Practical Privacy-Preserving K-means Clustering

Payman Mohassel* Mike Rosulek’ Ni Trieuf

October 5, 2019

Abstract

Clustering is a common technique for data analysis, which aims to partition data into
similar groups. When the data comes from different sources, it is highly desirable to maintain
the privacy of each database. In this work, we study a popular clustering algorithm (K-means)
and adapt it to the privacy-preserving context.

Our main contributions are to propose: i) communication-efficient protocols for secure two-
party multiplication, and ii) batched Euclidean squared distance in the adaptive amortizing
setting, when one needs to compute the distance from the same point to other points. These
protocols are the key building blocks in many real-world applications such as Bio-metric Iden-
tification. Furthermore, we construct a customized garbled circuit for computing the minimum
value among shared values.

We implement and evaluate our protocols to demonstrate their practicality and show that
they are able to train data-sets that are much larger than in the previous work. For example,
our scheme can partition the data-sets of size 100,000 into 5 groups under one hour. The
numerical results also show that the proposed protocol reaches a ratio of 91.68% accuracy
compared to a K-means plain-text clustering algorithm.

1 Introduction

Advances in machine learning (ML) have lead to breakthroughs for solving numerous problems
across various domains, for example, recommendation services, spam filtering, web search engines,
fraud detection, stock market analysis and authentication technologies. Recently, cloud-based ma-
chine learning (ML) services provided by major technology companies such as Google, Microsoft,
and AWS are getting popular. These services allow modular ML algorithms to be updated and
improved via input from their customers. Training models for many such ML algorithms require
large-scale data. In practice, the data can be collected from different sources, each of which might
belong to a different entity. Internet companies regularly collect large amounts of information from
users’ online activities, search engines, and browsing behavior to train more accurate ML models.
For example, credit card fraud-detection engines are becoming more accurate by training on large-
scale data which combines transaction history, merchant data, and account holder information from
financial companies and payment networks. Health data (e.g. genomic, patients) can be used to
produce new diagnostic models. Since the data being classified or used for training is often sensitive

*payman.mohassel@gmail.com
T {rosulekm,trieun}@oregonstate.edu

and may come from different sources, it is imperative to design efficient methods to preserve privacy
of data owners.

While recent technologies enable more efficient storage and computation on big data, protecting
combined data from different sources remains a big challenge. Recently, privacy-preserving machine
learning via secure multiparty computation (MPC) has emerged as an active area of research that
allows different entities to train various models on their joint data without revealing any information
except the output. In this paper, we study privacy-preserving machine learning techniques for the
clustering problem that aims to group similar data together according to some distance measure.
Clustering is a popular unsupervised learning method and plays a key role in data management.

We design new and efficient privacy-preserving clustering protocols for an arbitrary partitioning
of the dataset. We make the following major contributions:

e Propose a communication-efficient secure multiplication method based on 1-out-of-N Oblivi-
ous Transfer (OT).

e Introduce an efficient and secure squared Euclidean distance protocol in the adaptive amor-
tized setting.

e Build a customized garbled circuit to compute binary secret sharing of the minimum value
among a list of secret shared values

e Present a scalable privacy-preserving clustering algorithm for arbitrary partitioned databases.
e Design a modular approach for multi-party clustering.

e Implement and evaluate our clustering scheme to demonstrate its scalability. Our scheme is
five orders of magnitude faster than the state-of-the-art work [JA19].

The rest of the paper is organized as follows. In Section 2, we discuss related work. In Section
3, we give preliminary information about notation, security model, cryptographic primitives, and
K-means clustering. In Section 4, we describe the building blocks used in our privacy-preserving
clustering scheme (which are also the key building blocks in many real-world application). In
Section 5, we pull all the building blocks together and present our clustering scheme. Experimental
results are shown in the last section.

2 Related Work

Privacy-preserving data mining has been studied extensively for decades. To our knowledge, initial
focus in this area was on secure construction of decision tree learning for distributed data sets
proposed by Lindell and Pinkas [LP00]. This later expands to a wide range of other problems
such as privacy-preserving mining of association rules [ESAG02, RG06], clustering [VC03, JWO05,
JKMO05, BO07, JPWU10], linear regression [BDKS04, SKLR04], logistic regression [HNF11]. These
papers propose solutions based on secure multiparty computation (MPC), but appear to incur high
efficiency overheads and lack implementation.

In recent years, this research area has been very active due to recent advances in MPC. Gilad-
Bachrach et. al. [GBLL119] propose a privacy preserving linear regression framework, which does
not scale well due to extensive use of garbled circuits. Aono et. al. [CAWM™17] consider a different
security model for logistic regression, but in their setting, the plaintext of the aggregated data is

leaked to the client who trains the model. Recent work of Mohassel and Zhang [MZ17] customize
the ABY framework [DSZ15], propose and implement an efficient framework for privacy-preserving
linear regression, logistic regression, and neural networks in two-party setting. Many follow-up
works and other variants of secure ML [MR18, JKLS18, JVC18, SGAM19, CGBHT18, RSC™19,
CCD*19, SGRP19, BEDK19] have been proposed/investigated. In this section, we will focus on
existing work on privacy-preserving clustering.

Clustering is a common technique for statistical data analysis used in many fields, which aims to
map/partition each data point into a similar group. Earlier work on privacy-preserving clustering
has been proposed by Vaidya and Clifton [VC03] Jagannathan and Wright [JWO05], Jha, Kruger,
and McDaniel [JKMO05] and Bunn and Ostrovsky [BOO07], Jagannathan and Wright [JPWU10].
The work of Vaidya and Clifton [VC03] addresses privacy-preserving k-means clustering for ver-
tically partitioned database (the database is distributed to different parties in a way that each
party holds a subset of the attributes owned by the entity) while the work of McDaniel, and Ja-
gannathan and Wright [JKMO05, JPWU10] addresses horizontally partitioned database (each entity
is owned by a single participant). The schemes of Jagannathan and Wright [JW05] and Bunn and
Ostrovsky [BOO07] work for arbitrary partitioned database. All of them except [BO07, JPWU10]
reveal intermediate candidate cluster centers, thereby breaching privacy. These protocols can be
made more secure but require higher complexity. In [BO07], Bunn and Ostrovsky present a 2-party
privacy-preserving k-means clustering protocol that guarantees full privacy in the semi-honest se-
curity model. The protocol hides the intermediate information by calculating the new cluster
center using homomorphic encryption. Therefore, the scheme [BOO07] is expensive due to exten-
sive use of homomorphic encryption (HE). In [JPWU10], Jagannathan and Wright propose a simple
communication-efficient clustering algorithm (called ReCluster) and describe its distributed privacy-
preserving version. Their protocol works for databases that are horizontally partitioned between
two parties. The high-level idea of their protocol is to have both parties separately use the ReCluster
algorithm to compute 2K local clusters each from their own shares of the data. Next, parties use a
secure merge operator to iteratively merge the 4K clusters into K clusters. This privacy-preserving
ReCluster protocol does not leak intermediate candidate cluster centers, but reveals the merging
pattern in which the adversary could potentially see which two local clusters will be merged in the
next iteration.

While many recent works focus on clustering in the outsourcing setting (many parties and
a trusted/untrusted mediator) [RSBT15, LJY ™15, SB17, JGJT18], or differential privacy set-
ting [SCLT16, ZXX16, SCLT17, BDL*17, SGB18]|, there are few recent work [GC16, PGJ12,
XHY 17, JA19] that consider privacy preserving K-means clustering with full privacy guarantees.
The solution of [GC16] only works for horizontally partitioned data. The distributed K-means
clustering of [PGJ12] is based on Shamir’s secret sharing scheme, thus their scheme requires more
than two non-colluding servers. Moreover, it is not clear how to compute the distance metric in
this work. The protocols [XHY 117, JA19] are heavily based on homomorphic encryption and do
not scale for large datasets (e.g. more than 10,000 data entries). For example, the state-of-the-art
privacy preserving clustering scheme [JA19] requires almost 1.5 years to cluster a dataset of thou-
sand points. Unfortunately, the paper [XHYT17] does not provide running time of their scheme,
we only compare the performance of our protocol to that of [JA19] in Section 7.

Privacy-preserving hierarchical clustering is recently formally studied in [MPOT19]. Tt is well-
known that the algorithm for hierarchical clustering has a complexity of O(n? log(n)), where n is the
number of data points. Today, the most commonly used clustering algorithm is K-means which is
greedy and has a complexity of O(n), although it has a disadvantage that we will discuss in Section

7.4.3. Thus, in this work, we focus on privacy-preserving solution for the K-means algorithm.

3 Preliminaries

We now introduce the notations and cryptographic primitives used throughout the paper.

3.1 Notation

In this work, the computational and statistical security parameters are denoted by &, A, respectively.
We use [-] notation to refer to a set. For example, [m] denotes the set {1,...,m}. Vectors are
denoted by bold letters such as P. The i-th element of vector P is P[i]. Define [P] and [P], as the
arithmetic and the binary secret sharing of a secret value P, respectively. We denote secret sharing
P#, P4 and PP, P2 where Alice holds P, P2 and Bob holds P, P2 such that (P*+P%) =P
mod 2¢ or Pg @ P2 = P. Here, the operations 4+ and & are addition and XOR on /-bit variables,
respectively.

3.2 Security Model and Computational Setting

We consider a set of parties who want to train clustering models on their joint data. At the end
of the protocol, they learn the final cluster centers, and nothing else. Suppose there were a trusted
third party to whom parties could send their data. The trusted third party would then train the
clustering model and send the final results to parties. Unfortunately, there is no such trusted party
in real-life scenarios. Secure multi-party computation enables distrustful parties to jointly evaluate
any function on their private inputs without revealing anything except the result itself. There are
two classical adversarial models. In the semi-honest (or honest-but-curious) model, the adversary
is assumed to follow the protocol, but attempts to obtain extra information from the execution
transcript. In the malicious model, the adversary may follow any arbitrary strategy. In this work,
we consider the semi-honest model. Extensions to the adversarial model will be the subject of our
future work.
We consider two computational settings:

1. Amortized setting where parties are evaluating the same function many times on different
inputs. In this work, the function is Euclidean distance, which takes two inputs (two points),
one of them is fixed. This setting has been formalized and utilized in various previous work
such as garbled circuit [GKK™12, WRK17, KNR*17].

