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Abstract. Off-the-Record (OTR) messaging is a two-party message au-
thentication protocol that also provides plausible deniability: there is no
record that can later convince a third party what messages were actu-
ally sent. To extend OTR to group messaging we need to consider issues
that are not present in the 2-party case. In group OTR (as in two-party
OTR), the sender should be able to authenticate (or sign) his messages
so that group members can verify who sent a message (that is, signatures
should be unforgeable, even by group members). Also as in the two-party
case, we want the off-the-record property: even if some verifiers are cor-
rupt and collude, they should not be able to prove the authenticity of
a message to any outsider. Finally, we need consistency, meaning that a
corrupt sender cannot create confusion in the group as to what he said:
if any group member accepts a signature, then all of them do.
To achieve these properties it is natural to consider Multi-Designated
Verifier Signatures (MDVS), which intuitively seem to target exactly
the properties we require. However, existing literature defines and builds
only limited notions of MDVS, where (a) the off-the-record property (re-
ferred to as source hiding) only holds when all verifiers could conceivably
collude, and (b) the consistency property is not considered.
The contributions of this paper are two-fold: stronger definitions for
MDVS, and new constructions meeting those definitions. We strengthen
source-hiding to support any subset of corrupt verifiers, and give the first
formal definition of consistency.
We give several constructions of our stronger notion of MDVS: one from
generic standard primitives such as pseudorandom functions, pseudoran-
dom generators, key agreement and NIZKs; one from specific instances of
these primitives (for concrete efficiency); and one from functional encryp-
tion. The third construction requires an involved trusted setup step — in-
cluding verification keys derived from a master secret — but this trusted
setup buys us verifier-identity-based signing, for which such trusted setup
is unavoidable. Additionally, in the third construction, the signature size
can be made smaller by assuming a bound on colluding verifiers.
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1 Introduction

Encrypted and authenticated messaging has experienced widespread adoption
in recent years, due to the attractive combination of properties offered by, for
example, the Signal protocol [Mar13]. With so many conversations happening
over the internet, there is a growing need for protocols offering security to con-
versation participants. Encryption can be used to guarantee privacy of message
contents, but authenticating messages while maintaining the properties of an
in person conversation is more involved. There are two properties of in person
conversations related to authenticity that we wish to emulate in the context of
digital conversations:

– Unforgeability, meaning that the receiver should be convinced that the mes-
sage actually came from the sender in question, and

– Off-the-record or deniability, meaning that the receiver cannot later prove to
a third party that the message came from the sender.

Off-the-record (OTR) messaging offers a solution to this in the two-party
case, enabling authentication of messages such that participants can convinc-
ingly deny having made certain statements, or even having taken part in the
conversation at all [BGB04]. The protocol deals with encrypted messages ac-
companied by a message authentication code (MAC) constructed with a shared
key. MACs work well in two-party conversations, because for parties S(ender)
and R(eciever) with a shared secret key, a MAC attests ‘this message comes from
S or R’. MACs provide unforgeability, since a party R receiving a message au-
thenticated with such a MAC knows that if this MAC verifies, the message came
from S. MACs provide off-the-record (deniable) communication as R cannot con-
vince a third party that a message and MAC originally came from S (since R
could have produced it just as easily). More generally, tools that provide unforge-
able, off-the-record two-party communication are known as Designated Verifier
Signatures (DVSs, proposed by [JSI96] and [Cha96]).

When there are multiple recipients, for example in group messaging, the
situation becomes more complicated. DVSs have been extended to the multiparty
setting under the name of Multi-Designated Verifier Signatures (MDVSs) (we
give a number of references in Figure 1). One might hope that these schemes
would work for off-the record group messaging; however, it turns out that existing
MDVS definitions and schemes do not have the properties one would naturally
ask for. In the following section, we give a motivating example illustrating which
properties we should actually ask from an MDVS scheme, and we explain how
existing schemes fall short of providing them.

1.1 A Motivating Example for MDVS

Imagine a government official Sophia who wants to blow the whistle on some cor-
rupt government activity; e.g., perhaps her colleague, Aaron, accepted a bribe.
She wants to send a message describing this corruption to Robert, Rachel and
Rebekah, who are all Reporters at national newspapers.
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Naturally, Sophia wants the Reporters to be convinced that she is the true
sender of the message. Otherwise, they would have no reason to believe — or
print — the story.

Goal 1 (Unforgeability) It is vital that each of the Reporters be able to au-
thenticate that the message came from Sophia.

In order to achieve unforgeability, Sophia produces a signature σ using an
MDVS scheme, and attaches it to her message. (In such a scheme, each sender has
a private signing key and each recipient has a private verification key.) However,
blowing the whistle and reporting on Aaron’s corrupt activity could put Sophia
in danger. If any of Robert, Rachel or Rebekah could use σ demonstrate to Aaron
that Sophia blew the whistle on him, she could lose her position, or face other
grave consequences.

Goal 2 (Source-Hiding / Off-the-Record) It is vital that the Reporters be
unable to prove to an outsider (Aaron) that the message came from Sophia.

One way to guarantee that the Reporters cannot link Sophia to the message
is to require that the Reporters can simulate a signature σ themselves. Then, if
they try to implicate Sophia by showing σ to Aaron, he would have no reason
to believe them; as far as he is concerned, the Reporters could have produced σ
to try to frame Sophia.

All previous constructions only support off-the-record in the limited sense
that all of the Reporters must collaborate in order to produce a simulated sig-
nature.4 However, this is insufficient. Suppose, for instance, that Aaron knows
Rachel was undercover — and thus unreachable — for the entire time between
the bribery taking place, and Robert and Rebekah bringing σ to Aaron. Then he
would conclude that Rachel could not have collaborated in simulating σ, and so
it must be genuine. Even with the off-the-record definition used in prior works,
it is still possible that some subset of the Reporters would be able to impli-
cate Sophia in the eyes of Aaron. We therefore need a stronger off-the-record
defintion.

Contribution 1 (Off-the-record For Any Subset) We give a stronger def-
inition of the off-the-record property, where any subset of Reporters must be able
to simulate a signature. A simulation looks like a genuine signature to an out-
sider, even given the verification keys of the subset that produced it (as well as
a number of other signatures that are guaranteed to be genuine).

Under our stronger definition, no set of Reporters is able to use σ to provably
tie Sophia to the message even if Aaron has side information about communi-
cation amongst the Reporters as well as guaranteed-to-be-genuine signatures.

4 One previous work [Tia12] achieves off-the-record when C consists of a single verifier.
However, in this construction a simulated signature created by a malicious verifier
will look like a real signature for all other designated verifers, violating unforgeability.
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Remark 1. (The Tension Between Off-The-Record and Unforgeability) Note that, if
Rachel did not participate in Robert and Rebekah’s signature simulation (e.g. if she was
undercover at the time), she will later be able to distinguish the simulation from a real
signature produced by Sophia. Otherwise, Robert and Rebekah would have succeeded
in producing a forgery that fools Rachel.

This means that under a sufficiently strong model of attack, we cannot have un-
forgeability and off-the-record at the same time. Namely, suppose Aaron first gets a
signature σ from Robert and Rebekah, while preventing them from communicating
with Rachel. Then he coerces Rachel into giving him her secret verification key. By
the unforgeability property, he can use this key to tell if σ is a simulation. (Note that
Aaron will be able to tell whether Rachel gives him her true verification key, since he
may have other signatures from Sophia that he knows are genuine that he can use to
test it. So, she has no choice but to hand over her real verification key.)

Given this observation, we choose to explore the model where the secret keys of all
coerced/corrupted verifiers (but not honest ones) can be used to simulate a signature,
as this is the strongest model of attack in which both unforgeability and off-the-record
can be achieved. As we shall see, even in this model, achieving both properties requires
highly non-trivial constructions and implies a lower bound on the size of signatures.

Finally, let us fast forward to the moment when Robert, Rachel and Rebekah
receive Sophia’s message. They want to print this high-profile story as soon
as possible, but of course they want to be sure they won’t make themselves
look foolish by printing the story if their colleagues — the other well-respected
Reporters listed as recipients — don’t believe it actually came from Sophia. The
concern here is that Sophia could be dishonest and her actual goal could be
to discredit the Reporters. Hence we need another property — consistency, or
designated verifier transferability.

Goal 3 (Consistency / Designated Verifier Transferability) It is desir-
able that, even if Sophia is malicious, if one of the Reporters can authenticate
that the message came from Sophia, all of them can.

Contribution 2 We provide the first formal definition of consistency.

Now that we have covered the basic storyline, let us consider a few possible
plot-twists. First, what if Aaron is tapping the wires connecting the government
building to the outside world? Then he will see Sophia’s message — together
with her signature σ — as she sends it to the Reporters. In such a situation, we
would want the signature σ not to give Sophia— or the Reporters— away.

Goal 4 (Privacy of Identities) It is desirable that σ shouldn’t reveal Sophia’s
or the Reporters’ identities 5. When only the signer’s — Sophia’s — identity is
hidden, this property is called privacy of signer identity (PSI).

5 Note that privacy of identities is related to — but very different from — off-the-
record. Neither of these definitions is strictly stronger than the other. Privacy of
identities is weaker in that it assumes that none of the Reporters help in identify-
ing Sophia as the sender, while off-the-record makes no such assumptions. However,
privacy of identities is stronger in that it requires that σ alone reveal nothing about
Sophia’s identity to anyone other than the Reporters; off-the-record allows such leak-
age, as long as it is not provable. .
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Next, what if, at the time at which Sophia has the opportunity to send
out her message, she cannot look up Rebekah’s public key securely — perhaps
because Rebekah has not yet set up an account on the secure messaging system
Sophia uses? Then, it would be ideal for Sophia to need nothing other than
Rebekah’s identity (and some global public parameters) in order to include her
as a designated verifier. Rebekah would then be able to get the appropriate
key from a trusted authority such as the International Press Institute6 (having
proved that she is, in fact, Rebekah), and would be able to use that key to verify
Sophia’s signature.

Goal 5 (Verifier-Identity-Based (VIB) Signing) It is desirable that Sophia
should only need the Reporters’ identities, not their public keys, in order to pro-
duce her designated verifier signature.

Contribution 3 We give the first three constructions that achieve unforgeabil-
ity, off-the-record with any-subset simulation, and consistency. One of them ad-
ditionally achieves privacy of identities and verifier-identity-based signing.

The third construction, which additionally achieves privacy of identities and
verifier-identity-based signing, may, at first glance, seem strictly better; however,
the price it pays is two-fold. It uses functional encryption (which requires strong
computational assumptions), and it requires an involved trusted setup in which
a master secret is used to derive verifier keys. Note that such a trusted setup is
clearly necessary in order to achieve verifier-identity-based signing.

In contrast, our first two constructions can be instantiated either in the ran-
dom oracle model, or with a common reference string — in both cases avoiding
the need for a master secret key. They use only standard primitives such as
pseudorandom functions, pseudorandom generators, key agreement and NIZKs.
The first construction uses these primitives in a black-box way; the second con-
struction uses specific instances of these primitives, for concrete efficiency.

In the following subsections, we give an overview of previous work and then
discuss our results in more detail.

1.2 Flavors of Multi-Designated Verifier Signatures

There are many ways to define MDVS and its properties. Figure 1 summarizes
the approaches taken by prior work, compared to our own.

There are several different flavors of verification. In some MDVS schemes,
even a single designated verifier cannot link a signature to the signer; the desig-
nated verifiers need to work together in order to verify a signature. Thus, we have
two notions of verification: local verification and cooperative verification (where
all designated verifiers need to cooperate in order to verify the signature).

Recall that the off-the-record property states that an outsider cannot deter-
mine whether a given signature was created by the signer or simulated by the

6 This trusted authority can also be distributed; perhaps the master secret is secret-
shared across several different institutions, who must collaborate in order to produce
a secret verification key.
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designated verifiers. We have three flavors of such simulateability: one designated
verifier (out of n) can by himself simulate a signature (as done by [Tia12])7, all
designated verifiers need to collude in order to simulate a signature (all other
works on MDVS), or any subset of the designated verifiers can simulate a signa-
ture (this paper). Of course, the simulated signature should remain indistinguish-
able from a real one even in the presence of the secrets held by the simulating
parties.

There is also the standard security property of signature schemes, which is
unforgeability ; no one (except the signer) should be able to construct a signature
that any verifier will accept as a valid signature from that signer. There are
two flavors of unforgeability. The first is weak unforgeability, where designated
verifiers can forge, but others cannot. The second is strong unforgeability, where
a designated verifier can distinguish between real signatures and signatures sim-
ulated by other verifiers; that is, even other designated verifiers cannot fool a
verifier into accepting a simulated signature.8

Schemes PSI Verification Simulation Unforgeability Signature
Size

[JSI96,LV04,LSMP07] No Local All Weak O(1)
[Cho08,Ver08,ZAYS12]

Our work, from standard
primitives

No Local Any subset C Strong O(|D|)

[NSM05,Cho06] Yes All All Weak O(|D|)
[MW08,SHCL08,Cha11] Yes All All Weak O(1)

[SKS06,LV07,Ver08,ZAYS12] Yes Local All Weak O(|D|)
[Tia12] Yes Local One Weak O(1)

Our work, from FE Yes Local Any subset C of
size up to t

Strong O(t)

Fig. 1. Existing MDVS constructions and their properties. Let D be the set of des-
ignated verifiers, and t ≤ |D| be an upper bound on the set of colluding designated
verifiers C ⊆ D.

1.3 Our Contributions

We propose formal definitions of all the relevant security properties of MDVS
in the strongest flavor, including the definition of off-the-record with any-subset
simulation. We also give the first formal (game based) definition of consistency,

7 If only one designated verifier can simulate a signature, it must be distinguishable
from a real signature by other verifiers (by the strong unforgeability property). Two
colluding verifiers would be able to prove to an outsider that a given signature is not
a simulation by showing that it verifiers for both of them. So, any-subset simulation
gives strictly stronger off-the-record guarantees than one-verifier simulation.

8 Note that when all designated verifiers are needed for the simulation, then a des-
ignated verifier will be able to distinguish a simulation from a real signature based
on whether he participated in the simulation of the signature. However, if this is
the only way he can distinguish, then the signature scheme has weak unforgeability,
since the simulated signature is still a valid forgery.

