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Abstract. Very recently (in CRYPTO 2017) Dai, Hoang, and Tessaro
have introduced the Chi-square method (χ2 method) which can be ap-
plied to obtain an upper bound on the statistical distance between two
joint probability distributions. The authors have applied this method to
prove the pseudorandom function security (PRF-security) of sum of two
random permutations. In this work, we revisit their proof and find a
non-trivial gap in the proof. We plug this gap for two specific cases and
state the general case as an assumption whose proof is essential for the
completeness of the proof by Dai et al.. A complete, correct, and trans-
parent proof of the full security of the sum of two random permutations
construction is much desirable, especially due to its importance and two
decades old legacy. The proposed χ2 method seems to have potential for
application to similar problems, where a similar gap may creep into a
proof. These considerations motivate us to communicate our observation
in a formal way.
On the positive side, we provide a very simple proof of the PRF-security
of the truncated random permutation construction (a method to con-
struct PRF from a random permutation) using the χ2 method. We note
that a proof of the PRF-security due to Stam is already known for this
construction in a purely statistical context. However, the use of the χ2

method makes the proof much simpler.

Keywords. random permutation, pseudorandom function, χ2-distance, KL di-
vergence, total variation distance, Pinsker’s inequality, sum of random permu-
tation, truncated random permutation.

1 Introduction

Different tools from probability and statistics are now heavily used in different
areas in cryptography. In this paper, we focus on a statistical tool, termed χ2

method, which has been introduced by Dai, Hoang, and Tessaro in CRYPTO
2017 ([DHT17a]). Although a method which is essentially similar to the χ2

method is known in statistics (since 1978), we believe that the χ2 method is
new in the context of cryptography. In [DHT17a], this method has been used
to show pseudorandom function security (PRF-security) of two well known con-
structions, namely sum of random permutations ([Pat08b,Pat10,BI99,Luc00])
and encrypted Davis-Meyer (EDM) ([CS16,MN17]). Further, we feel that this
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method may help us to obtain tight (and simplified) proofs for certain con-
structions where proofs so far have evaded more classical methods, such as the
H-coefficient method ([Pat08a]).

χ2 Method. The distinguishing advantage of a family of keyed functions is
bounded by the total variation (also known as statistical distance) between
the output distribution of the family and the output distribution of a ran-
dom function. Total variation between two probability distributions P0 and P1

over a sample space Ω, denoted dTV(P0,P1), is defined as the half of L1-norm
‖P0 −P1‖1 :=

∑
x∈Ω |P0(x)−P1(x)|. In [DHT17a], the authors have revisited

a variation of the additivity property of the KL divergence between two joint
distributions. The authors have termed it χ2 method. When P0 and P1 are joint
distributions, this method provides an upper bound on ‖P0 − P1‖1 based on
the χ2-distances between the conditional distributions of P0 and P1. Next, we
recall the definition of χ2-distance. In what follows, we use the convention that
0/0 = 0.

Definition 1. The χ2-distance between distributions P0 and P1 (over a sample
space Ω) with P0 � P1 (i.e., the support of P0 is contained in the support of
P1) is defined as

dχ2(P0,P1) :=
∑
x∈Ω

(P0(x)−P1(x))2

P1(x)
.

χ2-distance has its origin in mathematical statistics dating back to Pearson (see
[LV87] for some history). It can be seen that χ2-distance is not symmetric and
hence it is not a metric. However, this is useful for bounding other metrics, e.g.,
total variation. In the following, we briefly describe the χ2 method (see Section A
for details and proof).

Let X = (X1, . . . ,Xq) and Y = (Y1, . . . ,Yq) be two multivariate random
variables taking values from Ωq. In order to simplify the notation, we denote
by Xi−1 the joint random variable (X1, . . . ,Xi−1). Let P0x1,...,xi−1

denote the
conditional probability distribution of Xi given X1 = x1, . . ., Xi−1 = xi−1. We
similarly write P1x1,...,xi−1

for the distribution of Yi given Y1 = x1, . . ., Yi−1 =
xi−1. Then the χ2 method says

dTV(X,Y) ≤

(
1

2

q∑
i=1

Ex[χ2(X1, . . . ,Xi−1)]

) 1
2

, (1)

where χ2(x1, . . . , xi−1) = dχ2(P0x1,...,xi−1
,P1x1,...,xi−1

) and for all x1, . . . , xi−1,
P0x1,...,xi−1

� P1x1,...,xi−1
. Note that we need this condition to define dχ2 .

XOR of Two Random Permutations. XOR or sum of two random per-
mutations is a well known construction, proposed and studied by Hall et al. in
[HWKS98], for conversion of pseudorandom permutations (PRPs) into pseudo-
random functions (PRFs) 1. Given a permutation π : {0, 1}n 7→ {0, 1}n, the

1 This line of work was initiated by Bellare et al. in [BKR98] who coined the term
“Luby-Rackoff backwards” for such conversion.
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construction creates a function f : {0, 1}n−1 → {0, 1}n, defined as f(x) =
π(0||x)⊕π(1||x). When π is chosen uniformly at random from Permn, the set of
all permutations of {0, 1}n, how well does f resemble (in a certain well defined
sense) a random function with the same domain and range (a function chosen
uniformly from the set of all functions from the domain to the range)? A sat-
isfactory answer to this question remained elusive for over two decades. There
have been attempts ([Luc00,BI99,Pat08b,Pat10]) to prove information-theoretic
security of the construction. However, the proofs either fell short of proving full
security (to be made precise in the next section) of the construction([Luc00])
or were sketchy ([BI99]) or contained non-trivial gaps and were difficult to fol-
low ([Pat08b,Pat10]) as has also been observed by the authors of [DHT17a].2

Also, as a related problem, Cogliati, Lampe, and Patarin [CLP14] gave weaker
bounds for the case of the sum of at least three permutations. The XOR construc-
tion is important since it has been used to obtain some constructions achiev-
ing beyond birthday (or sometimes almost full) security (e.g., CENC [Iwa06],
PMAC Plus [BR02] and ZMAC [IMPS17]).

1.1 Main Results in the Paper

In [DHT17a], Dai et al. have used the χ2 method to prove full security of the
XOR construction (XOR of two random permutations). In this paper, we have a
closer inspection of the proof and we find a non-trivial gap in it. The gap is due
to incorrect equalities involving conditional expectations. We have also made an
attempt to fix the proof and we have shown that the proof can be fixed under
Asssumption 1 (stated in Section 4). We have proved the assumption for two
special cases and left the general case as an open problem.

In this note, we communicate the above observation formally. This serves
two purposes:(a) to motivate a flawless proof of this problem, especially owing
to its importance and a two-decades old legacy, (b) to prevent these types of
loopholes from creeping into the proofs involving the χ2 method, especially since
the method seems to have potential for application to similar problems.