2. Adaptive setting is similar to the amortized setting where the same function is evaluated many
times on different inputs. However, the inputs of the current function evaluation depends on
the output from the previous evaluation. We note that our adaptive setting is quite different
from the one formalized in [CDD'04]. Our adaptive model is considered for performance
while the model of [CDD"04] is a cryptographic game where adversarial behavior is based on
the information gathered so far.

3.3 Secret Sharing

According to our privacy requirements, parties should receive the result (e.g. cluster centers) at the
end of the protocol, but all of the values computed in the intermediate steps of the algorithm should

PARAMETERS: A bit length m, and two parties: sender S and receiver R

FUNCTIONALITY:
e Wait for pair-input (zo, 1) € {0,1}™ from sender S

o Wait for bit-input b € {0, 1} the receiver R

e Give output xp to the receiver R.

Figure 1: Oblivious Transfer functionality OT,,.

PARAMETERS: Number of clusters, number of data points n and n’, dimension d, and two parties:
sender and receiver

FUNCTIONALITY:

e Wait for data points {P;,Ps,..., Py} C IFg from sender, and data points
{Pp41,Pa,..., P} C]Fg from receiver.

e Give f(P1,Ps,..,P,) to both parties, where f implements K-means algorithm [L1o06].

Figure 2: The K-means Clustering Ideal Functionality.

be unknown to either party. In our protocol, each computed intermediate value (e.g. a candidate
cluster centroid) is shared as two uniformly distributed random values, with each party holding one
of these two values such that their sum is the actual intermediate value. Throughout this paper,
we use two different sharing schemes: Additive sharing, and Boolean sharing. We briefly review
these sharing schemes but refer the reader to the paper [DSZ15] for more details.

To additively share [z] an ¢-bit value z, the first party chooses z# < {0, 1} uniformly at random
and sends ¥ = z — 24 mod 2¢ to the second party. In this paper, we mostly use the additive
sharing, and denote it by [.] for short. For ease of composition we omit the modular operation in
the protocol descriptions. To reconstruct an additively shared value [x], one party sends [z] to the
party, who reconstructs the secret © = 2z + 2% mod 2¢ locally. Arithmetic operations can now
be directly applied to these shares. Given two shared arithmetic values [z]] and [y, it is easy to
non-interactively add the shares by having parties compute [z + y] = [z] + [y] mod 2°.

Boolean sharing can be seen as additive sharing in the field Zs. The addition operation is
replaced by the XOR operation and multiplication is replaced by the AND operation.

3.4 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive for various efficient secure computation pro-
tocols. In OT, a sender with two input strings (zg, z1) interacts with a receiver who has an input
choice bit b. An OT protocol allows the receiver to learn x;, without learning anything about x7_,
while the sender learns nothing about b. The ideal OT functionality is described in Figure 1. We
denote this OT functionality with an input string of length m by OT,,.

The first OT protocol was proposed by Rabin [Rab05], which essentially relied on expensive

public key operations. OT extension [Bea96] refers to the idea that parties can evaluate only a
small number of expensive OTs that are used as a base for performing many OTs using only cheap
symmetric-key operations. Modern one-out-of-two OT extension protocols follow the structure of
the IKNP protocol [IKNP03] (hereafter IKNP). Kolesnikov and Kumaresan [KK13] and Asharov
et al. [ALSZ13] proposed several IKNP optimizations and provided optimized implementation of
the OT extension.

One useful variant of OT is Correlated OT (COT), in which the sender’s OT inputs g, 1 are
chosen randomly subject to xg ® x1 = A, where A is chosen by the sender. In this OT variant, it
is possible to let the protocol itself choose zy randomly. By doing so, the bandwidth requirement
from sender to receiver is reduced by a half, thus the amortized communication cost for an COT is
k + £, where ¢ is bit-length of A. In our implementation, we require only this weaker OT variant.

3.5 Garbled Circuit

Garbled Circuit (GC) is currently the most common generic technique for practical two-party secure
computation (2PC). GC was first introduced by Yao[Yao86] and Goldreich et al. [GMWS87]. In the
two-party setting, garbled circuit protocol consists of a garbler and evaluator: the garbler encodes
a boolean function (e.g. min, division) into a garbled circuit using two random keys per each wire
of the circuit; the evaluator first obtains corresponding keys of the input wires, and evaluates the
circuit to learn the corresponding output wire key. The evaluator finally takes a decoding table,
which maps the final output wire keys to the real values, and decodes the final output.

Garbled Circuit technique has seen dramatic improvements in recent years. The most notable
optimized techniques are point-and-permute [BDNPO08], Free-XOR, [KS08], the half-gate [ZRE15],
and fixed-key AES garbling optimizations [BHKR13]. Modern garbled circuit (GC) protocols eval-
uate two million AND gates per second on a 1Gbps LAN. Briefly, the ideal functionality GC is
to take the parties inputs x and y respectively, and computes f on them. We denote this garbled
circuit by z < GC(z,y, f). In our protocols, we use “less than” and “division” garbled circuit.

3.6 Clustering Algorithm

Clustering is an important unsupervised learning technique for statistical data analysis, which have
been extensively used in many fields. Given a set of data points, a clustering algorithm maps each
data point into a similar group. The data points should have similar features or/and properties
in the same group, but should have highly dissimilar features or/and properties between different
groups. Cluster analysis is very important to gain valuable insights from the data points. There
are several clustering algorithms that have their own pros and cons. Today, the most commonly
used algorithm is K-means, which is greedy and computationally efficient. The K-means algorithm
consists of two following steps:

(1) Initialize cluster centroids: This step can be implemented using different methods. A very
common one is to pick random values for the centroids.

(2) Repeat until convergence (Lloyd’s Iteration):

(a) calculate the distance between each data point and all centroids, assign each data point
to the cluster that has the closest centroid.

(b) update the values of the centroids by computing the average of the values of the point
attributes that are part of the cluster.

A Privacy-Preserving K-means clustering is an application of secure computation that allows
parties, each holding a set of private data points, to cluster their their combined data sets without
revealing anything except for the cluster centers. We describe the ideal functionality for K-means
clustering algorithm in Figure 2.

4 Our Building Blocks

In this section, we present the enhancements we made to improve secure two-party multiplication
and Euclidean distance in the adaptive amortizing setting, which are the core building blocks
in many practical applications. We also introduce a customized garbled circuit to compute the
minimum of shared values.

4.1 Secure Arithmetic Multiplication

Assume that Alice and Bob hold secret £-bit numbers x and y respectively, and they want to obtain
the arithmetic shared value of the product zy without revealing additional information beyond
the output. Secure arithmetic multiplication has been well studied for decades, and can be gen-
erated based on either Homomorphic Encryption [Gen09] or Oblivious Transfer [Gil99]. Demmler
et al. [DSZ15] benchmarked the generation of both OT-based and HE-based arithmetic multiplica-
tions, and show that with the advantage of recent advances in OT extension, the OT-based protocol
is always faster than the HE-based one. Therefore, in this paper we focus on the OT-based pro-
tocol which works as follows: Alice and Bob invoke ¢ instances of OT where Alice acts as an OT
receiver and Bob acts as an OT sender. In the i** OT instance, Bob inputs a pair (my0,mi1)
where m; o < Zge and m;1 = (2'y + mio) mod 2% while Alice inputs x[i] as choice bit, where
x[i] is the i*" bit of a binary expression z = Zle 2iz[i]. The i'" OT enables Alice to obtain
My i) = (2'2[iJy + m; o) mod 2. Finally, Alice can compute the arithmetic shared value z# by
summing up Zle mj ;) mod 2¢. Similarly, Bob computes the arithmetic shared value zZ by

summing up (— Zle mio) mod 2%, It is easy to see that 2B = 2y — 24.

4.1.1 Communication-Efficient Secure multiplication Based on 1-out-of-N OT

Recently, several works [KK13, KKRT16, PSZ18, O0OS17] have proposed efficient protocols to gen-
eralize 1-out-of-2 OT extension to l-out-of-IN OT, in which the the receiver learns one of the
sender’s N messages. To achieve l-out-of-N OT, the main modification compared to the original
IKNP scheme is the different kinds of encoding used to construct the IKNP OT extension matri-
ces. While IKNP use a 128-bit repetition code, Kolesnikov and Kumaresan [KK13] employ 256-bit
Walsh-Hadamard error-correcting code and achieve 1-out-of-N OT on random strings, for N up to
approximately 256. The works [KKRT16, PSZ18, OOS17] use either pseudo-random code or linear
BCH code to achieve l-out-of-IN OT for large N. It is important to notice in the 1-out-of-N OT
that the number of base OTs have to increase to the codeword length of the underlying code in order
to obtain the same computational security level x = 128 as in the original 1-out-of-2 OT IKNP.
The reason is that the Hamming distance of two codewords has to be at least x. For arbitrarily
large N and arbitrarily bit length ¢ of OT messages, the best 1-out-of-N OT protocol [KKRT16]
uses 424-448 bits codeword length, which requires 424-448 bits of communication per OT and N
hash evaluations. For smaller ¢, the best protocols [PSZ18, OOS17] use linear BCH code, in which
codeword length depends on ¢.

N Improved
2! 22 23 21 28 Factor
[Codeword length [[128 | 192 [224 [240 [255 | \

(=28 136 108 | 105 90 288 1.51
Comm. | £ =16 288 240 | 252 | 240 | 1085 1.2
per OT | ¢ =32 640 576 | 616 | 720 | 4209 1.11

{=064 || 1536 | 1536 | 1848 | 2400 | 16575 1

Table 1: Bit-length (in bit) of Linear Error Correcting Code (OT width) and the communication
cost of secure multiplication (in byte) for 1-out-of-N OT of ¢-bit strings.

