β are distributed uniformly and independently at random. Since Π ∈ ΠY

with probability at least 0.49, and taking a union bound over both β ∈ {0, 1}, the bound follows.
This concludes the proof of Claim 5.
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Claim 6. Fix any admissible preamble view V . Then, conditioned on V the view of R∗ when given
a commitment to m = 0 is statistically indistinguishable from its view when given a commitment
to m = 1.

Proof. If V is such that the WI proof is rejected then S aborts and the view of R∗ remains
independent of m. Thus, from hereon, we assume that the instances corresponding to V include an
instance xi∗,b∗ ∈ ΠY . In particular, the corresponding instance-dependent commitment IDCxi∗,b∗
is statistically hiding.

It is left to note that in any execution (S,R∗), with either m ∈ {0, 1}, the bits M−i :=
{mi,b}(i,b)6=(i∗,b∗) are distributed uniformly and independently at random. Conditioned on V and
M−i, only the bit

mi∗,b∗ = m
⊕

m′∈M−i

m′

depends on m. By the statistical hiding of IDCxi∗,b∗ a commitment to 0
⊕

m′∈M−i
m′ is statistically

indistinguishable from a commitment to 1
⊕

m′∈M−i
m′.

This concludes the proof of Claim 6.
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