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Abstract. In this paper, we propose a Multi-Key Homomorphic En-
cryption (MKHE) which allows homomorphic evaluation of a binary gate
(with bootstrapping) on ciphertexts encrypted under different keys. We
generalize a low-latency homomorphic encryption scheme of Chillotti et
al. (ASIACRYPT 2016) by exploiting a key-extension approach of Brak-
erski and Perlman (CRYPTO 2016).
All the prior works on MKHE were too inefficient to be used in practice.
Our construction improved the performance in terms of both asymptotic
and concrete complexity: the length of ciphertexts and the computational
costs of a binary gate grow linearly and quadratically on the number of
parties, respectively. Furthermore, our scheme is fully-dynamic so that
no information about the involved parties needs to be known before
the computation and the resulting ciphertext can be reused in further
computation with newly joined parties.
To the best of our knowledge, this is the first work to implement an
MKHE scheme. Our implementation takes about 0.15 (resp. 0.72) sec-
onds to perform the gate bootstrapping when the number of involved
parties is 2 (resp. 4).

Keywords: Multi-key homomorphic encryption · Bootstrapping.

1 Introduction

Homomorphic Encryption (HE) and Multi-Party Computation (MPC) are well-
studied cryptographic primitives for secure computation. We can use an HE
scheme to outsource the storage and computation to a public cloud, but all data
providers should agree on the same public key generated by a secret key owner.
MPC performs an interactive protocol between parties to evaluate a circuit with-
out revealing an auxilarity information beyond the computation result, but it
usually suffers from a high communication and round complexity.

López-Alt et al. [25] proposed the notion of Multi-Key Homomorphic En-
cryption (MKHE) which is a variant of HE supporting the computation on ci-
phertexts encrypted under different keys. This attractive primitive can address
the issues of HE and MPC, and it has many applications such as round-efficient
MPC (e.g. [15, 1, 21, 30, 27]) and spooky encryption [16]. There have been sev-
eral researches (e.g. [14, 27, 5, 28, 8]) on MKHE. However, all the previous works
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were abstract and far from practical. In particular, the efficiency of MKHE re-
mained an open question for years because there has been no study to implement
or compare the MKHE schemes empirically.

In this paper, we present an efficient MKHE scheme based on the learning
with errors (LWE) assumption [29] and its ring variant (RLWE) [26]. Our con-
struction can be viewed as a generalization of the TFHE scheme of Chillotti et
al. [10], where an LWE-based ciphertext encrypts a single bit and one can evalu-
ate a binary gate on ciphertexts with bootstrapping using the ring GSW (RGSW)
scheme [20, 17]. We modify the extension algorithm of Brakerski-Perlman [5] to
generate a common bootstrapping key of involved parties from the individual
evaluation keys.

This work is no worse than previous ones in terms of both functionality and
efficiency. This work is comparale to previous ones in terms of both functionality
and efficiency. Our construction is fully-dynamic, meaning that a new party can
join the computation at anytime and a resulting ciphertext may be reused for
further computation. Meanwhile, the length of ciphertext and the computational
costs of a single binary gate grow linearly and quadratically on the number of
involved parties, respectively (see Table 1 for a comparison). Furthermore, our
scheme is simple to implement and easily compatible with existing techniques for
advanced functionalities such as the threshold decryption [23, 2], circuit boot-
strapping [11], and a larger plaintext space [3, 6].

Finally, we provide a proof-of-concept implementation with concrete param-
eter sets. For example, it took 3.4, 10.1, and 56.9 seconds to generate a boot-
strapping key, and 0.15, 0.72, and 5.15 seconds for a gate bootstrapping when
the number of parties is 2, 4, and 8, respectively, on a personal computer.

