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Abstract

For more than 30 years, cryptographers have been looking for public sources of uniform
randomness in order to use them as a set-up to run appealing cryptographic protocols without
relying on trusted third parties. Unfortunately, nowadays it is fair to assess that assuming the
existence of physical phenomena producing public uniform randomness is far from reality.

It is known that uniform randomness cannot be extracted from a single weak source. A
well-studied way to overcome this is to consider several independent weak sources. However,
this means we must trust the various sampling processes of weak randomness from physical
processes.

Motivated by the above state of affairs, this work considers a set-up where players can access
multiple potential sources of weak randomness, several of which may be jointly corrupted by
a computationally unbounded adversary. We introduce SHELA (Somewhere Honest Entropic
Look Ahead) sources to model this situation.

We show that there is no hope of extracting uniform randomness from a SHELA source. In-
stead, we focus on the task of Somewhere-Extraction (i.e., outputting several candidate strings,
some of which are uniformly distributed – yet we do not know which). We give explicit con-
structions of Somewhere-Extractors for SHELA sources with good parameters.

Then, we present applications of the above somewhere-extractor where the public uniform
randomness can be replaced by the output of such extraction from corruptible sources, greatly
outperforming trivial solutions. The output of somewhere-extraction is also useful in other
settings, such as a suitable source of random coins for many randomized algorithms.

In another front, we comprehensively study the problem of Somewhere-Extraction from a
weak source, resulting in a series of bounds. Our bounds highlight the fact that, in most regimes
of parameters (including those relevant for applications), SHELA sources significantly outper-
form weak sources of comparable parameters both when it comes to the process of Somewhere-
Extraction, or in the task of amplification of success probability in randomized algorithms.
Moreover, the low quality of somewhere-extraction from weak sources excludes its use in various
efficient applications.
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grant agreement No 780477 (project PRIViLEDGE) and in part by “GNCS - INdAM”.
†Research supported by the European Union’s Horizon 2020 research and innovation programme under grant

agreement No 780477 (project PRIViLEDGE).
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1 Introduction

Perfect (i.e., uniform) public randomness is an extremely valuable resource in computer science,
and in cryptography in particular. For example, it can be used to create a Common Reference
String (CRS) drawn from an uniform distribution, which is a widely used set-up for cryptographic
protocols. However, the randomness that we can obtain from physical phenomena (such as solar
radiation, temperature readings, and electricity fluctuations) is far from perfect (in particular when
public randomness sources are taken into account). Such phenomena belong to the family of weak
randomness sources [1]. These are sources that carry some min-entropy, but are still very far from
uniformly distributed. As a result, in most applications a so-called randomness extractor must
be applied to the weak sources in order to extract (close to) uniformly distributed bits. A basic
result about randomness extraction dictates that deterministic extraction from one weak source
is not possible. Nevertheless, deterministic extraction is possible if one has access to at least two
independent weak sources.

Sampling from several independent physical weak sources presents serious security issues. For
example, if different phenomena are being publicly measured (to ensure some kind of independence),
then different instrumentation and potentially different entities must be involved in the sampling
process. Not only that, but sampling may also be compromised by instrument failures. Going back
to our CRS example, if we want to generate CRS from such sources, then we are assuming that every
instrument and entity that took part in sampling the weak sources is trusted. This is not a desirable
situation, and indeed it was previously noticed that generating a uniformly distributed CRS from
such weak sources is complicated [2]. A natural question follows: Which forms of common public
set-up can we achieve (or, more generally, what kind of randomness can we extract) if some of the
sources are maliciously corrupted, but some of them remain honest?
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Figure 1: The procedure of sampling from a SHELA source. 1) Adversary chooses the positions
of the honest blocks. 2) Adversary produces the first block. 3) Honest block is produced, it is
independent of B1. 4) Adversary fills out next blocks. Unlike B1, blocks B3, B4 can depend on
honest block B2. 5) Honest block is produced, it is independent of B1, B2, B3, B4. 6) Adversary
produces last block which can depend on all previous blocks.
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Intuitively, this scenario leads us to define a structured weak source in an adversarial setting
where a sample from the source is divided into multiple sub-parts, that we call blocks. One may
imagine that each block corresponds to a different sampling process as per the previous paragraph.
In this setting there is an ordered sequence of samplings from the sub-sources and some of them
are controlled by the adversary. More specifically, the adversary can decide the positions of the
honest blocks since it can decide which sampling processes to corrupt. Honest blocks correspond to
(correct) samples from independent weak sources (these sources are known to the adversary but are
not controlled by the adversary). Given a sequence of blocks the sampling proceeds by obtaining
blocks in chronological order. As a result, if the i-th block is to be corrupted, then the adversary
is allowed to fix it to any value based on the (already determined) values from the first through
(i− 1)-th blocks.

We will call such source a “t-out-of-`” Somewhere Honest Entropic Look-Ahead (SHELA)
source, where ` indicates the total number of blocks, out of which t must be honest. We con-
sider only the case t ≥ 2, since the case t = 1 essentially reduces to the setting with a single weak
source. Moreover, we assume without loss of generality1 that each block has length n, and the
honest blocks have min-entropy at least k for some decent parameter k. Observe that corrupted
blocks are heavily correlated with previous honest blocks, and may even have zero min-entropy.
Moreover, we allow the number of honest blocks t to be any function of `, as long as t ≥ 2.

There is a second real-world scenario that can be naturally modelled as a SHELA source. Some
blockchains can be considered as sequences of blocks generated in chronological order, some of which
contain high min-entropy strings. For instance, such strings could be the new wallet’s identifier
used to cash a reward when a new block is added to the chain, financial data containing some
min-entropy [3], or a random nonce added for some security reasons. It is well-known [4, 5] that in
a sequence of blocks of the blockchain there will be a fraction ν of them added by honest players.
Moreover, we could assume that when a new block is added to the blockchain by a honest player,
such a block (sometimes) contains high min-entropy strings that are independent of the previous
ones already in the blockchain (we notice that a similar assumption has already been used in [6]).
Therefore, if we consider ` consecutive blocks and for each of them we consider the part of the
block that, in case the block is honest, could contain an independent weak source with decent
min-entropy, we obtain a public SHELA source2.

1.1 Our Contributions

Our main goal in this paper is to study SHELA sources and what kind of applications their avail-
ability enables.

The first natural question that arises when encountering SHELA sources is the following: Are
we able to extract independent and (close to) uniformly distributed bits from it? We will prove in
this work that the answer to this question is negative. Given this, we shift our focus from standard
randomness extraction, and instead we investigate the possibility of constructing a deterministic
somewhere-extractor SomeExt for SHELA sources. Intuitively, the somewhere-extractor SomeExt
takes as input a SHELA source and outputs a distribution that is close (in statistical distance)
to a convex combination of so-called “T -out-of-L” Somewhere-Random (SR) sources. SR sources

1Given blocks of different sizes, one can always fill out the shorter blocks with zeros, similarly given blocks of
different min-entropy we can assume k to be the minimum of min-entriopies of honest blocks.

2In this example we are assuming that when using a blockchain as a SHELA source, the adversary of the sam-
pling procedure from a SHELA source has no control over the choices of the honest blocks posted permanently in
the blockchain (i.e., the adversary does not decide which honest block is selected and remains permanently in the
blockchain out of multiple candidates).
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are composed of L blocks, T of which (at fixed, unknown positions) are jointly independent and
uniformly distributed. We call a convex combination of SR-sources a convSR-source for short.

It turns out that convSR sources are an extremely useful type of randomness. For example,
armed with our somewhere-extractor, we show how to build non-interactive (and thus accepted by
any receiver) commitments from one-way functions and non-interactive (and thus publicly verifi-
able) witness indistinguishable proofs from generic complexity assumptions3 when both players (a
sender and a receiver, or a prover and a verifier, respectively) have access to a public SHELA source.
Remarkably, convSR-sources are also important intermediate objects used in the construction of
multi-source and non-malleable extractors for weak sources (we discuss this in more detail later).

Parameters of the somewhere-extractor for SHELA sources. The computational complex-
ity and security of our applications of convSR-sources will heavily depend on various parameters
of the convSR-source: the number of total blocks L, the number of “good” (i.e., independent and
uniformly distributed) blocks T , and the length m of each block. In turn, these depend on the
parameters of the underlying SHELA source and the quality of the somewhere-extractor.

Ideally, we want our somewhere-extractor SomeExt to extract a convSR source with low error,
small number of total blocks, and large block length from a SHELA source. More precisely, the
error ε of SomeExt should satisfy ε = 2−Ω(n), where n is the block length of the SHELA source,
the total number L of blocks of the convSR source should be at most O(`), where ` denotes the
total number of blocks in the SHELA source, and the length m of each output block should satisfy
m = Ω(n). We will comment later that these parameters ensure that the output of SomeExt can
be used in our applications without compromising security, while ensuring that the efficiency and
reliability of the application in question remain good enough.

Moreover, we do not want to assume that honest blocks in the SHELA source must have
significant amounts of min-entropy for extraction to be successful. Instead, we aim to extract such
high-quality convSR-sources from SHELA sources whose honest blocks have arbitrary constant
min-entropy rate. In other words, we allow the min-entropy k of each honest n-bit block to satisfy
k = δn for an arbitrarily small constant δ > 0.

A very first naive approach to designing a somewhere-extractor (that we will denote by NaiveSomeExt)
is to apply a c-source extractor, for c ≥ 2, to every subset of c blocks of a SHELA source. This im-
mediately leads to a convSR-source. However, the total number of output blocks satisfies L = Θ(`c)
for c ≥ 2, where ` denotes the total number of blocks of the SHELA source. This leads to a much
worse efficiency blow-up for applications than what we aim to obtain, as detailed earlier. Another
problem of the naive construction is that, if we wish to minimize the blowup of L with respect
to ` by setting c = 2, we run into problems of explicitness. In fact, known explicit constructions
of 2-source extractors require sources with high min-entropy to achieve exponentially small er-
ror [8, 9, 10]. We also note that, besides leading to worse efficiency, using a c-source extractor for
c > 2 requires assuming that there are at least c > 2 honest blocks in the SHELA source, which
might not be reasonable in some scenarios.

In this work, we design a non-trivial somewhere-extractor SomeExt that achieves our ideal goals
put forth above. We begin by looking at the setting where the min-entropy rate k/n of honest
blocks in the SHELA source is a large enough constant. In this case, if X ∈ {0, 1}n·` is a t-out-of-`
SHELA source with honest block min-entropy k = δn, then SomeExt(X) is ε-close to a T -out-of-L
convSR-source Y ∈ {0, 1}m·L with T = t − 1, L = ` − 1, ε = 2−Ω(n), and output block length
m = Ω(n). The only thing missing is that, as previously discussed, we wish to extract with similar
parameters from SHELA sources whose honest blocks have arbitrarily small constant min-entropy

3We will show how to start from any public-coin 2-round WI proof system in the standard model which in turn
means any non-interactive zero-knowledge proof system in the common random string model [7].
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rate (i.e., k = δn for arbitrarily small constant δ > 0). Notably, using a modified construction, we
are able to transfer these ideal parameters to the “arbitrary constant min-entropy rate” setting.
The only difference is that now L = O(`).
Somewhere-extraction of SHELA source vs. weak source. We have already established
that we can deterministically extract high-quality convSR-sources from SHELA sources. However,
an attentive reader might notice that deterministic somewhere extraction is also possible from weak
sources. In fact, any strong seeded (k, ε)-extractor with seed length d yields a somewhere-extractor
with error ε, L = 2d total output blocks, and T = 1 uniform blocks for weak sources with min-
entropy at least k by considering a block for each possible fixing of the seed. This naive construction
of a convSR-source is actually crucial in many constructions of multi-source extractors (we expand
on this later in this section). However, it has strong limitations. In particular, even if we use an
optimal strong seeded extractor, seed length lower bounds [11] imply that

L = Ω

(
1

ε2

)
. (1)

This means that if we require ε = 2−Ω(n), then L = 2Ω(n), which precludes any efficient crypto-
graphic application of the resulting convSR-source.

Given the above shortcoming, one might wonder whether significantly better somewhere-extractors
exist for weak sources. We dedicate part of our paper to the study of this problem. It turns out
that the answer to this question is largely negative. In particular, a disperser-based lower bound
shows that, similarly to the naive construction above, every somewhere-extractor for weak sources
with error ε = 2−Ω(n) and output block length m = Ω(n) must have L = 2Ω(n) total output blocks.

In our work, we derive a set of lower bounds that complement each other and succeed in showing
that somewhere-extractors for weak sources must perform significantly worse than the analogous
objects for SHELA sources over various regimes of parameters. We are particularly interested
in lower bounds on the total number of blocks of the output convSR-source, as this dictates the
computational complexity blow-up suffered by a protocol when using this source. In the end, we put
forth the conjecture that the above lower bound (1) actually holds for every somewhere-extractor
(regardless of the output block length m), and we make some progress towards proving it.

Randomized algorithms and amplification of success probability using SHELA source
vs. weak source. We remark that convSR-sources are well-suited for simulation of randomized
algorithms whose outputs can be efficiently checked for correctness (e.g., searching for witnesses for
the membership of some string in an NP language, or approximation algorithms for NP languages).
In fact, one can simply run the algorithm using each block as its randomness. As a result, one
obtains a few candidate solutions, and can efficiently check if at least one of them is correct. The
success probability of the algorithm is thus amplified by the number of good (i.e., uniform) blocks.

It is well-known and easy to see that, in the procedure above, we do not need good blocks to
be exactly uniformly distributed. Indeed, it is enough to rely on the weaker guarantee that good
blocks are sufficiently close to uniform in statistical distance, say, 1/poly(n)-close, where n is some
soundness parameter. We call this weaker family of sources somewhere-amplifiable (SA) sources,
and denote the class of convex combinations of SA-sources as convSA-sources.

While weak sources can be used to efficiently produce convSA-sources, we show that this comes
at a heavy price: Roughly speaking, if one wants to generate enough, and long enough, good
blocks for appropriate and efficient success probability amplification, then the weak source needs
to have very high min-entropy. Therefore, in many reasonable regimes of parameters, one is unable
to extract suitable convSA-sources from weak sources, while one can extract high-quality convSR-
sources (a stronger notion) from SHELA sources in those regimes. We refer to Section 6 for a more
detailed discussion.
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We conclude from the two discussions above that there is a fundamental separation between
somewhere-extraction from SHELA and weak sources. Indeed, we are able to efficiently extract
convSR-sources with much higher quality from a SHELA source than what we can obtain from a
weak source.

Non-interactive witness indistinguishable proofs assuming public-coin ZAPs and
relying on public SHELA sources. In a proof system, a prover proves to a verifier the veracity
of some statement x ∈ L (where L is an NP-language). A soundness property guarantees that it is
unlikely that a honest verifier accepts the proof of a false statement. When a proof system is non-
interactive any verifier is able to check the validity of the proof. Non-interative proofs are therefore
publicly verifiable and they are very appealing since the prover computes the proof once, while still
it can be useful in many different cases (i.e., with many different verifiers). Non-interactive proofs
are usually trivial to achieve since a prover could just send a witness proving membership in the
language. The interesting case consists of offering some form of privacy for the secret (i.e., the
witness) of the prover. We will in particular consider witness indistinguishability [12] that requires
that the proof hides which witness has been used by the prover out of multiple witnesses. A special
category of interactive proof systems is called “public coin” and refers to the role of the verifier that
sends random strings only as messages. When there is only one message played by the verifier then
a 2-round witness indistinguishable proof system is referred as ZAP[7]. The round of the verifier
can be recycled among any polynomial number of proofs givens by provers. Since public-coin ZAPs
exist, a natural question is whether the verifier can just be replaced by a sample from a high
min-entropy source, therefore obtaining a non-interactive WI proof under the same computational
assumptions of ZAPs and relying on the existence of SHELA sources. The answer is unfortunately
negative. Indeed, consider the ZAP of [7]. The message of the prover consists of computing some
non-interactive zero-knowledge (NIZK) proofs in the common random string model. In general,
NIZK proofs (e.g., [12]) are not sound when the common random string is replaced by the output of
high min-entropy sources. In turn, when trying to make non-interactive a generic public-coin ZAP
relying on a high min-entropy source, soundness could be lost. Moreover, the issue with soundness
remains also in case of parallel repetition since for some high min-entropy sources an accepting
proof of a false statement can be produced with probability 1.

On the positive side, equipped with our constructive results about obtaining a convSR-source
from a SHELA source, we show that assuming a public SHELA source, non-interactive witness
indistinguishable proofs exist by just using a parallel repetition of any public-coin ZAP4.

Non-interactive commitments from one-way functions and SHELA sources. In a
commitment scheme, sender and receiver interact in a commitment phase so that the (even mali-
cious) sender can later on show only one message consistent with such interaction, while the (even
malicious) receiver has no specific advantage in detecting the message committed by the sender.
The security property for the receiver is called “binding” while the security for the sender is called
“hiding”.