7



where a corrupt signer can collude with some of the designated verifiers to create
an inconsistent signature.

Our FE
MDVS

Our Standard
Tools MDVS

Verifiable
FE

Signatures

Our
PSDVS1

Our
PSDVS2

Our
AVPKE

Non-Interactive
Key Exchange

PRFPRG

Commitments

Paillier DDH

Σ-Protocols

NIZK-PoK

FE

AVPKE

NIZK

PSDVS

DVS

PSI

VIB Signing

MDVS

Fig. 2. Our MDVS constructions and building blocks.

We then give several different constructions of MDVS that achieve these
properties, including local verification, off-the-record with any-subset simulation,
and strong unforgeability. Our constructions, and the tools they require, are
mapped out in Figure 2. In particular, these are the first constructions that
combine any-subset simulation and with strong unforgeability, as described in
Figure 1. We get these results at the expense of signature sizes that are larger
than in some of the earlier constructions. However, this is unavoidable, as shown
in Theorem 1 below.

Theorem 1. Any MDVS with any-subset simulation and strong unforgeability
must have signature size Ω(|D|).

Remark 2. It may seem from the table that our functional encryption based scheme
contradicts the theorem, but this is not the case. It can be instantiated such that
signatures can be simulated by collusions up to a certain maximal size t, and then
signatures will be of size Ω(|C|). However, if we want any subset to be able to simulate,
the signature size is Ω(|D|), in accordance with the theorem.

Proof. Imagine that we give all the verifiers’ keys to a sender and a receiver;
the sender can now encode an arbitrary subset C ⊆ D by letting C construct a
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simulated signature σ on some default message, and sending it to the receiver.
The receiver can infer C from σ: by strong unforgeability, all verifiers’ keys outside
C will reject σ, whereas keys in C will accept, since we require the simulation to
look convincing even given the secret keys in C. It follows that σ must consist of
enough bits to determine C, which is log2(2|D|) = |D|. ut

Why First Ideas Fail

Using MACs Black-box usage of a standard MAC scheme cannot help us com-
bine unforgeability with consistency.9 There are two straightforward ways to use
a standard MAC scheme in this context: sharing a MAC key among the entire
group, and sharing MAC keys pairwise. Sharing a single key does not provide
the desired notion of unforgeability, since any member of the group can forge
messages from any other member. Sharing keys pairwise does not provide the
desired notion of consistency. If recipients R1 and R2 are the chosen recipients
of a message, and R1 receives a message he accepts as coming from S, he cannot
be sure that R2 would also accept that message: If S is corrupt, he could include
a valid MAC for R1 and an invalid MAC for R2.

Using Proofs of Knowledge A standard technique for making designated verifier
signatures for a single verifier is to start from an interactive protocol that proves
knowledge of either the signer’s or the verifier’s secret key, and turn this into a
signature scheme using the Fiat-Shamir paradigm. It may seem natural to try
to build an MDVS from this. However, it turns out to be challenging to achieve
strong unforgeability using this technique; a signature cannot consist of a proof
of knowledge of the signer’s or one of the verifiers’ secret keys, since any verifier
will be able to convince other verifiers to accept a signature that did not come
from the signer. For the same reason, a signature cannot consist of a proof of
knowledge of the signer’s secret key or some subset of the verifiers’ secret keys.

MDVS from Standard Primitives Our first class of MDVS constructions
is based only on standard primitives. With one exception specified below, all
of these constructions can be instantiated in the random oracle model with no
trusted setup. (Without random oracles, we would need to set up a common
reference string.)

The idea is that the signer creates a DVS signature for each verifier individ-
ually, and then proves the consistency of those signatures.10. To support such
proofs, we define a new primitive called Publicly Simulatable Designated Veri-
fier Signatures (PSDVS) in Section 3.1, which is a single-verifier DVS equipped
with extra properties. We then show, in Section 3.2, that a PSDVS together
with a non-interactive zero knowledge proof of knowledge (NIZK-PoK) imply an
MDVS for any number of signers and verifiers. Finally, we give some construc-
tions of PSDVS. Our first PSDVS construction (in Section 3.3) uses only generic

9 Note that our construction from standard primitives does make use of MAC schemes;
however, it does so in a complex, non-black-box way.

10 Simply proving that all of the signatures verify would violate the off-the-record
property; instead, the signer proves that either all of the signatures are real, or they
are all simulated, as described in Section 3
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tools, namely psedudorandom functions, non-interactive key exchange (such as
Diffie-Hellman), and non-interactive zero-knowledge proofs of knowledge. Our
second PSDVS construction (in Section 3.4) aims at better concrete efficiency.
It is based on DDH, strong RSA and Paillier encryption, is secure in the ran-
dom oracle model, and requires a constant number of exponentiations for all
operations. This scheme requires the trusted generation of an RSA modulus so
that the factorization remains unknown. We also sketch a variant that requires
no trusted setup, is secure in the random oracle model, and only requires (a
variant of) the DDH assumption. However, this version requires double discrete
log proofs, and therefore requires a non-constant number of exponentiations.

In order to support one of our constructions in which the signer sends an en-
crypted MAC key, we introduce a new tool we call Authenticated and Verifiable
Encryption (AVPKE), which may be of independent interest. This is a variant of
Paillier encryption with built-in authentication, and as such it is related to the
known primitive “signcryption” [Zhe97]. However, our AVPKE scheme has the
additional property that we can give efficient zero-knowledge proofs involving
the encrypted message, using the algebraic properties of Paillier encryption.

To sign in our PSDVS schemes, the signer and verifiers first must establish
a shared symmetric key k. In some cases they can do this non-interactively,
using their secret and public keys, while in other cases the signer must send an
encrypted key alongside the signature. After this, the signer sends a MAC on
the message under key k; this MAC is based on a pseudorandom function.

MDVS from Functional Encryption. Our last construction is based on
Verifiable Functional Encryption (VFE). It has the advantages of additionally
meeting the privacy of identities and verifier-identity-based signing properties.
Additionally, it can be set up to have smaller signatures if we are willing to make
a stronger assumption on the number of colluding verifiers. Namely, the signature
size is O(t), where t is the size of the largest number of colluding verifiers we
want to tolerate. The downsides are that, with current state of the art, VFE
requires non-standard computational assumptions. We also need a trusted setup
for generating keys; however, this is unavoidable if we wish to achieve verifier-
identity-based signing.

Remark 3. If we are going to put a bound on the size of a collusion, it may seem
we can use bounded collusion FE, which can be realized from standard assumptions
[GVW12,AV19], and then there is no need for our other constructions from standard
primitives. However, this is not true. Bounded collusion FE requires us to fix the bound
on collusion size at key generation time; a bound that may later turn out to be too
small. Additionally, ciphertext sizes in bounded collusion FE depend on the bound;
thus, choosing a large bound to make sure we can handle the application implies a
cost in efficiency. The MDVS signature sizes would depend on some upper bound on
number of corrupt parties in the system, as opposed to on the number of recipients for
the signature in question, which may be orders of magnitude smaller.

In a nutshell, the idea behind the functional encryption based construction
is to do the proof of knowledge of one of the relevant secret keys “inside the
ciphertext”. In a little more detail, the idea is to encrypt a list of t standard
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signatures, where t is the maximal size of collusion we want to protect against
(that is, t ≥ |C|), and the MDVS signature will simply be this ciphertext. To sign,
the signer will generate their own standard signature σS on the message, and
then encrypt a list a signatures consisting of σS followed by t− 1 dummy values.
To verify a signature, a verifier R gets a functional decryption key that will look
at the list of signatures inside the ciphertext and output accept or reject. It will
accept if the list contains a valid signature from S or a valid signature from R.
Now, if a corrupt set of verifiers C wants to simulate a signature, they will all
sign the message and encrypt the list of these signatures. By security of the
encryption scheme, this looks like a real signature, and will indeed verify under
all verification keys belonging to verifiers in C. However, no honest verifier will
accept it as a signature from S, so we have strong unforgeability.

2 Multi-Designated Verifier Signatures

MDVS Algorithms A multi-designated verifier signature (MDVS) scheme is
defined by the following probabilistic polynomial-time algorithms:

Setup(1κ)→ (pp,msk): On input the security parameter κ ∈ N, outputs public
parameters pp and the master secret key msk.

SignKeyGen(pp,msk)→ (spk, ssk): On input the public parameter pp and the
master secret key msk, outputs the public key spk and secret key ssk for a
signer.

VerKeyGen(pp,msk)→ (vpk, vsk): On input the public parameter pp and the
master secret key msk, outputs the public key vpk and secret key vsk for a
verifier.

Sign(pp, sski, {vpkj}j∈D,m)→ σ: On input the public parameters pp, a secret
signing key sski, the public keys of the designated verifiers {vpkj}j∈D, and
a message m, outputs a signature σ.

Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ)→ d: On input the public parameters pp,
a public verification key spki, a secret key vskj of a verifier such that j ∈ D,
the public keys of the designated verifiers {vpkj}j∈D, a message m, and a
signature σ, outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m)→ σ′: On input public parameters pp,
a public verification key spki, the public keys of the designated verifiers
{vpkj}j∈D, the secret keys of the corrupt designated verifiers {vskj}j∈C ,
and a message m, outputs a simulated signature σ′.

The different algorithms take many different inputs, which are not all needed
for all of our constructions. For instance, the constructions based on standard
primitives (Section 3) do not need a master secret key; they allow key pairs for
signers and verifiers to be generated locally. Additionally, some of our construc-
tions do not use the signers’ and verifiers’ public keys in all of the algorithms in
which they appear as inputs above. Thus, to simplify the notation we exclude
these inputs in later sections whenever they are not needed.

MDVS Properties Let σ be a signature from signer i on message m and
designated for verifiers D. We ask for the following (informal) properties:
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Correctness: All verifiers j ∈ D are able to verify an honestly generated sig-
nature σ.

Consistency: If there exists one verifier j ∈ D that accepts the signature σ,
then all other designated verifiers (i.e. all j′ ∈ D \ {j}) also accept the
signature.

Unforgeability: An adversary without knowledge of the secret key sski for
signer i cannot create a signature σ′ that is accepted by any designated
verifier as a signature from signer i.

Off-The-Record: Given a signature σ, any malicious subset of the designated
verifiers C ⊆ D cannot convince any outsider that σ is a signature from signer
i (i.e. the malicious set could have simulated the signature themselves).

(Optionally) Privacy of Identities: Any outsider (without colluding with
any designated verifiers) cannot determine the identity of the signer and/or
the identities of the designated verifiers.

(Optionally) Verifier-Identity-Based Signing: The signer should be able
to produce a signature for a set of designated verifiers without requiring
any information about them apart from their identities. In other words, we
should have vpkj = j for a verifier with identity j.

Throughout our formal definitions we use the following six oracles:

Signer Key Generation Oracle: OSK(i)

1. If a signer key generation query has previously been performed for i,
look up and return the previously generated key.

2. Otherwise, output and store (spki, sski)← SignKeyGen(pp,msk).

Verifier Key Generation Oracle: OV K(j)

1. If a verifier key generation query has previously been performed for j,
look up and return the previously generated key.

2. Otherwise, output and store (vpkj , vskj)← VerKeyGen(pp,msk).

Public Signer Key Generation Oracle: OSPK(i)

1. (spki, sski)← OSK(i).

2. Output spki.

Public Verifier Key Generation Oracle: OV PK(j)

1. (vpkj , vskj)← OV K(j).

2. Output vpkj .

Signing Oracle: OS(i,D,m)

1. (spki, sski)← OSK(i).

2. For all j ∈ D: vpkj ← OV PK(j).

3. Output σ ← Sign(pp, sski, {vpkj}j∈D,m).

Verification Oracle: OV (i, j,D,m, σ)

1. spki ← OSPK(i).

2. (vpkj , vskj)← OV K(j).

3. Output d← Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ).

12



Definition 1 (Correctness). Let κ ∈ N be the security parameter, and let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme.
MDVS is correct if for all signer identities i, messages m, verifier identity sets
D and j ∈ D, it holds that

Pr
[
Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ) 6= 1

]
= 0,

where the inputs to Verify are generated as follows:

– (pp,msk)← Setup(1κ);
– (spki, sski)← SignKeyGen(pp,msk, i);
– (vpkj , vskj)← VerKeyGen(pp,msk, j) for j ∈ D;
– σ ← Sign(pp, sski, {vpkj}j∈D,m).

In Definition 1, we require that all the designated verifiers can verify the
signature, without considering what happens for parties that are not designated
verifiers (i.e. parties who should not be able to verify the signature). Parties that
are not designated verifiers are accounted for by the off-the-record property.

Definition 2 (Consistency). Let κ ∈ N be the security parameter, and let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme.
Consider the following game between a challenger and an adversary A:

GameconMDVS,A(κ)

1. (pp,msk)← Setup(1κ)

2. (m∗, i∗,D∗, σ∗)← AOSK,OVK,OSPK,OV PK,OV (pp)

We say that A wins the game if there exist verifiers j0, j1 ∈ D∗ such that:

Verify(pp, spki∗ , vskj0 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 0,

Verify(pp, spki∗ , vskj1 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 1,

where all keys are the honestly generated outputs of the key generation oracles,
and OV K is never queried on j0 or j1.
MDVS is consistent if, for all PPT adversaries A,

advconMDVS,A(κ) = Pr
[
A wins GameconMDVS,A(κ)

]
≤ negl(κ).

Definition 2 states that even a valid signer (i.e. someone who knows a secret
signing key) cannot create an inconsistent signature that will be accepted by
some designated verifiers and rejected by others. By the correctness property, an
honestly generated signature is accepted by all designated verifiers. By design,
corrupt designated verifiers can construct an inconsistent signature, since some
verifiers will accept it (i.e. those verifiers that created it), while the remaining
honest designated verifiers will reject the simulated signature. Thus, we need to
ask for j 6= j0, j1 for all queries j to the oracle OV K .