Overview of Our Scheme. Chillotti et al. [10] introduced a formalization of
(R)LWE over the real torus T = R (mod 1) and the set of cyclotomic polynomi-
als T = T[X]/(XN +1), and proposed a FHE scheme (called TFHE) with a low-
latency bootstrapping based on the LWE and RGSW schemes. We first describe
the TFHE scheme briefly. TFHE generates both LWE secret s = (si)i∈[n] ∈ Zn
and RLWE secret z(X) =

∑
0≤i<N ziX

i ∈ R = Z[X]/(XN + 1). A TFHE en-

cryption of a single bit mi ∈ {0, 1} is a vector cti = (bi,ai) ∈ Tn+1 satisfying
bi + 〈ai, s〉 ≈ 1

4mi (mod 1). One can homomorphically evaluate a bootstrapped
NAND (or any other binary) gate m = m1 Zm2 on encrypted bits by evaluating
a linear combination followed by a fast bootstrapping. The linear combination
outputs a ciphertext ct′ = (b′,a′) such that b′ + 〈a′, s〉 ≈ 1

2m (mod 1). The fast
bootstrapping starts with an accumulation, that exploits the RGSW scheme to
evaluate the decryption formula and recover the scaling factor of 1

4 . It requires a
bootstrapping key which is a sequence of RGSW encryptions of si encrypted by
z(X). Finally, we extract an LWE ciphertext ct′′ = (b′′,a′′) ∈ TN+1 such that
b′′ + 〈a′′, z〉 ≈ 1

4m (mod 1) for z = (z0, . . . , zN−1) and run the key-switching
process to recover the original LWE secret s.

We generalize TFHE to support the homomorphic computation on cipher-
texts encrypted under independently generated keys. Each party independently
generates the LWE secret si ∈ Zn and the RLWE secret zi(X) ∈ R. An encryp-
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tion of m ∈ {0, 1} will be a vector of the form ct = (b,a1, . . . ,ak) ∈ Tkn+1 such
that b+ 〈a1, s1〉+ · · ·+ 〈ak, sk〉 ≈ 1

4m (mod 1) where k denotes the number of
involved parties and si = (sij)j∈[n] are their LWE secrets. The homomorphic
evaluation of a NAND gate consists of the following three phases.

First, we evaluate the linear combination for the NAND gate m = m1 Zm2

on encrypted bits m1,m2 and return a ciphertext ct
′

= (b′,a′1, . . . ,a
′
k) satisfying

b′ +
∑
i∈[k]〈a′i, si〉 ≈

1
2m (mod 1). The evaluation is done after arranging the

entries and extending the dimension of input ciphertexts to share the same secret.

In the second step, we extract the most significant bits b̃ = b2N · b′e and ãi =

b2N · a′ie, and initialize the accumulator ACC = (− 1
8X

b̃ · h(X),0) ∈ T k+1 for
the testing polynomial h(X) =

∑
−N/2<d<N/2X

d. Then, we recursively compute

the Mux gate (choice function) based on the external product with an RGSW
encryption of Xsij . The main difference between our MKHE scheme and TFHE
is that we have to generate an RLWE encryption of Xsij with respect to the
concatenated RLWE secret z = (1, z1, . . . , zk) ∈ Rk+1. We adapt and modify
the extension algorithm in previous works [14, 27, 5] which combines a single-
key RGSW encryption with auxiliary information about encryption randomness
with public information of other parties and returns an RGSW encryption of
the same message under the concatenation of individual secrets. Our algorithm
returns a ciphertext of dimension (k+1) which is almost half of the previous one,
and it is based on the Common Reference String (CRS) model as in prior works.

The output ACC is an RLWE encryption of 1
8 −

1
8X

b̃+
∑k

i=1〈ãi,si〉 · h(X) whose

constant term is approximately equal to 1
4m as desired since b̃+

∑k
i=1〈ãi, si〉 ≈

N ·m (mod 2N). The computational costs of our bootstrapping pipeline mainly
depends on the second accumulation step whose complexity grows quadratically
with the number of involved parties.

Finally, we extract an LWE encryption from ACC and perform the multi-key-
switching procedure. An LWE ciphertext ct

′′
= (b′′,a′′1 , . . . ,a

′′
k) ∈ T1+kN from

ACC satisfies b′′ +
∑k
i=1〈a′′i , zi〉 ≈

1
4m (mod 1) where zi ∈ ZN is the coefficient

vector of zi. The multi-key-switching takes this ciphertext as an input to generate
an LWE ciphertext encrypting the same message under (s1, . . . , sk) by repeating
the ordinary key-switching procedure from zi to si.