Truncation of Random Permutation. Although the application (in [DHT17a])
of the χ2 method to the XOR construction contains gap, this technique can be
powerful for bounding PRF-security of other constructions. In fact, in [DHT17a],
the authors applied this method to bound the PRF-security of the EDM (or en-
crypted Davis-Meyer) construction. In this note, we apply this technique to the
truncated random permutation construction and obtain a very simple proof
of the known tight bound on the PRF-security of the construction. This has been
studied by Stam (in a statistical context) in 1978 [Sta78] and later by many oth-
ers (e.g., [GG15,GG16,GGM17,HWKS98,BI99]). Stam’s proof technique is very
close to the χ2 method. However, the other proofs are very different and produce
different results. The difference between the proof methods of the relevant re-
sults from [HWKS98], [BI99], [GG15] and [Sta78] is discussed in [GGM17]. Our

2 A quote from the paper [DHT17a] “Patarin’s tight proof is very involved,

with some claims remaining open or unproved.”
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proof approach is more modular and uses the χ2 method explicitly. We discuss
these very briefly in Remark 1 and Remark 2

The PRF property of the truncated random permutation construction has
recently been used in the key derivation for the AES-GCM, Counter based au-
thenticated encryption constructions [GLL17].

1.2 Organization of the Paper

The rest of the paper is organized as follows. In the next section, we provide
a brief overview of relevant security notions and the χ2 method. There we also
discuss the two constructions: XOR of two random permuations construction and
trucated random permutation construction. Section 3 is devoted to the proof of
Theorem 2. In Section 4, we discuss the proof, by Dai et al., of the full security of
the XOR of two random permutation construction, where we also point out the
gap in it. In Section 5, we provide the proofs of Assumption A1 for two specific
cases. We conclude in Section 6 by remarking on an identical gap in the proof of
full security of a related construction, termed XOR of two independent random
permutations. Finally, in Appendix A, we provide a self-contained proof of the χ2

method; essential ingredients of the proof is same as that of [DHT17a], however,
we also cover the finer details (such as the proof of the Pinsker’s inequality).

2 Preliminaries

Notation and Convention. We use the short-hand notation Xt to denote a
tuple (X1, . . . , Xt). We also write St to denote the t-fold Cartesian product of
the set S with itself. It will be clear from the context whether Xt means a t-tuple
(when X is a tuple) or product set (when X is a set).

We use notations X,Y,Z etc. (possibly with suffix) to represent random vari-
ables over some sets. Following the above notational convention, Xt would repre-
sent a t-tuple of random variables or random vector (X1, . . . ,Xt). We use E ,S, T
etc. (possibly with suffix) to denote sets. A will always represent an adversary.

In this paper, we fix a positive integer n, and we denote 2n by N .

2.1 PRF-Security Definition

Pseudorandom function (PRF) is a very popular security notion in cryptography.
While analyzing a message authentication code (MAC), we mostly study its
PRF-security as it is a stronger notion than MAC. It has also been used to
define encryption schemes, authenticated encryptions, and other cryptographic
algorithms.

Now we formally define the PRF-advantage of an algorithm or a keyed
function. By X←$S we mean that X is sampled uniformly from a finite set
S. Let m and p be positive integers. Let RPm denote the random permuta-
tion chosen uniformly from Permm, the set of all permutations on {0, 1}m, i.e.,
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RPm←$Permm. Similarly, let RFm→p←$Funcm→p (the set of all functions from
{0, 1}m to {0, 1}p). Let K be a finite set (it is the key space of the construction).
Given a function f : K×{0, 1}m → {0, 1}p and for every k ∈ K, we denote fk to
represent the function (also called keyed function) f(k, ·) ∈ Funcm→p. We now
define the PRF-advantage of an oracle adversary A against f as follows.

Definition 2 (PRF-advantage). Let A be a distinguisher (oracle algorithm)
and f : K × {0, 1}m → {0, 1}p. Then, the PRF-advantage of A against f is
defined as

Advprf
f (A) = |P[AfK → 1 : K←$K]−P[ARFm→p → 1]|.

As we restrict to only deterministic keyed functions (i.e., functions which give
same output on same input) we can assume, without loss of generality, that the
adversary does not repeat its queries. In other words, if Q1, . . . ,Qq are all queries
then these are distinct. We can also assume that A is deterministic as it can
always run with the best random coins which maximize the advantage. Suppose
A makes q distinct queries adaptively, denoted Q1, . . . ,Qq, and obtains responses
U1, . . . ,Uq. So, whenA in interacting with RFm→p, the outputs are uniformly and
independently distributed over {0, 1}p which we denote as U1, . . . ,Uq ←$ {0, 1}p.

Similarly, let X1, . . . ,Xq denote the outputs of fK where K←$K. We denote
the probability distributions associated with U1, . . . ,Uq and X1, . . . ,Xq by P1

and P0 respectively. Thus,

Advprf
f (A) = |P1(E)−P0(E)| (2)

where E is the set of all q-tuple of responses xq := (x1, . . . , xq) ∈ ({0, 1}n)q for
which A returns 1. From the definition the total variation (also known as the
statistical distance) between P0 and P1 is

dTV(P0,P1)
def
=

1

2

∑
xq∈({0,1}n)q

|P0(xq)−P1(xq)| = max
E⊆Ω

(P0(E)−P1(E)). (3)

Hence,
Advprf

f (A) ≤ dTV(P1,P0).3

Thus, the main cryptographic objective (that of determining the PRF-advantage

Advprf
f (A)) turns out to be a purely probability or statistical problem. Next, we

discuss the χ2 method which provides an upper bound of total variation between
two joint distributions.

2.2 χ2 Method

Let X := (X1, . . . ,Xq) and Z := (Z1, . . . ,Zq) are two random vectors of size q
distributed over Ωq. Let us denote the probability distributions of X and Z as

3 In fact, in this setting, i.e, for information theoretic security, there always exists an
adversary A′ such that Advprf

f (A′) = dTV(P1,P0); A′ returns 1 for any xq ∈ E ′,
where E ′ is such that dTV(P1,P0) = P0(E ′)−P1(E ′).
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P0 and P1 respectively. We denote the conditional probability distributions as
follows.

P0|xi−1(xi) = P(Xi = xi|X1 = x1, . . . ,Xi−1 = xi−1)

P1|xi−1(xi) = P(Zi = xi|Z1 = x1, . . . ,Zi−1 = xi−1)

When i = 1, P0|xi−1(x1) represents P(X1 = x1). Similarly, for P1|xi−1(x1). Let
xi−1 ∈ Ωi−1, i ≥ 1. Let us denote the χ2-distance between P0|xi−1 and P1|xi−1

as χ2(xi−1), i.e.,

χ2(xi−1) := dχ2(P0|xi−1 ,P1|xi−1).

Thus, χ2 is a real valued function. The next theorem is the crux of the χ2

method; it bounds the total variation between two joint distributions in terms
of the χ2-distance between the corresponding conditional distributions.

Theorem 1 ([DHT17a]). Suppose P0 and P1 denote probability distributions
of X := (X1, . . . ,Xq) and Z := (Z1, . . . ,Zq) and for all x1, . . . , xi−1, we have
P0|xi−1 � P1|xi−1 . Then

dTV(P0,P1) ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

.

For the sake of completeness, we provide a complete proof of this theorem in
Appendix A. In our setup, note that Z1, . . . ,Zq ←$ {0, 1}p for some p and hence
P1|xi−1(xi) = 1

2p for all xi. So,

Ex[χ2(Xi−1)] = 2p
∑
xi

ExXi−1

[(
P(Xi = xi|X1, . . . ,Xi−1)− 1

2p

)2
]
.