Definition 3 (Existential Unforgeability). Let κ ∈ N be the security pa-
rameter, and let MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be
an MDVS scheme. Consider the following game between a challenger and an
adversary A:
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GameeufMDVS,A(κ)

1. (pp,msk)← Setup(1κ)

2. (m∗, i∗,D∗, σ∗)← AOSK,OVK,OSPK,OV PK,OS (pp)

We say that A wins the game if we have all of the following:

– for all queries i to oracle OSK , it holds that i∗ 6= i;
– for all queries (i,D,m) to oracle OS that result in signature σ, it holds that

(i∗,D∗,m∗) 6= (i,D,m);
– there exists a verifier j′ ∈ D∗ such that for all queries j to oracle OV K , it

holds that j′ 6= j and

Verify(pp, spki∗ , vskj′ , {vpkj′′}j′′∈D∗ ,m∗, σ∗) = 1,

where all keys are honestly generated outputs of the key generation oracles.

MDVS is existentially unforgeable if, for all PPT adversaries A,

adveufMDVS,A(κ) = Pr
[
A wins GameeufMDVS,A(κ)

]
≤ negl(κ).

Definition 3 states that an adversary cannot create a signature that any
honest verifier will accept as coming from a signer whose secret signing key
the adversary does not know. The adversary will always get the public keys
of the involved parties, i.e. signer with identity i∗ and the designated verifiers
D, through the key generation oracles. He is also allowed to obtain the secret
keys of every party except the signer i∗ and at least one designated verifier.
The reason why we need at least one honest verifier is that corrupt verifiers
can create a simulated signature that will look like a real signature with respect
to their own verifier secret keys. However, this simulation will be rejected by
any honest designated verifier, i.e. the simulation will be a valid forgery for the
corrupt verifiers, but not for the honest verifiers.

Definition 4 (Off-The-Record). Let κ ∈ N be the security parameter, let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme,
and let t be an upper bound on the number of verifiers an adversary A can
corrupt. Consider the following game between a challenger and an adversary A,
where all keys are honestly generated outputs of the key generation oracles:

GameotrMDVS,Sim,A(κ)

1. (pp,msk)← Setup(1κ)

2. (i∗,D∗,m∗, C∗)← AOSK,OVK,OSPK,OV PK,OS,OV (pp)
3. b← {0, 1}
4. σ0 ← Sign(pp, sski∗ , {vpkj}j∈D∗ ,m

∗)

5. σ1 ← Sim(pp, spki∗ , {vpkj}j∈D∗ , {vskj}j∈C∗ ,m
∗)

6. b′ ← AOSK,OVK,OSPK,OV PK,OS,OV (σb)

We say that A wins the game if b′ = b, and all of the following hold:
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– |C∗| ≤ t and C∗ ⊆ D∗;
– for all queries i to oracle OSK it holds that i∗ 6= i;
– for all queries j to oracle OV K it holds that j /∈ D∗\C∗;
– for all queries (i, j,D,m, σ) to OV it holds that σb 6= σ.

We say that an MDVS scheme is t-off-the-record if, for all PPT adversaries A,

advotrMDVS,Sim,A(κ) = Pr
[
A wins GameotrMDVS,Sim,A(κ)

]
− 1

2
≤ negl(κ).

If a scheme supports t = |D|, we say that it is off-the-record.

Definition 4 states that any adversary that corrupts a subset (of size t) of
the designated verifiers C∗ cannot determine whether the received signature was
created by real signer i∗ or simulated by the corrupt verifiers C∗. The adversary
is not allowed to see the secret keys for the designated verifiers that are in D∗\C∗.
If the adversary was allowed to get secret keys of additional parties in D∗ (which
are not in C∗), then he would be able to distinguish trivially, since any honest
designated verifiers (i.e. any j ∈ D∗\C∗) can distinguish simulated signatures
from real signatures (from the unforgeability property).

Definition 5 (Privacy of Identities). Let κ ∈ N be the security parameter,
and let MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS
scheme. Consider the following game between a challenger and an adversary A,
where all keys are the honestly generated outputs of the key generation oracles:

GamepriMDVS,A(κ)

1. (pp,msk)← Setup(1κ)

2. (m∗, i0, i1,D0,D1)← AOSK,OVK,OSPK,OV PK,OS,OV (pp)
3. b← {0, 1}
4. σ∗ ← Sign(pp, sskib , {vpkj}j∈Db ,m

∗)

5. b′ ← AOSK,OVK,OSPK,OV PK,OS,OV (σ∗)

We say that A wins the game if b = b′, and all of the following hold:

– |D0| = |D1|;
– for all queries i to OSK , it holds that i /∈ {i0, i1};
– for all gueries j to OV K , it holds that j /∈ D0 ∪ D1;
– for all queries (i, j,D,m, σ) to OV , it holds that σ∗ 6= σ.

MDVS has privacy of identities if, for all PPT adversaries A,

advpriMDVS,A(κ) = Pr
[
A wins GamepriMDVS,A(κ)

]
− 1

2
≤ negl(κ).

We say that MDVS has additional properties as follows:

– privacy of the signer’s identity (PSI) if we make the restriction that D0 = D1;
– privacy of the designated verifiers’ identities (PVI) if we make the restriction

that i0 = i1.
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Definition 5 states that an adversary cannot distinguish between signatures
from two different signers (PSI) if he does not know the secret key of any of
the signers or designated verifiers (as designated verifiers are allowed to identify
the signer). Furthermore, it should not help him to see other signatures that he
knows are from the signers in question.

In addition, if we vary the verifier sets (D0 6= D1), then the MDVS scheme has
privacy of designated verifier’s identities (PVI), which means that any outsider
without knowledge of any secret keys cannot distinguish between signatures
meant for different verifiers.

Definition 6 (Verifier-Identity-Based Signing). We say that an MDVS
scheme has verifier-identity-based signing if for honestly generated verifier keys
(vskj , vpkj) for verifier with identity j, we have vpkj = j.

Note that, in order to achieve verifier-identity-based signing, verifier key gen-
eration must require a master secret key msk. Otherwise, any outsider would be
able to generate a verification key for verifier j, and use it to verify signatures
meant only for that verifier.

Relation to Previous Definitions Our definition of MDVS is consistent with pre-
vious work in this area, but with some differences. Our MDVS syntax closely
follows the one introduced by [LV04], but we allow for a master secret key in the
case where the keys are generated by a trusted party (like in our construction
based on functional encryption). Our security definitions are adapted from those
in [LV04,ZAYS12] to capture the flexibility introduced by allowing any subset
of designated verifiers to simulate a signature, thus providing better deniabil-
ity properties. Finally, we formalize consistency as an additional and desirable
requirement.

3 Standard Primitive-Based MDVS Constructions

In this section we show how to create an MDVS scheme that uses only standard
primitives, such as key exchange, commitments, pseudorandom functions and
generators, and non-interactive zero knowledge proofs.

On a high level, one way to build an MDVS is for the signer to use a sepa-
rate DVS with each verifier; the MDVS signature would then consist of a vector
of individual DVS signatures. This gives us almost everything we need — the
remaining issue is consistency. Each verifier can verify one of the DVS signa-
tures, but is not convinced that all of the other verifiers will come to the same
conclusion.

A solution to this consistency issue is to include as part of the MDVS signa-
ture a zero knowledge proof that all of the DVS signatures verify. However, this
introduces a new issue with off-the-record. Now, a colluding set of verifiers will
not be able to simulate a signature unless all of the verifiers collude. In order to
produce such a convincing zero knowledge proof as part of the signature, they
would need to forge signatures for the other verifiers in the underlying DVS
scheme, which they should not be able to do.
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So, instead of using a zero knowledge proof of knowledge that all of the DVS
signatures verify, we use a proof that either all of the DVS signatures verify, or
they are all simulated. Then, a corrupt set of verifiers can simulate all of the
underlying DVS signatures — with the caveat that the signatures they simulate
for themselves should be convincing simulations even in the presence of their
secret keys — and, instead of proving that all of the signatures verify, they
prove that all of the signatures are simulations.

In order to support such proofs, in Section 3.1 we introduce a new primitive
called a Provably Simulatable DVS (PSDVS). Then, in Section 3.2 we show how
to compose PSDVS instances into an MDVS. In Section 3.3 we build a PSDVS
out of generic standard primitives. In Section 3.4 we build a more efficient PSDVS
out of concrete instantiations of those primitives.

3.1 New Primitive: Provably Simulatable Designated-Verifier
Signatures (PSDVS)

Designated Verifier Signatures (DVS) have a simulation algorithm Sim which
is used to satisfy the off-the-record property (the single-verifier equivalent of
Definition 4). Given the signer’s public key, the verifier’s secret key and a message
m, Sim should return a signature which is indistinguishable from a real signature.
A Provably Simulatable DVS (PSDVS), in addition to correctness and existential
unforgeability, must have two notions of transcript simulation: public simulation
and verifier simulation. Furthermore, for each of these, it should be possible to
produce a zero knowledge proof that the signature produced is a simulation.
Additionally, it should be possible to similarly prove that a real signature is, in
fact, real. This makes a PSDVS well suited for use in an MDVS which uses a
zero knowledge proof of knowledge to enforce consistency.11

More formally, a PSDVS consists of the standard DVS algorithms Setup,
SignKeyGen,VerKeyGen,Sign,Verify, as well as five additional algorithms:
RealSigVal to validate real signatures, and PubSigSim, PubSigVal, VerSigSim and
VerSigVal to simulate signatures and to validate such simulations.

Definition 7. A PSDVS must satisfy the standard notions of correctness and
existential unforgeability. Additionally, it should satisfy PubSigSim indstinguisha-
bility (Definition 8), PubSigSim correctness (Definition 9), PubSigSim sound-
ness (Definition 10), VerSigSim indstinguishability (Definition 11), VerSigSim
correctness (Definition 12), VerSigSim soundness (Definition 13), provable sign-
ing correctness (Definition 14), and provable signing soundness (Definition 15).

Provable Public Simulation As in PSI (Definition 5), anyone should be able
to produce a signature that is indistinguishable from a real signature. Addi-
tionally, the party simulating the signature should be able to produce a proof
that this is not a real signature. This proof will be incorporated into the MDVS
proof of consistency; the colluding verifiers, when producing a simulation, need
to prove that all underlying PSDVS signatures are real, or that they are all fake.

11 While these additional properties allow the composition of PSDVS into an MDVS,
they are not useful when PSDVS is used on its own.

17



In other words, we require two additional algorithms, as follows:

1. PubSigSim(pp, spk, vpk,m)→ (σ, π)
2. PubSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

The colluding verifiers will produce a public simulation in the underlying
PSDVS for verifiers outside their coalition, and use PubSigSim to prove that this
simulation is not a real signature. π will not be explicitly included in the proof
of “the underlying PSDVS signatures are all real or all fake,” of course, as it
would give away the fact that all underlying signatures are fake, as opposed to
all being real; rather, it will be wrapped in a larger zero knowledge proof.

Definition 8 (PubSigSim Indistinguishability). We say that the PSDVS
has PubSigSim Indistinguishability if PubSigSim produces a signature σ that is
indistinguishable from real. More formally, an adversary should not be able to
win the following game with probability non-negligibly more than half:

GamePubSigSim-Ind
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)

4. m∗ ← AOS,OV (spk, vpk)
5. b← {0, 1}
6. σ0 ← Sign(pp, ssk, vpk,m∗)
7. (σ1, π)← PubSigSim(pp, spk, vpk,m∗)

8. b′ ← AOS,OV (pp, spk, vpk,m∗, σb)

We say that A wins the PubSigSim-Ind game if b = b′ and for all queries
(m,σ) to OV , it holds that (m,σ) 6= (m∗, σb).

Definition 9 (PubSigSim Correctness). We say that the PSDVS has Pub-
SigSim Correctness if for all pp ← Setup(1κ); (spk, ssk) ← SignKeyGen(pp);
(vpk, vsk)← VerKeyGen(pp); m ∈ {0, 1}∗; (σ, π)← PubSigSim(pp, spk, vpk,m);

Pr[PubSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 10 (PubSigSim Soundness). We say that the PSDVS has Pub-
SigSim Soundness if it is hard to construct a signature σ which is accepted by the
verifier algorithm and at the same time can be proven to be a simulated signa-
ture. More formally, an adversary should not be able to win the following game
with non-negligible probability:

GamePubSigSim-Sound
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)
4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

We say that A wins the PubSigSim-Sound game if Verify(pp, vsk,m∗, σ∗) = 1
and PubSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.
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Provable Verifier Simulation As in off-the-record (Definition 4), a verifier
should be able to produce a signature that is indistinguishable from a real signa-
ture, even given its secret key. Additionally, the verifier should be able to produce
a proof that the signature is not a real signature (that is, that the verifier, and
not the signer, produced it). This proof will be incorporated into the MDVS
proof of consistency.

In other words, we require two additional algorithms, as follows:

1. VerSigSim(pp, spk, vpk, vsk,m)→ (σ, π)
2. VerSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

The colluding verifiers will produce a verifier simulation in the underlying
PSDVS for verifiers inside their coalition, and use VerSigSim to prove that this
simulation is not a real signature.

Definition 11 (VerSigSim Indistinguishability). We say that the PSDVS
has VerSigSim Indistinguishability if VerSigSim produces a signature σ that is
indistinguishable from real. More formally, an adversary should not be able to
win the following game with probability non-negligibly more than half:

GameV erSigSim-Ind
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)

4. m∗ ← AOS (pp, spk, vpk, vsk)
5. b←$ {0, 1}
6. σ0 ← Sign(pp, ssk, vpk,m∗)
7. (σ1, π)← VerSigSim(pp, spk, vsk,m∗)

8. b′ ← AOS (pp, spk, vpk, vsk,m∗, σb)

We say that A wins the VerSigSim-Ind game if b = b′.