Non-interactive commitments guarantee that the sender has to work only once to produce a
commitment of a message, while instead this commitment can be used to convince any receiver
about the committed message. We focus on statistically binding commitments where, except with
negligible probability, there is a unique message that is consistent with the transcript of the commit-
ment phase, regardless of the computational power of the (even malicious) sender. A commitment
scheme is “public coin” if the receiver sends only random strings.

Public-coin statistically binding commitment schemes in two rounds exist under the minimal

4Notice that we are considering generic weak sources and it is unknown whether such distributions can all be
efficiently simulatable. Consequently we cannot obtain a non-interactive zero knowledge proof.
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assumption of the existence of any one-way function [13]. A natural question is whether, given any
public-coin 2-round commitment scheme from one-way functions, the receiver can just be replaced
by a sample from a high min-entropy source, therefore obtaining a non-interactive commitment
scheme relying on the existence of SHELA sources5. We show that the answer is in general negative,
by providing a variation of the construction of [13] where the binding property breaks down when
the first round is sampled from a specific SHELA source. Moreover, parallel repetitions do not help
to obtain binding. The construction of [13] can become non-interactive using any SHELA source,
however in this last case there is a price to pay in communication complexity since the size of the
resulting non-interactive commitment scheme is equal to the size of the SHELA source X.

The real good news come from using our tool: a convSR-source extracted from a SHELA source
(without adding any computational assumption). Indeed, in this case we can get a non-interactive
statistically binding commitment scheme just by running a parallel repetition of any public-coin
2-round statistically binding commitment scheme. When applied to the scheme of [13], we can
get better communication complexity compared to the previously described approach that consists
of using a SHELA source directly. Indeed, consider a 2-round statistically binding commitment
scheme where the first round of the receiver (in the commitment phase) consists of λ bits, and let
us assume that in each high min-entropy honest block of a 2-out-of-` SHELA there are k bits of
min-entropy, where k � λ. If Y = SomeExt(X) ∈ {0, 1}m·L for L = ` − 1 and we set m = λ (by
truncation), then |Y | = m ·L� n · ` = |X|. Therefore, with the parameters discussed above, if we
instantiate the scheme of [13] using X directly, the resulting non-interactive commitment scheme
has significantly worse communication complexity than the one built from the convSR-source.

Additional contributions. In this work, we also consider an online variant of a SHELA source.
This modified source admits a stronger adversarial model. Recall that in a standard SHELA source
the adversary must decide the positions of the honest blocks a priori, i.e., before any honest block
is sampled. In contrast, the adversary in an online SHELA source is allowed to decide whether the
i-th block should be honest or corrupted based on the values of the first through (i− 1)-th blocks
that have already been generated, and constrained by the fact that there must be at least t honest
blocks in the source. In particular, the position of the second honest block may depend on the
value of the first honest block, which is not possible in the standard SHELA model. Notably, we
show that under this stronger adversarial setting our extraction procedure still works and outputs
a convSR-source.
Applications of convSR-sources in pseudorandomness. We would like to point out that
the convSR-sources are also very useful in a context different than those already presented. In-
deed, convSR-sources are key intermediate objects in several constructions of multi-source and
non-malleable randomness extractors for weak sources. A central approach in such constructions is
to reduce the task of extracting a uniform string from independent weak sources to that of extracting
such a string from one or more independent convSR-sources potentially satisfying a few additional
properties, sometimes coupled with additional independent weak sources or small uniform seeds.

The connection between multi-source extraction and convSR-sources has been known since they
were first defined [14]. convSR-sources have also been used in early constructions of seeded extrac-
tors [15].

Barak et al. [16] and Raz [17] showed how to convert two independent weak sources into an
convSR-source with few blocks. This reduction was then used directly to obtain 3- and 4-source
extractors with constant error. Such an approach has also proved useful in the construction of
dispersers [16, 18].

To obtain extractors for a constant number of sources with lower error and min-entropy re-

5We recall that obviously a SHELA source is also a high min-entropy source.
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Figure 2: The somewhere-extraction procedure for a SHELA source with honest blocks with high
min-entropy. In the diagram, B1, . . . , B4, . . . are blocks of a single SHELA source, and Ext(X,S)
is a strong seeded extractor with seed S and input source X.

quirement nΩ(1), Rao [19] transforms independent input sources into several independent aligned
convSR-sources, i.e., there is at least one position at which all convSR-sources have a uniform
block. If the number of blocks in each convSR-source is not too large, then an iterative procedure
succeeds in extracting a uniform string from such independent aligned convSR-sources with small
error. Li [20] also used a similar approach with aligned convSR-sources to obtain better 3-source
extractors.

An important step in many recent constructions of 2- and 3-source extractors [21, 22, 23, 10, 24,
25] consists in generating convSR-sources with many “good” blocks (i.e., blocks close to uniform)
which additionally satisfy a notion of w-wise independence for an appropriate parameter w: Every
set of w good blocks is also close to jointly uniformly distributed. convSR-sources are also used in
other recent constructions of multi-source extractors [26, 27].

The usefulness of convSR-sources extends to more recent notions of randomness extraction. In
fact, convSR-sources have been used in the construction of seedless non-malleable extractors [28]
for weak sources, which are closely connected to non-malleable codes.

The ubiquity of convSR-sources (generated from weak sources) in extractor constructions pro-
vides one more compelling reason for our study of lower bounds for deterministic somewhere-
extraction from weak sources.

Finally, we should mention that, because of the close connection between convSR-sources and
randomness extraction from general weak sources, several works other than those already men-
tioned have focused directly on designing randomness extractors for the restricted class of convSR-
sources [29, 30, 31, 32, 33]. Such extractors are usually called mergers.
Deterministic randomness extraction from restricted classes of sources. Our work is
also related to the fundamental and well-studied problem of deterministic randomness extraction.
Given the impossibility of deterministic extraction from general weak sources, the following nat-
ural question arises: Under which conditions is deterministic randomness extraction possible from
imperfect sources of randomness?
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Figure 3: The simplified somewhere-extraction procedure for a SHELA source with honest blocks
with low min-entropy. In the diagram, B1, . . . , B3, . . . are blocks of a single SHELA source, and
Ext(X,S) is a strong seeded extractor with seed S and input source X. Please note that, for sake
of clarity, the diagram is a slight simplification of our construction.

Several works (some even predating the definition of weak sources [1]) have studied this question
from various perspectives. Some works have considered deterministic randomness extraction from
streams of bits generated i.i.d. with unknown bias [34, 35], or according to a Markov chain [36].
In a parallel line of research, settings where some input bits may be (adversarially or not) fixed,
while the remaining ones are random, has also been considered [37, 38, 39, 40, 41, 42, 43, 44, 45,
46]. Other classes of sources considered in the context of deterministic extraction include sources
with efficient sampling procedures [47, 48] or sampled in small space [49], sources defined over
subspaces [50, 51, 44, 52, 53, 54, 55, 24], sources determined by zero sets of polynomials [56, 57],
sources sampled by Turing machines [58] or small circuits [59], and sets of independent weak sources
(already discussed in this section). Some works have constructed such extractors for subclasses of
Santha-Vazirani sources [60, 61], which are known not to admit deterministic extraction in general.
We note that Bentov, Gabizon, and Zuckerman [62] studied deterministic randomness extraction
from the blockchain of Bitcoin, which has some connections to our model. However, their focus is
on standard deterministic extraction, instead of somewhere-extraction. They show that standard
deterministic extraction is impossible against an adversary with an unbounded budget, and then
study the same problem against a “budget-constrained” adversary.

Although we are not dealing with standard randomness extraction like most of the works above,
we present a result of a similar flavor: The restricted (and practically motivated) class of SHELA
sources allows for deterministic somewhere-extraction with much better parameters than the class
of weak sources.

1.2 Technical Overview on Deterministic Somewhere-Extraction from SHELA
and Weak Sources

Impossibility of deterministic extraction from SHELA sources. We show that if at most a
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γ-fraction of the ` blocks in a SHELA source are honest, where γ ∈ [0, 1) is an arbitrary constant,
and ` is a large enough constant depending on γ, then deterministic randomness extraction is
impossible from this class of SHELA sources. Notably, this impossibility result holds even if we
allow the honest blocks to be uniformly distributed, instead of only requiring them to have enough
min-entropy.

This result is obtained by reducing the problem of deterministic extraction from SHELA sources
to the problem of deterministic extraction from so-called resettable sources, introduced in [62]. In
the same work, the latter problem has been shown to be closely related to deterministic extraction
from Santha-Vazirani (SV) sources [63], which is widely known to be an impossible task. For more
details we refer to Section 3.1.

Constructions of somewhere-extractors for SHELA sources. Our constructions of somewhere-
extractors for SHELA sources are mainly based on the following trick, which we illustrate for a
SHELA source with three blocks B1, B2, B3, two of which are honest. If we applied the naive
somewhere-extractor previously discussed with a 2-source extractor, we would obtain a convSR-
source with three rows. Recall that one of our main goals is to reduce the total number of blocks
in the resulting convSR-source as much as possible due to efficiency concerns. With this in mind,
instead of applying the naive somewhere-extractor, we can notice that there are two cases:

- B3 is honest. Then, B3 and (B1, B2) are two independent weak sources. This means we can
extract randomness from the two sources (B1, B2) and B3;

- B3 is not honest. Then, B1 and B2 are honest, and hence are independent weak sources. In
this case, we can extract randomness from the two sources B1 and B2.

For the sake of this example, let Ext1 and Ext2 be two-source extractors, and compute Ext1((B1, B2), B3)
and Ext2(B1, B2).6 The key observation, stemming from the two cases above, is that we are guar-
anteed that at least one of the two outputs is close to uniformly distributed. As a result, we obtain
a convSR-source with two rows instead of three.

As already mentioned, we design explicit somewhere-extractors in two main settings. Our
first, simpler, somewhere-extractor can be applied whenever the underlying SHELA source has
t ≥ 2 honest n-bit blocks with min-entropy k = (1 − γ)n for a small enough constant γ > 0.
The construction is a generalization of the reasoning we presented for three blocks above, and a
diagram is presented in Figure 2. It proceeds by iteratively using a strong seeded extractor to
extract randomness from ever-growing sequences of blocks (using another block as a seed). A
bit more precisely, if X ∈ {0, 1}n·` is a SHELA source and X = (B1, B2, . . . , B`), then for every
i = 2, 3, . . . , ` we consider

B′i = Exti((B1, . . . , Bi−1), Bi), (2)

where (B1, . . . , Bi−1) acts as the input weak source, Bi acts as the seed, and Exti is an appropriate
strong seeded extractor. Then, we set SomeExt(X) = (B′2, . . . , B

′
`). A diagram of the construction

can be found in Figure 2. The first problem we run into is that in usual applications of seeded
extractors, the seed is uniformly distributed. This is not the case here, since, even if Bi is an
honest block, it is only guaranteed to have min-entropy (1 − γ)n. However, it is not hard to
show, using the strongness of the extractor, that using a source with high min-entropy as the
seed is sufficient. Another issue we encounter is that we are reutilizing many SHELA blocks when
computing output blocks via (2). This appears to be at odds with the requirement that good output

6In reality, we are able to use strong seeded extractors (for which we know much better explicit constructions) in
place of two-source extractors. This is due to the disproportion in the size of the sources. In fact, the size of one of
the sources given to the extractor grows linearly with the total number of blocks.
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blocks should be close (in statistical distance) to independent and uniformly distributed. A careful
conditioning argument, again exploiting the strangeness of the extractor, shows that independence
and uniformity are actually attained with small error. In fact, whenever Bi is honest and there is
an honest block in (B1, . . . , Bi−1), we succeed in generating (with small error) a new good block
of the output convSR-source. Instantiating this construction with the nearly-optimal GUV strong
seeded extractor [64] and assuming the SHELA source X ∈ {0, 1}n·` has t honest blocks, we output
a distribution Y ∈ {0, 1}m·L that is (t ·2−Ω(n))-close to a T -out-of-L convSR-source with m = Ω(n).
Moreover, from the discussion above it follows that L = `− 1 and T = t− 1.

In the second setting, we consider deterministic somewhere-extractors for SHELA sources with
honest blocks having arbitrary constant min-entropy rate k/n. In other words, we allow the min-
entropy requirement k of honest blocks to satisfy k = δn for arbitrarily small δ > 0. Notably,
in this significantly harder setting we are able to obtain essentially the same parameters as the
somewhere-extractor for the high min-entropy setting detailed above. In fact, all parameters remain
unchanged, except that now we cannot guarantee that L = `− 1, and instead have the (still highly
desirable) relationship L = O(`). The main barrier towards making the previous construction work
in this setting is that if honest blocks do not have high min-entropy, they can no longer be used as
seeds for strong seeded extractors. This issue is surpassed by using the somewhere-condenser for
weak sources from [17, 16]. Intuitively, a somewhere-condenser is to a randomness condenser as a
deterministic somewhere-extractor is to an extractor. On input a weak source with low min-entropy,
the somewhere-condenser SomeCond outputs (with small error) a constant number of (sufficiently
long) blocks with the guarantee that at least one block has very high min-entropy rate. Because
the focus is not on extraction of perfect randomness, somewhere-condensers for weak sources are
allowed to have much better parameters than somewhere-extractors for the same class of sources.
We modify the construction for honest blocks with high min-entropy above by adding a first step
of somewhere-condensation for each block of the input SHELA source, as detailed in Figure 3.
We show that our somewhere-extractors designed for SHELA sources can also be applied to online
SHELA sources as is to extract convSR-sources (for full definitions and discussion please see Section
4).

Lower bounds for deterministic somewhere-extraction from weak sources. We consider
the natural problem of understanding the performance of somewhere-extractors for weak sources,
and derive a set of lower bounds which show that, particularly for parameters relevant to cryp-
tographic applications, every somewhere-extractor (regardless of efficiency) for weak sources must
have significantly worse parameters than the somewhere-extractors we obtain for the class of SHELA
sources. As previously discussed, these negative results for weak sources are strong enough that
they preclude the use of convSR-sources generated from weak sources in efficient cryptographic
protocols.

Suppose SomeExt : {0, 1}ñ → {0, 1}m·L is a somewhere-extractor for (ñ, k)-sources7. We begin
by noting that a simple reasoning analogous to the proof of impossibility of deterministic extraction
from weak sources immediately shows that L = Ω(ñ − k). Our first non-trivial lower bound is
obtained by relating a somewhere-extractor to a disperser (for weak sources). Roughly speaking, a
disperser is a fundamental pseudorandom object that transforms a weak source and a short uniform
seed into an output distribution that hits every appropriately large subset of the output space with
non-zero probability. Optimal seed length lower bounds are known for dispersers [11]. We show
that if SomeExt : {0, 1}ñ → {0, 1}m·L is a somewhere-extractor for (ñ, k)-sources with error ε, then

7The set of (ñ, k)-sources consists of all weak sources over {0, 1}ñ with min-entropy at least k. We use ñ to avoid
confusion with the block length of SHELA sources.
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the function G : {0, 1}ñ × [L]→ {0, 1}m given by

G(x, i) = SomeExt(X)i

is a disperser with seed length logL and error ε. This immediately leads to a lower bound on the
number L of output blocks of SomeExt (excluding a minor technicality that does not affect the
quality of the lower bound),

L = Ω

(
ñ− k

max(ε, 2−m)

)
. (3)

This means, as discussed in more detail in Section 5, weak sources behave exponentially worse than
comparable SHELA sources for somewhere-extraction in the linear output block length regime.

Note that the two lower bounds in the previous paragraph do not give anything when k ≈ ñ
and m is small. This naturally leads us to consider lower bounds for L in an extreme 1-bit block
setting with k = ñ − 1 and m = 1. Although we do not obtain a lower bound for extraction of
convSR-sources in this extreme regime, we are able to prove a non-trivial lower bound that scales
with the error for the harder, but related, task of extracting an SR-source from a weak source (not
a convex combination of SR-sources as before). Note that, in particular, the naive somewhere-
extractor obtained by enumerating the seed of a strong extractor satisfies this property. To be
precise, we show that in this setting we must have

L = Ω

(
log

(
1

max(ε, 2−k)

))
. (4)

The lower bound in (4) is obtained by an adaptive version of the basic argument for the impossibility
of deterministic extraction from weak sources. Given a candidate function F : {0, 1}ñ → {0, 1}L,
our goal is to show the existence of a weak source X? with enough min-entropy such that every
bit F (X?)i is sufficiently biased. We begin by setting X?

0 to be uniformly distributed over {0, 1}ñ,
and analyze its performance w.r.t. F . If Fi(X

?
0 ) is the first bit close to uniform, we remove an

appropriate set of elements from the support of X?
0 to obtain X?