With recent improvement to 1-out-of-N OT, several works proposed to replace 1-out-of-2 OT
with l-out-of-N OT in some specific problems (e.g. Private Set Intersection [KKRT16, PSZ18,
0O0S17], Beaver’s triple generation and garbled circuit [DKS*17]) to improve their performance.
In this work, we propose a communication efficient secure multiplication protocol based on 1-out-of-
N OT. At a high-level idea, instead of using binary representation of Alice’s secret input x, we use
an N-base representation, and we rewrite x = Zgi/llog(]vﬂ Niz[i]; next step is that Alice and Bob
invoke [¢/log(N)] instances of 1-out-of-N OT to obtain arithmetic shared value of each Niz[i]y,
where Alice has # and Bob has y. Concretely, in the i*® OT where i € [£/log(N)], Bob acts as
an OT sender with input sequence (m; o, ..., m; y—1) where m; o < Zge and m; ; = (N'jy —m; o)
mod 2%; and Alice acts as an OT receiver with choice value z[i] € [N]. As output from the 1-
out-of-N OT, Alice obtains m; ,[; = (Nx[i]ly — mi) mod 2°. Similar to the original OT-based

secure multiplication, Alice computes the arithmetic shared value z4 by setting > Zz/llog(Nﬂ My (i)

mod 2¢ and Bob set 28 = ZW log(N)] m;o mod 2°. Correctness of the protocol directly follows

from the fact that z4 4 2% ZW loe(W)T(iy, [i]y) mod 2¢ = xy. Security of the protocol is based
on the security of the original 1-out-of 2 OT-based secure multiplication protocol [Gil99, DSZ15]
and the 1-out-of-N OT extension [KK13, KKRT16, PSZ18, OOS17].

There are two noteworthy aspects of our proposed protocol. First, the 1-out-of-N OT protocol
of [KKRT16, PSZ18, O0S17] is on random strings, in which the protocol itself “chooses” the OT
messages '[N randomly, gives them to the sender and gives one chosen message r;, to the receiver.
In our proposed protocol, we need a standard l-out-of-N OT protocol where the OT messages
mic[n] are given by the sender. To achieve this OT variant, the sender requires to correct the
OT random messages by sending ¢; = r; + m; to the receiver, who later obtains the correct choice
message my by subtracting 7, from the received ¢;. This needed step increases the bandwidth
requirement of our proposed protocol. Thus, it is necessary to analyze what is the best value for
N. Second, l-out-of-2 OT-based protocol can use Correlated OT extension [ALSZ13] since the
sender’s OT inputs m; o, m;,1 are chosen randomly subject to m; g +m; 1 = = 2%y. Doing so reduces
the communicational cost from the sender to the receiver by a factor of ”:22 This Correlated
OT idea can be used in our 1-out-of-N OT-based protocol. As a result, we reduce the bandwidth
requirement by a factor of F”Jr+7]w)£.

Table 1 presents the communication cost for our l-out-of-N OT-based secure multiplication
of two £-bit strings. The required codeword length and the best error-correcting code are chosen
according to [min] to achieve Hamming distance of two codewords at least x. For short bit-length
¢ =8 or { =16, Table 1 shows that using 1-out-of-2* OT gives us the best communication cost for

PARAMETERS: T iterations, and two parties: the sender S and the receiver R

FUNCTIONALITY:
e Wait for arithmetic secret sharings [P1], ..., [P»] of n points P;,i € [n], from both parties.
e For each iteration t € T":

— Wait for arithmetic secret sharings [¢u1],. .., [¢ix] of K points ¢, k € [K], from both
parties.

— For each k € [K], give arithmetic secret sharings of the output Fepist(P;, @) to both
parties, where Fepist(, y) denotes Euclidean Squared Distance between two points x and y.

Figure 3: Secure Euclidean Squared Distance (SESD) functionality in the Adaptive Amortized
Setting.

secure multiplication, which is 1.2 —1.51x lower bandwidth requirement than the original 1-out-of-2
OT-based one. For bigger £, an incremental improvement is achieved by employing 1-out-of-22 OT
in the secure multiplication protocol.

4.1.2 Secure multiplication in the adaptive amortized setting

We consider a case where Alice holds a ¢-bit variable and Bob adaptively has ¢-bit variables
yt, Vt € [T]. They wish to compute a secure multiplication many times, where both parties obtain
the arithmetic shared value of the product xy:,Vt € [T]. Instead of repeating the above protocol
T times, we propose a simple but efficient solution to compute the multiplication in the adaptive
amortized setting. By selecting Alice as the OT receiver, we observe that her choice bits]

are fixed, where z[i] comes from the expression x = Z[i/llog(]vﬂ Nig[i]. Thus, we can reuse OT
instances (i.e. reduce Tx number of OT instances used to compute T multiplications) in this
setting.

We first present a simple batched OT protocol. Assuming that Bob holds 7" adaptive sequences
(me1,...,my,n), YVt € [T], while Alice has a choice value ¢ € [N]. Alice wishes to receive my ., Vt €
[T], and nothing else. A simple solution is as follows: Alice, who acts as OT receiver with input
choice ¢, interacts with the OT sender Bob to perform a l-out-of-N OT on random strings. As
output from the OT, Alice obtains k. while Bob receives (ki,ks,...,ky). Whenever a new t'"
sequence is known by Bob, he uses these (k1, ..., kxn) as the encryption keys to encrypt this sequence
(M0, ..,my,N) Tespectively (ie. e;; = Enc(ki, my;),Vt € [T] and sends the encrypted results to
Alice, who later decrypts the ciphertext e; . using the decrypted key k. and outputs m; ..

Applying our batched OT protocol reduces the bandwidth requirement by approximately half.
For simplicity, assume that N = 2, performing 7" multiplications requires /T number of 1-out-of-2
OT instances, which requires ¢7T'(k + £) sent bits. With our batched OT technique, the bandwidth
requirement is ¢(k + ¢T"), an (T’fi%g X improvement. For example, for doing T' = 30 iterations,
this solution shows a factor of 2.16x and 1.59x improvement with ¢ = 32 bits and ¢ = 64 bits,
respectively.

4.2 Secure Euclidean Squared Distance (SESD)

Euclidean distance is the ”ordinary” straight-line distance between two points, which involves com-
puting the square root of the sum of the squares of the differences between two points in each di-
mension. In many algorithms (e.g. clustering, texture image retrieval, face-recognition, fingerprint-
matching), we only need to compute and compare the distances among the points. Therefore,
to improve the computation efficiency, the Euclidean distance can be replaced by the Euclidean
squared distance (ESD)!, which does not affect the output of the algorithms. We denote the ESD
between two points x and y by z + Fepist(, y)-

Consider two points P and ¢, each has d dimensions. Assume that both parties have arithmetic
secret shared value [P] and [¢]. They want to compute the secure Euclidean squared distance by
which both parties obtain the arithmetic shared value of the output Fepist(P, ¢). The Euclidean
squared distance between points P and ¢ is given as follows:

Feoie ([P], [¢]) = Feoie (P, PZ, ¢p*, ¢7)

(P[] + PP [p] — 9" [p] — " [0])*

[
M=

1

°
Il

P~ 1) + S (PP - B[o

1 p=1

M=

+2> (Pp] — ¢ o)) (P [p] — 7 [))

Observe that the terms (P*[p] — ¢“[p])? and (PZ[p] — ¢”[p])? can be computed locally by Alice
and Bob, respectively. Since the mixed term (P%[p] — ¢ [p])(PZ[p] — ¢Z[p]) leaks information if
known in the clear by a party, it requires to compute this mixed term securely. Clearly, this mixed
term can be computed by a secure multiplication on input PA[p] — ¢4[p] held by Alice and input
P5[p] — ¢®[p] held by Bob.

In data mining applications (e.g. K-nearest Neighbor [JLL 719, CCD¥19]), parties need to
jointly compute the Euclidean distance between each fixed point P; and many points ¢y, which are
(either adaptively or non-adaptively) known by parties. For example, Step (2a) of the K-means
clustering algorithm (ref. 3.6) is to compute the distance between each data point and all centroids
which are updated in Step (2b). Therefore, the centroids are non-adaptively known by parties in
the same iteration but adaptively known between the iterations. We define this problem (SESD)
as follows: Given secret shared value of n points P;,i € [n], each has d dimensions, assume that
parties must do T iterations, in the t*" iteration they compute secure Euclidean squared distance
between each point P; and all K points ¢, k € [K]. We describe the ideal functionality for SESD
in Figure 3.

A direct solution [DSZ15, BO07, JPWU10, JA19, JLLT19] uses a secure multiplication to com-
pute the mixed term (P2 [p] — o2 [0])(PE[p] — ¢B[p]), p € [d], for each Euclidean squared distance
Fepist(Pi, 1), i € [n],k € [K]. Let 7 be a number of OT instances used to perform a secure
multiplication. This solution requires 7dnKT instances of OTs to securely compute the SESD
functionality described in Figure 3.

We observe that the points P; are fixed during all T iterations. We propose an optimized
solution to compute the mixed term in the amortized setting. We rewrite the mixed term as follow:

LESD is not a metric, as it does not satisfy the triangle inequality.

10

PARAMETERS: Two parties: sender & and receiver R

FUNCTIONALITY:
e Wait for arithmetic secret sharings [X1],. .., [Xk] of K numbers from both parties.

e Give binary secret sharings [C], of the vector C = (0,...,1,...,0) to both parties, where
the ‘1’ appears in the k" coordinate to indicate that the smallest number is X.