In the following subsection, we describe two constructions for which this method
was applied.

2.3 Two Random Permutation Based Constructions

In this paper, we mainly deal with two constructions based on a random permu-
tation RPn. Similar to a random function, if all queries to a random permutation
RPn are distinct and depends only on the previous responses (which is the case
for an adversary), the outputs V1, . . . ,Vq behave like a random sample without
replacement (WOR) from {0, 1}n. We write V1, . . . ,Vq ←wor {0, 1}n to denote
this. More formally, for all distinct x1, . . . , xq ∈ {0, 1}n, P(V1 = x1, . . .Vq =
xq) = 1

(N)q
, where (N)q = N(N − 1) · · · (N − q + 1). Now, we briefly describe

the constructions.

(1) XOR Construction. Define XORπ : {0, 1}n−1 → {0, 1}n to be the construc-
tion that takes a permutation π ∈ Permn as a key, and on input x ∈ {0, 1}n−1
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it returns π(x‖0)⊕ π(x‖1). Thus, XOR construction based on a random permu-
tation RPn returns X1, . . . ,Xq where X1 := V1 ⊕ V2, . . ., Xq := V2q−1 ⊕ V2q and
V1, . . . ,V2q ←wor {0, 1}n.

(2) trRP Construction. Let m ≤ n and truncm denotes the truncation function
which returns the first m bits of x ∈ {0, 1}n. Truncated random permutation is
a composition of random permutation followed by a truncation function. More
formally, we define for every x ∈ {0, 1}n,

trRPm(x) = truncm(RPn(x)).

Note that it is a function family, keyed by random permutation, mapping the
set of all n-bit sequences to the set of all m-bit sequences. Let X1, . . . ,Xq denote
the q outputs of trRPm. Then Xi = truncm(Vi) for all i.

PRF-security of this construction has been studied by Stam in 1978, though
in a much broader context (see [Sta78] for details), and later by others (e.g.,
[HWKS98,BI99,GG15,GG16,GGM17]). In particular, Stam proved the following
statement.

Theorem 2 ([Sta78]). Let V1, . . . ,Vq ←wor {0, 1}n, U1, . . . ,Uq ←$ {0, 1}m and
Xi = truncm(Vi) for all i. Then

dTV(X,U) ≤ 1

2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

) 1
2

where X = (X1, . . . ,Xq) and U = (U1, . . . ,Uq).

The following corollary (though not proved by Stam) is immediate from the
relationship between PRF-advantage and total variation.

Corollary 1. Let M = 2m, N = 2n and m ≤ n. For any adversary A making
q queries we have

Advprf
trRPm

(A) ≤ 1

2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

) 1
2

.

Remark 1. The upper bounds on the PRF-advantage of the trRP Construction
given in [HWKS98,GG15] are different (and weaker) than the one obtained
by Stam. Although the bounds are similar for some choices of parameters.
In [GGM17], all these results are mentioned, and the proofs are briefly surveyed.
In [GGM17], a general tight lower bound on the PRF-advantage has been proved
(improving on the lower bound declared in [HWKS98]).

3 Proof of Theorem 2 Using the χ2 Method

Now we provide an alternative proof of Theorem 2 using the χ2 method. We
briefly recall the setup. Here V1, . . . ,Vq ←wor {0, 1}n and Xi = truncm(Vi). Let
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x ∈ {0, 1}m, i ≥ 1 be an integer, and K = N/M . Also, let H denote the
number of j < i, for which truncm(Vj) = x. The probability distribution of
H is well known as the hypergeometric distribution HG(N,K, i − 1). For every
max(0, s+K −N) ≤ a ≤ min(K, s) we have

P(H = a) =

(
K
a

)
×
(
N−K
s−a

)(
N
s

) .

The following fact states the expectation and variance formula of a hypergeo-
metric distribution. Its proof can be found in standard probability theory text
books and hence we skip it.

Fact 1 Let H follow hypergeometric distribution HG(N,K, s) and let p denote
K
N . Then,

Ex[H] = sp. (4)

Var[H] := Ex[H−Ex[H]]2 = sp(1− p)× N − s
N − 1

. (5)

As an aside, we mention that the factor N−s
N−1 is also known as the finite sampling

correction factor. Up to this factor, the expression of variance is same as that of
the binomial distribution.

Now, we apply the χ2 method to bound the total variation dTV(X,U), where
U1, . . . ,Uq ←$ {0, 1}m. Let P0 and P1 denote the probability distributions of X
and U respectively. Note that

P0|xi−1(x) = P(Xi = x | X1 = x1, . . . ,Xi−1 = xi−1)

= P(Vi 6∈ S), where Si,x(xi−1) = {v ∈ {0, 1}n : ∃j < i truncm(v) = xj}

=
N
M − |Si,x(xi−1)|

N − i+ 1
.

Let Ni,x(xi−1) := |Si,x(xi−1)| and Hi,x = Ni,x(Xi−1). Then it is easy to
see from the definition of the heypergeometric distribution that Hi,x follows
HG(N,N/M, (i− 1)). Now, we compute the χ2 function evaluated at xi−1.

χ2(xi−1) =
∑
x∈[M ]

M

(
N
M −Ni,x(xi−1)

N − i+ 1
− 1

M

)2

=
∑
x∈[M ]

M

(N − i+ 1)2
×
(
Ni,x(xi−1)− i− 1

M

)2

.

Hence,

Ex[χ2(Xi−1)] = Ex

 ∑
x∈[M ]

M

(N − i+ 1)2
×
(
Hi,x −

i− 1

M

)2
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=
∑
x∈[M ]

M

(N − i+ 1)2
×Var[Hi,x]. (6)

This follows from the linearity of the expectation and the fact that Ex[Hi,x] =
(i− 1)/M . By substituting the value of Var[Nx] as described in the Fact 1, we
obtain

Ex[χ2(Xi−1)] =
M2

(N − i+ 1)2
× i− 1

M
×
(

1− 1

M

)
× N − i+ 1

N − 1

=
(M − 1)(i− 1)

(N − 1)(N − i+ 1)
.

Now by using Theorem 1 we have

dTV(P0,P1) ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

=

(
1

2

q∑
i=1

(M − 1)(i− 1)

(N − 1)(N − i+ 1)

) 1
2

≤

(
1

2

q∑
i=1

(M − 1)(i− 1)

(N − 1)(N − q + 1)

) 1
2

=
1

2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

) 1
2

. ut

Remark 2. In order to draw comparison between our proof (using the χ2 method)
of Theorem 2 and the proof due to Stam, we remark that the main ideas of
both the proofs are same; namely both use the chain rule of the KL divergence,
concavity of the logarithm function, and also the hypergeometric distribution.
However, unlike in our case (in (6)) Stam did not make explicit use of variance of
the hypergeometric distribution. Instead, he used Jensen’s inequality. Moreover,
our proof is simpler and modular compared to Stam’s proof with a more direct
approach.

4 Overview of the Proof by Dai et al. and its Flaw

In this section, we provide a brief overview of the proof by Dai et al. to precisely
point out the gap in their proof. In order to better emphasize, we provide a
brief sketch of the proof due to Dai et al. We mostly follow the notation by the
authors along with our notational convention. For example, we mostly use N
instead of 2n. Moreover, for simplicity we write the set {0, 1}n \ {0n} as [N ]∗.