1 such that Fi(X
?) biased enough.

Then, we repeat the reasoning with the new source X?
1 and so on, until every bit is biased8. Then,

L must be large enough to ensure the outcome X? of this process has too small support (and hence
does not satisfy the min-entropy requirement of F ), which yields the lower bound.

With these bounds in mind, it is natural to consider whether arguments that yield lower bounds
of this type on the seed length of extractors, more precisely the granularity argument of Nisan and
Zuckerman [65, Theorem 3] and the techniques due to Radhakrishnan and Ta-Shma [11, Section
2.2], could be extended to the setting of somewhere-extraction. Unfortunately, such arguments
crucially rely on the ability of picking a seed at random: There, one is only worried about showing
that the bias is large enough on average, while we must show that the bias is large enough for every
choice of the seed9.

1.3 Technical Overview on Non-Interactive Proof Systems and Commitments
from Public SHELA Sources

Non-interactive (publicly verifiable) witness indistinguishable proof system. We will
now describe how to construct a non-interactive (and therefore publicly verifiable) Witness In-
distinguishable (WI) proof system Πpv from a public SHELA source X and starting with the

8When biasing the next coordinates, we have to be careful not to ’spoil’ biases of previous coordinates. This
results in the log factor in the bound.

9By seed we mean i in Fi(X
?).
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existence of a public-coin ZAP Π. Πpv works as follows: The prover of Πpv receives X and runs the
somewhere-extractor SomeExt on X to obtain (R1, . . . , RL). Then, the prover on input the witness
w for the statement x computes a second-round πi from Π using Ri for i = 1, . . . , L. The verifier
of Πpv, having access to X, also computes (R1, . . . , RL) = SomeExt(X), and accepts the proof only
if all pairs (Ri, πi) are accepting by the verifier of Π w.r.t. the statement x. Observe that WI of
Π is preserved under parallel composition and holds even when the first round of Π is chosen by
a malicious verifier. Therefore, Πpv also enjoys the WI property. The soundness of Πpv is based
on the observation that T blocks of (R1, . . . , RL) are negligibly close to a uniform distribution over
{0, 1}m. Denote them by RI1 , . . . , RIT . Then, the soundness of Π ensures that a malicious prover
could not cheat when the second round of Π is computed w.r.t. RI1 , . . . , RIT .

As a result, using known constructions of public-coin ZAPs, we are able to construct a non-
interactive WI proof system from trapdoor permutations that requires as a set-up a SHELA source
only. Notice that a SHELA source is a CRS that can be corrupted (in a natural, structured
manner) by an unbounded adversary. Still, we assume that the adversarial verifier can run only
in polynomial time to distinguish the witness, even though he does not have such restriction when
affecting the sample from the public SHELA source. Previous constructions of non-interactive WI
proof systems either require a common random string as set-up, or were based on specific number-
theoretic hardness assumptions in bilinear groups [66, 67], or on indistinguishability obfuscation
and one-way permutations [68].

From another point of view, one can see our result as a Non-Interactive (NI) WI proof system
where the soundness and the WI property hold even when the set-up phase is partially generated
by the adversary. We note that the work of [69] investigates if soundness and WI of a NIWI proof
system hold even when the adversary takes complete control of the set-up phase. They achieve a
positive result relying on some specific number-theoretic assumption in bilinear groups. Instead,
our NIWI proof system can be instantiated from trapdoor permutations and the adversary has only
a partial control over the set-up.

Notice that [2] studies cryptographic protocols with simulatable security by considering a sim-
ulatable CRS drawn from a high min-entropy distribution. In this work we do not assume that
public sources of randomness are simulatable and we do not investigate simulatable security. Our
CRS is not a generic min-entropy string but instead corresponds to a structured min-entropy source
that is partially controlled by an unbounded adversary.

Given the above construction of a non-interactive WI proof system Πpv, one could argue that a
convSA-source suffices for constructing Πpv. Recall that a convSA-source is a convex combination
of T -out-of-L SA-sources, which consist of L blocks, T of which are independent and 1

poly(n) -close
to uniform in statistical distance, where n is some relevant security parameter. This is because
the soundness of the protocol can be amplified by using the T “good” blocks, which correspond to
independent parallel repetitions of the underlying protocol Π.

In order to adequately compare the performance of the protocol under convSA-extraction from
weak sources and convSR-extraction from SHELA sources, we compare a t-out-of-` SHELA source
X ∈ {0, 1}n·` with honest blocks having linear min-entropy k′ with an arbitrary weak (ñ = n ·`, k =
k′ · t)-source X̃. We are able to show that convSR-sources extracted from X are much better suited
for applications than convSA-sources generated from X̃ in two aspects:

1. Efficiency: The efficiency of Πpv depends on L. It is not hard to see that every convSA-
source extractor for weak sources X̃ must have Ω(ñ) = Ω(n · `) total output blocks (even if
we only require constant error). On the other hand, we can extract convSR-sources from X
with only O(`) blocks.

2. Security: Let us assume that Π requires a first round of m = Ω(k′) bits. Then, we show
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that every efficient, low-error convSA-source extractor for weak sources outputs at most
T = O(k/m) = O(k′ · t/m) good blocks of length m. As a result, if t is constant, it follows
that such an extractor only outputs T = O(1) good blocks. This is not enough to successfully
amplify the soundness of the protocol. Finally, we note that if we build our Πpv starting from
a convSR-source extracted from a t-out-of-` SHELA source with constant t, the analysis of
soundness described in this subsection holds, and therefore Πpv is sound.

Improving the efficiency of [6]. We note that the work of [6] constructs a publicly verifiable
proof system from any blockchain under some assumptions on the min-entropy of honestly generated
blocks. Notably, under the same assumptions the blockchain can be used to implement also an
online SHELA source. In [6], the authors construct a publicly verifiable proof system by apply the
naive somewhere-extractor NaiveSomeExt (that we discussed earlier) to extract a convSR-source
from the blockchain. Therefore our somewhere-extractor SomeExt (instead of NaiveSomeExt) could
be used in their work to immediately improve the efficiency of their proof system. More details are
provided in Section 7.4.

Non-interactive statistically binding commitments. We introduce now a construction of
non-interactive statistically binding commitments from a public SHELA source relying on one-way
functions. This is achieved by making use of any two-round public-coin commitment scheme Πcom

from one-way functions.
First of all we remark that one can not simply replace the first round of Πcom with a sample

from a high min-entropy source. Indeed, start from Πcom and consider a scheme Π′com where: a) the
random string played as first round of Πcom must be twice in length, and b) the sender ignores the
first half of the first round and continues as in Πcom using the second half. It is straightforward to
see that Π′com is a 2-round public-coin statistically binding commitment scheme from any one-way
functions. If we replace the first round of Π′com with the output of a high min-entropy source we
might have that the entire min-entropy is in the first half of the first round and is therefore wasted
completely. The malicious sender could therefore violate binding since it would end up running
Πcom on input a first round with zero min-entropy! Obliviously in this case parallel repetition does
not help.

We now proceed to describe how our scheme Πcompv works starting with any 2-round public-coin
statistically binding commitment scheme (including the above Π′com). Moreover, Πcompv can be run
with efficient parameters because of the use of SomeExt.

Our commitment scheme Πcompv works as follows: First, the sender runs the somewhere-
extractor SomeExt on the public SHELA source X, obtaining SomeExt(X) = (R1, . . . , RL). Then,
the sender on input the message m and Ri (used as the receiver’s first round) computes a com-
mitment comi and the opening information deci using the sender of Πcom, for i = 1, . . . , L. In the
opening phase, the receiver on input dec1, . . . , decL having access to X computes (R1, . . . , RL) =
SomeExt(X), and outputs the message m only if it holds that for all i = 1, . . . , L the message
committed in comi is m. Hiding of our scheme holds from the observation that hiding is preserved
under parallel composition and when the first round of Πcom is chosen by a malicious receiver. The
binding of Πcompv is based on the observation that at least T blocks RI1 , . . . , RIT are negligibly
close to a uniform distribution over {0, 1}m. This implies that there are at least T commitments
computed w.r.t. a good block RIj that is statistically close to a first round sent by a receiver of
Πcom. Therefore, from the statistically binding of Πcom it follows that a malicious sender could not
cheat when the commitment is computed w.r.t. RI1 , . . . , RIT .
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1.4 Open Questions

We present some interesting directions for future research:

• Prove (or disprove) Conjecture 46.

• Given any SHELA or convSR source, we can define its rate as number of good10 blocks divided
by total number of blocks. Our constructions from Section 3.2 transform SHELA sources with
rate t/` into convSR-sources with rate t−1

`−1 ≤
t
` . We conjecture that the rate of the output

convSR-source cannot be larger than t/`.

• Find good bounds on the number of output blocks of convSA-source extractors for weak
sources.

1.5 Organization of the Paper

We introduce relevant notation and definitions in Section 2. SHELA sources are defined in Sec-
tion 3, and deterministic somewhere-extractors are presented in Section 3.2. Lower bounds for
somewhere-extraction are studied in Section 5, and the limits of SA-source extraction are consid-
ered in Section 6. Detailed arguments, along with standard definitions and lemmas, have been
deferred to the supplementary material.

2 Preliminaries and definitions

2.1 Notation

Sets are usually denoted by calligraphic letters such as S and I. Random variables are usually
denoted by uppercase letters such as X, Y , and Z. We may identify a random variable X with
its distribution. The support of a distribution X is denoted by supp(X). We denote the uniform
distribution over {0, 1}m by Um. We may write X ∼ Y to denote that X has the same distribution
as Y . All logarithms log are taken to base 2. The Shannon entropy of a distribution X is denoted by
H(X), and we denote the binary entropy function by h. The notation poly(n) denotes an arbitrary
polynomial in n. We denote a negligible function of a parameter n by negl(n).

2.2 Statistical Distance and Min-Entropy

In this section, we define statistical distance and min-entropy, along with useful results.

Definition 1 (Statistical distance). Given two distributions X and Y over a set X , the statistical
distance between X and Y , denoted by ∆(X;Y ), is defined as

∆(X;Y ) = max
S⊆X
|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]|.

We may write ∆(X;Y |Z) as shorthand for ∆(X,Z;Y,Z), and say that X and Y are ε-close,
also written X ≈ε Y , if ∆(X;Y ) < ε. For a random variable X ∈ {0, 1}, we informally call
∆(X;U1) = |Pr[X = 1]− 1/2| the bias of X.

The following is a well-known result about couplings and statistical distance.

10For a SHELA source, a good blocks correspond to honest blocks, while they correspond to jointly uniform blocks
in convSR-sources.
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Lemma 2. Given two distributions X and Y , it holds that

∆(X;Y ) = inf{Pr[P 6= Q] : P ∼ X,Q ∼ Y }.

Moreover, there is a coupling (P,Q) with P ∼ X and Q ∼ Y such that ∆(X;Y ) = Pr[P 6= Q].

Definition 3 (Min-entropy). Given a distribution X over X , the min-entropy of X, denoted by
H∞(X), is defined as

H∞(X) = − log

(
max
x∈X

Pr[X = x]

)
.

Definition 4 (Conditional min-entropy). Given distributions X and Z, we define the conditional
min-entropy of X given Z, denoted by H̃∞(X|Z), as

H̃∞(X|Z) = − log

(
Ez←Z

[
max
x∈X

Pr[X = x|Z = z]

])
.

We state a fundamental property of the conditional min-entropy.

Lemma 5 ([70]). Given distributions X, Y , and Z where |supp(Y )| ≤ 2λ, we have that

H̃∞(X|Y, Z) ≥ H̃∞(X,Y |Z)− λ ≥ H̃∞(X|Z)− λ.

The following connection between the statistical distance and the Shannon entropy, H(·), will
be useful.

Lemma 6 ([71, Theorem 6]). Fix X,Y ∈ {0, 1}m such that X ≈ε Y for some ε ≤ 1− 2−m. Then,
it holds that

|H(X)−H(Y )| ≤ h(ε) + εm,

where h(ε) = −ε log ε− (1− ε) log(1− ε) is the binary entropy function.

2.3 Weak Sources and Extractors

Two basic objects in pseudorandomness, which have been extensively studied in the literature, are
weak (n, k)-sources and (seeded) extractors. We proceed to define both.

Definition 7 ((n, k)-source). A distribution X over {0, 1}n is said to be an (n, k)-source provided
that H∞(X) ≥ k. Furthermore, we say an (n, k)-source is flat if it is uniformly distributed over a
set of size at least 2k.

Definition 8 (Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to be a strong
(k, ε)-extractor if

Ext(X,Ud), Ud ≈ε Um, Ud
for every (n, k)-source X and Ud independent of X.

Moreover, a function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to be an average-case strong
(k, ε)-extractor if

Ext(X,Ud), Ud,W ≈ε Um, Ud,W

for every X and W such that H̃∞(X|W ) ≥ k, and Ud independent of X and W .

Average-case strong and strong extractors are closely related, as evidenced by the following
well-known result.
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Lemma 9. If Ext is a strong (k, ε)-extractor, then Ext is an average-case strong (k+log(1/η), ε+η)-
extractor for every η > 0.

The following tight lower bound on the seed length of an extractor will be relevant when
discussing lower bounds for somewhere-extraction from weak sources.

Lemma 10 ([11]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. If ε ≤ 1/2, then
d ≥ log(n− k) + 2 log(1/ε) +O(1).

We now describe an explicit strong extractor with near-optimal parameters that will be useful
when instantiating our constructions of somewhere-extractors for SHELA sources.

Lemma 11 ([64]). For every constant α > 0, all k ≤ n and ε > 0 there exists an explicit strong
seeded (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = log n + O(log(k/ε)) and m =
(1− α)k. The hidden constant in the expression for d depends on α.

We will need to handle cases where the seed for the strong extractor is not uniform, but rather it
is only known to have high min-entropy. The following simple lemma states that strong extractors
still work under such imperfect seeds, provided not much min-entropy is lost.

Lemma 12. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be an average-case strong (k, ε)-extractor, X and
W such that H̃∞(X|W ) ≥ k, and S an independent (d, k′)-source. Then, we have

Ext(X,S), S,W ≈ε·2d−k′ Um, S,W.

Proof. Since every (d, k′)-source is a convex combination of flat sources with min-entropy k′, without
loss of generality we may assume that S is uniformly distributed over a set S ⊆ {0, 1}d of size 2k

′
.

Since Ext is an average-case strong (k, ε)-extractor, we have

∆(Ext(X,Ud);Um|Ud,W ) =
∑

s∈{0,1}d
2−d∆(Ext(X, s);Um|W ) ≤ ε.

This means that

ε ≥
∑
s∈S

2−d∆(Ext(X, s);Um|W )

= 2k
′−d
∑
s∈S

2−k
′
∆(Ext(X, s);Um|W )

= 2k
′−d∆(Ext(X,S);Um|S,W ),

and so the desired result follows.

2.4 Dispersers

In this work we will also exploit properties of another pseudorandom object, called a disperser, when
proving lower bounds for somewhere-extraction. The original motivation behind these objects is
the simulation of randomized algorithms with one-sided error from weak randomness.

Definition 13 (Disperser). A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is said to be a (k, ε)-
disperser if

Pr[Disp(X,Ud) ∈ S] > 0

for every (n, k)-source X independent of Ud and every set S ⊆ {0, 1}m of size |S| ≥ ε2m.

The following tight lower bound on the seed length of dispersers will be useful.

Lemma 14 ([11]). Let Disp : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-disperser. If 2−m ≤ ε ≤ 1/2

and 2d ≤ (1−ε)2m
2 (i.e., ε is not trivial), then d ≥ log(n− k) + log(1/ε) +O(1).
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2.5 Somewhere-Random Sources and Somewhere-Extractors

In this section, we define SR- and convSR-sources, along with the notion of a deterministic somewhere-
extractor and a basic result. Standard notions such as statistical distance, min-entropy, weak
(ñ, k)-sources, and extractors are defined in Section 2.2.

Definition 15 (Somewhere-random source). A distribution X = (X1, . . . , XL) over {0, 1}m·L is
said to be a (T, L,m)-somewhere-random source, SR-source in short, if there exist indices i1 <
i2 < · · · < iT such that the tuple (Xi1 , Xi2 , . . . , XiT ) is uniformly distributed over {0, 1}m·T . We
denote the set of all (T, L,m)-somewhere-random sources by SRT,L,m, and the set of all convex
combinations of sources in SRT,L,m by convSRT,L,m.

Definition 16 (Somewhere-extractor). Given a set of sources F over {0, 1}ñ, a function SomeExt :
{0, 1}ñ → {0, 1}m·L is said to be a (T, L, ε)-somewhere-extractor for F if for every X ∈ F there
exists Y ∈ convSRT,L,m such that

SomeExt(X) ≈ε Y.