Related Works. López-Alt et al. [25] firstly proposed an MKHE scheme based
on the NTRU assumption. Clear and McGoldrick [14] introduced an LWE-based
construction, and it was significantly simplified by Mukherjee and Wichs [27].
This scheme is single-hop for keys where the list of parties has to be known before
the computation. This work was extended in concurrent researches by Peikert-
Shiehian [28] and Brakerski-Perlman [5] which design multi-hop (dynamic for
keys) MKHEs. Chen, Zhang and Wang [8] constructed a scheme which can en-
crypt a ring element compared to a single bit of prior works.

We summarize the performance of recent MKHE schemes in Table 1. We
only consider the second (main) one between two schemes described in [28].
Both [28] #2 and [8] are leveled so a large constant (depending on the maximum
level of a circuit to be evaluated) is hidden in the Õ(·) notation. The space
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Scheme
Space Time

Bootstrap
Type Complexity Type Complexity

CZW17 [8]
EvalKey Õ(k3n) EvalKey Gen Õ(k4n)

No
Ciphertext Õ(kn) Hom Mult Õ(k3n)

PS16 #2 [28]
PK Õ(kn4)

Hom Mult Õ(k2.37n2.37) No
Ciphertext Õ(k2n2)

BP16 [5]
PK Õ(kn3)

Hom NAND poly(k, n) Yes
Ciphertext Õ(kn)

This work
Eval Key Õ(k2n2) Eval Key Gen Õ(k2n2)

Yes
Ciphertext Õ(kn) Hom NAND Õ(k2n2)

Table 1. Memory (bit-size) and computational costs (number of scalar operations) of
MKHE schemes. k denotes the number of parties and n is the dimension of the (R)LWE
assumption. PK and EVK denote the public and evaluation (or bootstrapping) keys,
respectively.

and time complexity of [8] grow rapidly as the number of parties increases. Its
complexity is quasi-linear on the security parameter, however, our scheme can
be implemented using a smaller parameter.3

[5] is based on an abstract bootstrapping method which evaluates a huge
branching program of length L = poly(k, n) representing the decryption circuit.
Its memory requirement grows linearly on the number of parties but it comes
from a space-time tradeoff. This idea is easily applicable to our scheme to reduce
down the space complexity (see Section 4.2 for details).

2 Background

2.1 Notation

All logarithms are in base two unless otherwise indicated. We denote vectors in
bold, e.g. a, and matrices in upper-case bold, e.g. A. We denote by 〈·, ·〉 the usual
dot product of two vectors. For a real number r, bre denotes the nearest integer
to r, rounding upwards in case of a tie. We use x ← D to denote the sampling
x according to distribution D. For a finite set S, U(S) denotes the uniform
distribution on S. For a real α > 0, Dα denotes the Gaussian distribution of
variance α2. We let λ denote the security parameter throughout the paper: all
known valid attacks against the cryptographic scheme under scope should take
Ω(2λ) bit operations.

3 For the reader who is familiar with previous HE schemes, we note that a gate boos-
trapping of TFHE [10, 13] takes only 13ms despite its quadratic complexity with
the security parameter. A single multiplication of ring-based schemes [4, 18] with a
quasi-linear complexity usually takes longer.
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2.2 TLWE and TRLWE

The TFHE scheme, presented for the first time in [10], is based on the TLWE
(resp. TRLWE) problem, which is the torus variant of the LWE (resp. RLWE)
problem. Instead of working over Z/qZ, or over the ring Z[X]/(XN + 1) mod q
in the ring variant, in TFHE we work over the real Torus T = R mod 1 and over
T = T[X]/(XN +1), the set of cyclotomic polynomials over T for a power-of-two
integer N . In this section and in the following one we present an overview of the
TFHE scheme: for more details we refer to [13].