Definition 12 (VerSigSim Correctness). We say that the PSDVS has Ver-
SigSim Correctness if for all pp ← Setup(1κ), (spk, ssk) ← SignKeyGen(pp),
(vpk, vsk)← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π)← VerSigSim(pp, spk, vpk, vsk,m),

Pr[VerSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 13 (VerSigSim Soundness). We say that the PSDVS has Ver-
SigSim Soundness if the signer is not able to produce σ and π that pass the val-
idation check VerSigVal, i.e. π is a proof that σ was not produced by the signer.
More formally, an adversary should not be able to win the following game with
non-negligible probability:

GameV erSigSim-Sound
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)
4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

A wins the VerSigSim-Sound game if VerSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.
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Provable Signing Lastly, we require a provable variant of signing, so that the
signer is able to produce a proof that a signature is real. In other words, we
require the signing algorithm Sign(pp, spk, ssk, vpk,m) → (σ, π) to output π as
well. We also require one additional validation algorithm, as follows:

RealSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

Definition 14 (Provable Signing Correctness). We say that the PSDVS
has Provable Signing Correctness if ∀pp← Setup(1κ), (spk, ssk)← SignKeyGen
(pp), (vpk, vsk) ← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π) ← Sign(pp, spk, ssk,
vpk,m),

Pr[RealSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 15 (Provable Signing Soundness). We say that the PSDVS has
Provable Signing Soundness if the proof of correctness π produced by Sign does
not verify unless σ verifies. More formally, an adversary should not be able to
win the following game with non-negligible probability:

GameSign-SoundPVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)
4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

We say that A wins the Sign-Sound game if RealSigVal(pp, spk, vpk,m∗, σ∗, π∗) =
1 and Verify(pp, spk, vsk,m∗, σ∗) = 0.

Note that none of these proofs π are parts of the signature. If included in
the signature, such proofs would allow an adversary to distinguish a simulation
from a real signature.

3.2 Standard Primitive-Based MDVS Construction

Given a PSDVS, as defined in Section 3.1, we can build an MDVS. The transfor-
mation is straightforward: the signer uses the PSDVS to sign a message for each
verifier, and proves consistency using a non-interactive zero knowledge proof of
knowledge. The proof of consistency will claim that either all of the PSDVS
signatures verify, or all of them are simulated. Construction 1 describes this
transformation.

Construction 1 Let PSDVS = (Setup, SignKeyGen, VerKeyGen, Sign,Verify,
RealSigVal,PubSigSim,PubSigVal,VerSigSim,VerSigVal) be a provably simulatable
designated verifier signature scheme, and NIZK-PoK = (Setup,Prove,Verify) be
a non-interactive zero knowledge proof of knowledge system and Rcons a relation
that we will define later in the protocol.

Setup(1κ):
1. crs← NIZK-PoK.Setup(1κ,Rcons).
2. PSDVS.pp← PSDVS.Setup(1κ).
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Output (crs,PSDVS.pp) as the public parameters pp.
SignKeyGen(pp): (spki, sski)← PSDVS.SignKeyGen(PSDVS.pp).

Output (spki, sski) as signer i’s public/secret key pair.
VerKeyGen(pp): (vpkj , vskj)← PSDVS.VerKeyGen(PSDVS.pp).

Output (vpkj , vskj) as verifier j’s public/secret key pair.
Sign(pp, sski, {vpkj}j∈D,m):

1. For every verifier j ∈ D, compute a signature and proof of signature
validity as (σj , πj)← PSDVS.Sign(PSDVS.pp, sski, vpkj ,m).

2. Create a proof π of consistency, i.e a proof of knowledge of {πj}j∈D such
that either all signatures are real (as demonstrated by {πj}j∈D), or all
signatures are fake (as could be demonstrated by the proofs produced
by PSDVS.PubSigSim or PSDVS.VerSigSim).
More formally, for this NIZK-PoK we define a relation for a statement u =
(PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D) and the witness w = {πj}j∈D:

Rcons =
{
u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D), w = {πj}j∈D :( ∧

j∈D
PSDVS.RealSigVal(PSDVS.pp, spki, vpkj ,m, σj , πj) = 1

) ∨
( ∧
j∈D

(
PSDVS.VerSigVal(PSDVS.pp, spki, vpkj ,m, σj , πj) = 1 ∨

PSDVS.PubSigVal(PSDVS.pp, spki, vpkj ,m, σj , πj) = 1
))}

(1)

Let π ← NIZK-PoK.Prove(crs, u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D), w =
{πj}j∈D).

3. σ = ({σj}j∈D, π).

Output σ as the signature.
Verify(pp, spki, vskj ,m, σ = ({σj}j∈D, π)):

1. Let dπ ← NIZK-PoK.Verify(crs, u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D), π).
2. Let d← PSDVS.Verify(PSDVS.pp, spki, vskj ,m, σj) ∧ dπ.

Output d as the verification decision.
Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m):

1. For j ∈ D ∩ C: (σj , πj)← VerSigSim(PSDVS.pp, spki, vpkj , vskj ,m).
2. For j ∈ D\C: (σj , πj)← PubSigSim(PSDVS.pp, spki, vpkj ,m).
3. Use these signatures and proofs to produce the NIZK π for relation
Rcons.

4. σ = ({σj}j∈D, π).

Output σ as the signature.

Theorem 2. Assume PSDVS is a secure provably simulatable designated verifier
signature scheme and NIZK-PoK is a secure non-interactive zero knowledge proof
of knowledge system. Then Construction 1 is a correct and secure MDVS scheme
(without privacy of identities (Definition 5)).

21



Proof. Correctness is apparent by inspection. We show consistency, unforgeabil-
ity and off-the-record separately.

Claim. Construction 1 is consistent, as per Definition 2.

Assume that Construction 1 is inconsistent; then there exists an adversary A
that can produce a message m∗ and signature σ∗ = ({σ∗j }j∈D∗ , π∗) such that σ∗

verifies for some, but not all, of the intended recipients D∗. We can then use A to
create another adversary B that can break either the security of the underlying
PSDVS, or the security of the NIZK-PoK.
B receives pp, ssk, spk, vpk regardless of whether it’s playing the PubSigSim-

Sound, VerSigSim-Sound or Sign-Sound games.
It randomly chooses identities to assign the given signer and verifier keys

to; it generates the other signer and verifier keys honestly. It answers signing
oracle queries honestly, since in all these cases it has the signer secret key. It
answers key generation keys honestly as well, unless asked for ssk or the secret
key corresponding to vpk; then, it aborts. However, since at least one signer and
one verifier secret key must remain unqueried by A, the probability of an abort
is not overwhelming. Eventually, it gets D∗ and (m∗, σ∗ = ({σ∗j }j∈D, π∗)) from
A; by assumption, with non-negligible probability, σ∗ is inconsistent.

Assume without loss of generality that j0, j1 ∈ D∗, Verify(pp, vskj0 ,m
∗, σ∗) =

0, and Verify(pp, vskj1 ,m
∗, σ∗) = 1. Assume, also without loss of generality,

that NIZK-PoK.Verify is deterministic; then, the decision dπ regarding the va-
lidity of the zero knowledge proof of knowledge π∗ must be the same for ver-
ifiers Rj0 and Rj1 , and so it must be that dπ = 1. It follows that in order for
Verify(pp, vskj0 ,m

∗, σ∗) = 0 we need PSDVS.Verify(PSDVS.pp, vskj0 ,m
∗, σ∗j0) =

0, and in order for Verify(pp, vskj1 ,m
∗, σ∗) = 1 we need PSDVS.Verify(PSDVS.pp,

vskj1 ,m
∗, σ∗j1) = 1. Then, if dπ = 1, either π∗ violates the soundness of NIZK-PoK,

or one of the following must be true:

1. PSDVS.RealSigVal(PSDVS.pp, spk, vpkj0 ,m
∗, σ∗j0 , πj0) = 1. If this is the case,

then B returns (m∗, σ∗j0 , πj0) (the last of which is extractable from the knowl-
edge soundness property of π∗) as a break of Provable Signing Soundness of
the PSDVS, since we know that PSDVS.Verify(PSDVS.pp, vskj0 ,m

∗, σ∗j0) =
0.

2. PSDVS.VerSigVal(PSDVS.pp, spk, vpkj1 ,m
∗, σ∗j1 , πj1) = 1. If this is the case,

then B returns (m∗, σ∗j1 , πj1) (the last of which is extractable from the knowl-
edge soundness property of π∗) as a break of VerSigSim Soundness, since the
adversary was not given the secret key corresponding to vpk.

3. PSDVS.PubSigVal(PSDVS.pp, spk, vpkj1 ,m
∗, σ∗j1 , πj1) = 1. If this is the case,

then B returns (m∗, σ∗j1 , πj1) (the last of which is extractable from the knowl-
edge soundness property of π∗) as a break of PubSigSim Soundness, since
we know that PSDVS.Verify(PSDVS.pp, vskj1 ,m

∗, σ∗j1) = 1.

Claim. Construction 1 is existentially unforgeable, as per Definition 3.

This holds since any forgery of Construction 1 either includes a forgery of
the underlying PSDVS, or includes a fresh proof of knowledge on a statement

22



for which the adversary does not have a witness, which is impossible by the
knowledge soundness property of our NIZK proof of knowledge.

Claim. Construction 1 is off-the-record, as per Definition 4.

The simulation algorithm Sim, described above, is defined to use public and
verifier simulation to produce the individual PSDVS signatures, and to prove
that all PSDVS signatures are simulations instead of proving that they all verify.

Below we describe a sequence of games; in Game 0, it is impossible for the
adversary to distinguish b = 0 from b = 1, since its view in the two cases are
identically distributed. In each subsequent game, the advantage of the adversary
is at most negligibly greater than in the previous one; in the final game, the
adversary will find itself playing exactly the game described in Definition 4.

Game 0: This gives A a real signature no matter what the value of b is.
A can have no advantage in this game.

Game 1: This game is the same as the previous game, except that if b = 1, the
NIZK-PoK is simulated (and thus does not require the witnesses {πj}j∈D∗).
If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage
than in the previous game, B can use A to break the zero-knowledge property
of the NIZK-PoK.

Game 2.j for j ∈ D∗ ∩ C∗: This game is the same as the previous game, ex-
cept that if b = 1, Rj ’s portion of the signature is replaced with a verifier
simulation; that is, (σj , πj)← VerSigSim(pp, spki∗ , vpkj , vskj ,m

∗).
If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage
than in the previous game, B can use A to break the VerSigSim indistin-
guishability property.
Note that the statement the NIZK-PoK is proving no longer holds; however,
the NIZK-PoK simulator must still produce a simulated NIZK-PoK that is
indistinguishable from a real one, since otherwise the NIZK-PoK simulator
would be useable to distinguish a signature produced by VerSigSim from a
signature produced by Sign.

Game 3.j for j ∈ D∗\C∗: This game is the same as the previous game, except
that if b = 1, Rj ’s portion of the signature is replaced with a public simula-
tion; that is, (σj , πj)← PubSigSim(pp, spki∗ , vpkj ,m

∗).
If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage
than in the previous game, B can use A to break the PubSigSim indistin-
guishability property.

Game 4: This game is the same as the previous game, except that if b = 1, we
replace the simulated π with a real proof; since all the individual signatures
are now simulated, such a valid proof can be computed again. Note that now,
if b = 1, we are executing exactly the simulation procedure Sim described
above, and thus this is exactly the game described in Definition 4.
If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage
than in the previous game, B can use A to break the zero-knowledge property
of the NIZK-PoK.
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3.3 Standard Primitive-Based PSDVS Construction

We can build a PSDVS from a special message authentication code (MAC)
which looks uniformly random without knowledge of the secret MAC key —
such a MAC can be built from any pseudorandom function. A signature on a
message m will be a MAC on (m, t), where t is some random tag. Proving that
the signature is real simply involves proving knowledge of a MAC key that is
consistent with the MAC and some global public commitment to the MAC key.
A public proof that the signature is simulated and does not verify would involve
proving that the MAC was pseudorandomly generated. A verifier’s proof that
the signature is simulated would involve proving that the tag was generated in a
way that only the verifier could use (e.g. from a PRF to which only the verifier
knows the key).

Of course, this is not ideal, since MACs require knowledge of a shared key; in
order to use MACs, we would need to set up shared keys between every possible
pair of signer and verifier. However, we can get around this using non-interactive
key exchange (NIKE). Each signer and verifier publishes a public key, and any
pair of them can agree on a shared secret key by simply using their own secret
key and the other’s public key.

Construction 2 describes this construction in more detail.

Construction 2 Let:

– COMM = (Setup,Commit,Open) be a commitment scheme,
– PRF = (KeyGen,Compute) be a length-preserving pseudorandom function,
– PRG be a length-doubling pseudorandom generator,
– NIZK = (Setup,Prove,Verify) be a non-interactive zero knowledge proof sys-

tem, and
– NIKE = (KeyGen,KeyExtract,KeyMatch) be a non-interactive key exchange

protocol. KeyMatch is an additional algorithm that checks if a public key and
a secret key match. KeyMatch is not typically defined as a part of a NIKE
scheme; however, such an algorithm always exists.

We consider the public parameters for the underlying primitives COMM,PRF,PRG,
NIKE together with the three common reference strings (crs1, crs2, crs3) corre-
sponding to the relations R1, R̃2, R̃3

12 necessary to compute NIZK proofs as
part of the public parameters of the PSDVS. Note that relations denoted R̃ refer
to statements of fake-ness, whereas relations denoted R refer to statements of
real-ness.

Setup(1κ):
1. crsi ← NIZK.Setup(1κ,Ri), i = 1, 2, 3.
2. ck ← COMM.Setup(1κ).

Output ({crs1, crs2, crs3}, ck) as the public parameters pp.
SignKeyGen(pp):

1. (NIKE.pkS,NIKE.skS)← NIKE.KeyGen(1κ).
2. ssk = NIKE.skS.

12 The three relations will be defined later in the protocol description.
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3. spk = NIKE.pkS.
Output ssk as the signer’s secret key and spk as the signer’s public key.

VerKeyGen(pp):
1. (NIKE.pkR,NIKE.skR)← NIKE.KeyGen(1κ).
2. kR ← PRF.KeyGen(1κ). (Informally, this key will be used by the verifier

to simulate signatures using VerSigSim.)
3. Choose randomness (i.e. decommitment value) rR at random.
4. cR = COMM.Commit(ck, kR; rR). (Informally, this commitment will be

used by the verifier to support its proofs of fake-ness.)
5. vsk = (NIKE.skR, kR, rR).
6. vpk = (NIKE.pkR, cR).