A simple construction shows that strong (k, ε)-extractors imply the existence of deterministic
somewhere-extractors for the class of general (n, k)-sources with the same error ε.

Lemma 17. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, ε)-extractor, and set {0, 1}d =

{s1, s2, . . . , s2d}. Given x ∈ {0, 1}n, define SomeExt(x) : {0, 1}n → {0, 1}m·2d as

SomeExt(x) = (Ext(x, s1),Ext(x, s2), . . . ,Ext(x, s2d)).

Then, SomeExt is a (1, 2d, ε)-somewhere-extractor for the class of (n, k)-sources.

Proof. Fix an (n, k)-source X. By the strong property of the extractor, there is an index i such
that

SomeExt(X)i = Ext(X, si) ≈ε Um. (5)

Consider Y ∈ SR1,2d,m defined as Yj = SomeExt(X)j for all j 6= i and Yi = Um. Combining (5)
with Lemma 2, it follows that SomeExt(X) ≈ε Y .

The construction from Lemma 17 actually guarantees that a very large fraction of blocks of
Y = SomeExt(X) will be close to uniform over {0, 1}m, provided X is an (n, k)-source. However,
there is no guarantee that any pair of blocks (Yi1 , Yi2) will be close to uniformly distributed over
{0, 1}2m, as we cannot ensure that such blocks are close to being independent. Therefore, we only
know that Y is ε-close to a (1, 2d,m)-somewhere-random source.

2.6 Somewhere-Condensers

In this section, we introduce somewhere-condensers and related notions.

Definition 18 (Somewhere-entropic source). A distribution X = (X1, . . . , XL) over {0, 1}m·L is
said to be a (T, L,m, k)-somewhere-entropic source if there exist indices i1 < i2 < · · · < iT such
that the random variables Xi1 , Xi2 , . . . , XiT are independently distributed and satisfy H∞(Xij ) ≥ k
for all j. We denote the set of all (T, L, n, k)-somewhere-entropic sources by SET,L,n,k, and the set
of all convex combinations of sources in SET,L,n,k by convSET,L,n,k.

Definition 19 (Somewhere-condenser). A function SomeCond : {0, 1}n → {0, 1}m·` is said to be a
(k, k′, L, ε)-somewhere condenser if for every (n, k)-source X there exists Y ∈ convSE1,L,m,k′ such
that

SomeCond(X) ≈ε Y.
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There exist explicit constructions of somewhere-condensers with a constant number of output
blocks, linear output block length, and exponentially small error for arbitrarily low linear min-
entropy.

Lemma 20 ([17]). For all constants δ, δ′ > 0 there exist constants b, β, ρ > 0 such that for large
enough n there exists an explicit (k, k′, b, ε)-somewhere condenser SomeCond : {0, 1}n → {0, 1}m·b
with k = δn, m = βn, k′ = (1− δ′)m, and ε = 2−ρm.

Remark 1. The version of Lemma 20 presented in [17] is specialized for δ′ = δ. However, inspec-
tion of [17, Lemmas 4.2 and 4.3] shows that the construction works for any constant δ′ > 0, as long
as we allow the constants `, β, ρ to depend simultaneously on δ and δ′. This observation is similar
to the remark in [16] after Theorem 5.2.

2.7 Proof Systems and Commitment Schemes

In this section, we present some definitions related to proof systems and commitment schemes.

Definition 21 (Computational indistinguishability). Let X = {Xm}m∈N and Y = {Ym}m∈N be
ensembles, where Xm’s and Ym’s are probability distributions over {0, 1}l, for some l = poly(m).
We say that X and Y are computationally indistinguishable, denoted X ≈ Y , if for every PPT
distinguisher D there exists a negligible function ν such that for sufficiently large m ∈ N,∣∣∣Pr[t← Xm : D(1m, t) = 1]− Pr[t← Ym : D(1m, t) = 1]

∣∣∣ < ν(m).

Definition 22 (Proof/argument system). A pair of PPT interactive algorithms Π = (P,V) consti-
tute a proof system (resp., an argument system) for an NP-language L if the following conditions
hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RL, it holds that:

Pr[ 〈P(w),V〉(x) = 1 ] = 1.

Soundness: For every interactive (resp., PPT interactive) algorithm P?, there exists a neg-
ligible function ν such that for every x /∈ L and every z:

Pr[ 〈P?(z),V〉(x) = 1 ] < ν(|x|).

Definition 23 (Public coin protocol). An interactive protocol Π = (P,V) is public coin if, at every
round, V simply tosses a predetermined number of coins (i.e., a random challenge) and sends the
outcome to the prover. Moreover, we say that the transcript τ of an execution b = 〈P(z),V〉(x) is
accepting if b = 1.

Definition 24 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Wit-
ness Indistinguishable (WI) for a relation R if, for every malicious PPT verifier V∗, there exists a
negligible function ν such that for all x,w,w′ such that (x,w) ∈ R and (x,w′) ∈ R it holds that:∣∣∣Pr[〈P(w),V∗〉(x) = 1]− Pr[〈P(w′),V∗〉(x) = 1]

∣∣∣ < ν(|x|).
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Definition 25 (Commitment Scheme). Given a security parameter 1m, a commitment scheme
Πcom = (S,R) is a two-phase protocol between two PPT interactive algorithms, a sender S and
a receiver R. In the commitment phase S on input a message m interacts with R to produce a
commitment com, and the private output dec.

In the decommitment phase, S sends to R a decommitment information (m, dec) such that R
accepts m as the decommitment of com.

Formally, we say that Πcom = (S,R) is a statistically binding commitment scheme if the fol-
lowing properties hold:

Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of an
execution of Πcom = (S,R) where S runs on input a message m. Let dec be the private
output of S in this phase.

• Decommitment phase11. R on input m and dec accepts m as decommitment of com.

Computational Hiding : for any PPT adversary A and a randomly chosen bit b ∈ {0, 1},
consider the following hiding experiment ExpbA,Πcom

(m):

• Upon input 1m, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

• S on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any PPT adversary A, there exist a negligible function ν s.t.:∣∣∣Pr[Exp0
A,Πcom

(m) = 1]− Pr[Exp1
A,Πcom

(m) = 1]
∣∣∣ < ν(m).

Statistical Binding: for every commitment com generated during the commitment phase by a
possibly malicious unbounded sender S? there exists a negligible function ν such that S?, with
probability at most ν(m), outputs two decommitments (m0, dec0) and (m1, dec1), with m0 6= m1,
such that R accepts both decommitments.

Definition 26 (Non-Interactive Proof System.). A tuple of PPT algorithms Π = (G,P,V) is a
non-interactive proof system in the CRS model for the NP-language L with witness relation R if it
satisfies the following properties:

Completeness. ∀ x,w s.t. (x,w) ∈ R:

Pr
[
σ ← G(1m), π ← P(σ, x, w) : V(x, π, σ) = 1

]
= 1.

Soundness. ∀ x /∈ L, ∀ adversary P?, there exists a negligible function ν such that:

Pr
[
σ ← G(1m), π ← P?(σ, x) : V(x, π, σ) = 1

]
≤ ν(m).

Definition 27 (Non-Interactive WI Proof System.). A non-interactive proof system Π = (G,P,V)
in the CRS model for the NP-language L with witness relation R is witness indistinguishable (WI)
if it satisfies the following property:

11In this paper we consider a non-interactive decommitment phase only.
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∀ x,w0, w1 s.t. (x,w0) ∈ R and (x,w1) ∈ R, the following two distributions are computationally
indistinguishable:{

π : σ ← G(1m), π ← P(σ, x, w0)

}
,

{
π : σ ← G(1m), π ← P(σ, x, w1)

}
Definition 28 (Non-interactive Commitment Scheme). Consider a message space M and PPT al-
gorithms Π = (G,S,R) where G on input 1m outputs σ, S is the randomized commitment algorithm
that takes as input security parameter 1m, σ a message msg ∈ M and outputs commitment com
and decommitment (msg, dec); R is the verification algorithm that takes as input (σ, com, dec,msg)
and decides whether msg is the decommitment of com. Π is a non-interactive commitment scheme
in the CRS model if it satisfies the following properties.

Correctness. ∀ msg ∈M it holds that:

Pr
[
σ ← G(1m), com← S(1m, σ,msg) :R(σ, com, dec,msg) = msg

]
= 1.

Hiding. For every PPT adversary A there exists a negligible function ν such that, ∀ msg0,msg1 ∈
M it holds that:

Pr

 σ ← G(1m),

b← {0, 1}, : b = A(σ, com,msg0,msg1)

com← S(1m, σ,msgb)

 ≤ 1

2
+ ν(m).

Binding. For every commitment com generated during the commitment phase by a possibly
malicious unbounded sender S there exists a negligible function ν such that S, with probability
at most ν(m), outputs two decommitments (msg0, dec0) and (msg1, dec1), with msg0 6= msg1,
such that R accepts both decommitments.

3 SHELA Sources

In this section, we give a formal definition of Somewhere Honest Entropic Look Ahead (SHELA)
sources, and present explicit constructions of somewhere-extractors with good parameters for this
class of sources.

Definition 29 (SHELA source). A distribution X ∈ {0, 1}n·` is said to be an (n, k, t, `)-SHELA
source if there exist random variables 1 ≤ I1 < I2 < · · · < It ≤ ` with arbitrary joint distribution, t
independent (n, k)-sources Z1, Z2, . . . , Zt, and a (possibly randomized) adversary A such that X is
generated as follows:

1. Sample (i1, i2, . . . , it)← (I1, I2, . . . , It);

2. For each j ∈ [t], set Bij ← Zj;

3. For each i ∈ [`] \ {i1, . . . , it}, A sets Bi = A(B1, . . . , Bi−1, i1, . . . , it);

4. Set X = (B1, B2, . . . , B`).

We denote the set of all such SHELA sources by SHELAn,k,t,`.

We begin by showing that deterministic randomness extraction is impossible from SHELA
sources.
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3.1 Impossibility of Deterministic Extraction from SHELA Sources

In this section, we show that deterministic randomness extraction is impossible from SHELA
sources. This is achieved by relating SHELA sources to resettable sources, for which such im-
possibility has already been shown [62].

As a starting point, we state the definition of resettable sources, originally introduced in [62].

Definition 30 (p-resettable source [62]). A distribution X ∈ [a]` is said to be a p-resettable source
if there exists a randomized and computationally unbounded adversary A such that X is generated
as follows:

1. For each i ∈ [n], a uniformly random v ∈ [a] is chosen;

2. With probability 1−p, Xi is set to v and the process moves to i+ 1. Else, the value v is given
to the adversary A, which chooses, based on v and X1, . . . , Xi−1, whether to set Xi = v or
sample a new value v′ ∈ [a] uniformly at random and set Xi = v′;

3. The output is X = (X1, . . . , X`) ∈ [a]`.

The following lemma was proved in [62]. It states that deterministic extraction with sub-
constant error from p-resettable sources is impossible for any p, and it is obtained by relating
resettable sources to Santha-Vazirani sources.

Lemma 31 ([62, Theorem 3.5]). For every function F : [a]` → {0, 1} and any 0 < p ≤ 1 there
exists a p-resettable source X such that F (X) 6≈p/12 U1.

We prove the impossibility of deterministic extraction from SHELA sources with the help of
Lemma 31.

Theorem 32. For every function F : {0, 1}n·` → {0, 1}, any constant 0 ≤ γ < 1, and ` ≥ c(γ)
for c(γ) a large enough constant depending on γ, there is an (n, n, bγ · `c, `)-SHELA source X such
that F (X) 6≈ 1−γ

48
U1.

Proof. Fix a function F as in the theorem statement, write γ = 1− 2p for a constant p ∈ (0, 1/2],
and let Z be the p-resettable source guaranteed by Lemma 31 with [a] = {0, 1}n.

According to the process generating Z, we may picture that the blocks which cannot be resam-
pled by the adversary A are chosen a priori and independently with probability 1−p. Let S be the
set of indices of blocks which cannot be resampled. Then, we have E[|S|] = (1− p)`. Therefore, by
a Chernoff bound we conclude that

Pr[|S| ≤ (1− 2p)` = γ · `] ≤ exp

(
−γ

2`

4

)
≤ p/24, (6)

where the last inequality holds provided ` is large enough depending only on γ. Consider the event
E1 corresponding to |S| ≥ γ · ` and its complement E2. Let Zi denote the random variable Z
conditioned on Ei for i = 1, 2.

We now show that Z1 is an (n, n, t = bγ · `c, `)-SHELA source. Then, we will show that if Z is
highly biased, then so is Z1. This concludes our proof with X = Z1. Let A denote the adversary
associated to Z. Sample S ⊆ [`] by including each i ∈ [`] independently with probability 1 − p,
conditioned on E1. Then, sample I1, . . . , It by choosing t elements of S uniformly at random, and
sample the blocks at those locations uniformly at random from {0, 1}n. To generate the remaining
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blocks, consider the following adversary A′: If i ∈ S, then A′ samples the block uniformly at
random. Else, A′ behaves like A given the values of the previous blocks. The random variable
generated by this process is an (n, n, t = bγ · `c, `)-SHELA source, and is identically distributed to
Z1, as desired.

It remains to show that F (Z1) 6≈p/24 U1. We have

p/12 ≤ ∆(F (Z);U1)

≤ Pr[E1] ·∆(F (Z1);U1) + Pr[E2] ·∆(F (Z2);U1)

≤ ∆(F (Z1);U1) + p/24,

where the third inequality holds because Pr[E2] ≤ p/24 by (6). This implies ∆(F (Z1);U1) ≥
p/12− p/24 = p/24. The desired result follows by noting that p = 1−γ

2 .

3.2 Deterministic Somewhere-Extractors for SHELA Sources

In this section, we construct deterministic somewhere-extractors for regular SHELA sources. For
deterministic somewhere-extraction from online SHELA sources, the reader is referred to Section 4.

3.2.1 Honest Blocks with High Min-Entropy

In this section, we consider the case where each honest block in a SHELA source has min-entropy
(1 − γ)n for some sufficiently small constant β > 0. The following result states that an explicit
somewhere-extractor with exponentially small error and linear output block length exists for such
SHELA sources. Notably, it is also the case that if the number of honest input blocks is t and the
total number of input blocks is `, then the number of uniform output blocks is T = t− 1 and the
number of total output blocks is L = `− 1.

Theorem 33. There exists a small enough constant γ > 0 such that for n large enough and
2 ≤ t ≤ ` ≤ poly(n) there exists an explicit (t − 1, ` − 1, ε′)-somewhere extractor SomeExt :

{0, 1}n·` → {0, 1}m·(`−1) for SHELAn,k′,t,` with k′ = (1− γ)n, m = (1−7γ)n
3 , and ε′ = 2(t− 1) · 2−γn.

The construction we use to prove Theorem 33 makes use of the following objects: For i ∈
{2, . . . , `}, let Exti : {0, 1}n·(i−1) × {0, 1}n → {0, 1}m be an average-case strong seeded (k, ε)-

extractor with k = 2k′/3, k′ = (1 − γ)n, m = (1−7γ)n
3 and ε = 2−2γn for a small enough constant

γ > 0. These can be obtained by using the explicit GUV extractor [64] with appropriate parameters.
In fact, let Exti be the GUV extractor from Lemma 11 with α = 1/2, k = 2k′/3, k′ = (1− γ)n,

m = (1−7γ)n
3 and ε = 2−2γn for a constant γ > 0 small enough such that the required seed length

d = log(n · (i− 1)) + Cα log(k/ε) ≤ log `+ 2Cα(log n+ log(1/ε))

satisfies d ≤ n for all i and n large enough. This choice of parameters is possible because m =
(1−7γ)n

3 < k/2 = (1−γ)n
3 and since ` ≤ poly(n). By Lemma 9 with η = ε, it holds that Exti is an

average-case strong (k = k + 2γn, ε = 2ε)-extractor. Note that the extractor still works with a
larger seed length than d by restricting it to use the first d bits of the seed only.

We are now ready to describe our construction of the somewhere-extractor SomeExt : {0, 1}n·` →
{0, 1}m·(`−1) forX ∈ SHELAn,k,t,`. First, writeX = (B1, B2, . . . , B`). Then, the output SomeExt(X)
can be written as SomeExt(X) = (B′2, B

′
3, . . . , B

′
`), where each B′i is obtained as

B′i = Exti((B1, B2, . . . , Bi−1), Bi) ∈ {0, 1}m. (7)

The following lemma is the key component of our proof of Theorem 33 using the construction
of SomeExt detailed above.
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Lemma 34. Let X ∈ SHELAn,k,t,`, and recall I1 < I2 < · · · < It denote the positions of the honest
blocks in X. Then, we have

B′I2 , . . . , B
′
It , I2, . . . , It ≈2(t−1)·2−γn U

t−1
m , I2, . . . , It,

where B′i is defined as in (7) and U t−1
m denotes t − 1 independent copies of Um which are also

independent of the remaining random variables.