Figure 4: Secure Minimum of k Numbers, FX_

(P o] — dilo)) (PE (o] — iilo])
=P ol(PP[p] — ofilpl) — PPloloiklp] + dirlolditlo)

The first and second terms can be computed using the batched secure multiplication in the
adaptive amortized setting (as described in Section 4.1.2), where P [p] and PZ[p] are fixed. We
also observe that in each ¢ iteration, parties perform K secure multiplications P;'[p](P] [p] +
L 1p]), Vk € [K] with the same value P2, Similar to technique of [MZ17], Bob who acts as OT
sender concatenates the OT strings (e.g. mi0||...||mx,0) before encrypting and sending them to
Alice. The same trick is applied to compute the second term PP [p]¢p%[p]. In conclusion, computing
the first and second terms of Eq. (2) requires only 27dn instances of OTs for all T iterations. We
use a secure multiplication to compute the third term @71 [p]@5 [p] of Eq. (2), which takes O(rdKT)
OT invocations for all T iterations.

Very recently, [CCDT19] proposed an efficient SESD protocol based on additive homomorphic
encryption, which is used for k-Nearest neighbor search problem. However, it is not quite clear how
to extend their protocol to compute many SESD in our adaptive amortized setting.

Cost. Our solution for the SESD functionality (Figure 3) requires (2n + KT')7d number of OT
instances, which is QSfI?T X improvement compared to the previous works. For example, evaluating
K-means algorithm on 2D synthetic dataset S1 [FS18] which contains n = 5,000 tuples and K = 15
Gaussian clusters, our solution shows a factor of 215x improvement for doing 7" = 30 iterations.

(2)

4.3 Minimum of k Numbers

Recall that a fundamental building block of many algorithms (e.g. K-means clustering [BOO0T7],
face-recognition [SSW10], fingerprint-matching [BG11, HMEK11], K-nearest Neighbor [JLL"19,
CCD™19]) is to compute the Euclidean squared distance between two points in the database and
then determine the minimum value among these distances. Concretely, Step (2a) of the K-means
clustering algorithm (ref. Section 3.6) needs to find a closest centroid to each data point. It is
needed to hide the closest centroid. Unlike other secure ML problems (e.g. K-nearest Neighbor)
that can output the secret share of the centroid/center, secure K-means clustering requires to output
the secret share of the cluster’s index indicating the closest one. We consider the problem that takes

the arithmetic secret sharings [X1],..., [Xk] of K numbers, and returns binary secret sharings of
the vector C = (0,...,1,...,0) (called index vector), where the ‘1’ appears in the k" coordinate to
indicate that the smallest number is X;. We denote this problem by [C],, « F& ([X1], ..., [Xk]).

11

9 6 @ 7 © @2 @8

‘ 8)
o1 Tl% (10 [1],

A4) 1
0010 100
[0010] % [0] [1] % [100],

[0000100]

Figure 5: Illustration of the main idea behind our X protocol.

Recall that a fundamental building block of many algorithms (e.g. K-means clustering [BO07],
face-recognition [SSW10], fingerprint-matching [BG11, HMEK11], K-nearest Neighbor [JLL 19,
CCD™19]) is to compute the Euclidean squared distance between two points in the database and
then determine the minimum value among these distances. Concretely, Step (2a) of the K-means
clustering algorithm (ref. Section 3.6) needs to find a closest centroid to each data point. It is
needed to hide the closest centroid. Unlike other secure ML problems (e.g. K-nearest Neighbor)
that can output the secret share of the centroid/center, secure K-means clustering requires to output
the secret share of the cluster’s index indicating the closest one. We consider the problem that takes
the arithmetic secret sharings [X1], ..., [Xk] of K numbers, and returns binary secret sharings of
the vector C = (0,...,1,...,0) (called index vector), where the ‘1’ appears in the k" coordinate to
indicate that the smallest number is Xj,. We denote this problem by [C] g + Fx ([X1],...,[Xk]).

In most previous work [BO07, JA19], FE is implemented using generic secure computation (e.g.

min
FHE, GC). Using FHE is still computationally expensive while the GC-based fn{(m requires K — 1
“less than” and K — 1 “multiplexer” circuits to find the minimum value among K input numbers,
and K “equality” circuits to determine the k" coordinate indicating the smallest numbers. We
build a customized garbled circuit to implement FX | which requires only K —1 “less than” garbled
circuits and 4(K — 1) instances of OT extension. Note that the cost of “multiplexer” garbled circuit
is O(k - £) due to the need of garbling ¢-bit strings, while the cost of OT instances is O(k + £).
Figure 5 illustrates the main idea behind our .7-"mm protocol. Our protocol can be described in

a recursive way as follows. Assume we have secret shared index vector [Co],, as the output of

FE([X1], -, [X(x/2]), we also store the shared value of minimum value Xy, of X1, ..., X[k,
Similarly, we have [Cilg: [Xw] + Fh.([X(x/2141], - - -, [Xk]), where X is minimum value among
XK /2]+15---» XK. We observe that index vector C is equal to the concatenation of bCq and bCy,

where b = 1 indicates that the minimum value is X}, and vice versa. Thus, the parties first evaluate
a “less than” garbled circuit on the inputs X; and Xj;.. We modify the “less than” garbled circuit
to output 2-bit binary shares ([b] €B[[l_)]] o). The next step is to efficiently compute the binary secret
sharing of bCy.

We rewrite bCq = (b4 @ bP)(C{ @ CF), and invoke 2 OT instances to output its binary shared
values. Concretely, Alice acts as OT sender with a pair input (mg @ bAC‘04, mo® (b2 @ 1)C{)4) where
myg is chosen randomly, while Bob acts as OT receiver with a choice bit b%. As output from OT,
Bob obtains m,s = mg @ (b4 @ bP)Cg‘. Similarly, Alice acts OT receiver with a choice bit b
and obtains mj, = m) @ (b* @ b5)C{ while Bob acts as OT sender and knows mj. Alice sets

12

M

GGloj1]0|0O 0|0 /|0 0

|01 |0]0O0 Ml 1110 0

G |l0o|0O0]1]|0 0|0 |1 0
0(0]|0O0 1

| 0|0 |0|1

Figure 6: Matrix transposition of a matrix C.
24 = mo @ my 4, Bob sets 2B = m{ @ mys. Tt is easy to see that 24 and zP are binary secret

sharing of (b & bP)(Cy @ CF).

Recall that we need to store the minimum value of X and Xy, for further computation. This
minimum value is equal to bXy +bX. To compute shared value of bX), = (b2 @b8) (X + X2), we
again need 2 OT instances, each has a choice bit b® or b*. However, since the same OT choice bits
are used in this minimum computation and in computing the index vector C above, thus parties
can reuse the OT by concatenating the OT sender’s messages. As a result, determining minimum
is almost free in terms of computational cost.

Compared to generic GC, this solution adds [log(K)] rounds, but K is usually small (e.g. K =3
or K = 15). Bunn and Ostrovsky [BO07] proposed a protocol to find a bit output indicating smallest
of two numbers by running the secure scalar products many times. With various optimizations to
GC over the years, a GC-based minimum protocol is faster than that of [BO07]. Our protocol
is similar to that of Jaschke and Armknecht [JA19]. However, the protocol [JA19] requires K — 1
“multiplexer” circuits to obtain the minimum value of two numbers, which is mostly free in our
protocol. Moreover, [JA19] uses FHE to compute the shares of index vector C while our protocol
costs only four OT instances.

5 K-Mean Clustering Framework

In this section, we present our secure K-means clustering protocol and show how to put all building
blocks (described in Section 4) together. Recall that the K-means clustering algorithm consists of
two steps: Cluster centroids’s initialization, and Lloyd’s iteration.

5.1 Cluster Initialization

This step can be done using different strategies. A very common one is to pick random values for
the of all K groups. This approach can be easily implemented in the privacy-preserving setting
by letting one party choose random centroid values, and secret share these values to other party.
Another method is to use the values of K different data points as being the centroids, which is
also simply implemented in this setting. We now propose another approach specified for privacy-
preserving K-means clustering as follows. Each party locally runs the plain-text K-means clustering

13

algorithm to group his/her data point into [k/2] groups. Parties secret share local centroid of each
group to each other.

5.2 Lloyd’s iteration

Lloyd’s iteration can be divided into four steps:

(1) Calculate the distance between each data point and cluster centers using the Euclidean squared
distance

(2) Assign each data point to the closest cluster center
(3) Recalculate the new cluster center by taking the average of the points assigned to that cluster.

(4) Repeat steps 1, 2 and 3 iteratively either a given number of times, or until clusters can no
longer change.

We notice that the data points are fixed during the training while the cluster centers can be
changed between two iterations. Thus, our SESD protocol (ref. Section 4.2) can be directly applied
to Step (1) of Lloyd’s iteration.

5.2.1 Approximation of Euclidean distance

In Machine Learning, Euclidean distance (norm-2) is the most common distance measure used
in K-means clustering. However, its main drawback is the high computational cost due to the
multiplication operator. Thus, Manhattan metric (norm-1) and Chessboard metric (norm-oo) are
often considered as alternatives. The Manhattan distance between two points x and y is the sum
of the absolute differences of their coordinates (e.g. Zle |z; — yi]). The Chessboard distance
between two points is the greatest of their absolute differences along any coordinate dimension
(i.e. néz[ag]dxl — vyi]). We denote the Manhattan and Chessboard distance between x and y by
K3

z + Fmpist(Z,Yy), z < Fepist(x,y), respectively.

We implement secure Manhattan and Chessboard distance, and report their runtime in Section
7.3. We calculate the absolute differences of two values, and find the greatest of these differences
using a garbled circuit.

5.2.2 Assigning data point to clusters

From Step (1), parties have arithmetic secret shared value [X;x] of the distance from each point
P;,i € [n], to the cluster center ¢,k € [K]. For each data point P;, we find its nearest cluster
by invoking our FX protocol (as described in Section 4.3). The index vector output [C;], <
FE ([Xa],- .., [Xik]) indicates which cluster center this data point is assigned to.

min

5.2.3 Updating Cluster Centers

We form a matrix C of size n x K, where each row is index vector C; obtained from Step (2). Let
My, k € [K], be the row of the matrix transposition of C (see Figure 6) . It is easy to see that
the i'" element of My, is set to be 1 if and only if the data point P; is assigned to the cluster k.
Therefore, we can calculate the new centroid by taking the mean:

14

PARAMETERS:
e Number of clusters K; number of data points n’, n; dimension d
e Ideal Fepist, F X primitives defined in Figure 3 and Figure 4, respectively.
e Garbled circuit z + GC(z,y, f) described in Section 3.5, which takes x and y as inputs,
and computes z = f(z,y).