Output vsk as the verifier’s secret key and vpk as the verifier’s public key.
Sign(pp, ssk = NIKE.skS, vpk = (NIKE.pkR, cR),m):

The signer computes a shared key with the designated verifier and proceeds
to sign the message m:
1. kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkR). (Informally, this key

will be used as a MAC key.)
2. Choose t at random.
3. σ = (σ1, σ2)← (t,PRFkshared((m, t))).
4. π ← NIZK.Prove(crs1, u, w) where u = ((σ1, σ2),NIKE.pkS,NIKE.pkR,m)

and w = (NIKE.skS, kshared))
We define the relation R1 indexed by NIKE public parameters and PRF
for a statement u and witness w:

R1 = {(u = (σ1, σ2,NIKE.pkS,NIKE.pkR,m), w = (NIKE.skS, kshared)) :

KeyMatch(NIKE.pkS,NIKE.skS) = 1

∧ kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkR)

∧ σ2 = PRFkshared((m,σ1))}

Output σ as the signature, and π as the proof of real-ness.
Verify(pp, spk = NIKE.pkS, vsk = (NIKE.skR, kR, rR),m, σ = (σ1, σ2)):

1. kshared = NIKE.KeyExtract(NIKE.skR,NIKE.pkS). (Informally, this key
will be used as a MAC key.)

2. If PRFkshared((m,σ1)) = σ2, set d = 1. Otherwise, set d = 0.
Output d as the verification decision.

RealSigVal(pp, spk, vpk,m, σ, π):
Output d← NIZK.Verify(crs1, σ, π) as the validation decision.

PubSigSim(pp,m):
1. Choose a PRG seed seed.
2. Choose σ1 and σ2 pseudorandomly by running PRG on seed.
3. σ ← (σ1, σ2).
4. Let π ← NIZK.Prove(crs2, u = σ,w = seed).

We define the relation R̃2 indexed by the PRG for a statement u = (σ =
(σ1, σ2)) and the witnesses w = seed:

R̃2 = {(u = σ;w = seed) : u = PRG(w)} (2)
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Output σ as the simulated signature, and π as the proof of fake-ness.
PubSigVal(pp, spk, vpk,m, σ = (σ1, σ2), π):

Output d← NIZK.Verify(crs2, σ, π) as the validation decision.
VerSigSim(pp, spk = NIKE.pkS, vpk = (NIKE.pkR, cR), vsk = (NIKE.skR, kR, rR),m):

The verifier can fake a signature using its PRF key kR.
1. kshared = NIKE.KeyExtract(NIKE.skR,NIKE.pkS).
2. Choose r at random.
3. t← PRFkR(r).
4. σ ← (t,PRFkshared((m, t))).
5. Let π ← NIZK.Prove(crs3, u = (cR, σ1), w = (kR, rR, r)).

We define the relation R̃3 indexed by the NIKE public parameters and
PRF for statements u and witnesses w:

R̃3 = {(u = (cR, σ1), w = (kR, rR, r)) :

kR = COMM.Open(cR, rR) ∧ σ1 = PRFkR(r)}

Output σ as the simulated signature and π as the proof of fake-ness.
VerSigVal(pp, spk, vpk,m, σ, π):

Output d← NIZK.Verify(crs3, (cR, σ1), π) as the validation decision.

Theorem 3. If the schemes COMM,PRF,PRG,NIZK,NIKE are secure, then Con-
struction 2 is a correct and secure PSDVS scheme as per Definition 7.

Proof. Correctness. It is straightforward to verify that any honestly generated
signature will pass the verification test.

Existential Unforgeability. We can reduce the unforgeability of the PVDVS to
the pseudorandomness of the underlying PRF. Suppose there exists a forger A
having non-negligible advantage in winning the existential unforgeability game
3 for a single signer and a single verifier (see Definition 3). We can use this
forger to build a distinguisher B that is able to break the pseudo-randomness
property of the PRF. B runs A and simulate the signing queries m of A by
picking a random tag t and forwarding the query (m, t) to its evaluation oracle
that outputs either the evaluation PRF(m, t), either a truly random value. In
the first case, the forger A has the same view as in the game 3. Given that A is
able to forge a signature on a fresh message m∗ in the first case, but not in the
second, then this implies that the adversary B can distinguish between the two,
breaking the pseudo-randomness of the PRF.

PubSigSim Indistinguishability (Definition 8). By the security property of
the PRG (indistinguishability from real randomness), the advantage of an adver-

sary A in the game GamePubSigSim-Sound
PVDVS,A (κ) is bounded by the advantage of an

adversary B in distinguishing between PRG and a truly random generator. Note
that we can apply the property only for the first half of the signature, adversary
A should not be able to distinguish between a random t and σ1 generated as
(σ1, σ2)← PRG(seed).

PubSigSim Correctness (Definition 9). By the completeness of the NIZK
scheme, any proof π generated honestly by running the PubSigSim, i.e π ←
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NIZK.Prove(crs2, u = σ,w) will be validated by PubSigVal(pp, spk, vpk,m, σ, π)
that runs NIZK.Verify(crs2, u = σ, π) algorithm.

PubSigSim Soundness (Definition 10). Suppose there is an adversary A that
wins the game of PubSigSim-Sound game with non negligible probability. Then,
from an output (m∗, σ∗, π∗) of A(ssk, spk, vpk) we have from the soundness
of the NIZK, since PubSigVal outputs 1, that there is a value seed such that
σ∗ = (σ∗1 , σ

∗
2) ← PRG(seed) and also σ∗ = (σ∗1 ,PRF(m∗, σ∗1)) from the verifica-

tion check of the signature Verify(pp, spk, vsk,m∗, σ∗) = 1. This implies there
exists a collision PRG(seed) = (σ∗1 ,PRF(m∗, σ∗1)) breaking the pseudorandomness
of the underlying primitives PRG and PRF. In the first case, given a signature
σ∗ = (σ∗1 ,PRF(m∗, σ∗1)) that verifies, A should not be able to find a preim-
age seed∗ for σ∗ with respect to the PRG with advantage significantly better
than for a truly random function, without breaking the pseudorandomness of
the PRG. Otherwise, from computing an output of the pseudorandom generator
PRG(seed) = (σ∗1 , σ

∗
2), A should not be able to find a (fixed prefix) preimage

(t,m∗) of PRF such that t = σ∗1 . This is indeed infeasable without breaking the
pseudorandom property of the PRF.

VerSigSim Indistinguishability (Definition 11). This follows from the pseu-
dorandomness of our PRF. Remark that both a real signature and a verifier-
simulated signature pass the verification test, the only difference is in how the
tag t is generated, truly random, or as t← PRFkR(r).

VerSigSim Correctness (Definition 12). As in the case of PubSigSim correct-
ness, this holds by considering the completeness of the NIZK scheme, since an
honnest proof generated by VerSigSim, will be validated by VerSigVal that simply
runs NIZK.Verify algorithm.

VerSigSim Soundness (Definition 13.) This follows from the properties of
the underlying COMM and NIZK schemes. Consider an adversary A that is able
to win the game of VerSigSim-Sound, meaning that it produces a couple (σ, π)
validated by VerSigVal. Then, if the NIZK scheme is assumed to be sound, the
following should hold: A is able to compute an opening kR of cR, breaking the
hidding of the commitment scheme COMM or A is able to find a preimage r for
PRFkR , i.e σ1 = PRFkR(r) which breaks the pseudorandomness of the PRF.

Provable Signing Correctness (Definition 14). As in the case of PubSigSim
and VerSigSim, this follows by definition of RealSigVal and the completeness of
the NIZK.

Provable Signing Soundness (Definition 15). This holds if we assume sound-
ness of the NIZK proof togheter with NIKE security properties and pseudoran-
domness of the PRF. Assuming that the NIZK is sound, then an adversary win-
ning the game RealSigVal, is able either to break the soundness of the NIKE
scheme or to find a preimage of the PRF. Finding a preimage is infeasible, given
the pseudorandomness property of the PRF.

3.4 DDH and Paillier-Based PSDVS Construction

The goal of this section is to construct a PSDVS scheme based on DDH and
the security of Paillier encryption. The idea in the PSDVS construction is that
the authenticator for a message m will be H(m, t)k in a group G where t is a
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nonce, k is a key known to both parties and H is a hash function modeled as
a random oracle. The construction requires that certain properties of the key
can be proved in zero-knowledge, and we can do this efficiently using standard
Σ-protocols because the key is in the exponent. However, naive use of this idea
would mean that a sender needs to store a key for every verifier he talks to, and
the set-up must generate correlated secret keys for the parties. To get around
this, we will instead let the sender choose k on the fly and send it to the verifier,
encrypted using a new variant of Paillier encryption. In the following subsection
we describe and prove this new encryption scheme, and then we specify the
actual PSDVS construction. Paillier-style encryption comes in handy since its
algebraic properties are useful in making our zero knowledge proofs efficient.

Paillier-based Authenticated and Verifiable Encryption An authenti-
cated and verifiable encryption scheme (AVPKE) involves a sender S and a
receiver R. Such a scheme comes with the following polynomial time algorithms:

Setup(1κ)→ pp: A probabilistic algorithm for setup which outputs public pa-
rameters.

KeyGenS(pp)→ (skS, pkS): A probabilistic sender key generation algorithm.
KeyGenR(pp)→ (skR, pkR): A probabilistic receiver key generation algorithm.
Encpp,skS,pkR(k)→ c: A probabilistic encryption algorithm for message k.
Decpp,skR,pkS(c)→ {k,⊥}: A decryption algorithm that outputs either reject or

a message.

We require, of course, that Decpp,skR,pkS(Encpp,skS,pkR(k)) = k for all messages k.
Intuitively, the idea is that given only the receiver public key pkR and his

own secret key skS, the sender S can encrypt a message k in such a way that on
receiving the ciphertext, R can check that k comes from S, no third party knows
k and finally, the encryption is verifiable in that it allows S to efficiently prove
in zero-knowledge that k satisfies certain properties.

To help understand our concrete construction of an AVPKE scheme, we
recall that standard Paillier encryption of a message k under the public key n
is defined as (n+ 1)kvn mod n2 where v∈R Z∗n. In [DJ03], it was suggested that
first, v can be chosen as ±ĝs for a random s and a ĝ of large order modulo n
– or equivalently, a random number of Jacobi symbol 1 mod n. This is not a
security problem, as the Jacobi symbol of v can be efficiently computed from the
ciphertext anyway. Further, they suggested that v can be chosen similarly as in
El-Gamal encryption, if the sender sends along a random power of ĝ. They also
showed that the resulting encryption scheme is still CPA secure under the same
assumption. In this way all users can share the same modulus, which comes in
very handy in our setting.

We add an authentication mechanism to this encryption scheme and get the
following AVPKE scheme.

Construction 3 Let:

– Ggen be a Group Generator, a probabilistic polynomial time algorithm which
on input 1κ outputs the description of a cyclic group G and a generator g,
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such that the order of G is a random κ-bit RSA modulus n, which is the
product of so-called safe primes. (That is, n = pq where p = 2p′ + 1, q =
2q′ + 1 and p′, q′ are also primes.) Finally, we need the algorithm to output
an element ĝ ∈ Z∗n of order p′q′.

– NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero
knowledge proof system. In this section, we will use Σ-protocols made non-
interactive using the Fiat-Shamir heuristic, so in this case Setup is empty
and there is no common reference string.

Ggen can be constructed using standard techniques. For instance, first gener-
ate n using standard techniques, then repeatedly choose a small random number
r until P = 2rn + 1 is a prime. Let g′ be a generator of Z∗P . Then let G be the
subgroup of Z∗P generated by g = g′2r mod P .13 Finally, to construct the element
ĝ, let u∈R Zn and set ĝ = u2 mod n. Indeed, this is a random square, and since
the subgroup of squares modulo n has only large prime factors in its order (p′

and q′), a random element is a generator with overwhelming probability14.

Setup(1κ): Run Ggen to generate a modulus n and ĝ ∈ Z∗n as explained above.
Output pp = (n, ĝ).

KeyGenS(pp): Pick skS∈R Zn, and set pkS = ĝskS . Output (skS, pkS).

KeyGenR(pp): Pick α1, α2∈R Zn, set skR = (α1, α2), and set pkR = (β1, β2) =
(ĝα1 , ĝα2).

The public key values are statistically indistinguishable from random elements
in the group generated by ĝ since n is a sufficiently good “approximation” to the
order p′q′ of ĝ.

Encpp,skS,pkR(k; r, b1, b2):

1. The randomness should have been picked as follows: r∈R Zn and b1, b2∈R {0, 1}.
2. Set c1 = (−1)b1 ĝr mod n.

3. Set c2 = (n+ 1)k((−1)b2βskS1 βr2 mod n)n mod n2.

4. Let πvalid be a non-interactive zero-knowledge proof of knowledge wherein
given public data (n, ĝ, (c1, c2)), the prover shows knowledge of a witness
w = (k, r, b1, v) such that c1 = (−1)b1 ĝr and c2 = (n + 1)kvn mod n2.
An honest prover can use v = (−1)b2βskS1 βr2 mod n. The factor (−1)b1 is
only in the ciphertext for technical reasons: it allows πvalid to be efficient.

Output c = (c1, c2, πvalid).

Decpp,skR=(α1,α2),pkS
(c = (c1, c2, πvalid)):

1. Check that c1, c2 have Jacobi symbol 1 modulo n, and check πvalid. Output
reject if either check fails.

13 The group G will be more prominently used in the construction of the PSDVS
scheme.

14 This set-up need to keep the factorization of n secret. Hence, to avoid relying on
a trusted party, the parties can use an interactive protocol to generate n securely,
there are several quite efficient examples in the literature.
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2. Let u = pkα1

S cα2
1 mod n and check that (c2u

−n)n mod n2 = ±1. Z∗n2

contains a unique subgroup of order n, generated by n + 1. So here we
are verifying that – up to a sign difference – c2u

−n mod n2 is in the
subgroup generated by n+ 1. If the check fails, output reject.