Proof. It suffices to show that

B′I2 , . . . , B
′
Ij−1

, B′Ij , I2, . . . , It ≈2·2−γn B
′
I2 , . . . , B

′
Ij−1

, Um, I2, . . . , It (8)

for all j ∈ {2, . . . , t}. The desired statement then follows by repeated application of the triangle
inequality. We begin by noting that BIj is independent of all random variables in (8). Moreover,
it holds that

H̃∞(B1, . . . , BIj−1|B′I2 , . . . , B
′
Ij−1

, I2, . . . , It)

≥ H̃∞(BIj−1 |B′I2 , . . . , B
′
Ij−1

, I2, . . . , It)

≥ H̃∞(BIj−1 |B′I2 , . . . , B
′
Ij−2

, I2, . . . , It)−m
= H∞(BIj−1)−m
≥ k′ −m
= k. (9)

The second inequality holds by Lemma 5. The first equality is true because BIj−1 is independent
of B′I2 , . . . , B

′
Ij−2

, I2, . . . , It. The third inequality follows from the min-entropy constraint on the
honest blocks of X.

Finally, to see that (8) holds, it remains to observe that Exti is an average-case strong extractor
with min-entropy requirement k, BIj is independent of B1, . . . , BIj−1, I2, . . . , It, and H∞(BIj ) ≥ k′.
Therefore, if we use BIj as the seed for Exti, then Lemma 20 and the fact that Exti is an average-case

strong (k, ε)-extractor ensure that

Exti(X,BIj ),W ≈2γn·ε=2·2−γn Um,W (10)

for all X and W independent of BIj such that H̃∞(X|W ) ≥ k. Instantiating X and W in (10) as

X = B1, . . . , BIj−1

W = B′I2 , . . . , B
′
Ij−1

, I2, . . . , It,

and recalling (9) and that X and W are independent of BIj yields the desired result.

To conclude the proof of Theorem 33, it suffices to combine Lemma 34 with the following result.

Lemma 35. Let X ∈ {0, 1}`·m and I any random variable over subsets of size T of [L] for some
T ≤ L. Suppose that

XI , I ≈ε UTm, I.

Then, it holds that X ≈ε Y for some Y ∈ convSRT,L,m.

We prove a more general form of this result in Appendix A (Lemma 35 is obtained from
Lemma 58 by setting Z = UTm). Such a result already appears in [16] in a different form, but we
choose to state and prove it here taking into account our setting and notation for the sake of clarity.
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3.2.2 Honest Blocks with Low Linear Min-Entropy

In this section, we construct somewhere-extractors for SHELA sources that have honest blocks
with min-entropy δn for some arbitrarily small constant δ > 0. We show that there is an explicit
somewhere-extractor for such SHELA sources with exponentially small error and linear output
block length. Moreover, if the number of input honest and total blocks are t and `, respectively,
then the number of output uniform and total blocks are T = t− 1 and L = O(`), respectively.

Theorem 36. For every constant δ > 0 there exist constants a1, a2, a3 > 0 such that for n large
enough and all 2 ≤ t ≤ ` ≤ poly(n) there exists an explicit (T, L, ε′)-somewhere extractor SomeExt :
{0, 1}n·` → {0, 1}m·L for SHELAn,k′,t,` with k′ = δn, m = a1 · n, ε′ = 2(t− 1)2−a2·n, T = t− 1, and
L = a3 · `.

We now turn to a precise description of our construction. Fix a constant δ ∈ (0, 1) and consider
the (δn, (1 − γ)n′, b, 2−ρn

′
)-somewhere-condenser SomeCond : {0, 1}n → {0, 1}b·n′ from Lemma 20,

where γ > 0 is a small constant to be determined, n′ ≥ βn, and b, β, and ρ depend only on δ and
γ. For each i = 2, . . . , `, consider also the average-case strong (k, ε)-extractor

Exti : {0, 1}b·n′(i−1) × {0, 1}n′ → {0, 1}m

with ε = 2−2γn′ , k = 2(1−3γ)n′

3 , and m = (1−3γ)n′

3 . These extractors can be instantiated using the
strong GUV extractor [64] with appropriate parameters.

In fact, consider the strong GUV (k, ε)-extractor

Exti : {0, 1}b·n′(i−1) × {0, 1}n′ → {0, 1}m

from Lemma 11 with α = 1/2, ε = 2−2γn′ , k = 2(1−3γ)n′

3 , and m = (1−3γ)n′

3 . We set γ > 0 to be a
small enough constant so that the required seed length

d = log(b · n′(i− 1)) + Cα log(k/ε) ≤ log b+ log `+ 2Cα(log n′ + log(1/ε)) (11)

satisfies d ≤ n′ for large enough n′. It suffices to set γ small enough so that, say, 4Cαγ < 1/2. Ob-
serve that b and β (which come from the somewhere-condenser SomeCond defined in Section 3.2.2)
change with the choice of γ. However, after γ is fixed they become constants and so the right-hand
side of (11) is indeed smaller than n′ for n′ large enough. Moreover, note that m = k/2, and so the
choice of parameters above is possible according to Lemma 11. Finally, recalling Lemma 9 with
η = ε, it follows that Exti is an average-case strong (k, ε)-extractor with k = 2n′/3 = (1− γ)n′−m
and ε = 2ε.

We are now ready to define SomeExt(X) for X = (B1, . . . , B`) ∈ SHELAn,k′,t,`. We write

SomeCond(Bi) = (Bi1, . . . , Bib) ∈ {0, 1}n
′·b.

Then, we have
SomeExt(X) = (B′ij)i∈[`],j∈[b] ∈ {0, 1}m·L

for B′ij defined as
B′ij = Exti((Bi′j′)i′<i,j′∈[b], Bij) ∈ {0, 1}m. (12)

Before we proceed with the proof of Theorem 36 using the construction just described, we need
the following observation. Let Y ∈ convSE1,b,n′,k, which can be written as a convex combination
Y =

∑
j πjYj for some Yj ∈ SE1,b,n′,k. Suppose Yj1 and Yj2 both have blocks with min-entropy
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at least k at position p. Then, any convex combination of Yj1 and Yj2 also has a block with min-
entropy at least k at the same position p. As a result, it follows that we can always write Y as a
convex combination Y =

∑b
j=1 πjYj where Yj has a block of min-entropy at least k at position j.

In particular, there is a random variable J ∈ [b] with Pr[J = j] = πj such that H∞(YJ |J = j) ≥ k
for all j.

For X ∈ SHELAn,k′,t,` as above, let Z1, . . . , Zt denote the values of its honest blocks, and
I1, . . . , It their respective positions. For each i ∈ [t], we have SomeCond(Zi) ≈2−ρn′ Y

i for some Y i ∈
convSE1,b,n′,(1−γ)n′ . Based on the previous paragraph, there exist independent random variables
J1, . . . , Jt ∈ [b] such that H∞(Y i

Ji
|Ji = j) ≥ k for all j.

We begin by showing that, since

SomeCond(BIr) = (BIr1, . . . , BIrb) ≈2−ρn′ Y
r (13)

for some Y r ∈ convSE1,b,n′,(1−γ)n′ and r = 2, . . . , t, we can essentially replace SomeCond(BIr) by

Y r for all r by paying an additive t · 2−ρn′ penalty in statistical distance.

Lemma 37. Let
X1 = (SomeCond(B1), . . . ,SomeCond(B`)).

Then, there is X2 = (X2
1 , . . . , X

2
` ) satisfying:

1. X2
Ir

is distributed as Y r;

2. X2
1 , X

2
2 , . . . , X

2
Ir−1 are independent of X2

Ir
, . . . , X2

It
;

3. (I1, . . . , It) are independent of (X2
I1
, . . . , X2

It
);

4. X1 ≈t·2−ρn′ X
2.

Proof. By (13) and Lemma 2, for each r = 1, . . . , t there is a coupling (X1
Ir
, Qr) such that Qr is

distributed as Y r and Pr[X1
Ir
6= Qr] ≤ ε. Moreover, the Qr’s are all independent of each other.

Consider X2 defined by setting, for each valid fixing I1 = i1, . . . , It = it, X
2
ir

= Qr and X2
i = X1

i for
i 6= i1, . . . , it. We now check that X2 satisfies the desired properties: First, since Qr is distributed
like Y r, so is X2

Ir
by definition. Second, since the Qr’s are independent and X1

i for i 6= i1, . . . , it only
depends on X1

i′ for i′ < i, it holds that X2
1 , . . . , X

2
Ir−1 are independent of X2

Ir
, . . . , X2

It
. Property 3

holds because (I1, . . . , It) are chosen a priori exactly as in X. Finally, since

Pr[X1 6= X2] ≤
t∑

r=1

Pr[X1
Ir 6= X2

Ir ] ≤ t · 2
−ρn′

according to (13), it holds that X1 ≈t·2−ρn′ X
2.

From here onwards we work with X2 instead of X1. We define

X2
i = (Bi1, . . . , Bib),

and
B
′
ij = Exti((Bi′j′)i′<i,j′∈[b], Bij) ∈ {0, 1}m.

To finish the proof, it now suffices to show the following result.
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Lemma 38. We have

∆(B
′
IrJr ;Um|B

′
I2J2 , . . . , B

′
Ir−1Jr−1

, I2, . . . , It, J2, . . . , Jt) ≤ 2 · 2−γn′ (14)

for all r ∈ {2, . . . , t}.

In fact, by combining Lemma 38 and repeated application of the triangle inequality we then
have

∆(B
′
I2J2 , . . . , B

′
ItJt ;U

t−1
m |I2, . . . , It, J2, . . . , Jt) ≤ (t− 1) · 2 · 2−γn′ .

By Lemma 35, this implies that

(B
′
i,j)i∈[`],j∈[b] ≈2(t−1)·2−γn′ Y (15)

for some Y ∈ convSRt′,`′,m. Therefore, since the left hand side of (15) is a deterministic function
of X2 and X1 ≈t·2−ρn′ X

2 by Lemma 37, we conclude that

SomeExt(X) = (B′i,j)i∈[`],j∈[b] ≈2(t−1)·2−γn′+t·2−ρn′ Y.

Note that the positions of the uniform blocks in Y are given by (Ir, Jr) for r = 2, . . . , t. Finally,

setting, say, a1 = β·(1−3γ)
3 , a2 = β·min(γ,ρ)

2 , and a3 = b yields Theorem 36 (recall that β, ρ, and b
are constants after γ is fixed). It remains to prove Lemma 38.

Proof of Lemma 38. We have

H̃∞((Bij)i<Ir,j∈[b]|B
′
I2J2 , . . . , B

′
Ir−1Jr−1

, I2, . . . , It, J2, . . . , Jt)

≥ H̃∞(BIr−1Jr−1 |B
′
I2J2 , . . . , B

′
Ir−1Jr−1

, I2, . . . , It, J2, . . . , Jt)

≥ H̃∞(BIr−1Jr−1 |B
′
I2J2 , . . . , B

′
Ir−2Jr−2

, I2, . . . , It, J2, . . . , Jt)−m

= H̃∞(BIr−1Jr−1 |Jr−1)−m
≥ (1− γ)n′ −m
= k. (16)

The second inequality follows from Lemma 5. The first equality holds because (BIr−1Jr−1 , Jr−1)
is independent of the remaining random variables in the expression by the properties of X2. The
third inequality is true because H∞(BIr−1Jr−1 |Jr−1 = j) = H∞(Y r−1

Jr−1
|Jr−1 = j) ≥ (1 − γ)n′ for

every j, since X2
Ir

is distributed like Y r.
Define the random variables

Z = (Bij)i<Ir,j∈[b]

W = B
′
I2J2 , . . . , B

′
Ir−1Jr−1

, I2, . . . , It, J2, . . . , Jr−1, Jr+1, . . . , Jt

S = BIrJr .

Then, the statement in (14) is equivalent to

Extr(Z, S),W, Jr ≈2·2−γn Um,W, Jr. (17)

Since Jr is independent of W and Z and only affects Extr(Z, S) through S, it is enough to show
that

Extr(Z, S),W, S ≈2·2−γn Um,W, S.

This statement follows from Lemma 12 by noting that Exti is an average-case strong (k, ε = 2·2−γn)-
extractor with seed length n′, Z has enough min-entropy by (16), both Z and the side information
W are independent of S, and H∞(S) ≥ (1− γ)n′ since S is distributed like Y r

Jr
.
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4 Somewhere-Extraction from Online SHELA Sources

In this section, we consider a different type of SHELA source under a stronger adversarial model.
In Definition 29, the adversary must choose the location of the honest blocks before any blocks are
generated. However, one might imagine that the adversary might be able to corrupt blocks during
the generation process.

Motivated by this, we will define another type of source, which we call an Online SHELA source,
that captures this behavior. Specifically, the locations of the honest blocks are no longer chosen a
priori (as in Definition 29), but the adversary is allowed to choose whether a given block is honest
or malicious given the values of all previous blocks. Our only requirement is that exactly t blocks
must be honest at the end of the process. A formal definition follows.

Definition 39 (Online SHELA source). A distribution X ∈ {0, 1}n·` is said to be an online
(n, k, t, `)-SHELA source if there exist t independent (n, k)-sources Z1, Z2, . . . , Zt and a randomized,
computationally unbounded adversary A such that X is generated as follows:

1. Set j = 0 and Hon = {};

2. For i ∈ [`], the adversary A decides whether Bi is honest or malicious based on B1, . . . , Bi−1

and Hon:

If Bi is honest, set j = j + 1, Bi ← Zj, and Hon = Hon ∪ {i};
Else, set Bi = A(B1, . . . , Bi−1,Hon).

3. The process finishes successfully if j = t, in which case we set

X = (B1, B2, . . . , B`).

We denote the set of all such online SHELA sources by onSHELAn,k,t,`.

We showed that deterministic randomness extraction from SHELA sources is impossible in
Section 3.1. We proceed to show that the somewhere-extractors designed for standard SHELA
sources in Section 3.2 can also be applied to online SHELA sources.

When dealing with online SHELA sources, we are only able to extract a special type of 1-out-of-
L convSR-sources, which we call as-you-go somewhere-random sources (in short, AYG-SR-sources).
In general, for T -out-of-L convSR-sources it is the case that a subset of T good blocks is jointly
uniform. However, in AYG-SR-sources we may picture blocks being generated in chronological
fashion, and we only require that the j-th “good” block is uniformly distributed given the values
and positions of all previous good blocks. In particular, the position of a given good block is not
fixed and may depend on the values and positions of other blocks, and that good block may not
be uniformly distributed conditioned on the values and positions of future good blocks. A precise
definition follows.

Definition 40 (As-you-go somewhere-random source). A source

X = (X1, X2, . . . , XL) ∈ {0, 1}m·L

is said to be a (T, L,m) as-you-go somewhere-random source, AYG-SR-source in short, if there exist
random variables 1 ≤ I1 < I2 < · · · < IT ≤ m such that

XIj , XI1 , XI2 , . . . , XIj−1 , I1, . . . , Ij = Um, XI1 , XI2 , . . . , XIj−1 , I1, . . . , Ij

for all j = 1, . . . , T , where Um is independent of the remaining random variables on the right hand
side.
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Similarly to somewhere-random extractors, we can define as-you-go somewhere-extractors as
functions that extract as-you-go somewhere-random sources from a given family of input sources.

Definition 41 (As-you-go somewhere-extractor). Given a set of sources F over {0, 1}ñ, a function
SomeExt : {0, 1}ñ → {0, 1}m·L is said to be a (T, L, ε)-as-you-go somewhere-extractor for F , or
AYG-somewhere-extractor in short, if for every X ∈ F there exists a (T, L,m) AYG-SR-source Y
such that

SomeExt(X) ≈ε Y.

We emphasize that AYG-SR-sources are convSR-sources with one good block. In particular, this
means we can also achieve somewhere-extraction of 1-out-of-L convSR-sources from online SHELA
sources. These sources are already well-suited for several applications.

In this section, we consider the application of the deterministic somewhere-extractors designed
in Section 3.2 to extract AYG-SR-sources (and hence 1-out-of-L convSR-sources) from online SHELA
sources.

We proceed to state the results we obtain for online SHELA sources. As before, we consider
two main settings: Honest blocks with high enough min-entropy, or honest blocks with arbitrarily
low linear min-entropy. We begin with the former.

Theorem 42. There exists a small enough constant γ > 0 such that for n large enough and all
2 ≤ t ≤ ` ≤ poly(n) there exists an explicit (t − 1, ` − 1, ε′)-AYG-somewhere-extractor SomeExt :

{0, 1}n·` → {0, 1}m·(`−1) for onSHELAn,k′,t,` with k′ = (1 − γ)n, m = (1−7γ)n
3 − log `, and ε′ =

2(t− 1) · 2−γn.