We denote by R = Z[X]/(XN + 1) the set of cyclotomic polynomials over
Z. Then, we observe that T and T are modules over Z and R, respectively. This
means that they are groups with respect to the addition and they are provided
with an external product by an integer or an integer polynomial.

A TLWE sample is a pair (b,a) ∈ Tn+1, where a is sampled uniformly over
Tn and b = 〈a, s〉 + e. The secret key s and error e are sampled from a key
distribution χ on Zn and a Gaussian with standard deviation α > 0.

By following the same path, a TRLWE sample is a pair of polynomials
(b(X), a(X)) ∈ T 2, where a(X) is sampled uniformly and b(X) = a(X) · z(X) +
e(X). The secret key z(X) is an integer polynomial of degree N sampled from
a key distribution ψ on R and the error polynomial e(X) is sampled from a
Gaussian distribution with standard deviation β.

For a, b ∈ R (resp. T ), we denote by a ≈ b (mod 1) if a = b+ e (mod 1) for
a small error e ∈ R (resp. R[X]/(XN + 1)).

We can then define two problems for both TLWE and TRLWE:

– Decision problem: for a fixed TLWE secret s (resp. TRLWE secret z(X)),
distinguish the uniform distribution over Tn+1 (resp. T 2) from the TLWE
(resp. TRLWE) samples.

– Search problem: given arbitrarily many samples from the TLWE (resp. TRLWE)
distribution, find the secret s (resp. z(X)).

TLWE samples can be used to encrypt Torus messages. By fixing the message
space as a discrete subsetM⊆ T, a message µ ∈M can be encrypted by adding
the trivial TLWE sample (µ,0) to a TLWE sample generated as described in
previous paragraphs. Then, the corresponding ciphertext ct is a pair (b,a) ∈
Tn+1, with b = −〈a, s〉+ e+µ. In order to decrypt, we compute the phase ϕs of
the ciphertext ct, which is equal to ϕs(ct) = b+ 〈a, s〉, and we approximate it to
the nearest message possible inM to retrieve µ. By following the same footstep,
we can use TRLWE samples to encrypt torus polynomial messages in T .

Thanks to the Z-module structure of the torus and to the R-module structure
of T , the TLWE and TRLWE samples have additive homomorphic properties.
The external integer homomorphic multiplication can be performed thanks to
the TRGSW ciphertexts we define in the next section.
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2.3 TRGSW and External Product

For a base integer B ≥ 2 and a degree d, we call g = (1/B, . . . , 1/Bd) the gadget
vector. For an integer k ≥ 1, the gadget matrix is defined by

Gk = Ik ⊗ g =


g 0 . . . 0
0 g . . . 0
...

...
. . .

...
0 0 . . . g

 ∈ Tdk×k.

For any u ∈ Tk, we define its base decomposition by a dk-dimensional vector
v = G−1k (u) with coefficients in Z∩(−B/2, B/2] which minimizes ‖vT ·Gk − uT ‖∞.
The decomposition error ‖vT ·Gk − uT ‖∞ is bounded by 1/(2Bd+1).

We identify an arbitrary element of T to the vector of its coefficients in TN ,
and naturally extend the base decomposition G−1k (·) to a function T k → Rdk

by applying the basic decomposition function coefficient wisely.

Then, we can define the TRGSW samples as the torus variant of RGSW
samples, in the same way as we did in previous section4. For a fixed TRLWE
secret s(X), we define a TRGSW sample as C = Z + µ ·G2, where each line of
the matrix Z ∈ T d×2 is a TRLWE encryption of 0, G2 is the gadget matrix and
the message µ ∈ R is an integer polynomial.

TRGSW samples are homomorphic with respect to the addition and to an in-
ternal multiplication. Furthermore, an external product, noted �, with TRLWE
can be defined as A� b = G−12 (b) ·A, for all TRLWE samples b and TRGSW
samples A encrypted with the same secret key. In the following sections, we
define a variant of the TRGSW samples and an adapted external product. The
internal product between two TRGSW samples A and B encrypted with the
same secret key can be defined as a list of independent external products be-
tween the cipher A and the lines composing the cipher B.