3. Otherwise, compute k such that (n+ 1)k = ±c2u−n mod n2.15

An AVPKE scheme should allow anyone to make “fake” ciphertexts that
look indistinguishable from real encryptions, given only the system parameters.
Furthermore, the receiver R should be able to use his own secret key skR and
the public key pkS of the sender to make ciphertexts with exactly the same
distribution as real ones. This is indeed true for our scheme:

Fake Encryption: Let r∈R Zn, b, b′∈R {0, 1} and v ∈ Z∗n be a random square.
Then,

Encpp,fake(k; r, b, b′, v) = ((−1)bĝr mod n, (n+ 1)k((−1)b
′
v)n mod n2), πvalid

where πvalid is constructed following the NIZK prover algorithm.
R’s Equivalent Encryption:

Encpp,skR,pkS(k; r, b1, b2) =

((−1)b1 ĝr mod n, (n+ 1)k(−1)b2(pkα1

S ĝrα2 mod n)n mod n2), πvalid

where r∈R Zn, b1, b2∈R {0, 1} and πvalid is constructed following the NIZK
prover algorithm.

In the following, we will sometimes suppress the randomness from the notation
and just write, e.g., Encpp,skS,pkR(k).

By simple inspection of the scheme it can be seen that:

Lemma 1. For all k, Decpp,skR,pkS(Encpp,skS,pkR(k)) = k. Furthermore, encryp-
tion by S and by R returns the same ciphertexts: for all messages k and random-
ness r, b1, b2, we have Encpp,skS,pkR(k; r, b1, b2) = Encpp,skR,pkS(k; r, b1, b2).

Lemma 2. If DDH in 〈ĝ〉 is hard, then (k,Encpp,skS,pkR(k; r, b1, b2)) is computa-
tionally indistinguishable from (k,Encpp,fake(k; r′, b, b′, v)) for any fixed message
k and randomness r, b1, b2, r

′, b, b′, v, as long as the discrete log of β2 to the base
ĝ is unknown.

Proof. This follows immediately from that fact that (ĝr, βr2) is indistinguishable
from (ĝr

′
, v) by assumption.

Definition 16. Consider the following experiment for an AVPKE scheme and
a probabilistic polynomial time adversary A: Run the set-up and key generation
and run AOE ,OD (pp, pkR, pkS). Here, OE takes a message k as input and returns
Encpp,skS,pkR(k), while OD takes a ciphertext and returns the result of decrypting
it under pkS, skR (which will be either reject or a message). A wins if it makes
OD accept a ciphertext that was not obtained from OE. The scheme is authentic
if any PPT A wins with negligible probability.
15 k can be computed using the standard “discrete log” algorithm from Paillier decryp-

tion.
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Lemma 3. If the DDH problem in 〈ĝ〉 is hard, the AVPKE scheme defined above
is authentic.

Proof. Assume for contradiction that we have adversary A who wins the au-
thenticity game with non-negligible probability. We now stepwise transform the
game into an algorithm that will solve the computational Diffie-Hellman prob-
lem in 〈ĝ〉, which will certainly contradict the assumption. Let Game 0 be the

original authenticity game. In Game 1, we replace OE by Ofake
E which on input k

from A returns Encpp,fake(k). At the same time, we replace OD by an alternative
version OaltD that does not use the α2 part of skR, namely instead of computing
u = pkα1

S cα2
1 it extracts r from the proof in the ciphertext and computes instead

u = pkα1

S βr2 which is the same value (up to a sign) and hence leads to an equiv-
alent decryption. In addition, if it gets an encryption Encpp,fake(k) produced by
the fake encryption oracle, it always returns k. Since now the discrete log of β2

base ĝ is not used, we can use our assumption and Lemma 2 to conclude that A’s
winning probability in the new game is essentially the same. In Game 2, we guess
the index j of the first call to OD where A gets an accept for a forged ciphertext,
which we can do with an inverse polynomial probability, since A is poly-time.
If A does not win the game at the j’th call, we declare that it loses. Clearly A
still wins Game 2 with non-negligible probability. In Game 3, we replace OaltD by
OsimD which, up to (but not including) call j, responds to a ciphertext that was

output by Ofake
E with the message that was encrypted and rejects anything else.

Observe that in the event where A wins Game 2, OsimD simulates OaltD perfectly,
so A wins Game 3 with the same probability as Game 2.

Now, observe that we can execute Game 3 up to step j and get A’s ciphertext
for the j’th call without access to the secret keys of S and R. We can therefore
take group elements ĝ, pkS = ĝskS , β1 = ĝα1 as input to the CDH problem (where
the goal is to find ĝskSα1), and execute Game 3 with A on this input. Assume
A wins, and let c∗ be the ciphertext submitted in the j’th call to OsimD . Recall
that c∗ is of form (c1, c2, πvalid). By simulation soundness of the NIZK used, we
can extract the witness claimed in the proof, and so we get r and k, v such that
c1 = ±ĝr and c2 = (n+ 1)kvn mod n2.

We can assume that R’s decryption algorithm would accept c∗, this implies
that v must have Jacobi symbol 1. Also, since the algorithm computes u =
pkα1

S cα2
1 mod n and checks that (c2u

−n)n mod n2 = ±1, we can assume this
check is satisfied. Inserting the expression we have for c2 we get

±1 = (c2u
−n)n mod n2 = ((n+1)kvnu−n)n mod n2 = ((vu−1 mod n)n)n mod n2

Here, we have used the fact that Z∗n2 is the direct product of a group G of
order n and a group H of order φ(n) isomorphic to Z∗n under the isomorphism
x 7→ xn mod n2. Since (vu−1 mod n)n mod n2 ∈ H and raising to power n is a
1-1 mapping on H, it follows that vu−1 mod n = ±1. Inserting the expression
for u, we get

±v = u = pkα1

S cα2
1 = pkα1

S ĝrα2 = ĝskSα1βr2
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In conclusion, we can flip a coin and submit plus or minus vβ−r2 mod n as a
solution to the CDH problem and this will be correct with half the probability
with which A wins Game 3.

We proceed to show that the AVPKE scheme hides the message encrypted even
if adversary knows the secret key of the sender, and even if a decryption oracle
is given. This is essentially standard CCA security.

Definition 17. Consider the following experiment for an AVPKE scheme and
a probabilistic polynomial time adversary A: Run the set-up and key generation
and run AOE (pp, pkR, skS). Here, OE takes two messages k0, k1 as input, selects
a bit η at random and returns c∗ = Encpp,skS,pkR(kη). OD takes a ciphertext and
returns the result of decrypting it under pkS, skR (which will be either reject or
a message). A may submit anything other than c∗ to OD, and must output a bit
η′ at the end. It wins if η′ = η. The scheme is private if any PPT A wins with
negligible advantage over 1

2 .

In the following we will use the assumption underlying the Paillier encryp-
tion scheme, sometimes known as the composite degree residuosity assumption
(CDRA): a random element x in Z∗n2 where x mod n has Jacobi symbol 1 is
computationally indistinguishable from yn mod n2 where y ∈ Z∗n is random of
Jacobi symbol 116. )

Lemma 4. Assume that DDH in 〈ĝ〉 is hard and that CDRA holds. Then the
AVPKE scheme satisfies Definition 17.

Proof. Assume for contradiction that adversary A wins the game with probabil-
ity non-negligibly larger than 1/2. Let Game 0 be the original game. We change
the game stepwise to get new games that can be used to either solve DDH or
break CDRA. In Game 1, we replace OD by an alternative version OaltD that
does not use the α2 part of skR, namely instead of computing u = pkα1

S cα2
1 it

extracts r from the proof in the ciphertext and computes instead u = pkα1

S βr2
which is the same value (up to a sign) and hence leads to an equivalent decryp-
tion. A wins Game 1 with exactly the same probability. In Game 2, we replace
OE by OsimE , defined as follows: take a, b ∈ 〈ĝ〉 as input, where a = ĝr, b = βr2 .

let η∈R {0, 1}, r∈R Zn and return (±a, (n+1)kη (±βskS1 b)n mod n2, πvalid), where
πvalid is a simulated proof. Except for the simulation, this is exactly Game 1, so
A wins with essentially the same probability – note that by simulation sound-
ness, the witness extraction used by OaltD still works. In Game 3, we make a, b be
random group elements in 〈ĝ〉. Now, A’s winning probability remains essentially
the same since otherwise, we could use the difference between Game 2 and 3 to
solve DDH. Now note that in Game 3 (±βskS1 b)n mod n2 is in fact a uniformly
random element of form yn mod n2, where the Jacobi symbol of y mod n is 1.
In Game 4, we replace this by x chosen uniformly in Z∗n2 subject to x mod n

16 The original CDRA assumption does not have the restriction to Jacobi symbol 1,
but since the Jacobi symbol is easy to compute without the factors of n, the two
versions are equivalent.

32



having Jacobi symbol 1. In Game 4, c∗ has no information on η, so here A wins
with probability 1/2. This means that we can use the difference between Game
3 and 4 to break CDRA, and we have a contradiction.

We say that an AVPKE scheme is secure if it is authentic, private, supports
equivalent encryption by R and indistinguishable fake encryption.

The PSDVS Scheme We now return to the promised PSDVS scheme.

Construction 4 Let:

– Ggen be a Group Generator, a probabilistic polynomial time algorithm which
on input 1κ outputs G, g, n, ĝ exactly as in the previous AVPKE construction.

– H be a hash function which we model as a random oracle. We assume it
maps onto the group G.

– NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero
knowledge proof system. In this section, we will use Σ-protocols made non-
interactive using the Fiat-Shamir heuristic, so in this case Setup is empty
and there is no common reference string.

Setup(1κ): Let (G, g, ĝ, n) ← Ggen(1κ) and let h∈R G. Set pp = (G, g, ĝ, n, h).
Return pp as the public parameters.

SignKeyGen(pp): Run key generation for the AVPKE scheme as defined above
to get keys ssk = skS, spk = pkS for the signer S. Output ssk as the signer’s
secret key and spk as the signer’s public key.

VerKeyGen(pp):
1. Run key generation for the AVPKE scheme as defined above to get keys
skR, pkR for the verifier R. (These keys will be used to sign messages and
verify signatures.)

2. Choose kR∈R Zn. (This key will be used by the verifier to simulate sig-
natures using VerSigSim.)

3. Choose rR∈R Zn and let cR = gkRhrR . (This commitment will be used by
the verifier to support its proofs of fake-ness.)

4. vsk = (skR, kR, rR), vpk = (pkR, cR).
Output vsk as the verifier’s secret key and vpk as the verifier’s public key.

Sign(pp, ssk = skS, pkR,m):
1. Choose t∈R G, r∈R Zn, b1, b2∈R {0, 1}, s∈R Z∗n, ks∈R Zn.
2. Let σ ← (t,H(m, t)ks ,Encpp,skS,pkR(ks; r, b1, b2)).
3. π ← NIZK.Prove(u = (σ = (σ1, σ2, σ3), pkV , pkS ,m), w = (skS , ks, r, b1, b2))

be a zero knowledge proof of knowledge of witness w such that:

σ2 = H(m,σ1)ks ∧ σ3 = Encpp,skS,pkR(ks; r, b1, b2)

Output σ as the signature, and π as the proof of real-ness. Recall that
the ciphertext by construction already contains a proof implying that the
ciphertext contains a well defined plaintext. The role of the tag t in the
signature is to let the verifier give a proof for his way to simulate a signature.
This will become clear below.
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Verify(pp, spk = pkS, vsk = (skR, kR, rR),m, σ = (σ1, σ2, σ3)):

1. Decrypt σ3 as ks = Decpp,skR,pkS(σ3). If this fails, set d = 0 and abort.

2. If σ2 = H(m,σ1)ks , set d = 1. Otherwise, set d = 0.

Output d as the verification decision.

Informally, forging a signature is hard since the verifier rejects forged cipher-
texts and valid ones hide the ks value inside, by properties of the AVPKE
scheme. The only other option is to reuse an existing ks in a new signature,
which is hard if CDH is hard in G. Namely, you have to raise a random
group element (output by the random oracle) to the secret exponent ks.

PubSigSim(pp,m):

1. Choose k, k′∈R Zn, such that k 6= k′.

2. Choose t∈R G, r∈R Zn, b, b′∈R {0, 1}, v∈R Zn, such that v has Jacobi
symbol 1.

3. σ ← (t,H(m, t)k,Encpp,fake(k
′; r, b, b′, v)).

4. Let π ← NIZK.Prove(u = σ = (σ1, σ2, σ3), w = (k, k′)) be a zero-
knowledge proof of knowledge such that:

σ2 = H(m,σ1)k ∧ σ3 = Encpp,fake(k
′; ·, ·, ·, ·) ∧ k 6= k′.

Output σ as the simulated signature, and π as the proof of fake-ness. The
notation Encpp,fake(k

′; ·, ·, ·, ·) means that the proof only has to establish that
the plaintext inside the encryption is some value k′ different from k.

Informally, a simulated signature looks like a real one since fake encryptions
are indistinguishable from real ones and by privacy of the encryption scheme,
one cannot decide efficiently if k = k′ or not. Clearly, a fake signature as
defined is always rejected by the verifier.

VerSigSim(pp, spk = pkS, vpk = (pkR, cR), vsk = (skR, kR, rR),m):

1. Choose rt∈R Zn, t = gkRhrt , ks∈R Zn, b1, b2∈R {0, 1} and v∈R Z∗n of
Jacobi symbol 1.

2. σ ← (t,H(m, t)ks ,Encpp,skR,pkS(ks; r, b1, b2)).

3. Let π ← NIZK.Prove(u = ((σ1, σ2, σ3), cR,m), w = (kR, rR, rt)) be a zero-
knowledge proof of knowledge of witness w = (kR, rR, rt) such that:

σ1 = gkRhrt ∧ cR = gkRhrR .

Output σ as the simulated signature and π as the proof of fake-ness.

Informally, the simulated signature has exactly the same distribution as a
real signature, and cannot be distinguished even given the verifier’s key: for
every t there exists a rt that the verifier could have used to generate it. Only
the verifier can prove fake-ness since no one else knows kR, and so giving a
proof would, with overwhelming probability, require opening cR to a value
different from kR, which is infeasible if discrete log is hard in G.

Theorem 4. If the AVPKE scheme is secure, and under the DDH assumption,
Construction 4 is a secure PSDVS scheme.
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Remark 4. To get a concrete instantiation of the PSDVS scheme, we need to in-
stantiate the AVPKE scheme (as explained above) and also the NIZKs assumed in
Construction 4 (as explained in the Appendix A). This way, we get an instantiation
in the random oracle model, secure under the strong RSA, the DDH and the CDRA
assumptions.