Proof. In order to prove the theorem, we make use of the function SomeExt : {0, 1}n·` → {0, 1}m·(`−1)

defined in Section 3.2.1. All the parameters stay the same except for the output length m, which
we set to be m = (1−7γ)n

3 − log ` instead. This is still a valid choice of parameters since m became
smaller.

Let X ∈ onSHELAn,k′,t,` with 1 ≤ I1 < I2 < · · · < It ≤ ` denoting the positions of the t honest
blocks in X. Define (B′2, B

′
3, . . . , B

′
`) = SomeExt(X). We begin by showing that

B′I2 , . . . , B
′
Ij−1

, B′Ij , I1, . . . , Ij ≈ε=2·2−γn B
′
I2 , . . . , B

′
Ij−1

, Um, I1, . . . , Ij (18)

for all j = 2, . . . , t. The proof of (18) follows the same steps as the proof of (8). First, we have

H̃∞(B1, . . . , BIj−1|B′I2 , . . . , B
′
Ij−1

, I1, . . . , Ij)

≥ H̃∞(BIj−1 |B′I2 , . . . , B
′
Ij−1

, I1, . . . , Ij)

≥ H̃∞(BIj−1 |B′I2 , . . . , B
′
Ij−2

, I1, . . . , Ij)−m

≥ H̃∞(BIj−1 |B′I2 , . . . , B
′
Ij−2

, I1, . . . , Ij−1)−m− log `

= H∞(BIj−1)−m− log `

≥ k′ −m− log `

= k. (19)

The second and third inequalities follow from Lemma 5, the first equality holds because BIj−1 is
independent of B1, . . . , BIj−1−1 and I1, . . . , Ij−1, and the fourth inequality follows from the min-
entropy constraint on BIj−1 . Combining (19), the definition of B′Ij , the fact that BIj is independent

of B′I2 , . . . , B
′
Ij−1

, I1, . . . , Ij and satisfies H∞(BIj ) ≥ k′, and Lemma 12 yields (18).
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To wrap up the proof, we construct the desired AYG-SR-source Y by using (18) to replace the
B′Ij ’s by uniformly distributed random variables. From (18) and Lemma 2, we conclude that for

every j there exists Qj coupled with B′I2 , . . . , B
′
Ij
, I2, . . . , Ij such that

(Qj |B′I2 = b2, . . . , B
′
Ij−1

= bj−1, I2 = i2, . . . , Ij = ij)

is distributed as Um for every valid fixing, and Pr[B′Ij 6= Qj ] ≤ ε. Consider Y = (Y2, . . . , Y`)

obtained from (B′2, . . . , B
′
`) by replacing eachB′Ij byQj (and leaving the remaining random variables

as is). Since
B′I2 , . . . , B

′
Ij−1

, Qj , I1, . . . , Ij = B′I2 , . . . , B
′
Ij−1

, Um, I1, . . . , Ij

by definition of the Qj ’s, it holds that Y is a (T = t− 1, L = `− 1,m)-AYG-SR-source. Moreover,
by construction of Y , we have that

Pr[SomeExt(X) 6= Y ] ≤
t∑

j=2

Pr[B′Ij 6= Qj ] ≤ (t− 1) · ε,

and hence SomeExt(X) ≈(t−1)·ε Y , as desired.

We now present the result for honest blocks with arbitrarily low linear min-entropy. The proof
is very similar to that of Theorem 36.

Theorem 43. For every constant δ > 0 there exist constants a1, a2, a3 > 0 such that for n large
enough and all 2 ≤ t ≤ ` ≤ poly(n) there exists an explicit (T, L, ε′)-AYG-somewhere-extractor
SomeExt : {0, 1}n·` → {0, 1}m·L for onSHELAn,k′,t,` with k′ = δn, m = a1 · n − log `, ε′ = 2(t −
1)2−a2·n, T = t− 1, and L = a3 · `.

Proof. In order to prove the theorem, we make use of the function SomeExt : {0, 1}n·` → {0, 1}m·L
defined in Section 3.2.2. All the parameters stay the same except for the output length m, which

we set to be m = (1−3γ)n′

3 − log ` instead. This is still a valid choice of parameters since m became
smaller.

Let X1 = (SomeCond(B1), SomeCond(B2), . . . ,SomeCond(B`)), and recall that we have

SomeCond(BIj ) ≈2−ρn′ Y
j

for j = 1, . . . , t, where Y j ∈ convSE1,b,n′,(1−γ)n′ . Furthermore, it holds that BIj is independent of
B1, . . . , BIj−1, I1, . . . , Ij . Therefore, by a reasoning analogous to the proof of Lemma 37, we can

assume that X1
Ij

is distributed as Y j for j = 1, . . . , t by paying an additive t · 2−ρn′ penalty in
statistical distance.

Define X1
i = (Bi1, . . . , Bib). Our goal now is to show that

∆(B′IrJr ;Um|B
′
I2J2 , . . . , B

′
Ir−1Jr−1

, I2, . . . , Ir, J2, . . . , Jr) ≤ ε = 2 · 2−γn′ (20)

for r = 2, . . . , t, where B′ij = Exti((Bi′j′)i′<i,j′∈[b], Bij) as in (12). If (20) holds for all r, then the
reasoning from the final part of the proof of Theorem 42 shows that there exists a (T, L,m)-AYG-
SR-source Y such that

SomeExt(X) ≈(t−1)·ε+t·2−ρn′ Y.

Note that the positions of the uniform blocks in Y are given by (Ir, Jr) for r = 2, . . . , t.
We proceed similarly to the proof of Lemma 38. We have

H̃∞((Bij)i<Ir,j∈[b]|B′I2J2 , . . . , B
′
Ir−1Jr−1

, I2, . . . , Ir, J2, . . . , Jr)
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≥ H̃∞(BIr−1Jr−1 |B′I2J2 , . . . , B
′
Ir−1Jr−1

, I2, . . . , Ir, J2, . . . , Jr)

≥ H̃∞(BIr−1Jr−1 |B′I2J2 , . . . , B
′
Ir−2Jr−2

, I2, . . . , Ir, J2, . . . , Jr)−m

≥ H̃∞(BIr−1Jr−1 |B′I2J2 , . . . , B
′
Ir−2Jr−2

, I2, . . . , Ir−1, J2, . . . , Jr)−m− log `

= H̃∞(BIr−1Jr−1 |Jr−1)−m
≥ (1− γ)n′ −m
= k. (21)

The second and third inequalities follow from Lemma 5. The first equality holds because the pair
(BIr−1Jr−1 , Jr−1) is independent of the remaining random variables in the expression on the line
above. The fourth inequality is a consequence of our prior assumption that X1

Ir−1
is distributed as

Y r−1, and H̃∞(Y r−1
Jr−1
|Jr−1) ≥ (1− γ)n′.

Define

Z = (Bij)i<Ir,j∈[b]

W = B′I2J2 , . . . , B
′
Ir−1Jr−1

, I2, . . . , Ir, J2, . . . , Jr−1

S = BIrJr .

Then, we conclude that (20) is equivalent to

Extr(Z, S),W, Jr ≈ε Um,W, Jr,

which can be seen to hold by (21) and the properties of Extr analogously to the proof of (17).

Finally, setting, say, a1 = β·(1−3γ)
3 , a2 = β·min(γ,ρ)

2 , and a3 = b as in Section 3.2.2 yields the desired
result.

5 Lower Bounds for Deterministic Somewhere-Extraction from
Weak Sources

In this section, we study lower bounds for somewhere-extractors that work for the general class
of weak (ñ, k)-sources (we use ñ to avoid confusion with the block length n of a SHELA source).
Here, we are mostly interested in lower bounds on the number of output blocks generated by such
somewhere-extractors with respect to the length ñ of a source, the length m of an output block,
and the error ε of the somewhere-extractor.

The only known construction of a somewhere-extractor for general (ñ, k)-sources described in
Lemma 17 requires 2d blocks, where d is the seed length of the underlying strong extractor/non-
malleable extractor. As stated in Lemma 10, it holds that d ≥ log(ñ − k) + 2 log(1/ε) + O(1) for
every extractor, and so the somewhere-random source output by the somewhere-extractor from
Lemma 17 has

L = Ω

(
ñ− k
ε2

)
blocks. We remark that a probabilistic argument with a random function yields somewhere-
extraction with the same number of output blocks.

The discussion in the previous paragraph leads to the following natural questions: Is it possible
to do better than Lemma 17 for (ñ, k)-sources? In particular, is it possible to obtain a number of
output blocks comparable to that obtained from SHELA sources?
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We present some results that aim to answer this question in several parameter regimes. The
first result comes from the observation that the basic argument for impossibility of deterministic
extraction yields a non-trivial lower bound on the number of output blocks whenever the min-
entropy requirement k is not very large.

Theorem 44. Suppose F : {0, 1}ñ → {0, 1}m·L is a (1, L, ε)-somewhere extractor for (ñ, k)-sources
with ε ≤ 1− 2−c for some 1 ≤ c ≤ m (i.e., ε is not trivial). Then, it holds that

L ≥ ñ− k
c

.

Proof. Without loss of generality, we may assume that m = c. By an averaging argument, there
exists y? ∈ {0, 1}c·L such that |F−1(y?)| ≥ 2ñ−c·L. Let X be uniformly distributed over F−1(y?).

Fix an arbitrary Z ∈ convSR1,L,m. We may write Z =
∑L

i=1 πiZ
(i) for some Z(i) = (Z

(i)
1 , . . . , Z

(i)
L ) ∈

SR1,L,m with Z
(i)
i = Uc and πi ≥ 0 such that

∑L
i=1 πi = 1. This follows from the fact that a convex

combination of somewhere-random sources with uniform blocks in position i is also a somewhere-
random source with a uniform block in position i. We show that F (X) 6≈ε Z. In fact, we have

∆(F (X);Z) =
1

2

∑
y∈{0,1}c·L

|Pr[F (X) = y]− Pr[Z = y]|

=
1

2

1− Pr[Z = y?] +
∑
y 6=y?

Pr[Z = y]


= 1− Pr[Z = y?]

= 1−
L∑
i=1

πi Pr[Z(i) = y?]

≥ 1−
L∑
i=1

πi Pr[Z
(i)
i = y?i ]

= 1− 2−c

≥ ε,

where the first inequality follows from the fact that Pr[Z(i) = y?] ≤ Pr[Z
(i)
i = y?i ], and the fifth

equality holds because Z
(i)
i = Uc. Since Z was arbitrary and H∞(X) ≥ ñ − c · L, it must be the

case that k ≥ ñ− c · L. Rearranging the expression yields the desired result.

The lower bound from Theorem 44 is already enough to yield a separation between somewhere-
extraction of SHELA and comparable (ñ, k)-sources whenever the min-entropy requirement k is
not extremely large. Consider a SHELA source with constant entropy rate and ` blocks, each of
length n = ñ/` (so that the total length of the source is ñ). The constructions from Theorems 33
and 36 applied to the SHELA source lead to convSR-sources with L = O(`) blocks with small error
and large output block length if honest blocks have some constant entropy rate. In particular, L
does not depend directly on the input block length n. On the other hand, the lower bound from
Theorem 44 forces that L = Ω(ñ− k) = Ω(n · `) for convSR-sources extracted from (ñ, k)-sources,
even with error ε = 1/2 (assuming k/ñ is constant).

The second result is a disperser-based lower bound on the number of output blocks L. This
bound is considerably stronger than the one in Theorem 44 whenever the output block length m is
not very small and the error ε is small.
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Theorem 45. Suppose F : {0, 1}ñ → {0, 1}m·L is a (1, L, ε)-somewhere extractor for (ñ, k)-sources

with ε ≤ 1/2 and L ≤ (1−max(ε,2−m))2m

2 . Then, it holds that

L = Ω

(
ñ− k

max(ε, 2−m)

)
.

Proof. First, note that we may assume without loss of generality that ε ≥ 2−m. The result follows
by relating F to a (k, ε)-disperser and employing Lemma 14.

We can write F as F = (F1, . . . , FL) for some functions Fi : {0, 1}ñ → {0, 1}m. Define a function
G : {0, 1}ñ×[L]→ {0, 1}m as G(x, i) = Fi(x). We claim that G is a (k, ε)-disperser with seed length
logL. In fact, we know that for every (ñ, k)-source X it holds that Y = F (X) is ε-close to some
Z = (Z1, . . . , ZL) ∈ convSR1,L,m. As in the proof of Theorem 44, we may write Z =

∑L
i=1 πiZ

(i)

for some Z(i) = (Z
(i)
1 , . . . , Z

(i)
L ) ∈ SR1,L,m with Z

(i)
i = Um and πi ≥ 0 such that

∑L
i=1 πi = 1. This

follows from the fact that a convex combination of somewhere-random sources with uniform blocks
in position i is also a somewhere-random source with a uniform block in position i.

Fix S ⊆ {0, 1}m such that |S| ≥ ε2m. We now proceed to show Pr[G(X,UL) ∈ S] > 0. We have

Pr[G(X,UL) ∈ S] =
1

L

L∑
i=1

Pr[Fi(X) ∈ S]

≥ 1

L
· Pr[∃i : Fi(X) ∈ S]

>
1

L
· (Pr[∃i : Zi ∈ S]− ε),

where the first inequality follows from the union bound, and the second inequality holds because
F (X) ≈ε Z.12 The desired property now follows if we show that Pr[∃i : Zi ∈ S] ≥ ε. In fact, we
have

Pr[∃i : Zi ∈ S] =
L∑
j=1

πj Pr[∃i : Z
(j)
i ∈ S]

≥
L∑
j=1

πj Pr[Z
(j)
j ∈ S]

≥
L∑
j=1

πj · ε

= ε,

as desired. The second inequality follows from the fact that Z
(j)
j = Um and |S| ≥ ε · 2m. Since X

and S were arbitrary, this shows that G is a (k, ε)-disperser.

Referring again to the comparison between SHELA and weak (ñ, k)-sources above, if we want to
extract a 1-out-of-L convSR-source with block length Ω(n) from the weak source with error 2−Ω(n),
as is possible for the relevant SHELA source, then Theorem 45 forces that L = ñ ·2Ω(n) = ` ·n2Ω(n).
On the other hand, the convSR-source we extract from the relevant t-out-of-` SHELA source only
has O(`) blocks.

12Recall that W ≈ε Z is equivalent to ∆(W ;Z) < ε.
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While Theorems 44 and 45 imply strong separation between SHELA and weak sources for any
conceivable application, they do not yield useful lower bounds for some regimes of parameters.
For example, in the easiest setting for somewhere-extraction, when the min-entropy requirement
k is very large (say, k = ñ − 1) and the output block length is very small (say, m = 1), both
theorems only give a trivial Ω(1) lower bound on L, even when ε is exponentially small in ñ. On
the other hand, the number of output blocks in the somewhere-extractor obtained from Lemma 17
instantiated with an optimal strong extractor scales as 1/ε2 even when k = ñ− 1 and m = 1. We
believe it is not possible to improve significantly on the basic construction from Lemma 17, and so
we put forth the following conjecture.

Conjecture 46. Suppose F : {0, 1}ñ → {0, 1}m·L is a (T, L, ε)-somewhere extractor for (ñ, k)-
sources. Then, there exists a constant c > 0 such that if ε ≤ c, we have

L = Ω

(
ñ− k
ε2

)
. (22)

We do not prove Conjecture 46 and leave it as a major open problem. Nevertheless, we prove
a weaker lower bound on L in a similar spirit to (22) under a stronger property than somewhere-
extraction, which is still satisfied by the construction from Lemma 17. This result can be regarded
both as a first step towards a full proof of Conjecture 46, and a non-trivial lower bound on L (under
this stronger property) that scales with ε and holds even when k is large and m is small. Before we
state our result, we must first define the alternative notion of somewhere-extraction. Observe that
the construction of F from Lemma 17 actually ensures that for every (ñ, k)-source X it holds that
F (X) is ε-close to an element of SRT,L,m, instead of only a convex combination of such elements.
We call a function that satisfies this for all (ñ, k)-sources a strong (T, L, ε, k)-somewhere extractor.

We may think of a strong (1, L, ε, k)-somewhere-extractor F : {0, 1}ñ → {0, 1}L as a family
of L functions F1, . . . , FL such that for every (ñ, k)-source X, there is Fi such that Fi(X) ≈ε U1.
Therefore, in order to show such a function F is not a strong somewhere-extractor, we must show
the existence of an (ñ, k)-source X that is “bad” for all Fi’s, in the sense that Fi(X) 6≈ε U1 for every
i. As previously discussed, existing techniques used in proving lower bounds for extractors cannot
be applied to obtain similar lower bounds for strong somewhere-extractors. We use a fundamentally
different technique to prove the following lower bound on L for strong somewhere-extractors.