Theorem 3 ([DHT17a]). Fix an integer n ≥ 8 and let N = 2n. For any
adversary A that makes q ≤ N

32 queries we have

Advprf
XOR(A) ≤

1.5q + 3
√
q

N
.
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Proof due to Dai et al in [DHT17a]. Let A be an adversary making ex-
actly q distinct queries adaptively. As we have observed before, the output dis-
tributions of random function and XOR function do not depend on A. In fact,
U′1, . . . ,U

′
q ←$ {0, 1}n and X1 := V1⊕V2, . . . ,Xq := V2q−1⊕V2q are the outputs of

random function and XOR construction respectively, where V1, . . . ,V2q ←wor {0, 1}n.
Let P1 and P2 denote the output distributions of X := (X1, . . . ,Xq) and U′ :=
(U′1, . . . ,U

′
q) respectively. Thus,

Advprf
XOR(A) ≤ dTV(P1,P2).

Now, we note that Xi’s cannot take 0n and hence it is natural to consider the
q-tuple of random variables U1, . . . ,Uq ←$ [N ]∗ := {0, 1}n \ {0n}. Let us denote
by P0 the probability distribution of U1, . . . ,Uq. By simple algebra, we have
dTV(P0,P2) ≤ q/2n. Also, using triangle inequality4, we have

Advprf
XOR(A) ≤ dTV(P0,P1) + q/2n.

At this point, the χ2 method (i.e., Theorem 1) gives an upper bound on dTV(P0,P1).

The rest of the proof is devoted to show dTV(P0,P1) ≤ 0.5q+3
√
q

2n .
For every non-zero x1, . . . , xi, we clearly have P0|xi−1(xi) = 1/(N − 1). For

simplicity, let us denote by Yi,x the conditional probability P1|xi−1(x) which
is also a function over xi−1. When xi−1 is chosen following the distribution of
Xi−1, we denote Yi,x as Yi,x. From the definition of χ2 function corresponding
to (V1, . . . ,Vq) and (U1, . . . ,Uq), we have

χ2(xi−1) =
∑
x 6=0n

(N − 1)(Yi,x −
1

N − 1
)2. (7)

Now, we give a brief description of the rest but critical part of the proof where
the authors provided an upper bound on Ex[χ2(Xi−1)]. We keep the authors’
flow (suppressing some calculation which will be denoted as ∗∗∗) and wordings.
However, we change some of their notations in order to make them consistent
with our notation. Authors complete the proof as described below.

We now expand Yi,x into a more expressive and convenient formula to

work with. ∗ ∗ ∗ Let S = {V1,V2, . . . ,V2i−2}. Let Di,x be the number of

pairs (u, u⊕x) such that both u and u⊕x belongs to S. Note that S
and Di,x are both random variables, and in fact functions of the random

variables V1,V2, . . . ,V2i−2. ∗ ∗ ∗ Hence,

Yi,x =
N − 4(i− 1) + Di,x

(N − 2i+ 1)(N − 2i)
. (8)

4 Triangle inequality of total variation metric can be easily shown from the triangle
inequality in real numbers.



Title Suppressed Due to Excessive Length 11

∗ ∗ ∗(
Yi,x −

1

N − 1

)2

≤ 3(Di,x − 4(i− 1)2/N)2 + 18

N4
.

From Eq. 7,

Ex[χ2(Xi−1)] ≤
∑
x 6=0n

N ·Ex

[(
Yi,x −

1

N − 1

)2
]

(9)

≤
∑
x 6=0n

18

N3
+

3

N3
·Ex

[(
Di,x −

4(i− 1)2

N

)2
]

(10)

In the last formula, it is helpful to think of each Di,x as a function

of V1,V2, . . . ,V2i−2, and the expectation is taken over the choices of

V1,V2, . . . ,V2i−2 sampled uniformly without replacement from {0, 1}n. We

will show that5 for any x ∈ {0, 1}n \ {0n},

Ex

[(
Di,x −

4(i− 1)2

N

)2
]
≤ 4(i− 1)2

N
(11)

and thus

Ex[χ2(Xi−1)] ≤ 18

N2
+

12(i− 1)2

N3
.

Summing up, from χ2-method

dTV(P0,P1) ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

≤
3
√
q + .5q

N
. ut

4.1 Flaw in the Above Proof and its Repair Under an Assumption

Let us revisit Eq. 8. Let us fix distinct v1, . . . , v2i−2 and define the set S =
{v1, . . . , v2i−2}. Let Di,x denote the number of pairs (u, u ⊕ x) such that both
u and u⊕ x belong to S. Let x1 = v1 ⊕ v2, . . . , xi−1 = v2i−3 ⊕ v2i−2. Now, it is
easy to see that

P(Xi = x|V1 = v1, . . . ,V2i−2 = v2i−2) =
N − 4(i− 1) +Di,x

(N − 2i+ 1)(N − 2i)
(12)

which appeared in the right hand side of Eq. 8. Whereas the left hand side of
the equation is P(Xi = x|X1 = x1, . . . ,Xi−1 = xi−1). Note that in general,

P(Xi = x|V1 = v1, . . . ,V2i−2 = v2i−2) = P(Xi = x|X1 = x1, . . . ,Xi−1 = xi−1)
(13)

5 Which has been shown later in the proof given by Dai et al. In this paper we don’t
provide details on this claim and so we skip this proof here.
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does not hold for every v1, . . . , v2i−2. Hence Eq. 8 is incorrect.

After observing this flaw in the proof, let us see how we can fix it. If we can
prove Eq. 10 in some other way, we can still continue with the rest of the proof.
This can be proved if we can prove a variant of the Eq. 8 as follows:

∑
x

Ex[(Yi,x − c)2] =
∑
x

Ex

[(
N − 4(i− 1) + Di,x

(N − 2i+ 1)(N − 2i)
− c
)2
]
,

where c = 1/(N − 1). In other words,∑
x

Ex[(P(Xi = x|Xi−1)− c)2] =
∑
x

Ex[(P(Xi = x|V2i−2)− c)2].

The above equation is equivalent to

Ex
V2i−2

[
∑

x∈[N ]∗

P(Xi = x|V2i−2)2] = Ex
Xi−1

[
∑

x∈[N ]∗

P(Xi = x|Xi−1)2] (14)

We will show in the subsequent section that (14) is not actually true. This in
fact shows that the Eq. 13 is actually an inequality for certain choices of vi’s.
However, the proof can still survive if we have the following weaker statement
which we place here as an assumption.

Assumption 1

Ex
V2i−2

[
∑

x∈[N ]∗

P(Xi = x|V2i−2)2] ≥ Ex
Xi−1

[
∑

x∈[N ]∗

P(Xi = x|Xi−1)2] (15)

Under this assumption, we can justify the inequalities appearing in Eq. 9 and
Eq. 10. Hence, we can complete the proof of PRF-security of XOR construction
under the above assumption. In the following section, we study the assumption
for i = 2 and i = 3.

5 On the Correctness of Assumption 1

In this section, we study the correctness of our assumption stated in the previous
section for some small choices of i, namely for i = 2 and 3.