INPUT OF ALICE: {P1,Ps,..., Py} CFJ
INPUT OF BOB: {Py11,Ps,...,P,} CFY
ProTOCOL:

I. Initialization:

(a) Alice locally runs the plain-text K-means clustering algorithm to group her dataset

into [K/2] cluster centers {¢1,...,Prx/21}. She secret shares {[¢1], ..., [¢drx/21]}
and {[P1],...,[P~]} to Bob.

(b) Bob locally runs the plain-text K-means clustering algorithm to group his
dataset into K — [K/2] cluster centers {¢[x/2141,--.,PK}. He secret shares

{[orx/2141]s - - [0x]} and {[Pri1], ..., [P,]} to Alice.
II. Lloyd’s Step: Repeat the following until the stopping criterion.

(a) For i € [n], k € [K], Alice and Bob jointly compute secret sharing of the Euclidean
squared distance:
[Xir] = Fepist([P:], [Pr])

(b) For i € [n], Alice and Bob jointly compute secret sharing of the nearest cluster:
[Cile = Fan([Xinl, - [Xi,x])

Parties forms K x n matrix C such that the " column of C is the vector [Ci].
Let [My],, denote the k™ row of C.

(¢) For k € [K], Alice and Bob jointly calculate secret sharing [¢] of the new cluster
centers as follows:
e Computing secret sharing of the numerator [M] = Y7 (M [i] @ MP [i]) (P +
P7)
e Computing secret sharing of the denominator [D] = 37", (M3 [i] ® ME[i])
e Invoking a division garbled circuit [¢y] < GC([M], [D],).

and then, parties also compute secret sharing of Euclidean squared distance:

ler] = Fepist([x], [@r])

(d) Alice and Bob jointly check the stopping criterion: If GC([e], €, min (e, €)) = 1, where
[e] = Zle [ex], then stop the criterion, parties reveal . Otherwise, replacing

[ox] = [ex]

Figure 7: Our Privacy-preserving K-Means Clustering Framework.

15

o = i MAlilPy I (M) © M) (P + PF) 5
2 im1 Mili] S (M [i] @ MP[i)

To compute the secret sharing of the updated cluster ¢y, parties first compute the numerator
and denominator and then calculate the reminder using a division garbled circuit. Similar trick used
in determining minimum of two shared numbers in Section 4.3, the numerator can be implemented
using 4n OT invocations. Since the same bits Mj [i] and MZ[i] are used in both numerator
and denominator computation, we can reuse the OT instances to computing the denominator.
Therefore, updating the centroid ¢y requires 4n OT instances and one division garbled circuit.

5.2.4 Checking the stopping criterion

After obtaining the secret sharing [ex] of the Euclidean squared distance between the new clus-

ter centroid ¢, and ¢y, parties locally sum up these shares and invoke a ‘min’ garbled circuit
K . . -

GC(3> "y, [ex], e,min) =1 to check the stopping criterion.

5.3 Detalils

We describe the main construction of K-means clustering protocol in Figure 7. It closely follows
and formalizes these above steps presented in sections 5.1 and 5.2. We note that the input and
output of each Lloyd’s steps are secret shares of corresponding variables.

The security of our construction follows in a straightforward way from the security of its building
blocks and the fact that all intermediate values are secret-shared.

Theorem 1. The protocol in Figure 7 securely computes the K-means clustering functionality (Fig-
ure 2) in semi-honest setting, given the ideal Oblivious Transfer (OT), Euclidean Squared Distance
(SESD), and Garbled Circuit (GC) primitives defined Figure 1, Figure 3, and Section 3.5, respec-
tively.

6 Multi-party Clustering

In this section, we extend our two-party clustering scheme to support a set of users Uy, ..., U,, who
want to train a clustering model on their joint data. We consider two following models:

1. Server-aided model: Given a set of users with private datasets, server-aided model allows the
clients to outsource the computation to two untrusted but non-colluding servers.

2. Multi-party computation: users jointly train the model on their joint data without requiring
a trusted /untrusted additional party.

6.1 Server-aided model

The server-aided setting has been formalized, utilized in various previous work [KMR11], and in
privacy-preserving machine learning model [NTW 13, NWI*13]. Given a semi-honest adversary A
who can corrupt any subset of the users and at most one of the two untrusted servers, the security
definition of this model requires that such an adversary only learns the data of the corrupted users
and the final model, but nothing else about the remaining honest non-corrupted users’ data. It is

16

easy to see that our K-means clustering scheme (described in Section 5) can be directly applied
to this model where users can secret share their inputs among the two untrusted servers. This
distribution step can be done in a setup phase. Therefore, the advantage of this model is that it
does not require the users to be involved throughout the protocol computation.

6.2 Multi-party computation model

The data stream model has attracted attention in machine learning and data analysis, and is used
to analyze very large datasets. Popular clustering data stream algorithms are CURE [GRS98],
BIRCH [ZRL97], and STREAM [GMM™03] which achieves a constant factor approximation al-
gorithm for the k-Median problem. A clustering data stream is a divide-and-conquer algorithm
that divides the whole data into small pieces, and clusters each one of them using K-means, then
clusters the resulting centers. Inspired by this technique, we propose a secure clustering scheme
in multi-party setting. This model provides a weaker security guarantee where we assume that we
know user Uy who does not collude with other users.

A solution is to perform a secure two-party computation where each user plays the role of one
party in our privacy-preserving clustering scheme (ref. Section 5). Concretely, two users Uy and
U;,i # 0, perform 2-party secure K-means clustering. As a result, users receive the shared value of
the cluster centroids (denote them as ¢),€“ and (],’)g’) Next step is that user U; sends these obtained
shared values (;kai to user U;11 in the clear (this captures the property that users U;,i # 0, are
not colluding). Users Uy and U;4+1 now can use the values ¢),§,]“ and (,ka" as the initial centroids for
training model on their data.

7 Experimental Results

We implement a privacy-preserving clustering system based on our proposed protocols and report
the experimental results in this section. We also compare the performance of our scheme with the
state-of-the-art privacy-preserving clustering protocols in [SCL*16] and [JA19].

7.1 Experimental Setup

To understand the scalability of our protocols, we evaluate it on a single server which has 2x 36-core
Intel Xeon 2.30GHz CPU and 256GB of RAM. Despite having this many cores, each party does
their computation on a single thread.

For the most direct comparison to the work of Jaschke and Armknecht [JA19], we matched the
test system’s computational performance to that of [JA19]. We evaluate our protocol on a machine
Intel Core i7 2.60GHz with 12GB RAM.

In our protocol, the base-OT is implemented using Naor-Pinkas construction. The system is im-
plemented in C++, and builds on use the primitives provided by Ivory Runtime library [Ivo] for gar-
bled circuits (free XOR [KS08],half-gate [ZRE15], fixed-key AES garbling optimizations [BHKR13]),
and 1ibOTe [Rin] for OT extension of [IKNP03]. All evaluations were performed with statistical
security parameter A = 40 and computational security parameter x = 128.

17

’ Dataset H # of points n \ # of clusters K \ dimension d

Lsun 400 3 2
S1 5,000 15 2
Synthetic || {10000, 100000} {2,5} 2

Table 2: Descriptions of the Datasets.

7.2 Datasets

For fair comparison, we use three datasets, each of which was evaluated in some relevant previous
works:

e The first dataset is Lsun dataset [lsu], which consists of 400 data points of 2 dimensions and
3 clusters. This dataset was evaluated in [JA19]

e The second dataset is a 2D synthetic dataset S1 [FS18], which was experimented in [SCLT16]
in the Differentially Privacy setting. The S1 dataset contains 5,000 data points and 15 Gaus-
sian clusters.

e We also generate synthetic 2D datasets with data set size {10000,100000} and K € {2,5}.

Table 2 summarizes the datasets used in our experiments.

7.3 Experiments for Distance Metric

We start with the experimental results for the secure Euclidean squared distance protocol (its func-
tionality described in Figure 3), and compare it with previous privacy preserving solutions [DSZ15,
JLL*19].

7.3.1 Secure Euclidean Squared Distance

To examine how our SESD protocol scales, we run experiments on datasets with size n € {212 216}
number of clusters K € {4,8,16}, and number of iterations 7' € {10,20}. The field size is set to
¢ = 232 and the dimensions of the data is fixed to be d = 2. We note that £ and d do not affect the
comparison with previous works.

Table 3 shows the running time (in millisecond) to perform a SESD, and the number of OT
instances needed. Recall that SESD from the i*" point to the k" cluster is equal to

Feoie([P], [¢6]) = > (P ol — @i o)) + D _ (P[] — ¢ o))
! ! (4)

Z Aol — ¢ 1) (PE o] - $E10)))

All previous privacy preserving clustering protocols [BO07, JPWU10, JA19] use a standard
secure multiplication (based on garbled circuit or homomorphic encryption) to compute the mixed
term of the above equation. Recently, [JLLT19] proposed and implemented SESD using the
state-of-the-art secure multiplication [DSZ15]. The baseline in Figure 3 shows the performance

18

Parameters RunTime(ms) per SESD #OT (x4d)
n K T Baseline Our Amortized Our Adaptive | Improved Baseline Our Amortized Our Adaptive | Improved
[JLL+19] (based on [MZ17]) Amortized Factor [JLL+19} (based on [MZ17]) Amortized Factor
4 10 0.212 0.094 47 163840 81960 8232 19.9x
912 20 0.152 0.079 55.7x 327680 163920 8272 39.6 x
16 10 0.062 0.036 122.5x 655360 82080 8352 78.5%
20 4308 0.061 0.031 142.5% 1310720 164160 8512 154 %
1 10 ' 0.235 0.135 32.5% 2621440 1310760 131112 20x
916 20 0.172 0.093 47.5% 5242880 2621520 131152 40x
16 10 0.051 0.033 134.2x || 10485760 1310880 131232 79.9x
20 0.05 0.03 148.1x || 20971520 2621760 131392 159.6x

Table 3: Running time in millisecond per SESD, and the number of OT instances needed for SESD
protocol (described in Figure 3), where n, K is the size of database, T is number of iterations,
dimension d = 2, and bit-length ¢ = 32.

of [JLL*19]. We obtain the baseline measurements by running the implementation of ABY [aby,
JLLT19]. We note that in the baseline the running time per SESD does not depend on n, K, T
since this solution computes the mixed term independently from other SESD instances. Therefore,
this solution requires £dnKT instances of OTs in total. For a database of size n = 26, K = 16,
and T = 20, this baseline requires around 23° OT instances, which does not scale well.