Theorem 47. Suppose F : {0, 1}ñ → {0, 1}m·L is a strong (1, L, ε, k)-somewhere extractor for
k ≤ ñ− 1. Then, there exists an absolute constant c > 0 such that if ε < c, we have

L = Ω

(
log

(
1

max(ε, 2−k)

))
. (23)

We require the following auxiliary lemmas in the proof of Theorem 47.

Lemma 48. Fix δ ∈ (0, 1/10), a set S ⊆ {0, 1}ñ such that |S| ≥ 4, X uniformly distributed over
S, and a function f : {0, 1}ñ → {0, 1}. Suppose that f(X) ≈δ/4 U1. Let S ′ be obtained from S by
choosing B ⊆ f−1(1) ∩ S of size |B| = dδ · |S|e and setting S ′ = S \ B. Then, if X ′ is uniformly
distributed over S ′, we have

f(X ′) 6≈δ/4 U1.

Lemma 49. Fix α ∈ (0, 1), a function f : {0, 1}ñ → {0, 1} and a source X uniform over a set
S ⊆ {0, 1}ñ such that |S| ≥ 4 and f(X) 6≈α U1. Let S ′ = S \ B for some B ⊆ S satisfying
|B| = dβ · |S|e with α− 2β − 2/|S| > 0. Then, if X ′ is uniformly distributed over S ′, we have

f(X ′) 6≈α−2β−2/|S| U1.
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We now use Lemmas 48 and 49 to prove Theorem 47.

Proof of Theorem 47. Without loss of generality we may assume that m = 1 and ε ≥ 2−k. We can
also assume that k = Ω(ñ). In fact, if k = o(ñ), Lemma 14 already gives an Ω(ñ) lower bound for
L, which is the best we can obtain with Theorem 47 in that setting too.

Fix some function F : {0, 1}ñ → {0, 1}L. Then, we can write F = (F1, . . . , FL) for some
functions Fi : {0, 1}ñ → {0, 1}. Suppose that

L <
1

100
log(1/ε). (24)

We show that if L satisfies (24), then F cannot be a strong (1, L, ε, k)-somewhere extractor. In order
to do this, we will iteratively define sets S0 ⊇ S1 ⊇ · · · ⊇ SL with associated sources X0, X1, . . . , XL

such that Xi is uniformly distributed over Si. Our goal is to ensure that |SL| ≥ 2k and Fi(XL) 6≈ε U1

for every i = 1, . . . , L.
We now describe how to define the sets Si, and hence the corresponding sources Xi. With some

hindsight, consider positive real numbers δ1, δ2, . . . , δL such that δ1 = ε · 17L and δi = δi−1/17 for
i = 2, . . . , L. We begin by setting S0 = {0, 1}ñ. Then, iteratively for each i = 1, . . . , L we proceed
as follows:

• If Fi(Xi−1) 6≈δi/4 U1, set Si = Si−1;

• Else, choose B ⊆ F−1
i (1) ∩ Si−1 of size |B| = dδi · |Si−1|e, and set Si = Si−1 \ B.

All that remains to show is that SL is large enough and XL is appropriately biased against
F1, . . . , FL, provided that ε is smaller than some absolute constant. We begin by lower bounding
|SL|. First, observe that (24) implies that δi < 0.1 for all i if ε < c for a small enough constant
c > 0. Also, note that

|Si| ≥ |Si−1| − dδi · |Si−1|e ≥ (1− δi)|Si−1| − 1 (25)

for all i ≥ 1. Using this, for large enough n we obtain

|SL| ≥ |S0|
L∏
i=1

(1− δi)− L

= 2n
L∏
i=1

(1− δi)− L

≥ 2n · exp

(
−4

L∑
i=1

δi

)
− L

= 2n · exp

(
−4δ1

L−1∑
i=0

17−i

)
− L

≥ 2n · exp

(
−4δ1

∞∑
i=0

17−i

)
− L

≥ 2n · exp(−0.5)− L
≥ 2k.
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In the derivation above, the first inequality follows by repeated application of (25), the first equality
holds by the definition of S0, the second inequality is a consequence of the fact that 1−x ≥ exp(−4x)
for x ≤ 0.9 and δi < 0.1 for all i, the second equality follows from the definition of δi, the fourth
inequality holds because δ1 < 0.1, and the final inequality follows from the fact that L = O(ñ)
(which is a consequence of (24) and ε ≥ 2−k), and that k ≤ ñ− 1. As a result, we have that XL is
an (n, k)-source.

To conclude the proof, we show that

Fi(XL) 6≈ε U1 (26)

for all i = 1, . . . , L. First, we argue that

Fi(Xi) 6≈δi/4 U1 (27)

for every i ≥ 1. To see that (27) holds, note that either Fi(Xi−1) 6≈δi/4 U1, in which case we are
done since then Si = Si−1 (and hence Xi = Xi−1), or Fi(Xi−1) ≈δi/4 U1. In the second case, we are
in a condition to apply Lemma 48 with Si−1 and Si in place of S and S ′, respectively, by definition
of Si and since δi < 0.1, which immediately implies (27).

Next, we repeatedly apply Lemma 49 with the help of (27) to prove (26). As a starting point,
we show that Fi−1(Xi) 6≈ε U1. To do this, we apply Lemma 49 with Si−1, Si, fi−1, δi−1/4, and δi
in place of S, S ′, f , α, and β. We claim that the conditions of Lemma 49 are satisfied for large
enough ñ. In fact, note that |Si| ≥ |SL| ≥ 2k ≥ 4 for all i, and δi = δi−1/17 < δi−1/8 − 1/|Si−1|,
since δi ≥ 17ε, ε ≥ 2−k, and |Si| ≥ 2k for all i. As a result, we conclude that

Fi−1(Xi) 6≈δi−1/4−2δi−2−k+1 U1 (28)

for all i = 2, . . . , L. In particular, this implies that

FL−1(XL) 6≈ε U1,

since δi−1/4 − 2δi − 2−k+1 > ε, by the choice of δi’s and the constraint ε ≥ 2−k/2. A further
application of Lemma 49 using (28) with Si−1, Si, Fi−2, δi−2/4− 2δi−1 − 2−k+1, and δi in place of
S, S ′, f , α, and β, respectively, leads to

fi−2(Xi) 6≈δi−2/4−2(δi−1+δi)−2·2−k+1 U1

for i = 3, . . . , L. Similarly to what was observed before, this implies that

FL−2(XL) 6≈ε U1.

Continuing in this fashion, from Lemma 49 we obtain

Fj(Xi) 6≈δj/4−2
∑i
r=j+1 δr−(i−j)2−k+1 U1 (29)

for 1 ≤ j ≤ i ≤ L. Such applications of Lemma 49 are valid because |Si| ≥ |SL| ≥ 2k ≥ 4 for all i
and large enough ñ, and since δj/4− 2

∑i
r=j+1 δr − (i− j)2−k+1 > 0. In fact, we have

δj/4− 2

i∑
r=j+1

δr − (i− j)2−k+1 ≥ δj/4− 2δj

∞∑
r=1

17−r − (i− j)2−k+1

= δj/8− (i− j)2−k+1
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=
17ε

8
· 17L−j − (i− j)2−k+1

≥ ε
(

17

8
· 17L−j − 2(L− j)

)
> ε, (30)

where the first inequality and second equality follow by definition of the δi’s, the second inequality
holds because ε ≥ 2−k and j ≤ i ≤ L, and the third inequality is true for all j ≤ L.

Finally, combining (29) with (30) implies (26). Since XL is an (ñ, k)-source, it follows that
F cannot be a strong (1, L, ε, k)-somewhere extractor. This means any such strong somewhere-
extractor must have L ≥ 1

100 log(1/ε), as desired.

Remark 2. The condition k ≤ ñ− 1 in the statement of Theorem 47 can be replaced by k ≤ ñ− c′
for any real constant c′ > 0, with the caveat that the hidden constant in (23) depends on c′.

5.1 Proof of Lemma 48

In this section, we prove Lemma 48, which we restate here for convenience.

Lemma 50 (Lemma 48, restated). Fix δ ∈ (0, 1/10), a set S ⊆ {0, 1}n such that |S| ≥ 4, X
uniformly distributed over S, and a function f : {0, 1}n → {0, 1}. Suppose that f(X) ≈δ/4 U1. Let
S ′ be obtained from S by choosing B ⊆ f−1(1) ∩ S of size |B| = dδ · |S|e and setting S ′ = S \ B.
Then, if X ′ is uniformly distributed over S ′, we have

f(X ′) 6≈δ/4 U1.

Proof. First, note that we can indeed pick such a set B ⊆ f−1(1)∩S. This is because |f−1(1)∩S| >
|S|/2 − δ · |S|/4 > |S|/3 since f(X) ≈δ/4 U1, and |B| = dδ · |S|e ≤ d|S|/10e < |S|/3. In order to
prove the lemma, it now suffices to lower bound |Pr[f(X ′) = 1]− 1/2| appropriately. We have

|Pr[f(X ′) = 1]− 1/2| =
∣∣∣∣ |f−1(1) ∩ S ′|

|S ′|
− 1/2

∣∣∣∣
=

∣∣∣∣ |f−1(1) ∩ S| − dδ · |S|e
|S| − dδ · |S|e

− 1/2

∣∣∣∣ (31)

=

∣∣∣∣∣∣
|f−1(1)∩S|
|S| − dδ·|S|e|S|

1− dδ·|S|e|S|

− 1/2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
|f−1(1)∩S|
|S| − 1/2− dδ·|S|e2|S|

1− dδ·|S|e|S|

∣∣∣∣∣∣
≥
∣∣∣∣ |f−1(1) ∩ S|

|S|
− 1/2− dδ · |S|e

2|S|

∣∣∣∣ (32)

≥ δ/2− δ/4 (33)

= δ/4,

as desired. In the derivation above, we have that (31) follows from the fact that B ⊆ f−1(1) ∩ S
and S ′ = S \ B, and (32) holds because

0 <
dδ · |S|e
|S|

< δ +
1

|S|
≤ 3δ/2 < 1.
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Finally, (33) holds because
dδ · |S|e
2 · |S|

≥ δ/2

and ∣∣∣∣ |f−1(1) ∩ S|
|S|

− 1/2

∣∣∣∣ < δ/4,

since f(X) ≈δ/4 U1 by hypothesis.

5.2 Proof of Lemma 49

In this section, we prove Lemma 49, which we restate here for convenience.

Lemma 51 (Lemma 49, restated). Fix α ∈ (0, 1), a function f : {0, 1}n → {0, 1} and a source X
uniform over a set S ⊆ {0, 1}n such that |S| ≥ 4 and f(X) 6≈α U1. Let S ′ = S \ B for some B ⊆ S
satisfying |B| = dβ|S|e with β < α/2− 1/|S|. Then, if X ′ is uniformly distributed over S ′, we have

f(X ′) 6≈α−2β−2/|S| U1.

Proof. Without loss of generality, suppose that |f−1(1) ∩ S| ≥ |S|/2. Define B1 = f−1(1) ∩ B.
Similarly to the proof of Lemma 48, it suffices to lower bound the quantity |Pr[f(X ′) = 1]− 1/2|
appropriately. We have

|Pr[f(X ′) = 1]− 1/2| =
∣∣∣∣ |f−1(1) ∩ S ′|

|S ′|
− 1/2

∣∣∣∣
=

∣∣∣∣ |f−1(1) ∩ S| − |B1|
|S| − dβ|S|e

− 1/2

∣∣∣∣ (34)

=

∣∣∣∣ |f−1(1) ∩ S|
|S| − dβ|S|e

− 1/2− |B1|
|S| − dβ|S|e

∣∣∣∣, (35)

where (34) follows from the definition of B1 and the fact that B ⊆ S with |B| = dβ|S|e. To finalize
the proof, we first recall that we assumed |f−1(1) ∩ S| ≥ |S|/2. This means that

|f−1(1) ∩ S|
|S| − dβ|S|e

≥ |f
−1(1) ∩ S|
|S|

≥ 1/2. (36)

Combining (36) with the hypothesis that f(X) 6≈α U1 allows us to conclude that

|f−1(1) ∩ S|
|S| − dβ|S|e

− 1/2 ≥ α. (37)

On the other hand, we have

|B1|
|S| − dβ|S|e

≤ β|S|+ 1

|S| − dβ|S|e

≤ 2β +
2

|S|
, (38)

where (38) holds because dβ|S|e < |S|/2 since β < 1/2− 1/|S|. The desired result now follows by
combining (35) with (37), (38), and the fact that α > 2β + 2/|S| by hypothesis.
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6 Bounds for Somewhere-Amplifiable-Source Extraction from Weak
Sources

The lower bounds obtained in Section 5 show that convSR-sources extracted from SHELA sources
are much better (in terms of number of blocks with respect to desired extraction error) than convSR-
sources extracted from weak sources. This has direct consequences in the time complexity blowup
incurred when using convSR-sources in several applications, as discussed in Section 1. However,
as discussed in that same section, it is possible in some scenarios to use a weaker object than
convSR-sources, which we call somewhere-amplifiable sources, where the good independent blocks
are not required to be exactly uniformly distributed. A precise definition follows.

Definition 52 (Somewhere-amplifiable source). We say Y = (Y1, . . . , YL) over {0, 1}m·L is a
(T, L, ε)-somewhere-amplifiable source if there exist distinct indices i1, . . . , iT such that Yi1 , . . . , YiT
are independent and Yij ≈ε Um for all j = 1, . . . , T . The set of all such SA sources is denoted by
SAT,L,ε, and the set of all convex combinations of sources in SAT,L,ε is denoted by convSAT,L,ε.

Since the error required of each good block in a convSA-source is not that small (in fact,
it can even be constant), one may hope to transform weak sources into convSA-sources whose
number of blocks is much closer to that of convSR-sources obtained from SHELA sources, and
which have blocks long enough to be used in the applications already discussed in Section 1 and
later in Section 7. To this end, we define somewhere-amplifiable source extractors (convSA-source
extractors).

Definition 53 (Somewhere-amplifiable source extractor). A function SomeExt : {0, 1}ñ → {0, 1}m·L
is said to be a (T, L, k, ε1, ε2)-somewhere-amplifiable extractor if for every (ñ, k)-source X there
exists Y ∈ convSAT,L,ε2 such that

SomeExt(X) ≈ε1 Y.

We begin by noting that Theorem 44 also applies to convSA-source extractors for weak sources.
This shows that every such extractor (even with constant error) must have L = Ω(ñ− k). As dis-
cussed in Section 1, this already provides an efficiency separation between convSA-source extraction
from weak sources and convSR-source extraction from SHELA sources.

The main result we prove in this section is a different type of separation between convSA-
source extraction from weak sources and convSR-source extraction from SHELA sources. Roughly
speaking, we show that if we want to extract a convSA-source with many good blocks (necessary
to obtain good final error) from an (ñ, k)-source, then either the resulting convSA-source has too
many blocks to allow for efficient construction of the publicly verifiable protocols, or the length of
each block is very small, and so they may not be usable in some protocols. This is discussed for the
particular case of our publicly verifiable proof system in Section 1.3. A precise statement follows.

Theorem 54. Suppose F : {0, 1}ñ → {0, 1}m·L is a (T, L, k, ε1, ε2)-somewhere-amplifiable extractor
for ε1 = negl(ñ), and ε2 ≤ c2 for some arbitrary constant c2 ≤ 1 − 2−m (so that ε1 is useful for
applications and ε2 is non-trivial). Then, either the number of blocks L is superpolynomial in ñ
(and hence amplification is inefficient), or we have m = O(k/T ).

Proof. Suppose L ≤ poly(n) (otherwise, we are done). Fix a flat (ñ, k)-source X. By hypothesis,
we have

F (X) ≈ε1 Y (39)

for some Y ∈ convSAT,L,ε2 . In particular, Y can be written as Y =
∑

i πiY
(i) for Y (i) ∈ SAt,L,ε2 .
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We prove that m = O(k/T ) by relating H(X) with H(Y ), and estimating the latter. First,
note that

k = H(X)

≥ H(F (X))

≥ H(Y ′)− (h(ε1) + ε1 ·m · L)

= H(Y ′)− o(m). (40)

The first equality stems from the fact that X is flat, the second inequality follows from Lemma 6
applied to F (X) and Y using (39), and the second equality holds because ε1 ·L = o(1) by hypothesis.
We proceed to lower bound H(Y ) appropriately. Exploiting the concavity of H(·), it follows that

H(Y ) ≥
∑
i

πiH(Y (i)), (41)

so it remains to lower bound each H(Y (i)) term. Fix some Y (i), and let i1, . . . , iT be distinct indices

such that Y
(i)
i1
, . . . , Y

(i)
iT

are independent and Y
(i)
ij
≈ε2 Um for j = 1, . . . , T . Then,

H(Y (i)) ≥ H(Y
(i)
i1
, . . . , Y

(i)
iT

)

=
T∑
j=1

H(Y
(i)
ij

)

≥
T∑
j=1

[m− (h(ε2) + ε2 ·m)]

≥ (1− ε2)mT

2
, (42)

provided that m ≥ c′ for some large enough constant depending only on c2. The first equality holds

because Y
(i)
i1
, . . . , Y

(i)
iT

are independent, and the second inequality follows from Lemma 6 applied to

Y
(i)
ij

and Um. Combining (41) with (42), we conclude that

H(Y ) ≥ (1− ε2)mT

2
.