Theorem 4.

Ex
X1

[
∑

x2∈[N ]∗

P(X2 = x2|X1)2] = Ex
V2

[
∑

x2∈[N ]∗

P(X2 = x2|V2)2]. (16)

Proof . For notational simplicity we will write [N ]∗ to represent the set {1, 2, . . . ,
N − 1}. Now, we evaluate the two sides of (16).
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L.H.S. of (16): Expanding the l.h.s. of (16) we get

Ex
X1

[
∑

x2∈[N ]∗

P(X2 = x2|X1)2] =
∑
x1

∑
x2∈[N ]∗

P(X2 = x2,X1 = x1)2

P(X1 = x1)
. (17)

Now, it follows that

P(X1 = x1) = P(V2 = v2|V1 + V2 = x1)

=
N

N(N − 1)

=
1

N − 1
.

Next, we split the sum in (17) into the following two subcases: (i ) Case 1.1, where
we consider the condition x2 = x1, and (ii ) Case 1.2, where we consider the
condition x2 6= x1. In each of the subcases, we determine the number of tuples
(x2, x1) and probability P(X2 = x2,X1 = x1) of a particular tuple satisfying the
conditions of the subcase.

Case 1.1: (x2 = x1).

|{(x2, x1)|x2 = x1}| = N − 1.

Next, we have

P(X2 = x2,X1 = x1) = P(V4|V1 + V2 = x1 = x2 = V3 + V4)

=
N(N − 2)

N(N − 1)(N − 2)(N − 3)

=
1

(N − 1)(N − 3)
.

Therefore, ∑
x1,x2∈[N ]∗
x2=x1

P(X2 = x2,V
2 = v2)2

P(V2 = v2)
=

1

(N − 3)2
.

(18)

Case 1.2: (x2 6= x1).

|{(x2, x1)|x2 6= x1}| = (N − 2)(N − 3).

Now,

P(X2 = x2,X1 = x1) = P(V4|V1 + V2 = x1 6= x2 = V3 + V4)

=
N(N − 4)

N(N − 1)(N − 2)(N − 3)
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=
N − 4

(N − 1)(N − 2)(N − 3)
.

Hence,

∑
x1,x2∈[N ]∗

x2 6=x1

P(X2 = x2,X1 = x1)2

P(X1 = x1)
=

(N − 4)2

(N − 2)(N − 3)2
.

(19)

From (18) and (19) we get

Ex
X1

[
∑

x2∈[N ]∗

P(X2 = x2|X1)2] =
1

(N − 3)2
+

(N − 4)2

(N − 2)(N − 3)2
. (20)

R.H.S. of (16): Expanding the r.h.s. of (16) we get

Ex
V2

[
∑

x2∈[N ]∗

P(X2 = x2|V2)2] =
∑
v2

∑
x2∈[N ]∗

P(X2 = x2,V
2 = v2)2

P(V2 = v2)
. (21)

Next, it follows that

P(V2 = v2) =
1

N(N − 1)
.

Similar to the l.h.s., we split the sum in the r.h.s of (21) depending on the
conditions (Case 2.1), and (i ) x2 = v1 + v2 (ii ) x2 6= v1 + v2 (Case 2.2). In
each of the subcases, we determine the number of tuples (x2, v

2) and probability
P(X2 = x2,V

2 = v2) of a particular tuple satisfying the conditions of the subcase.

Case 2.1:(x2 = v1 + v2).

|{(x2, v
2)|x2 = v1 + v2}| = N(N − 1).

P(X2 = x2,V
2 = v2) = P(V4 = v4|V1 + V2 = V3 + V4 = x2)

=
(N − 2)

N(N − 1)(N − 2)(N − 3)

=
1

N(N − 1)(N − 3)
.

So,

∑
v2

∑
x2∈[N ]∗

x2=v1+v2

P(X2 = x2,V
2 = v2)2

P(V2 = v2)
=

1

(N − 3)2
.

(22)
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Case 2.2:(x2 6= v1 + v2).

|{(x2, v
2)|x2 6= v1 + v2}| = N(N − 1)(N − 2).

P(X2 = x2,V
2 = v2) = P(V4 = v4|V1 + V2 6= x2 = V3 + V4)

=
N(N − 4)

N(N − 1)(N − 2)(N − 3)

=
N − 4

(N − 1)(N − 2)(N − 3)
.

Therefore, ∑
v2

∑
x2∈[N ]∗

x2 6=v1+v2

P(X2 = x2,V
2 = v2)2

P(V2 = v2)
=

(N − 4)2

(N − 2)(N − 3)2
.

(23)

From (22) and (23) we get

Ex
V2

[
∑

x2∈[N ]∗

P(X2 = x2|V2)2] =
1

(N − 3)2
+

(N − 4)2

(N − 2)(N − 3)2
. (24)

The theorem follows by comparing (20) and (24). ut

So we have shown that our assumption is valid for i = 2 (in fact these are
equal). Now we show that the assumption is still valid for i = 3. Here we have
strict inequality.

Theorem 5.

Ex
X2

[
∑

x3∈[N ]∗

P(X3 = x3|X2)2] < Ex
V4

[
∑

x3∈[N ]∗

P(X3 = x3|V4)2]. (25)

Proof .As in the proof of the previous theorem, we consider the two sides of (25)
separately. However, in this proof, the calculations are more involved. In order
to help the reader follow the steps of the proof, we show the proof structure in
Figure 1. In the figure, the root node corresponds to (25), and its two children
correspond to calculation of the two sides of (25). In the remaining nodes, we
show the conditions corresponding to the subcases.
L.H.S. of (25): Expanding the l.h.s. of (25) we get

Ex
X2

[
∑

x3∈[N ]∗

P(X3 = x3|X2)2] =
∑
x2

∑
x3∈[N ]∗

P(X3 = x3,X
2 = x2)2

P(X2 = x2)
. (26)

We split the outer sum in the r.h.s. of (26) depending on the conditions (i
) x1 = x2 (Case 1.1), and (ii ) x1 6= x2 (Case 1.2). For each of these subcases and
subcases of these subcases, we determine the number of tuples (x3, x

2) and the
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probability P(X3 = x3,X
2 = x2) of a particular tuple satisfying the conditions

of the subcase.
Case 1.1:(x1 = x2).

In this case, we have

P(X2 = x2) = P(V4 = v4|V1 + V2 = x1 = x2 = V3 + V4)

=
N(N − 2)

N(N − 1)(N − 2)(N − 3)

=
1

(N − 1)(N − 3)
.

Nex, we consider the following two subcases of this case: (i ) Case 1.1.1, where
we consider the condition x3 = x1, and (ii ) Case 1.1.2, where we consider the
condition x3 6= x1 .
Case 1.1.1:(x3 = x1 = x2).

|{(x3, x1, x2)|x3 = x1 = x2}| = N − 1.

P(X3 = x3,X1 = x1,X2 = x2) = P(V6 = v6|V1 + V2 = V3 + V4 = V5 + V6 = x3)

=
N(N − 2)(N − 4)

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)

=
1

(N − 1)(N − 3)(N − 5)
.