The mixed term can be written as the formula (2). One can observe that in each ¢ iteration,
parties perform K secure multiplications with the same factor Pf or PiB . Inspired by the technique
of [MZ17], all OT sender messages can be concatenated before encrypting and sending them to other
party. The column “Our Amortized” in Figure 3 presents the performance of this optimization.
For n = 26, K = 4, and T = 20, we obtain an overall running time of 0.172 ms per SESD in the
amortized setting. Increasing the number of cluster from 4 to 16, our protocol shows a factor of
3.44x improvement in terms of running time, due to the fact that it amortizes well. This solution
requires £d(2n + K)T instances of OTs in total.

The column “Adaptive Amortized” shows performance of our final protocol (described in Section
4.2), where parties can reused OT instances across all iterations. Our experiments show that our
SESD is highly scalable. For a database of size n = 2'6, K = 16, and T = 20, our protocol requires
around 223 OT instances, which is 159x lower than that of the baseline. In terms of running time,
our protocol requires only 0.135 ms to compute a SESD in the adaptive amortized setting with
n =2 K =4, and T = 10. For the same n, when increasing the number of cluster to K = 16,
and the number of iteration to 1" = 20, our protocol running time is 0.03 ms per SESD.

Of particular interest is the column “Improved Factor”, which presents the ratio between the
runtime and the number OT required of the baseline and our scheme. Our protocol yields a better
speedup when the dataset size and number of iterations are larger. For smallest dataset size of
n=2'2 K =4 and T = 10, the protocol achieves a speed up of about 47x. When considering the
larger database size n = 216, K = 16, the speed up of 134.1 x is obtained for 7" = 10 and 148.1x
at T' = 20 iterations.

19

Distance Dimension d

Metric 2 | 3 | 4 | 10
Manhattan 1.163 | 1.623 | 1.96 | 4.763
Chessboard 1.222 | 1.711 | 2.294 | 5.791

{K =4,T =10} | 0.094 | 0.155 | 0.219 | 0.474
{K =4,T=20} | 0.079 | 0.123 | 0.164 | 0.398
{K =16,7 =10} || 0.036 | 0.043 | 0.066 | 0.172
{K =16,T7 =20} || 0.031 | 0.042 | 0.063 | 0.163

SESD

Table 4: Running time in millisecond per a distance metric with d dimension, and bit-length ¢ = 32.
In our SESD protocol, n = 2'2, K are the size of database, T is number of iterations.

7.3.2 Approximation of Euclidean distance

As discussed in Section 5.2.1, Manhattan metric and Chessboard metric (norm-co) are considered
as alternative distance metrics in some ML applications. We implement these distance metric
by employing a generic secure computation, and compare their performance with our SESD. We
note that Manhattan metric is used in the privacy-preserving clustering protocol of [JA19]. We
benchmark these distance protocols and present their runtime in Table 4. It is not clear how to
compute these distance metrics in the amortized setting. Thus, The parameters n, K, T do not
affect their cost.

The running time to measure Manhattan and Chessboard distance is similar in the low-dimension
space. It dues to the fact that secure Chessboard distance computation requires a small number
of the “maximum” gabled circuits. Computing Manhattan or Chessboard distance between two 3-
dimensional vectors takes around 1.7ms. Increasing the dimension from d = 3 to 10, the Manhattan
distance computation costs 4.7 ms while the Chessboard distance computation requires 5.7ms.

It is easy to see from Table 4, our amortized SESD cost is 8.9 x — 38.5x faster than the cost of
computing a Manhattan distance, and 10.5 x — 40.5x faster than that of Chessboard distance. We
note that our SESD is amortized well in both adaptive and non-adaptive setting. When executing
more and more SESD (between one fix point and other points), the cost drops dramatically to
few microseconds per SESD. Therefore, we use SESD in our experiments for privacy-preserving
clustering.

7.4 Experiments for Clustering

In this section we present our experimental results of our privacy-preserving clustering protocol.
We ran our experiments on a large number of synthetic data sets to show the practicality and
scalability. We also benchmark our scheme on the real dataset for comparison with previous work.

The offline phase includes the base OTs, n instances of OT extensions. We generate garbled
circuits and OT extensions needed for fni(in executed in the online phase (even these steps can be
performed in the offline phase).

7.4.1 Experiments for Synthetic Dataset

We generate 2-dimensional synthetic data sets on the range of set sizes n € {10000, 100000}. Our
synthetic data set generator takes a number of cluster K € {2,5}. There exist various criteria to

20

Parameters RunTime (minute) Communication (MB)
n K T Distance Assign Points Update Total Distance Assign Points Update Total
(SESD) to Clusters Centroids (SESD) to Clusters Centroids
9 10 0.65 1.14 0.13 1.92 200 2330 10 2559
104 20 0.95 2.29 0.26 3.5 398 4660 20 5097
5 10 0.73 4.61 0.47 5.81 496 8760 40 9316
20 1.18 9.23 0.94 11.35 989 17520 80 18609
9 10 5.69 11.12 1.2 18.02 1932 21400 140 23671
10 20 10.38 22.25 24 35.04 3985 42800 280 47264
5 10 5.77 47.18 5.13 58.09 9927 85630 340 96096
20 11.13 94.35 10.27 115.78 4969 171260 680 177108

Table 5: Running time in minute and communication cost of our privacy-preserving clustering
protocol, where n, K is the size of database, T' is number of iterations, dimension d = 2, and
bit-length ¢ = 32.

stop iterations in K-means. In this experiment, we simply set the number of iterations to a fixed
value (say, T € {10,20}).

We report both the running time and the communication cost of our scheme in Table 5. We
recall that our scheme consists of three major phases, which are distance phase, assignment phase,
and update phase (as described in Figure 7). To understand the performance of each phase, we
also report their empirical results in Table 5. The main cost of our scheme comes from the second
phase, where we need to evaluate (n — 1) “less than” garble circuits. To save time in evaluating
this phase, instead of running it in every iteration, we measure its runtime for one round iteration,
and multiply by the number of iterations 7.

As shown in the Table 5, our scheme is very practical. Small-size problems are few minutes; and
larger size problems (n = 100, 000) is under 2 hours, all single-threaded. In particular, it only takes
1.92 minutes to train a clustering model securely on 10,000 data samples with 2 clusters. From
1.92 minutes needed for privacy preserving training, only a small portion is spent on the distance
and update phases. Our scheme is mostly based on symmetric-key operations, it introduces a
overhead on the communication, namely 2.5GB for n = 10,000. When n = 100,000 and K = 5,
our protocol takes 115.78 minutes to train the model, in which 81.5% of the total runtime comes
from the assignment phase.

7.4.2 Comparison with Prior Work

We compare our prototype to the state-of-art privacy-preserving clustering protocols of Jaschke
and Armknecht [JA19], and differential privacy clustering protocols of Su et al. [SCLT16]. Since
implementation of the work [JA19] is not publicly available, we use their reported experimental
numbers.

Comparison with Jaschke and Armknecht’s scheme [JA19] For the most direct compar-
ison, we perform a comparison on the Lsun dataset [lsu] to match the dataset used in [[JA19],
Table 2]. We also matched the test system’s computational performance to that of [JA19]. Since
[JA19] ran experiments on Intel i7-3770, 3.4 GHz, 20GB RAM; we use a similar (1.32x slower)

21

Lsun S1

Dataset | Setting || g act (T = 15) | Stabilized (T = 40) | Approximate (T = 40) | (T = 30)

SCLT17] DP - - - 23.18 seconds
JA19] SH 545.91 days 15.56 hours 15.47 hours -
Ours 22.21 seconds 48.9 seconds 48.9 seconds 1472.6 seconds

Table 6: Comparison of total runtime between our protocol and [SCL*17, JA19] on dataset Lsun
and S1. T is number of iterations. “DP” and “SH” denote differential-privacy and semi-honest
setting. Cells with “-” denote the runtime not given.

machine as reported in Section 7.1. Table 6 presents the running time of our protocol compared
with [JA19]. The work of [JA19] evaluate three different versions of privacy-preserving K-means
clustering algorithm.

The first scheme [JA19] is exact K-means algorithm, in which the authors use TFHE library [tfh]
to implement ciphertext d1v1310n , where both ¢; and ¢y are ciphertexts. This is a needed operation
in the update phase which recalculates the new cluster center by taking the average of the values of
the point’s attributes that are part of the cluster. The authors encoded each data entry with 35 bits,
in which 20 bits are used for the numbers after the decimal point. In our experiment, we use 32 bits
to encode the data entry and use garble circuits to implement the ciphertext division operation. We
fix the number of iterations to be T' = 15 rounds, which is the same as in the experiment in [JA19].
As shown in Table 6, the protocol [JA19] costs 545.91 days to train Lsun dataset while our scheme
requires only 22.21 seconds (i.e, five orders of magnitude faster than [JA19]).