The scheme TFHE has been implemented and is publicly available at [12].
In Section 5 we present some experimental results we obtained by implementing
our Multi-Key scheme on top of the TFHE library.

In the rest of the paper, in order to lighten the notations, we will abandon
the ‘T’ notation in front of LWE, RLWE and RGSW.

3 Basic Schemes

In this section, we present the LWE [29] and RGSW [20, 17] schemes and describe
some extended algorithms that will be used in our MKHE scheme.

4 We define only the Ring version TRGSW, since this is the only sample we need in
this paper. TGSW can be defined in the same way. For more details we refer to [13].
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3.1 Multi-Key-Switching on LWE Ciphertexts

We first describe the standard LWE scheme and generalize its key-switching
algorithm to the multi-key case.

LWE.Setup(1λ): It takes the security parameter as input and generates the LWE
dimension n, key distribution χ, error parameter α, decomposition base Bks and
degree dks. Return the public parameter ppLWE = (n, χ, α,Bks, dks).

An LWE secret s is sampled from the distribution ← χ.
We use the key-switching gadget vector gks = (1/Bks, . . . , 1/B

d
ks). Recall

that the base decomposition algorithm with respect to gks transforms an el-
ement a ∈ R into the dks-dimensional vector g−1ks (a) with coefficients in Z ∩
(−Bks/2, Bks/2] which minimizes |a− 〈g−1ks (a),gks〉|.

LWE.Enc(m): This is a standard LWE encryption which takes a bit m ∈ {0, 1}
as an input. It samples a ← U(Tn) and e ← Dα, and returns the ciphertext
ct = (b,a) ∈ Tn+1 for b = 1

4m− 〈a, s〉+ e (mod 1).

Note that the scaling factor is 1/4, as in FHEW [17] or TFHE [10]. We de-
scribed a symmetric encryption for simplicity, but this algorithm can be replaced
by any LWE-style encryption schemes such as public key encryption [24]. The
only requirement is that the output ciphertext should be a vector ct = (b,a) ∈
Tn+1 satisfying b+ 〈a, s〉 ≈ 1

4m (mod 1).

LWE.KSGen(t, s): For given LWE secrets t ∈ ZN and s ∈ Zn, it returns the key-

switching key KS = {KSj}j∈[N ] ∈ (Tdks×(n+1))N from t to s. For each j ∈ [N ],

the j-th component is generated by KSj = [bj |Aj ] where Aj ← U(Tdks×n),

ej ← Ddks

β and bj = −Ajs + ej + tj · gks (mod 1).

We can transform an LWE ciphertext corresponding to t into another LWE
encryption of the same message under the secret s using a key-switching key
KS← LWE.KSGen(t, s).

We consider the notion of extended LWE encryption and the multi-key-
switching procedure. For k LWE secrets s1, . . . , sk ∈ Zn, an extended ciphertext
ct = (b,a1, . . . ,ak) ∈ Tkn+1 will be called an encryption of m ∈ {0, 1} with re-

spect to the concatenated secret s = (s1, . . . , sk) if 〈ct, (1, s)〉 = b+
∑k
i=1〈ai, si〉 ≈

1
2m (mod 1).

LWE.MKSwitch(ct,KS): For a given ciphertext ct = (b,a1, . . . ,ak) ∈ TkN+1 and

a sequence of the key-switching keys KS = {KSi = {KSi,j}j∈[N ]}i∈[k], compute

(b′i,a
′
i) =

∑N
j=1 g−1ks (ai,j) ·KSi,j (mod 1) for all i ∈ [k] and let b′ = b+

∑k
i=1 b

′
i

(mod 1). Return the ciphertext ct
′

= (b′,a′1, . . . ,a
′
k) ∈ Tkn+1.