Case 1.1.2:(x3 6= x1 = x2)

|{(x3, x
2)|x3 6= x1 = x2}| = (N − 1)(N − 2).

P(X3 = x3,X
2 = x2) = P(V6 = v6|x1 = V1 + V2 = V3 + V4 = x2 6= x3 = V5+

V6).

(27)

In order to calculate the probability on the r.h.s. of (27), we first observe that for
fixed x1, number of possible choices for (v1, v2) = N . Since v3, v4 /∈ {v1, v2}, so,
number of possible choices for (v3, v4) = N − 2. Further, we also require v5, v6 /∈
{v1, v2, v3, v4}. This is equivalent to the condition that v5 /∈ S = {v1, v2, v3, v4}∪
{v1 + x3, v2 + x3, v3 + x3, v4 + x3}.Therefore, in order to determine the number
of possible choices of (v5, v6) we need to calculate the cardinality of the set S.

Here, we observe that in order to calculate the cardinality of S, it is enough
to determine |{v1} ∩ {v1 + x3, v2 + x3, v3 + x3, v4 + x3}|. It is clear that v1 /∈
{v1+x3, v2+x3}. Hence, we are left with the following two subcases: Case 1.1.2.a
and Case 1.1.2.b.

• Case 1.1.2.a:(v1 ∈ {v3 + x3, v4 + x3}). We have the following two possi-
bilities.
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1. v1 = v3 + x3: In this case,it also follows that v2 = v4 + x3. So, |S| = 4.
2. v1 = v4 + x3: Similar to the above subcase. Hence, |S| = 4.

• Case 1.1.2.b:(v1 /∈ {v3 + x3, v4 + x3}). In this case, |S| = 8.

Therefore, out of total N(N − 2) choices of v4, for 2N choices , we have that
v1 ∈ {v3 +x3, v4 +x3}. For these 2N choices of v4, number of possible choices of
(v5, v6) = N − 4. For the remaining N(N − 4) choices of v4, number of possible
choices of (v5, v6) = N − 8. Hence,

P(X3 = x3,X
2 = x2) =

2N(N − 4) +N(N − 4)(N − 8)

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)

=
N − 6

(N − 1)(N − 2)(N − 3)(N − 5)
.

Summing up the cases 1.1.1 and 1.1.2, we get∑
x2

x1=x2

∑
x3∈[N ]∗

P(X3 = x3,X
2 = x2)2

P(X2 = x2)
=

(N − 1)2(N − 3)

((N − 1)(N − 3)(N − 5))2

+
(N − 1)2(N − 2)(N − 3)(N − 6)2

((N − 1)(N − 2)(N − 3)(N − 5))2

=
1

(N − 3)(N − 5)2
+

(N − 6)2

(N − 2)(N − 3)(N − 5)2
. (28)

Case 1.2:(x1 6= x2).

P(X2 = x2) = P(V4 = v4|V1 + V2 = x1 6= x2 = V3 + V4).

Here, we have that for fixed x1 the number of possible choices of (v1, v2) = N .
Now, v3 /∈ {v1, v2} ∪ {v1 + x2, v2 + x2}. Also, {v1, v2} ∩ {v1 + x2, v2 + x2} = ∅.
Therefore, the number of possible choices of (v3, v4) is N − 4. So,

P(X2 = x2) =
N − 4

(N − 1)(N − 2)(N − 3)
.

Next, we consider the following three subcases depending on (i ) x3 = x1 (Case
1.2.1), (ii ) x3 = x2 (Case 1.2.2), and (iii ) x3 /∈ {x1, x2} (Case 1.2.3).
Case 1.2.1:(x3 = x1)

|{(x3, x
2)|x3 = x1 6= x2}| = (N − 1)(N − 2).

By following the same argument as in Case 1.1.2, we get

P(X3 = x3,X
2 = x2) =

N − 6

(N − 1)(N − 2)(N − 3)(N − 5)
.
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Case 1.2.2:(x3 = x2) This subcase is same as the previous case, i.e., the Case
1.2.1.
Case 1.2.3:(x3 /∈ {x1, x2}) Here, we have the following subcases to consider
depending on (i ) x3 = x1 + x2 (Case 1.2.3.a) and (ii ) x3 6= x1 + x2 (Case
1.2.3.b).
Case 1.2.3.a:(x3 = x1 + x2).

|{(x3, x
2)|x3, x1, x2 unequal, x3 = x1 + x2}| = (N − 1)(N − 2).

P(X3 = x3,X
2 = x2) =P(V6 = v6|V1 + V2 = x1,V3 + V4 = x2,V5 + V6 = x1+

x2).

Following an analysis similar to Case 1.1.2 we obtain

P(X3 = x3,X
2 = x2) =

N − 8

(N − 1)(N − 2)(N − 3)(N − 5)
.

Case 1.2.3.b:(x3 6= x1 + x2).

|{(x3, x
2)|x3, x1, x2 unequal, x3 6= x1 + x2}| = (N − 1)(N − 2)(N − 4).

P(X3 = x3,X
2 = x2) =P(V6 = v6|V1 + V2 = x1,V3 + V4 = x2,V5 + V6 6= x1+

x2).

In this case also, we follow an analysis similar to Case 1.1.2 to obtain

P(X3 = x3,X
2 = x2) =

N(N − 8)(N − 8) + 4N(N − 6)

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)

=
N2 − 12N + 40

(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)
.

By adding the cases 1.2.1, 1.2.2, 1.2.3.a, and 1.2.3.b, we obtain

∑
x2

x1 6=x2

∑
x3∈[N ]∗

P(X3 = x3,X
2 = x2)2

P(X2 = x2)
=

2(N − 6)2

(N − 3)(N − 4)(N − 5)2
+

(N − 8)2

(N − 3)(N − 4)(N − 5)2
+

(N2 − 12N + 40)2

(N − 3)(N − 4)2(N − 5)2
. (29)
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Finally, by adding (28) and (29), we get the following expression for the l.h.s. of
(25).

Ex
X2

[
∑

x3∈[N ]∗

P(X3 = x3|X2 = x2)2] =
1

(N − 3)(N − 5)2
+

(N − 6)2

(N − 2)(N − 3)(N − 5)2
+

2(N − 6)2

(N − 3)(N − 4)(N − 5)2
+

(N − 8)2

(N − 3)(N − 4)(N − 5)2
+

(N2 − 12N + 40)2

(N − 3)(N − 4)2(N − 5)2

=
NUM

DEN
, (30)

where NUM = N5 − 22N4 + 195N3 − 870N2 + 1936N − 1568 and DEN = N6 −
23N5 + 217N4 − 1073N3 + 2926N2 − 4160N + 2400.

R.H.S. of (16): Next, we obtain the expression for the r.h.s. of (25). As in the case
of l.h.s., we expand the sum under expectation as follows.

Ex
V4

[
∑

x3∈[N ]∗

P(V5 + V6 = x3|V4)2] =
∑
v4

∑
x3∈[N ]∗

P(V5 + V6 = x3|V4)2

P(V4 = v4) (31)

Clearly, we have

P(V4 = v4) =
1

N(N − 1)(N − 2)(N − 3)
.