Since the main computational cost of their exact version comes from the division operation
where both numerator and denominator are ciphertext, the authors modify the update phase of
K-means algorithm to have denominator ‘Eo be a constant number. Concretely, their new k"
cluster center can be computed by #7 where P! is exactly the data entry P; if this data
entry is assigned to the k" centroid, otherwise, P’ is equal to the old centroid value ¢. They call
this algorithm the stabilized K-means. Since the centroids move more slowly in this scheme, the
experiment [JA19] chooses T' = 40 iterations which is also used in our experiment. Section 7.4.1
shows that our update phase takes only a small portion of the total runtime, therefore, we do not
apply the stabilized technique [JA19] in our protocol (which is in favor of [JA19]). As shown in the
Table 6, the protocol [JA19] costs 15.56 hours to train Lsun dataset while our scheme requires 48.9
seconds, an approximate 1145x improvement.

The third scheme [JA19] is approximate K-means algorithm, where Euclidean distance is re-
placed by Manhattan distance. This modification speeds up the runtime of the protocol [JA19].
However, as discussed in Section 5.2.1, the amortized cost of our SESD is much better than that
of Manhattan, thus we use SESD in our experiment. We fix the number of iterations to be T' = 40
rounds, which is also used in the experiment [JA19]. Our experimental results show that our
clustering scheme is 1138 x faster than the third version of privacy-preserving K-mean clustering
algorithm [JA19].

Comparison with Su et al. scheme [SCL™17] To conduct a fair comparison, we now per-
form a comparison on 2D synthetic dataset S1 [FS18], which was experimented in [SCL*17] for
differentially privacy setting. We obtained the implementations of Su et al. scheme [SCL™17] from
the authors’s website, and evaluate their protocol on our own machine, described in Section 7.1

22

usand

Tho

1000

a00

200

700

1000

900

Thousands

800 .

300 300

200 200

100 100

0
200 400 600 800 100 0 200 00 600 800 1000

0 200 400 600 800
Thousands Thousands

1000

Thousands

(a) Ground Truth Model [FS18] (b) Plaintext K-means Model. (c¢) Privacy-Preserving Model.

Figure 8: Comparison of accuracy for privacy-preserving, plain-text, and ground truth model.
Privacy-preserving model reaches 91.68% and 80.24% accuracy compared to the plaintext K-means
algorithm and expected ideal clusters, respectively.

(a single server with 2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM). We note that the
implementation [SCL*17] is in Python.

We recall that differential privacy requires the output of a data analysis mechanism approxi-
mately the same, even if any single entity of the input database is arbitrarily added or removed. For-
mally, a randomized mechanism A gives e-differential privacy [Dwo06, DNRV(09, SCL*17] if for any
pair of neighboring datasets D and D’, and any S € Range(A), Pr[A(D) = S] < e‘Pr[A(D’') = 5].
Differentially privacy is used in machine learning (ML) context such that the server has full access
to the data in plaintext but wants to guarantee that the released model cannot be used to infer the
data used during the training. A common technique used in differentially private ML is to introduce
an additive Laplacian noise [Dwo06] to the data or the iteration of updating function scaled with
the sensitivity. In the experiment of Su et al., we set ¢ = 1 and T = 30.

We remark that differential privacy setting is different from the security setting considered in our
scheme (semi-honest setting). Typically, training a differentially privacy ML model is faster than
training semi-honest ML. We are interested to examine the performance gap between our scheme
and this security model. The experimental results in Table 6 show that our privacy-preserving
K-means clustering scheme is only 63.5x slower than the differential privacy model [SCLT17].
Concretely, our protocol requires 1472.6 seconds to evaluate the model on 2D synthetic dataset S1
while the differential privacy model [SCL*17] requires 23.8 seconds.

7.4.3 Accuracy

The accuracy is the percentage of entities in the evaluation set grouped correctly. In this section,
we compare the accuracy of the produced models using our proposed approach and the plain-text
K-means clustering algorithm. For a visual comparison, we use the 2D synthetic dataset S1 [FS18],
which has the ground truth centroids (actual labels) shown in Figure 8a. We evaluate the plain-text
algorithm and our privacy-preserving scheme, and present the obtained centroids in Figure 8b and
Figure 8c, respectively.

Given the ground truth centroids of dataset S1, we find the best matching from each obtained
centroid to them. Since clustering is an unsupervised learning method in which no labels are given

23

to the learning algorithm, the matching can be one-to-many. We calculate the Euclidean distance
between each obtained centroid and all ground truth centroids, map each obtained centroid to the
ground truth centroid whose distance is the minimum among all the ground truth centroids.

All functions employed in our framework is the same as the original functions used the plain-text
K-means clustering, except the update phase, where we truncate the fractional part of the new clus-
ter centroid to obtain an integer. Note that we use the truncation technique mentioned in [MZ17].
The experimental results show that the truncation has a very small impact on model accuracy
compared to the original function. Our scheme with truncation reaches a ratio of 91.68% accuracy
compared to a plain-text K-means clustering on decimal numbers. Moreover, when training dataset
S1 using our privacy preserving approach, 82.24% of entities have been grouped correctly compared
to the ground truth model.

As shown in Figure 8, the K-means algorithm itself already has certain errors. A well-known
disadvantage of the K-means algorithm is that its performance lacks of consistency. A random
choice of cluster centers at the initialization step may result in different clusters since the algorithm
can be stuck in a local optimum and may not converge to the global optimum. Therefore, in
practice, we often run the algorithm with different initializations of centroids and then pick the
result of the run that yielded the lowest sum of squared distance.

References

[aby] https://github.com/encryptogroup/aby/.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 535-548.
ACM Press, November 2013.

[BDKS04] Michael W. Berry, Umeshwar Dayal, Chandrika Kamath, and David B. Skillicorn,
editors. Proceedings of the Fourth SIAM International Conference on Data Mining,
Lake Buena Vista, Florida, USA, April 22-24, 2004. SIAM, 2004.

[BDL*17] Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang
Zhang. Differentially private clustering in high-dimensional Euclidean spaces. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 322-331, International Convention Centre, Sydney, Australia, 06-11 Aug 2017.
PMLR.

[BDNPO8] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM CCS 08, pages 257-266. ACM Press, October 2008.

[Bea96) Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In 28th ACM STOC, pages 479-488. ACM Press, May 1996.

[BEDK19] Assi Barak, Daniel Escudero, Anders Dalskov, and Marcel Keller. Secure evaluation
of quantized neural networks. Cryptology ePrint Archive, Report 2019/131, 2019.
https://eprint.iacr.org/2019/131.

24

https://eprint.iacr.org/2019/131

[BG11]

[BHKR13]

[BOO7]

[CCD*19]

[CDD+04]

[CAWM*17]

[CGBH* 18]

[DKS+17]

[DNRV09)]

[DSZ15]

[Dwo06]

[ESAG02]

Marina Blanton and Paolo Gasti. Secure and efficient protocols for iris and fingerprint
identification. In Vijay Atluri and Claudia Diaz, editors, ESORICS 2011, volume 6879
of LNCS, pages 190-209. Springer, Heidelberg, 2011.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2018 IEEE Symposium on Security and
Privacy, pages 478-492. IEEE Computer Society Press, May 2013.

Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 07, pages
486-497. ACM Press, October 2007.

Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya Razenshteyn, and
M. Sadegh Riazi. Sanns: Scaling up secure approximate k-nearest neighbors search.
Cryptology ePrint Archive, Report 2019/359, 2019. https://eprint.iacr.org/
2019/359.

Ran Canetti, Ivan Damgard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adap-
tive versus non-adaptive security of multi-party protocols. Journal of Cryptology,
17(3):153-207, June 2004.

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Em-
manuel Prouff. Privacy-preserving classification on deep neural network. Cryptology
ePrint Archive, Report 2017/035, 2017. http://eprint.iacr.org/2017/035.

Hao Chen, Ran Gilad-Bachrach, Kyoohyung Han, Zhicong Huang, Amir Jalali, Kim
Laine, and Kristin Lauter. Logistic regression over encrypted data from fully ho-
momorphic encryption. Cryptology ePrint Archive, Report 2018/462, 2018. https:
//eprint.iacr.org/2018/462.

Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider,
Shaza Zeitouni, and Michael Zohner. Pushing the communication barrier in se-
cure computation using lookup tables. In NDSS 2017. The Internet Society, Febru-
ary / March 2017.

Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. How
efficient can memory checking be? In Omer Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 503-520. Springer, Heidelberg, March 2009.

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for
efficient mixed-protocol secure two-party computation. In NDSS 2015. The Internet
Society, February 2015.

Cynthia Dwork. Differential privacy (invited paper). In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of
LNCS, pages 1-12. Springer, Heidelberg, July 2006.

Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Johannes
Gehrke. Privacy preserving mining of association rules. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, pages 217-228, New York, NY, USA, 2002. ACM.

25

https://eprint.iacr.org/2019/359
https://eprint.iacr.org/2019/359
http://eprint.iacr.org/2017/035
https://eprint.iacr.org/2018/462
https://eprint.iacr.org/2018/462

[FS18]
[GBLL*19]
[GC16]
[Gen09)]

[Gi199]

[GKK*12]

[GMM*03]

[GMWS87]

[GRSOS]

[HMEK11]

[HNF11]

[IKNP03]

[Ivo]
[JA19]

Pasi Franti and Sami Sieranoja. K-means properties on six clustering benchmark
datasets, 2018.

Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Peter Rindal, and Mike Rosulek.
Secure data exchange: A marketplace in the cloud. CCSW, 2019.

Z. Gheid and Y. Challal. Efficient and privacy-preserving k-means clustering for big
data mining. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages 791-798, Aug 2016.

Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009. AAT3382729.

Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 116-129. Springer, Heidelberg, August
1999.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 12, pages 513-524. ACM Press, October 2012.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans. on Knowl.
and Data Eng., 15(3):515-528, March 2003.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218-229. ACM Press, May 1987.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering
algorithm for large databases. In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, SIGMOD 98, pages 73-84, New York, NY, USA,
1998. ACM.