Proof. In this proof we refer to the definitions in Section 3.1.

Unforgeability. Suppose adversary A wins the unforgeability game (in presence
of a signing and verification oracle), and let σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3) be the forged

signature, and m∗ the message in question. If σ∗3 is a ciphertext that was not
output by the signing oracle, then A can be used to break authenticity of the
AVPKE scheme, since R only accepts a signature if decryption of σ∗3 does not
reject. So we may assume that σ∗3 is a valid ciphertext Encpp,skS,pkR(k) that was
used in a genuine signature σ = (t,H(m, t)k,Encpp,skS,pkR(k)). Since A wins,
m 6= m∗, so we can assume that H(m, t) and H(m∗, σ∗1) are independent random
variables output by the random oracle, and furthermore since R accepts the
forged signature, we have σ∗2 = H(m, t∗)k.

This means we can use A to solve CDH in 〈ĝ〉 which contradicts the as-
sumption that DDH (and hence CDH) is hard: Given a random CDH challenge

ĥ, ĥa, ĥb, we will guess which genuine signature and which calls to the random
oracle will be involved in the forgery. We will program the random oracle so that
H(t,m) = ĥ and set σ2 = ĥa. This means that we are implicitly claiming that
the exponent used in the signature is a. This does not match the encryption
Encpp,skS,pkR(k), but we program the verification oracle to accept the signature
anyway, and by privacy of the encryption scheme, the inconsistency does not
affect A’s behavior significantly. Finally, we set H(t∗,m∗) = ĥb, and it is now

clear that if A wins, we have σ∗2 = (ĥb)a = ĥab.

Provable Public Simulation. PubSigSim indistinguishability follows from privacy
of the AVPKE scheme: if an adversary A wins the PubSigSim-Ind game, we
can use A to construct an adversary that wins the privacy game. The adversary
can use skS to emulate the signing oracle and the use the decryption oracle
to emulate the (less powerful) verification oracle. PubSigSim correctness and
PubSigSim soundness follow immediately from completeness and soundness of
the NIZK used.

Provable Verifier Simulation. VerSigSim indistinguishability is clear, since the
signature produced by VerSigSim has exactly the same distribution as regular
signatures. VerSigSim correctness follows from completeness of the NIZK used.
Finally, for VerSigSim soundness, assume that a corrupt S could produce a proof
that VerSigVal would accept. By soundness of the NIZK used, this would mean
that we could extract from the proof data such that both the tag t in the signa-
ture and cR could be opened as commitments to the same value, say x. However,
R already knows from the key generation how to open cR to the value kR. The
adversary gets no information on kR during the game because commitments are
perfectly hiding, and so x 6= kR with overwhelming probability. This means we
can use the adversary to break the binding property of the commitment scheme.
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Sign. It is easy to see that Provable Signing Correctness and Soundness follow
immediately from completeness and soundness of the NZIK used in Sign.

In Appendix A we list, for completeness, the standard Σ-protocols we need to
instantiate our construction.

3.5 Sketch of a PSDVS Scheme Based on Prime Order Groups

In this subsection we sketch a variant of the previous scheme where we need
only prime order groups and no trusted set-up. So we let G be a group of prime
order p with generator g, where p = 2q+ 1 and q is also prime. We let H denote
the subgroup of Z∗p of order q. H is also the group of squares modulo p. We let
h be a generator of H. These parameters can be generated in public and can be
verified by anyone, so no trusted set-up with secret trapdoor is required.

We make public keys for S and R as follows: pkS = hskS , pkR = hskR ,
skS, skR∈R ∈ Zq.

The parties can compute a shared key k = hskSskR from only the public keys,
which is pseudorandom for anyone else if DDH in H is hard.

We let the signature on m be H(m, t)k, which can be verified by R in the
obvious way.

To prove in ZK that a signature σ = (σ1, σ2) is valid, one proves knowledge

of skS, such that gpkS = gh
skS and σ2 = H(m,σ1)k = H(m,σ1)pk

skS
R share the

same “level-2 ” discrete log, which can be done using a standard protocol which,
however, requires a number of exponentiations linear in the security parameter.

For PubSigSim, one generates a fake signature by choosing a random element
e ∈ Z∗p and letting the simulated signature be H(m, t)−e

2 mod p. −e2 mod p is not
a square modulo p and hence is not in H. It will therefore not be accepted, since
the correct k is in H by construction. This is indistinguishable from a genuine
signature if we make a nonstandard variant of the DDH assumption saying that
g raised to a random square is indistinguishable from g raised to a random non-
square. One can show in ZK that H(m, t)−e

2 mod p has the right form by showing
that the discrete log of its inverse is a square, which can be done with standard
Σ protocols.

The case of VerSigSim is handled in exactly the same way as the previous
construction.

4 FE-based Construction

In this section, we present an MDVS scheme based on functional encryption. One
disadvantage of this scheme is that it requires a trusted setup; secret verification
keys must be derived from a master secret key. However, the accompanying
advantage is that this scheme has verifier-identity-based signing; verifiers’ public
keys consist simply of their identity, allowing any signer to encrypt to any set of
verifiers without needing to retrieve their keys from some PKI first.

At a high level, we are first given a digital signature scheme (DS) and a
functional encryption scheme (FE). The keys of the signer with identity i are
a secret DS signing key ski and corresponding public DS verification key vki.
An MDVS signature c is a FE ciphertext obtained by encrypting the plaintext
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that consists of the message m, the signer’s DS verification key vki, a set of
designated verifier identities D, and the signer’s DS signature σ on the message
using the secret DS signing key ski. That is, c = FE.Enc(pp, (m, vki,D, σ)).
Verifier j’s public key is simply their identity j (that is, vpkj = j). Their secret
key consists of a DS key pair (skj , vkj), and an FE secret key dkj . dkj is the
secret key for a function that checks whether j is among the specified designated
verifiers, and then checks whether the DS signature σ inside the ciphertext c
is either a valid signature under the signer’s verification key vki, or under the
verifier’s verification key vkj . However, this basic scheme does not give us the
off-the-record property; we therefore tweak it slightly, as we describe below.

From One to Many DS Signatures In order to ensure that any subset of
valid verifiers cannot convince an outsider of the origin of the MDVS signature,
we need to replace the one DS signature in the ciphertext with a set of DS
signatures. The reason is that, if only one signature is contained in the ciphertext,
any designated verifier can prove to an outsider that “it was either me or the
signer that constructed the signature”. If more than one verifier proves this about
the same MDVS signature, then the signature must have come from the signer.

To prevent this kind of “intersection attack”, we allow the ciphertext to
contain a set Σ of DS signatures, and change the corresponding FE secret keys
to check if there exists a DS signature in the set that either verifies under the
signer’s or the verifier’s DS verification key. Now, an outsider will no longer
be convinced that it was the signer who constructed the MDVS signature, since
each of the colluding verifiers could have constructed a DS signature that verifies
under their own verification key, and then encrypted this set together with the
public verification key of the signer.

Achieving Consistency In order to achieve consistency, we need security
against malicious encryption in the underlying FE scheme. We need to ensure
that any (possibly maliciously generated) ciphertext is consistent with one spe-
cific message across decryption with different functions. Otherwise, a malicious
MDVS signer may be able to construct a ciphertext (i.e. a signature) that will be
valid for one designated verifier but not valid for another, thereby breaking the
consistency property. Security against a malicious encryption is a property of ver-
ifiable functional encryption (VFE), which was introduced by Badrinarayanan
et. al [BGJS16]. However, it turns out that we do not need the full power of
VFE, which also includes precautions against a malicious setup. Thus, we define
a weaker notion of VFE, and substitute the standard FE scheme with this new
scheme allowing us to achieve the MDVS consistency property.

In Section 4.1 we introduce ciphertext verifiable functional encryption, fol-
lowed by our MDVS construction based on functional encryption which is pre-
sented in Section 4.2.

4.1 Functional Encryption

An FE scheme starts with an authority that generates the public parameters
pp and a master secret key msk. Then the holder of the master secret key can
generate a decryption key dkf associated with some function f that belongs to
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some predefined function family. Anyone can generate an encryption c of some
value x, using only the public parameters, and the party that has been given the
decryption key dkf can decrypt the ciphertext c to obtain f(x).

The standard security properties of functional encryption consider only the
case where an adversary holds a set of decryption keys dkf1 , . . . , dkfq , and wants
to learn more than it is allowed to about some encrypted message. The security
property says that given an encryption of x, the adversary should only learn
f1(x), . . . , fq(x).

However, in some settings, we additionally need security against malicious
encryption, and possibly a malicious key generation authority. To achieve this,
Badrinarayanan et. al [BGJS16] introduced verifiable functional encryption (VFE),
which is an FE scheme extended with verification algorithms that check the va-
lidity of the ciphertexts and decryption keys.

We require security only against malicious encryption, allowing us to define
a weaker notion of verifiability for functional encryption that handles malicious
encryptors and decryptors, while assuming an honest authority.

Ciphertext Verifiable Functional Encryption Let F = Fκ be a function
family, M = Mκ the message space, and Y = Yκ the output space such that
F : M → Y. Let C = Cκ be the ciphertext space. Then, we define a cipher-
text verifiable functional encryption (VFE) scheme for function family F by the
following algorithms:

Setup(1κ)→ (pp,msk): The PPT algorithm Setup, on input the security param-
eter κ, outputs the public parameters pp and the master secret key msk.

KeyGen(msk, f)→ dkf : The PPT key generation algorithm KeyGen, on input
the master secret key msk and a function f ∈ F , outputs a secret key dkf .

Enc(pp,m)→ c: The PPT encryption algorithm Enc, on input the public pa-
rameters pp and a message m, outputs a ciphertext c.

Dec(dkf , c)→ y′: The decryption algorithm Dec, on the decryption key dkf and
the ciphertext c, outputs y′ ∈ Y ∪ {⊥}.

Verify(pp, c)→ d: The public verification algorithm Verify, on input the public
parameters pp and the ciphertext c, outputs a boolean decision d = 0 (reject)
or d = 1 (accept).

Properties A functional encryption scheme must have the standard correctness
(Definition 18) and IND-CPA security (Definition 19). A ciphertext verifiable
scheme must additionally have ciphertext verifiability (Definition 20).

Definition 18 (Correctness). Let κ ∈ N be the security parameter, and let
F :M→ Y be a function family. Let VFE = (Setup,KeyGen,Enc,Dec) be a FE
scheme for function family F . For all messages m ∈M, all functions f ∈ F we
have

Pr [Dec(KeyGen(msk, f),Enc(pp,m)) 6= f(m)] ≤ negl(κ),

where (pp,msk) ← Setup(1κ), and the probability is taken over the random
choices of all algorithms.
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Definition 19 (IND-CPA Security). Let κ ∈ N be the security parameter,
and let F : M → Y be a function family. Let VFE = (Setup,KeyGen,Enc,Dec)
be a FE scheme for function family F . Consider the following game between a
challenger and an adversary A:

GameIND−CPAVFE,F,A (κ)

1. (pp,msk)← Setup(1κ)

2. (m0,m1)← AOG (pp)
3. b←$ {0, 1}
4. c← Enc(pp,mb)

5. b′ ← AOG (c)

The key generation oracle is defined OG(fi) := KeyGen(msk, fi).

We say that A wins the IND-CPA game if b = b′, |m0| = |m1|, and fi(m0) =
fi(m1) for all queries fi ∈ F to oracle OG. We say a FE scheme satisfies the
IND-CPA security property if, for all PPT A,

advIND−CPAVFE,F,A (κ) = Pr[A wins the game]− 1

2
≤ negl(κ).

We consider a ciphertext verifiable functional encryption scheme VFE =
(Setup,KeyGen,Enc,Dec,Verify) for function family F . In such a scheme, we
also need security against a malicious encryptor. In Definition 20 we simplify
the verifiability of [BGJS16] to consider only ciphertext verifiability, not .

Definition 20 (Ciphertext Verifiability). A scheme VFE for function fam-
ily F is ciphertext verifiable, if, for all c ∈ {0, 1}∗, there exists x ∈M such that
for all f ∈ F and dkf ← KeyGen(msk, f), if Verify(pp, c) = 1, then

Pr [Dec(dkf , c) = f(x)] = 1,

where (pp,msk)← Setup(1κ).

Definition 20 states that for all ciphertexts constructed by a malicious en-
cryptor, it must hold that if the ciphertext c passes the verification algorithm,
then there exists a unique input x that can be associated with ciphertext c,
meaning that for all functions f ∈ F the decryption of c will yield f(x). As an
example, consider the functions feven and fodd that determine whether an input
natural number is even or odd. If the scheme has ciphertext verifiability, the
adversary should not be able to create a ciphertext c that passes the verification
algorithm, and on decryption using these functions will yield a result that claims
that the element encrypted in c is both even and odd.

As discussed in [GJKS15], an FE scheme satisfying these properties can be
achieved by combining a standard FE scheme with a simulation-sound NIZK
proof of knowledge to achieve security against malicious encryption.
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4.2 The MDVS Construction

Construction 5 Let SIGN = (KeyGen,Sign,Verify) be a standard digital sig-
nature scheme and let VFE = (Setup,KeyGen,Enc,Dec,Verify) be a functional
encryption scheme secure with ciphertext verifiability. Then we define a MDVS
scheme FEMDVS = (Setup,KeyGen,Sign,Verify,Sim) as follows:

Setup(1κ): (ppFE,mskFE)← VFE.Setup(1κ).
Output public parameter pp = ppFE and master secret key msk = mskFE.

SignKeyGen(i): (ski, vki)← SIGN.KeyGen(1κ).
Output the signer’s secret key sski = ski and public key spki = vki.

17

VerKeyGen(msk, j):

1. vpkj = j,
2. (skj , vkj)← SIGN.KeyGen(1κ),
3. dkj ← VFE.KeyGen(mskFE, fj), where fj is defined as follows.