Similar to Case 1, we split the outer sum in the r.h.s. of (31) in two subcases:
(i ) in case 2.1 we consider the condition v1 + v2 = v3 + v4, and (ii ) in Case
2.2, we consider the condition v1 + v2 6= v3 + v4 . For each of these subcases
and subcases of these subcases we determine the number of tuples (x3, v

4) and
the probability P(V5 + V6 = x3,V

4 = v4) of a particular tuple satisfying the
conditions of the subcase.

Case 2.1:(v1 + v2 = v3 + v4). We further divide this subcase according to the
conditions (i ) x3 = v1 +v2 = v3 +v4 (Case 2.1.1), and (ii ) x3 6= v1 +v2 = v3 +v4

(Case 2.1.2) .
Case 2.1.1:(x3 = v1 + v2 = v3 + v4).

|{(x3, v
4)|x3 = v1 + v2 = v3 + v4}| = N(N − 1)(N − 2).

P(V5 + V6 = x3,V
4 = v4) =

∑
(v5,v6),v5 6=v6,v5+v6=x3

{v5,v6}∩{v1,v2,v3,v4}=∅

(P(V5 = v5,V6 = v6|V4 = v4)×
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P(V4 = v4))

=
∑

(v5,v6),v5 6=v6,v5+v6=x3

{v5,v6}∩{v1,v2,v3,v4}=∅

P(V5 = v5,V6 = v6|V4 = v4)

N(N − 1)(N − 2)(N − 3)
.

Clearly, we have

|{(v5, v6)|v5 6= v6, v5 + v6 = x3, {v5, v6} ∩ {v1, v2, v3, v4} = ∅}| = N − 4.

And for fixed (v5, v6) and v4,

P((V5 = v5,V6 = v6)|V4 = v4) =
1

(N − 4)(N − 5)
.

So,

P(V5 + V6 = x3,V
4 = v4) =

1

N(N − 1)(N − 2)(N − 3)(N − 5)
.

Case 2.1.2:(x3 6= v1 + v2 = v3 + v4). By following an argument similar to the
Case 1.1.2 we arrive at the following two subcases depending on the conditions
(i ) v1 ∈ {v3 +x3, v4 +x3} (Case 2.1.2.a), and (ii ) v1 /∈ {v3 +x3, v4 +x3} (Case
2.1.2.b).
Case 2.1.2.a:(v1 ∈ {v3 + x3, v4 + x3}).

|{(x3, v
4)|x3 6= v1 + v2, x3 ∈ {v1 + v3, v1 + v4}}| = 2N(N − 1)(N − 2).

The number of possible choices of the pair (v5, v6) is N − 4. Therefore,

P(V5 + V6 = x3,V
4 = v4) =

1

N(N − 1)(N − 2)(N − 3)(N − 5)
.

Case 2.1.2.b:(v1 /∈ {v3 + x3, v4 + x3}).

|{(x3, v
4)|x3 /∈ {v1 + v2, v1 + v3, v1 + v4}}| = N(N − 1)(N − 2)(N − 4).

Also, the number of possible choices of the pair (v5, v6) is N − 8. So, in this case
we have

P(V5 + V6 = x3,V
4 = v4) =

(N − 8)

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)
.

So, summing up the cases 2.1.1, 2.1.2.a and 2.1.2.b, we get∑
v4

v1+v2=v3+v4

∑
x3∈[N ]∗

P(V5 + V6 = x3,V
4 = v4)2

P(V4 = v4)
=

1

(N − 3)(N − 5)2
+

2

(N − 3)(N − 5)2
+

(N − 8)2

(N − 3)(N − 4)(N − 5)2
.

(32)
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Case 2.2:(v1 + v2 6= v3 + v4) We split this case according to the conditions (i
) x3 ∈ {v1 + v2, v3 + v4} (Case 2.2.1), (ii ) x3 = v1 + v2 + v3 + v4 (Case 2.2.2),
and (iii ) x3 /∈ {v1 + v2, v3 + v4, v1 + v2 + v3 + v4} (Case 2.2.3).

Case 2.2.1:(x3 ∈ {v1 + v2, v3 + v4})

|{(x3, v
4)|x3 ∈ {v1 + v2, v3 + v4}}| = 2N(N − 1)(N − 2)(N − 4).

In this case, possible number of choices for the pair (v5, v6) is N − 6. So, we
have

P(V5 + V6 = x3,V
4 = v4) =

N − 6

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)
.

Case 2.2.2:(x3 = v1 + v2 + v3 + v4)

|{(x3, v
4)|x3 = v1 + v2 + v3 + v4}}| = N(N − 1)(N − 2)(N − 4).

The number of possible choices for the pair (v5, v6) is N − 8. Hence,

P(V5 + V6 = x3,V
4 = v4) =

N − 8

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)
.

Case 2.2.3:(x3 /∈ {v1 + v2, v3 + v4, v1 + v2 + v3 + v4}) We further divide this case
into the following two subcases depending on (i ) v1 ∈ {v3 + x3, v4 + x3} (Case
2.2.3.a), and (ii ) v1 /∈ {v3 + x3, v4 + x3} (Case 2.2.3.b).

Case 2.2.3.a:(v1 ∈ {v3 + x3, v4 + x3}).

|{(x3, v
4)|x3 ∈ {v3 + v1, v4 + v1}}}| = 4N(N − 1)(N − 2)(N − 4).

Possible number of choices for the pair (v4, v5) is N − 6. Therefore,

P(V5 + V6 = x3,V
4 = v4) =

N − 6

N(N − 1)(N − 2)(N − 3)(N − 5)
.

Case 2.2.3.b:(v1 /∈ {v3 + x3, v4 + x3}).

|{(x3, v
4)|x3 /∈ {v3 + v1, v4 + v1}}}| = N(N − 1)(N − 2)(N − 4)(N − 8).

The number of possible choices of the pair (v5, v6) is N − 8. So, in this case, we
have

P(V5 + V6 = x3,V
4 = v4) =

N − 8

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)
.



22 Srimanta Bhattacharya, Mridul Nandi

So, summing up the subcases 2.2.1, 2.2.2, 2.2.3.a, and 2.2.3.b, we get∑
v4

v1+v2 6=v3+v4

∑
x3∈[N ]∗

P(V5 + V6 = x3,V
4 = v4)2

P(V4 = v4)
=

2(N − 6)2

(N − 3)(N − 4)(N − 5)2
+

(N − 8)2

(N − 3)(N − 4)(N − 5)2
+

4(N − 6)2

(N − 3)(N − 4)(N − 5)2
+

(N − 8)3

(N − 3)(N − 4)(N − 5)2
.

(33)

Finally, adding (32) and (33) we get

Ex
V4

[
∑

x3∈[N ]∗

P(V5 + V6 = x3|V4)2] =
(N2 − 11N + 36)

(N − 3)(N − 4)(N − 5)
. (34)

The theorem follows by comparing (30) and (34) (difference between the two

being 16(N2−8N+8)
(N−2)(N−3)(N−4)2(N−5)2 which is > 0 for N ≥ 8). ut

6 Concluding Remarks

Following the publication ([BN18]) of this paper, the authors of [DHT17a] have
corrected the proof of Theorem 3 in [DHT17b]. Their fix of Theorem 3 is simpler
by use of Jensen’s ineequality.
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Appendix A Proof of the χ2 method

In this section we provide proof of Theorem 1, which is the heart of the χ2

method. The proof is based on Lemma 1, Lemma 2, and Theorem 6. Along
the way we also briefly mention some (relevant) facts of KL divergence and χ2

distance.