Yan Huang, Lior Malka, David Evans, and Jonathan Katz. Efficient privacy-
preserving biometric identification. In NDSS 2011. The Internet Society, February
2011.

Rob Hall, Yuval Nardi, and Stephen E. Fienberg. Achieving both valid and secure
logistic regression analysis on aggregated data from different private sources. CoRR,
abs/1111.7277, 2011.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious trans-
fers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
145-161. Springer, Heidelberg, August 2003.

https://github.com /ladnir /ivory-runtime.

Angela Jaschke and Frederik Armknecht. Unsupervised machine learning on encrypted
data. In Carlos Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptog-
raphy — SAC 2018, pages 453-478, Cham, 2019. Springer International Publishing.

26

[JGI*18]

[JKLS18]

[JKMO5]

[JLL*19]

[JPWU10]

[JVC18]

[JWO05]

[KK13]

[KKRT16]

[KMR11]

Zoe Jiang, Ning Guo, Yabin Jin, Jiazhuo Lv, Yulin Wu, Yating Yu, Xuan Wang,
Sm Yiu, and Junbin Fang. Efficient two-party privacy preserving collaborative k-
means clustering protocol supporting both storage and computation outsourcing: 18th
international conference, icadpp 2018, guangzhou, china, november 15-17, 2018, pro-
ceedings, part iv. pages 447-460, 11 2018.

Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced
matrix computation and application to neural networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 18,
pages 1209-1222, New York, NY, USA, 2018. ACM.

Somesh Jha, Luis Kruger, and Patrick McDaniel. Privacy preserving clustering. In
Sabrina de Capitani di Vimercati, Paul Syverson, and Dieter Gollmann, editors, Com-
puter Security — ESORICS 2005, pages 397-417, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

K. Jarvinen, H. Leppékoski, E. Lohan, P. Richter, T. Schneider, O. Tkachenko, and
7. Yang. Pilot: Practical privacy-preserving indoor localization using outsourcing. In
2019 IEEE European Symposium on Security and Privacy (EuroS P), pages 448-463,
June 2019.

Geetha Jagannathan, Krishnan Pillaipakkamnatt, Rebecca N. Wright, and Daryl
Umano. Communication-efficient privacy-preserving clustering. Trans. Data Privacy,

3(1):1-25, April 2010.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A
low latency framework for secure neural network inference. In Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18, pages 1651-1668, Berkeley,
CA, USA, 2018. USENIX Association.

Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD
'05, pages 593-599, New York, NY, USA, 2005. ACM.

Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 20183, Part II,
volume 8043 of LNCS, pages 54—70. Springer, Heidelberg, August 2013.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 16, pages 818-829. ACM Press, October 2016.

Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party
computation. Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.
iacr.org/2011/272.

27

http://eprint.iacr.org/2011/272
http://eprint.iacr.org/2011/272

[KNR*17]

[KSO8]

[LIY*15]

[L1006]

[LP00]

[lsu]
[min]

[MPOT19]

[MR18]

[MZ17]

[NIW+13]

[NWI*13]

[00S17]

Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto
Trifiletti. DUPLO: Unifying cut-and-choose for garbled circuits. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages
3-20. ACM Press, October / November 2017.

Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates
and applications. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magniis M.
Halldérsson, Anna Ingélfsdéttir, and Igor Walukiewicz, editors, Automata, Languages
and Programming, pages 486—498, Berlin, Heidelberg, 2008. Springer Berlin Heidel-
berg.

X. Liu, Z. L. Jiang, S. M. Yiu, X. Wang, C. Tan, Y. Li, Z. Liu, Y. Jin, and J. Fang.
Outsourcing two-party privacy preserving k-means clustering protocol in wireless sen-
sor networks. In 2015 11th International Conference on Mobile Ad-hoc and Sensor
Networks (MSN), pages 124-133, Dec 2015.

S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor., 28(2):129-137,
September 2006.

Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 36-54. Springer, Heidelberg,
August 2000.

http://www.uni-marburg.de/fb12/datenbionik /downloads/fcps.
http://mint.sbg.ac.at/.

Xianrui Meng, Dimitrios Papadopoulos, Alina Oprea, and Nikos Triandopoulos.
Privacy-preserving hierarchical clustering: Formal security and efficient approxima-
tion. CoRR, abs/1904.04475, 2019.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine
learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 35-52, New York, NY, USA, 2018. ACM.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy,
pages 19-38. IEEE Computer Society Press, May 2017.

Valeria Nikolaenko, Stratis loannidis, Udi Weinsberg, Marc Joye, Nina Taft, and Dan
Boneh. Privacy-preserving matrix factorization. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 13, pages 801-812. ACM Press, November
2013.

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. Privacy-preserving ridge regression on hundreds of millions of records.
In 2018 IEEE Symposium on Security and Privacy, pages 334-348. IEEE Computer
Society Press, May 2013.

Michele Orru, Emmanuela Orsini, and Peter Schol. Actively secure l-out-of-n ot
extension with application to private set intersection. In CT-RSA, 2017.

28

[PGJ12]

[PSZ18]
[Rab05]
[RGO6)]
[Rin]

[RSB+15]

[RSC+19]

[SB17]

[SCL*16]

[SCL*17]

[SGAM19]

[SGB18]

[SGRP19)

Sankita Patel, Sweta Garasia, and Devesh Jinwala. An efficient approach for privacy
preserving distributed k-means clustering based on shamir’s secret sharing scheme.
In Theo Dimitrakos, Rajat Moona, Dhiren Patel, and D. Harrison McKnight, edi-
tors, Trust Management VI pages 129-141, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersec-
tion based on ot extension. In ACM TOPS, 2018.

Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

Boris Rozenberg and Ehud Gudes. Association rules mining in vertically partitioned
databases. Data Knowl. Eng., 59(2):378-396, November 2006.

Peter Rindal. 1ibOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/1ib0Te.

F. Rao, B. K. Samanthula, E. Bertino, X. Yi, and D. Liu. Privacy-preserving and
outsourced multi-user k-means clustering. In 2015 IEEFE Conference on Collaboration
and Internet Computing (CIC), pages 80-89, Oct 2015.

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. Xonn: Xnor-based oblivious deep neural network inference.
Cryptology ePrint Archive, Report 2019/171, 2019. https://eprint.iacr.org/
2019/171.

Arlei Silva and Gowtham Bellala. Privacy-preserving multi-party clustering: An em-
pirical study. pages 326-333, 06 2017.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially
private k-means clustering. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy, CODASPY ’16, pages 26-37, New York, NY, USA,
2016. ACM.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, Min Lyu, and Hongxia Jin. Dif-
ferentially private k-means clustering and a hybrid approach to private optimization.
ACM Trans. Priv. Secur., 20(4):16:1-16:33, October 2017.

Jinhyun So, Basak Guler, A. Salman Avestimehr, and Payman Mohassel. Coded-
privateml: A fast and privacy-preserving framework for distributed machine learn-
ing. Cryptology ePrint Archive, Report 2019/140, 2019. https://eprint.iacr.
org/2019/140.

Phillipp Schoppmann, Adria Gascén, and Borja Balle. Private nearest neighbors
classification in federated databases. Cryptology ePrint Archive, Report 2018/289,
2018. https://eprint.iacr.org/2018/289.

Phillipp Schoppmann, Adria Gascon, Mariana Raykova, and Benny Pinkas. Make
some room for the zeros: Data sparsity in secure distributed machine learning. ACM
CCS, 2019.

29

http://eprint.iacr.org/2005/187
https://github.com/osu-crypto/libOTe
https://eprint.iacr.org/2019/171
https://eprint.iacr.org/2019/171
https://eprint.iacr.org/2019/140
https://eprint.iacr.org/2019/140
https://eprint.iacr.org/2018/289

[SKLRO4]

[SSW10]

[t£h]
[VCo03]

[WRK17]

[XHY*17]

[Yao86]

[ZRE15]

[ZRLO7]

[ZXX16]

Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. Privacy preserving
regression modelling via distributed computation. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
'04, pages 677682, New York, NY, USA, 2004. ACM.

Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Efficient privacy-
preserving face recognition. In Proceedings of the 12th International Conference on
Information Security and Cryptology, ICISC’09, pages 229-244, Berlin, Heidelberg,
2010. Springer-Verlag.

Tthe library: https://tfhe.github.io/tfhe.

Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over ver-
tically partitioned data. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 206-215, New
York, NY, USA, 2003. ACM.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and
efficient maliciously secure two-party computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages 21-37.
ACM Press, October / November 2017.

K. Xing, C. Hu, J. Yu, X. Cheng, and F. Zhang. Mutual privacy preserving k -
means clustering in social participatory sensing. IEEE Transactions on Industrial
Informatics, 13(4):2066-2076, Aug 2017.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162-167. IEEE Computer Society Press, October 1986.

Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220-250.
Springer, Heidelberg, April 2015.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clustering
algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):141-182,
Jun 1997.

Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private algorithm
for hierarchical decompositions. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, pages 155-170, New York, NY, USA, 2016.
ACM.

30

	Introduction
	Related Work
	Preliminaries
	Notation
	Security Model and Computational Setting
	Secret Sharing
	Oblivious Transfer
	Garbled Circuit
	Clustering Algorithm

	Our Building Blocks
	Secure Arithmetic Multiplication
	Communication-Efficient Secure multiplication Based on 1-out-of-N OT
	Secure multiplication in the adaptive amortized setting

	Secure Euclidean Squared Distance (SESD)
	Minimum of k Numbers

	K-Mean Clustering Framework
	Cluster Initialization
	Lloyd's iteration
	Approximation of Euclidean distance
	Assigning data point to clusters
	Updating Cluster Centers
	Checking the stopping criterion

	Details

	Multi-party Clustering
	Server-aided model
	Multi-party computation model

	Experimental Results
	Experimental Setup
	Datasets
	Experiments for Distance Metric
	Secure Euclidean Squared Distance
	Approximation of Euclidean distance

	Experiments for Clustering
	Experiments for Synthetic Dataset
	Comparison with Prior Work
	Accuracy