Therefore, recalling (40) and that ε2 ≤ c2, it follows that

k ≥ (1− c2)mT

2
− o(m)

≥ (1− c2)mT

3
(43)

for n large enough. Noting that c2 is a constant and rearranging (43) yields the desired result.

Some comments are due about Theorem 54. First, Theorem 54 provides a strong separation
between convSA-source extraction from weak sources and convSR-source extraction from SHELA
sources, as already evidenced in Section 1.3. Consider a SHELA source with ` blocks of length n,
` = poly(n), t = 2 of which are honest with arbitrary linear min-entropy. Then, Theorem 36 shows
we can efficiently extract (to within error 2−Ω(poly(n))) a convSR-source with poly(n) number of
blocks each of length Ω(n) and at least one good block from the SHELA source. Such SHELA source
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Non-Interactive WI proof system Πpv = (G,Ppv,Vpv)
CRS Generation: G on input 1m outputs σ ← SHELAn,k,t,`.
Prover Procedure: Ppv. Input: instance x, witness w s.t. (x,w) ∈ R and σ ∈ SHELAn,k,t,`.

1. Run SomeExt(σ) obtaining R1, . . . RL.
2. For i = 1, . . . , L: Run πi ← P(1m, x, w,Ri).
3. Set π = (π1, . . . , πL), output π.

Verifier Procedure: Vpv. Input: instance x and σ ∈ SHELAn,k,t,`.
1. Run SomeExt(σ) obtaining R1, . . . , RL.
2. If V(x,w,Ri, πi) = 1 ∀i = 1, . . . , L accept, otherwise reject.

Figure 4: Non-Interactive WI Proof System Πpv = (G,Ppv,Vpv).

can be compared with an arbitrary weak (ñ = n · `, k = O(n))-source. In this case, Theorem 54
shows that if we want to obtain a T -out-of-L convSA-source with block length Ω(n) from the weak
source, then T must be constant. This precludes many applications of the resulting convSA-source
as discussed in Section 1. Finally, note that Theorem 54 also applies to the extraction of convSR-
sources with several uniform blocks from weak sources.

7 Non-Interactive Protocols from Public SHELA Sources

7.1 CRS Generation through a SHELA Sample

The definitions of proof systems and commitment schemes in the plain model and in the CRS model
are standard and can be found in Section 2.7.

Such definitions assume the existence of an efficient CRS generation procedure G that, however,
will instead be realized in our protocols through a sample from a public SHELA source. Our
constructions will convert 2-round public-coin protocols into non-interactive protocols by using a
SHELA source and the somewhere-extrator to replace the first round. Therefore, following the
notation in the CRS model, when running G on input 1m to generate a sufficiently long CRS, we
assume that the CRS is generated through a sample σ ← SHELAn,k,t,` from a SHELA source such
that when running SomeExt(σ) and obtaining blocks R1, . . . , RL we have that the size of each Ri
is equal to the size of the first round of the 2-round public-coin protocol. We recall that G is not
supposed to be efficient and neither simulatable. Moreover, this procedure allows an unbounded
adversary to partially control the sampling process. We obviously require that the output of G be
available to all players. In our protocols, some adversaries are restricted to run in polynomial-time
only, but still can affect the outcome of the SHELA sample without such restriction.

7.2 Non-Interactive WI Proof System Πpv

Here we present our construction of NIWI proof system from SHELA sources assuming public-coin
ZAPs. In order to describe our proof system Πpv = (G,Ppv,Vpv) for the NP-language L, we will
make use of the following tools: 1) A somewhere extractor SomeExt : {0, 1}n·` → {0, 1}m·L defined
in Section 3.213. 2) A 2-round public-coin WI proof system Π = (P,V). Our Non-Interactive WI
proof system Πpv = (G,Ppv,Vpv) with a CRS generated through a sample from a SHELA source
is described in Figure 4. We stress that our protocol can be instantiated using doubly enhanced
trapdoor permutations.

13With high min-entropy we set L = `− 1, while with low min-entropy we set L = O(`).
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Theorem 55. Assuming the existence of public SHELA sources, if public-coin ZAPs exist, then
Πpv is a non-interactive proof system for all NP-languages.

Proof. Completeness. Completeness follows by inspection. We observe also that it is possible to
instantiate Π from (doubly) enhanced trapdoor permutations using the construction of [7].
Statistical soundness. Let us fix x /∈ L and σ ∈ SHELAn,k,t,`. The statistical soundness of Π
implies that for a uniformly chosen string over {0, 1}m (which corresponds to the first round of Π)
it is infeasible for a malicious prover P? to compute an accepting proof of Π for the instance x.
The next observation is that from Theorems 33 and 36 it follows that the procedure SomeExt(σ)
on input σ ∈ SHELAn,k,t,` outputs t − 1 good strings, namely RI1 , . . . , RIt−1 , that are ε′-close to
uniform distribution over {0, 1}m, where ε′ is a negligible function. We conclude that a malicious
prover P?pv is able to compute an accepting proof for x w.r.t. RIj for all j ∈ [t − 1] only with
negligible probability.
Witness indistinguishability. Suppose by contradiction that there exists an adversary A against
the WI property of Πpv. Then, we devise an adversary AWI against the WI property of Π as follows.

Let us fix σ ∈ SHELAn,k,t,`, and let CH be the challenger of the WI game. First, we recall
that the WI property of Π holds also in the parallel setting. The new adversary AWI will act as a
prover of Πpv and as a verifier of Π with CH. The original adversary A on input σ will output an
instance x and witnesses w0, w1 such that (x,wb) ∈ R with b ∈ {0, 1}. First, AWI sends x,w0, w1 to
CH. Second, acting as a prover of Πpv, AWI obtains σ and runs SomeExt(σ), obtaining R1, . . . , RL.
Third, AWI starts L parallel executions of Π with CH sending Ri as the first round of the i-th
execution, for i = 1, . . . , L. Fourth, AWI sends the proof π = (π1, . . . , πL) for x to A. Here, πi is
sent by the challenger CH for the instance x w.r.t. the first round Ri, for i = 1, . . . , L. Finally AWI

outputs whatever A outputs. The proof is concluded observing that if CH uses the witness wb to
compute π1, . . . , πL then the reduction is distributed as an honest prover of Π, that is using the
witness wb to compute π1, . . . , πL.

7.3 Non-Interactive Commitment Scheme Πpvcom

Here we present our construction of non-interactive statistically binding commitment scheme from
SHELA sources assuming 2-round public-coin statistically binding commitments. In order to de-
scribe our commitment scheme Πpvcom = (G,Ppvcom,Vpvcom) for the message space M , we will make
use of the following tools: 1) a somewhere extractor SomeExt : {0, 1}n·` → {0, 1}m·L defined in Sec-
tion 3.214; 2) a 2-round public-coin statistically binding commitment scheme Πcom = (S,R). Our
Non-Interactive Commitment Scheme Πpvcom = (G,Ppvcom,Vpvcom) using a public SHELA source is
described in in Figure 5. We stress that our protocol can be instantiated through a black-box use
of any one-way function.

Theorem 56. Assuming the existence of public SHELA sources, if 2-round public-coin statistically
binding commitment schemes exist then Πpvcom is a non-interactive commitment scheme.

Proof. Completeness. Completeness follows by inspection. We observe also that it is possible to
instantiate Πpv from one-way functions using the construction of [13].
Statistical Binding. Let us fix σ ∈ SHELAn,k,t,`. The statistical binding of Πpv implies that
for a uniformly chosen string over {0, 1}m (which corresponds to the first round of Rpv in the
commitment phase) it is infeasible for a malicious sender S?pvcom to compute a commitment com
and two decommitments (msg0, dec0) and (msg1, dec1), with msg0 6= msg1, such that R accepts
both decommitments w.r.t. com. The next observation is that from Theorems 33 and 36 it follows

14We set L precisely as specified in the previous footnote.
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Non-Interactive commitment scheme Πpvcom = (G,Spvcom,Rpvcom)

CRS Generation: G on input 1m outputs σ ← SHELAn,k,t,`.
Sender Procedure: Spvcom. Input: message msg and σ ∈ SHELAn,k,t,`.

1. Run SomeExt(σ) obtaining R1, . . . RL.
2. For i = 1, . . . , L: Run comi, deci ← S(1m,msg, Ri).
3. Set com = (com1, . . . , comL), dec = (dec1, . . . , decL) and output com.

Receiver Procedure: Rpvcom. Input: commitment com, decommitment dec,msg and σ ∈
SHELAn,k,t,`.

1. Run SomeExt(σ) obtaining R1, . . . , RL.
2. If R(msg, comi, Ri, deci) = 1 ∀i = 1, . . . , L outputs msg, otherwise reject.

Figure 5: Non-Interactive Commitment Scheme from OWFs Πpvcom = (G,Spvcom,Rpvcom).

that SomeExt(σ) with σ ∈ SHELAn,k,t,` outputs t− 1 good strings, denote them by RI1 , . . . , RIt−1 ,
that are independent and ε′-close to the uniform distribution over {0, 1}m, where ε′ is a negligible
function. We conclude that a malicious sender S?pvcom is able to compute a commitment com and
two accepting decommitments w.r.t. RIj for all j ∈ [t− 1] only with negligible probability.
Computational Hiding. Suppose by contradiction that there exists an adversary A against the
computational hiding property of Πpvcom. Then, we devise an adversary AH against the computa-
tional hiding property of Πpv as follows.

Fix σ ∈ SHELAn,k,t,`, and let CH be the challenger of the hiding game. First, we recall that
the hiding property of Πcom holds also in the parallel setting. The new adversary AH will act as a
receiver of Πpvcom and as a sender of Πpv with CH. The original adversary A on input σ outputs
messages msg0,msg1. First, AH sends msg0,msg1 to CH. Second, AH , acting as a receiver of Πpvcom,
obtains σ and runs SomeExt(σ) to obtain R1, . . . , RL. Third, AH starts L parallel executions of Πpv

with CH, using Ri as the first round of the i-th execution, for i = 1, . . . , L. Fourth, AH sends the
commitment com = (com1, . . . , comL) to A, where comi was received by CH w.r.t. the first round
Ri, for i = 1, . . . , L. The proof is concluded observing that if CH uses the message mb to compute
com1, . . . , comL then the reduction is distributed as an honest sender of Πcom, that is using the
message mb to compute com1, . . . , comL. Finally, AH outputs whatever A outputs.

7.4 Improving the Efficiency of [6]

In this section, we will briefly discuss how the somewhere-extractors SomeExt described in Section
4 can be used to improve the computational efficiency and communication efficiency of the pub-
licly verifiable witness indistinguishable argument of knowledge ΠSSV = (PSSV,VSSV) over generic
blockchains constructed in [6]. In more details, ΠSSV can be built from any blockchain that satisfies
the following assumption: In a long sequence ` of blocks there will be blocks generated by honest
players, and some of these blocks (at least 2) contain a high min-entropy string that is independent
from the rest of the content of the blockchain. Moreover, the chunk of each block to consider is
well defined. In other words, there exists a deterministic a function s that on input a block of the
blockchain B parses B and outputs the chunk of the block that could contain the high min-entropy
string. As we discussed in the introduction, if we consider blocks B1, . . . , B` of the blockchain, then
s(B1), . . . , s(B`) constitute a source in onSHELAn,k,t,`, where n, k, and t depend on the blockchain
and t ≥ 2.

ΠSSV makes use of a 3-round public-coin WI proof system ΠΣ = (PΣ,VΣ) for the relation R.
At a very high-level, ΠSSV works as follows. PSSV computes τ first rounds Σ1

1, . . . ,Σ
1
τ of ΠΣ and
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publishes them on the blockchain. Then, PSSV waits for ` new blocks added to the blockchain
after the first message was posted. Let us denote such blocks as B1, . . . , B`. The prover obtains
challenges Σ2

1, . . . ,Σ
2
τ by applying an efficient procedure Extract on input B1, . . . , B`. Finally,

PSSV publishes the third rounds Σ3
1, . . . ,Σ

3
τ of ΠΣ on the blockchain. In [6], the efficient procedure

Extract (i.e., the procedure used to compute Σ2
1, . . . ,Σ

2
τ ) takes as input ` blocks B1, . . . , B`, the

deterministic function s and outputs τ strings s1, . . . , sτ such that at least one string si is distributed
statistically close to the uniform distribution over {0, 1}m. Extract is implemented in [6] as the
naive somewhere-extractor NaiveSomeExt described in Section 1. In other words, Extract, on inputs
` blocks B1, . . . , B` and the deterministic function s, considers all the possible

(
`
c

)
combinations of

c-tuples of the ` blocks, and runs a c-source extractor on each c-tuple, for some c ≥ 2.
It is easy to see that the number of times that PSSV executes ΠΣ depends on τ , which is the

number of strings that Extract outputs. In the case of [6], we have τ = O(`c) for some c ≥ 2.
The somewhere-extractors SomeExt : {0, 1}n·` → {0, 1}m·L defined in Section 4 could help

to implement Extract with a much smaller value of τ . Indeed Extract can be implemented
as follows. Extract, on inputs ` blocks B1, . . . , B` and the deterministic function s, computes
SomeExt(s(B1), . . . , s(B`)), obtaining blocks R1, . . . , RL as output. By Theorems 42 and 43, we are
guaranteed that at least one output block is statistically close to uniform over {0, 1}m, thus fulfilling
the requirement specified for Extract. Notably, in this case we have τ = L, where L = O(`) in the
worst case. Therefore, the proof size of Π is only O(`) times (instead of O(`c)-times) larger then
the proof size of Π. Moreover, PSSV executes the prover of Π only O(`) times (instead of O(`c)
times).
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[67] G. Fuchsbauer and M. Orrù, “Non-interactive zaps of knowledge,” in ACNS 2018, pp. 44–62.

[68] N. Bitansky and O. Paneth, “Point obfuscation and 3-round zero-knowledge,” in TCC 2012,
pp. 190–208.

[69] M. Bellare, G. Fuchsbauer, and A. Scafuro, “Nizks with an untrusted CRS: security in the
face of parameter subversion,” in ASIACRYPT 2016, pp. 777–804.

[70] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data,” SIAM J. Comput., pp. 97–139.

[71] S. Ho and R. W. Yeung, “The interplay between entropy and variational distance,” IEEE
Transactions on Information Theory, vol. 56, no. 12, pp. 5906–5929, Dec 2010.

A Somewhere-Z Sources and Convex Combinations

In this section, we prove a more general version of Lemma 35. Before we state it, we need the
following definition.

Definition 57. Given some fixed source Z, a source X = (X1, . . . , XL) is said to be somewhere-Z
if there is I ⊆ [L] such that XI ∼ Z. The set of all convex combinations of somewhere-Z sources
is denoted by convZ.

Lemma 58 (Lemma 35, generalized). Let X ∈ {0, 1}m·L and I denote any random variable over
subsets of [L]. Suppose that

XI , I ≈ε Z, I, (44)

where Z is independent of I. Then, it holds that X ≈ε Y for some Y ∈ convZ.

Proof. Fix X and I as in the lemma statement. For each fixing I = I in the support of I, let XI

denote (X|I = I) and εI = ∆(XII ;Z). By (44), we know that∑
I

Pr[I = I] · εI < ε. (45)

Furthermore, Lemma 2 guarantees that for each I there is QI such that QI ∼ Z and Pr[XII 6=
QI ] ≤ εI .

Consider now Y I coupled with XI , defined as Y Ij = XIj for all j 6∈ I and Y II = QI . Observe

that Y I is somewhere-Z since Y II = QI ∼ Z, and

Pr[XI 6= Y I ] = Pr[XII 6= QI ] ≤ εI . (46)

With this in mind, we define Y by setting (Y |I = I) = Y I (here I still denotes the indicator of
X). It follows that Y =

∑
I Pr[I = I] · Y I ∈ convZ, and, by Lemma 2,

∆(X;Y ) ≤ Pr[X 6= Y ]

=
∑
I

Pr[I = I] · Pr[XI 6= Y I ]
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≤
∑
I

Pr[I = I] · εI

< ε.

The second inequality follows from (46), and the third inequality from (45). This yields the desired
result.
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