Function fj
Input: m, vki, {vpkj′}j′∈D, Σ;
Const: vpkj , vkj ;
1. If vpkj /∈ {vpkj′}j′∈D: output ⊥;
2. If ∃σ ∈ Σ : SIGN.Verify(vki,m, σ) = 1 OR SIGN.Verify(vkj ,m, σ) = 1:

output (m, vki, {vpkj′}j′∈D);
3. Else: output ⊥

Output the verifiers secret key vskj = (skj , dkj) and public key vpkj = j.18

Sign(pp, sski, {vpkj}j∈D,m):

1. σ ← SIGN.Sign(ski,m).
2. Output c = VFE.Enc(ppFE, (m, vki, {vpkj}j∈D, {σ,⊥, · · · ,⊥})).

Verify(pp, spki, vskj , {vpkj}j∈D,m, c):
1. Check whether VFE.Verify(ppFE, c) = 1. If not, output 0.
2. Compute (m′, vk′i, {vpkj}j∈D′)\⊥ ← VFE.Dec(dkj , c). If the output is
⊥, output 0.

3. Check m′ = m, vk′i = vki (with spki = vki), and D′ = D. If all hold,
output 1. Otherwise output 0.

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m):

1. For each j ∈ C, vskj = (skj , dkj).
2. Compute σj ← SIGN.Sign(skj ,m

∗).
3. Let Σ = {σj}j∈C∗ , add default values to get the required size.
4. Output c = VFE.Enc(ppFE, (m∗, spki, {vpkj}j∈D, Σ)).

17 We assume that the mapping i → (sski, spki) is unique in the system. This can be
achieved without loss of generality by pseudorandomly generating the randomness
required in the key generation process from the identity i and the master secret key.

18 We assume that the mapping j → (vskj , vpkj) is unique in the system. This can be
achieved wlog by pseudorandomly generating the randomness required in the key
generation process from the identity j and the master secret key.
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Theorem 5. Assume that VFE is an IND-CPA secure functional encryption
scheme with ciphertext verifiability, and SIGN is an existential unforgeable digital
signature scheme. Then Construction 5 is a correct and secure MDVS scheme
with privacy of identities and verifier-identity-based signing.

Proof. Correctness: Follows directly from an inspection of the algorithms and
the correctness of the functional encryption scheme.

Consistency: Assume that there exist an adversary that produces an inconsistent
signature: (i∗, {vpkj}j∈D∗ ,m∗, c∗), such that there exists j1, j2 ∈ D∗ (for which
the adversary does not have the corresponding secret keys) such that:

Verify(spki∗ , vskj1 , {vpkj}j∈D∗ ,m∗, c∗) = 1,

Verify(spki∗ , vskj2 , {vpkj}j∈D∗ ,m∗, c∗) = 0,

where spki∗ = vki∗ , vskj1 = (skj1 , dkj1), and vskj2 = (skj2 , dkj2).
Since the verification for j1 yields 1, then both j1 and j2 will verify the

ciphertext: VFE.Verify(ppFE, c) = 1, meaning that (thanks to ciphertext verifia-
bility) there exists a unique encrypted message (m, vki, {vpkj}j∈D, σ) in c that
is consistent across decryption with different functions.

Then j1 will decrypt: (m, vki, {vpkj}j∈D)← VFE.Dec(dkj , c), which is equal
to (m∗, vki∗ , {vpkj}j∈D∗). On the other hand j2 will decrypt

(m′, vk′i, {vpkj}j∈D′) or ⊥ ← VFE.Dec(dkj , c)

If the output was ⊥, then either j2 /∈ D or there does not exists a valid signature
in σ. Otherwise the output was (m′, vk′i, {vpkj}j∈D′) which is different from
(m, vki, {vpkj}j∈D) in at least one component. Thus, the output of the decrypt
of j1 and j2 is not consistent with a unique message, which contradicts the fact
that VFE.Verify(ppFE, c) = 1 (i.e. there exists a unique encrypted message).

Thus, an adversary that violated the consistency of the MDVS scheme, vio-
lates the ciphertext verifiability of the FE scheme.

Existential Unforgeability: Assume that the adversary produces a valid forgery:
(i∗, {vpkj}j∈D∗ ,m∗, c∗), where c∗ is the signature (a FE ciphertext) on message
m∗, from signer i∗ designated to the verifiers in the set D∗.

Then there exists a designated verifier j ∈ D∗, who has not been corrupted
by the adversary, such that the FE decryption will yield m′, vk′i and D′, where
m′ = m∗, vk′i = vki∗ , and D′ = D∗ (otherwise it would not be a valid forgery).

The only thing left in the FE ciphertext is the set of signatures σ. In order
for c∗ to be a forgery, then there must exist a digital signature σ ∈ σ such that

SIGN.Verify(vk′i,m
′, σ) = 1 OR SIGN.Verify(vkj ,m

′, σ) = 1.

This means that the adversary must create a digital signature forgery for either
signer i or “signer” j, without knowing the corresponding secret signing keys.
This contradicts the assumption that the digital signature satisfies existential
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unforgeability.

Privacy of Identities: The adversary receives a signature c∗, which is an FE
encryption of one of the two following messages:

1. (m∗, vki0 , {vpkj}j∈D0
, {SIGN.Sign(ski0 ,m

∗),⊥, · · · ,⊥}),
2. (m∗, vki1 , {vpkj}j∈D1 , {SIGN.Sign(ski1 ,m

∗),⊥, · · · ,⊥}).

In the PSI game, the adversary is not allowed to ask for verification keys for
any of the designated verifiers in D0 or D1. This means that for all verification
keys (i.e. FE decryption keys) the adversary can ask for, we have that the un-
derlying function fj evaluated on the two messages will yield ⊥, since j is not
in any of the two sets of designated verifiers.

Thus, privacy of the identities (PSI and PVI) follows directly from the IND-
CPA security of the functional encryption scheme.

Off-The-Record: The off-the-record property follows directly from the IND-CPA
security of the functional encryption scheme. The messages in the real and sim-
ulated version have the same length, since we add default values to σ to ensure
we have the same number of elements in both cases.

For all functions fj that the adversary gets an FE decryption key for, we
argue that evaluation on each of the two messages results in the same output.
First we look at the decryption keys dkj for j /∈ D∗ (i.e. not a designated verifier).
In both the real and the simulated case the decryption will yield ⊥, since j is
not a designated verifier.

Next, we look at the decryption keys dkj for j ∈ D∗. In this case j must also
be in the corruption set C∗. Thus, in the real case the set σ contains σi∗ a digital
signature of message m∗ under the signing key of signer i∗, and the decryption
will yield (m∗, vki∗ , {vpkj}j∈D∗). In the simulated case the set σ contains σj
a digital signature of message m∗ under the signing key of party j. Thus, the
decryption will again yield (m∗, vki∗ , {vpkj}j∈D∗), since function fj does not
differentiate whether it was the verification vki∗ or vkj that was used to verify
the digital signature. ut
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A Instantiation of Non-Interactive ZK Proofs

We list here, for completeness, the standard Σ-protocols we need. We assume
the same set-up as above, that is, a group G of order an RSA modulus n is given
(a product of safe primes), as well as a generator g of G, and a generator ĝ of
the subgroup of squares mod n.

The protocols we list here are well-known or simple variations of know proto-
cols. It is easy to show the standard completeness, soundness and honest verifier
ZK properties, so we will not present these proofs, but recall some ideas where
these may be less well known. The protocols can be turned into non-interactive
ZK proofs of knowledge in the standard way in the random oracle model using
the Fiat-Shamir heuristic.

All proofs have negligible soundness error, so we always need only 1 iteration
of each protocol.

A general technical remark: some of the protocols are usually designed for
use in a group of prime order, while here we use them in a group of order n. The
only difficulty this could lead to is that the proofs of soundness requires us to
invert various non-zero numbers modulo the group order. This could in principle
fail modulo n, but this would lead to finding a non-trivial factor of n (which is
generated in a trusted manner as part of the setup) and so can only happen with
negligible probability if factoring is hard, which we have to assume throughout
anyway.

Protocols for the AVPKE scheme. Some number theoretic background first:
because n = pq = (2p′ + 1)(2q′ + 1) is a product of safe primes, the subgroup of
squares in Z∗n has order p′q′ and ĝ is chosen to be a generator. It lies inside the
subgroup of numbers of Jacobi symbol 1 which has order 2p′q′ and is generated
by ĝ and −1.

The first protocol has as public input ĝ, ĥ ∈ Z∗n and we assume ĥ Jacobi
symbol 1, this can be easily checked by the verifier. Recall that an honest prover
knows r such that ĥ = ĝr. The protocol goes as follows:

Protocol Composite order discrete log.

1. P chooses s∈R {0, 1}3κ and sends a = ĝs to V (interpreting s as a binary
number).
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2. V sets e∈R Zn and sends it to P .
3. P returns z = s+ er to V , and V checks that ĝz = aĥe mod n.

This protocol is easily seen to be complete and statistical honest verifier zero-
knowledge (note that s is chosen to be exponentially larger than er so z is
statistically close to a random 3κ bit number. Soundness is more tricky. Assuming
that ĥ is in the group generated by ĝ, then the protocol is a proof of knowledge
of r, under the strong RSA assumption modulo n, as shown by Fujisaki and
Okamoto [FO97]. Now, since ĥ has Jacobi symbol 1, either ĥ or −ĥ is in the

subgroup, so the protocol proves that P knows the discrete log of ĥ or −ĥ.
For the second protocol we have public input c = (n + 1)kvn mod n2 and

β = γk for some γ ∈ G. The prover knows k and v. The protocol goes as follows:

Protocol Plaintext and discrete log knowledge.

1. P chooses s∈R Zn, u∈R Z∗n and sends a = (n+ 1)sun mod n2, α = γs to V .
2. V sets e∈R Zn and sends it to P .
3. P returns z = s+er mod n,w = uve mod n, and V checks that (n+1)zwn =
ace mod n2 and that γz = αβe.

It is trivial to prove this protocol complete, sound and honest-verifier zero-
knowledge.

To to the proof πvalid in the AVPKE scheme, we run the Composite order
discrete log and the Plaintext and discrete knowledge protocols where in the latter
we omit γ, β, α.

Protocols for the PVDVS scheme. The first protocol works with the well-known
Pedersen commitments, where a commitment to x with randomness r is of form
gxhr where g, h ∈ G. These commitments are perfectly hiding and computation-
ally binding if discrete log in G is hard. The protocol shows that two Pedersen
commitments contain the same value. The public input is c1 = gx1h

r1
1 , c2 = gx2h

r2
2 .

The protocol works as follows:

Protocol Commitment equality.

1. P sets y, s1, s2∈R Zn, and sends a1 = gy1h
s1
1 , a2 = gy2h

s2
2 to V

2. V sets e∈R Zn and sends to P .
3. P sends z = y+ ex mod n and u1 = s1 + er1 mod n, u2 = s2 + er2 mod n to
V .

4. V checks that gz1h
u1
1 = a1c

e
1 and that gz2h

u2
2 = a2c

e
2.

The NIZK in VerSigSim uses this protocol.
For the NIZK in PubSigSim, recall that we have H(m, t)k, Efake(k

′, r, b, b′, v)

as input, and we want to demonstrate that k 6= k′. The prover includes H(m, t)k
′

in the proof, and runs the Plaintext and discrete log knowledge protocol to demon-
strate that the exponent k′ is also present in the encryption. For this, we con-
sider only the last part of the ciphertext, which is a Paillier encryption of k′,
as this part already uniquely determines k′. The prover can use k′ and (−1)b

′
v

as witness. Finally, the verifier checks that H(m, t)k
′ 6= H(m, t)k. Soundness and
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completeness of this should be clear. For zero-knowledge, the simulator would
produce H(m, t)k

′′
for random k′′, and simulate the Plaintext and discrete log

knowledge protocol. Of course the statement in question is now false, but by
privacy of the encryption scheme, the simulated public data is indistinguishable
from the case where the statement is true, so the simulator must still produce
an indistinguishable transcript.

Finally, for the proof of real signature in Sign, we have to show that the
ciphertext encrypting k is completely well formed so that R will accept, and
that this exponent is used in the MAC. For this we use the following protocol.
The public input is δ = γk for a publicly known γ ∈ G (namely a hash-value),
pkS = ĝskS mod n and

C = EskS,pkR(k, r, b1, b2) = ((−1)b1 ĝr mod n, (n+1)k((−1)b2βskS1 βr2 mod n)n mod n2),

for publicly known β1, β2 ∈ Z∗n2 , which in our context come from R’s public key
pkR. The prover’s secret witness is skS, k, r, b1, b2.

Protocol Valid signature.

1. P chooses s ∈ Zn, x, y ∈ {0, 1}3κ, c1, c2 ∈ {0, 1}. He then sends to V :
a = EskS+x,pkR(s, y, c1, c2), ξ = ĝx mod n and ω = γs.

2. V sets e∈R Zn and sends it to P .
3. P returns zs = s+er mod n, zx = x+eskS, zy = y+er, d1 = (c1+eb1) mod 2,
d2 = (c2 + eb2) mod 2. V checks that Ezx,pkR(zs, zy, d1, d2) = aCe, that
ĝzx = ξpkeS and that γzs = ωδe.

It is tedious but straightforward to check completeness. For (statistical) hon-
est verifier ZK we use that x, y are both exponentially lager than eskS and er,
respectively. For soundness, assume we get acceptable answers (zs, zx, zy, d1, d2)
and (z′s, z

′
x, z
′
y, d
′
1, d
′
2) to challenges e, e′. This will imply that we get equations:

Ezx−z′x,pkR(zs − z′s, zy − z′y, (d1 − d′1) mod 2, (d2 − d′2) mod 2) = Ce−e
′

ĝzx−z
′
x = pke−e

′

S , γzs−z
′
s = δe−e

′

Now, note that the protocol is in fact (implicitly) using the Composite order
discrete log protocol to prove knowledge of the discrete logs of plus or minus the
numbers pkS = ĝskS mod n and (−1)b1 ĝr mod n, where the latter occurs inside
the ciphertext.

The soundness proof for that protocol from [FO97] argues if we get acceptable
answers to two challenges e, e′, then under the strong RSA assumption, it must be
that e− e′ divides the difference between the answers. So under this assumption
we get that e−e′ divides zx−z′x and zy−z′y. It is now straightforward to extract
a valid witness, essentially by dividing by e− e′ in the exponent on both sides.
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