Kullback-Leibler Divergence. Kullback-Leibler divergence (KL divergence)
or relative entropy between P0 to P1 is defined as

dKL(P0,P1) =
∑
X∈Ω

P0(X) log
P0(X)

P1(X)
.

Note that the KL divergence is defined only if P0 � P1 (with the convention
that 0 log 0

0 = 0). It was first defined by Kullback and Leibler in 1951 ([KL51])
as a generalization of the entropy notion of Shannon (see [CT06]).

It can be shown that the KL divergence between any two distributions is
always non-negative (known as Gibbs’ inequality, see [CT06]). However, it is not
symmetric (i.e., dKL(P0,P1) 6= dKL(P0,P1) in general) and does not satisfy the
triangle inequality. Thus, KL divergence is not a metric.

Though not a metric, KL divergence has some useful properties. For exam-
ple, the KL divergence between any two product distributions is additive over
the corresponding marginals (see [CT06], [Rei12]). The KL divergence between
two joint distribution can be obtained as the sum of the KL divergences of
corresponding conditional distributions. This is known as the chain rule of KL
divergence. It is one of the crucial parts of the χ2 method. We elaborate it in
more detail below.

Chain rule of KL divergence. Let Pq
0 and Pq

1 be two probability distributions over
Ωq. We denote Pi

0 and Pi
1 to represent the marginal probability distributions

for first i coordinates of Pq
0 and Pq

1 respectively, 1 ≤ i ≤ q. In other words, if
X := (X1, . . . ,Xq) and Y := (Y1, . . . ,Yq) are two joint random variables following
the probability distributions Pq

0 and Pq
1 then Pi

0 and Pi
1 represent the proba-

bility distributions of Xi and Yi respectively. We recall that P0|xi−1(xi) denotes

http://eprint.iacr.org/2010/287
http://www.cs.umd.edu/~slivkins/CMSC858G-fall16/Lecture3.pdf
http://www.cs.umd.edu/~slivkins/CMSC858G-fall16/Lecture3.pdf
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the conditional distribution P(Xi = xi|Xi−1 = xi−1) and similarly P1|xi−1(xi).
Moreover, KL(xi−1) = dKL(P0|xi−1 ,P1|xi−1). Now we state chain rule of KL
divergence.

Lemma 1 (Chain rule of KL divergence (see [CT06], Theorem 2.5.3)).
Following the above notations,

dKL(Pq
0,P

q
1) = dKL(P1

0,P
1
1) +

q∑
i=2

Ex[KL(Xi−1)].

Proof .

dKL(Pq
0,P

q
1) =

∑
xq∈Ωq

Pq
0(xq) log

(
Pq

0(xq)

Pq
1(xq)

)

=
∑
xq∈Ωq

Pq
0(xq) log

(∏q
i=1 P0|xi−1(xi)∏q
i=1 P1|xi−1(xi)

)

=
∑
xq∈Ωq

Pq
0(xq)

q∑
i=1

log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xq∈Ωq

Pq
0(xq) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi∈Ωi

Pi
0(xi) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi∈Ωi

Pi−1
0 (xi−1)P0|xi−1(xi) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi−1∈Ωi−1

Pi−1
0 (xi−1)

∑
Xi

P0|xi−1(xi) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi−1∈Ωi−1

Pi−1
0 (xi−1)KL(xi−1)

=

q∑
i=1

Ex[KL(Xi−1)] ut

The next inequality due to Pinsker (see [CT06]) gives an upper bound on
the total variation distance between two distributions in terms of their KL di-
vergence.

Theorem 6 (Pinsker’s Inequality). For every probability functions P0,P1,

dTV(P0,P1) ≤
√

1

2
dKL(P0,P1).
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Proof .We follow the steps of [Sli16]. Let Ω′ = {x ∈ Ω|P0(x) ≥ P1(x)}. Also,
let pi =

∑
x∈Ω′ Pi(x) for i ∈ {0, 1}. So, dTV(P0,P1) = p0 − p1. Also, by logsum

inequality6, we have dKL(P0,P1) ≥ p0 log p0
p1

+ (1− p0) log (1−p0)
(1−p1) . Therefore,

dKL(P0,P1) ≥ p0 log
p0

p1
+ (1− p0) log

(1− p0)

(1− p1)

=

∫ p0

p1

(
p0

x
− (1− p0)

(1− x)

)
dx

=

∫ p0

p1

p0 − x
x(1− x)

dx

≥ 2(p0 − p1)2 = 2dTV(P0,P1)2, (since x(1− x) ≤ 1

4
).ut

χ2 distance. χ2 distance has its origin in mathematical statistics dating back
to Pearson (see [LV87] for some history). The χ2 distance between P0 and P1,
with P0 � P1, is defined as

dχ2(P0,P1) :=
∑
x∈Ω

(P0(x)−P1(x))2

P1(x)
.

It can be seen that χ2 distance is not symmetric. Therefore, it is not a metric.
However, like KL-divergence, χ2 distance between product distributions can be
bounded in terms of the χ2 distances between their marginals (see [Rei12]).
The following lemma shows that KL-divergence between two distributions can
be upper bounded by their χ2-distance. The first inequality can also be found
in earlier works (see [GS02] for this and many other relations among various
distances used in Statistics).

Lemma 2. dKL(P0,P1) ≤ log(1 + dχ2(P0,P1)) ≤ dχ2(P0,P1).

Proof . By the definition of χ2-distance we have

log(1 + dχ2(P0,P1)) = log

(∑
x∈Ω

P0(x)
P0(x)

P1(x)

)

= log

(
Ex

[
P0(x)

P1(x)

])
≥ Ex

[
log

(
P0(x)

P1(x)

)]
by Jensen’s inequality

=
∑
x∈Ω

P0(x) log

(
P0(x)

P1(x)

)
6 Let a1, . . . , an and b1, . . . , bn be nonnegative numbers. We denote the sum

∑
i ai and∑

i bi by a and b respectively. The log sum inequality states that
∑n

i=1 ai log ai
bi
≥

a log a
b
.
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= dKL(P0,P1)

The last inequality follows by observing that dχ2(P0,P1)) ≥ 0 and log(1+t) ≤ t
for t ≥ 0. ut

A.1 Proof of Theorem 1

We are now ready to show the upper bound on dTV(Pq
0,P

q
1) in terms of expected

value of χ2-distance between the conditional distributions P0|xi−1 and P1|xi−1 .
We state and prove the χ2 method, i.e. Theorem 1.
Proof of Theorem 1. The proof follows directly from Pinsker’s inequality
(Theorem 6), chain rule of KL divergence (Lemma 1), and Lemma 2. More
precisely, we have

dTV(Pq
0,P

q
1) ≤

(
dKL(Pq

0,P
q
1)

2

) 1
2

by Theorem 6

=

(
1

2

q∑
i=1

Ex[KL(Xi−1)]

) 1
2

by Lemma 1

≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

by Lemma 2 ut
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Fig. 1: Proof structure of Theorem 5
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