This multi-key-switching algorithm takes as the input an extended ciphertext
ct ∈ TkN+1 corresponding to t = (t1, . . . , tk) and a sequence of key-switching
keys from ti to si and returns an encryption of the same message under s =
(s1, . . . , sk).
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Security. The j-th component KSj of a key-switching key KS = {KSj}j∈[N ]

from t ∈ ZN to s ∈ Zn is generated by adding tj · gks to the first column
of a matrix in Tdks×(n+1) whose rows are LWE instances under the secret s.
Therefore, KS ← LWE.KSGen(t, s) is computationally indistinguishable from the
uniform distribution over (Tdks×(n+1))N under the LWE assumption with pa-
rameter (n, χ, β) if s is sampled according to χ.

Correctness. We show that if the input ct = (b,a1, . . . ,ak) is an LWE cipher-
text encrypted by t = (t1, . . . , tk) and KSi’s are key-switching keys from ti ∈ ZN
to si ∈ Zn for i ∈ [k], respectively, then the output ciphertext encrypts the same
message under the concatenated secret s = (s1, . . . , sk). The correctness of this
algorithm is simply shown by the following equation:

〈ct′, (1, s)〉 = b+

k∑
i=1

(b′i + 〈a′i, si〉)

≈ b+

k∑
i=1

N∑
j=1

〈g−1ks (ai,j), ti,j · gks〉 ≈ 〈ct, (1, t)〉 (mod 1).

Therefore, KS = {KSi}i∈[k] can be considered as a key-switching key from t ∈
ZkN to s ∈ Zkn.

3.2 Extension of RGSW Ciphertexts and Generalized External
Product

The GSW scheme has been widely used in the construction of cryptographic
primitives due to its intrinsic characteristics. For example, the ciphertext ex-
tension procedure in recent MKHE schemes [5, 28, 8] is based on the GSW
homomorphic arithmetic without evaluation key. Meanwhile, HE schemes with
low-latency bootstrapping [17, 10] enjoy the compatibility of GSW with classical
(R)LWE ciphertexts (e.g. external product, key-switching).

In this section, we present a variant of RGSW which supports a new cipher-
text extension and a generalized external product on extended ciphertexts. It is
similar to the existing techniques in previous work on MKHE, but our solution
achieves a better performance by reducing the dimension of ciphertexts and the
complexity of operations.

RGSW.Setup(1λ): It takes as input the secret parameter λ.

1. Set the RLWE dimension N which is a power of two.
2. Set the key distribution ψ over R and choose the error parameter α.
3. Set the base integer B ≥ 2 and the decomposition degree d.
4. Generate a random vector a← U(T d).

Return the public parameter ppRGSW = (N,ψ, α,B, d,a).

Our scheme is based on the CRS model since it requires all participants to
share a randomly generated vector a. The RGSW parameter should be chosen
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appropriately so that the RLWE problem with parameter (N,ψ, α) achieves at
least λ-bit security level.

RGSW.KeyGen(ppRGSW): Sample z ← ψ and return the secret key SK ← z. We

write z = (1, z). Sample an error vector e ← Dd
α and set the public key as

PK← P = [b|a] ∈ T d×2 where b = −a · z + e (mod 1). Return (z,P).

RGSW.UniEnc(µ, z,P): For an input plaintext µ ∈ R, a secret key z and a public

key P, it generates and returns the ciphertexts (C,D,F) ∈ (T d×2)3 as follows:

1. Sample c1 ← U(T d) and ec ← Dd
α. Output the ciphertext C = [c0|c1] ∈

T d×2 where c0 = −z · c1 + ec + µ · g (mod 1).
2. Sample a randomness r ← ψ and an error matrix E ← Dd×2

α . Output the
ciphertext D = r ·P + E + [0|µ · g] (mod 1) in T d×2.

3. Sample f1 ← U(T d) and ef ← Dd
α. Output the ciphertext F = [f0|f1] ∈ T d×2

where f0 = −z · f1 + ef + r · g (mod 1).

Our RGSW scheme takes as an input the pair of secret and public keys. The
third component F encrypts the randomness r ∈ R used in the generation of D.
Note that an uni-encryption (C,D,F) is 1.5 times the size of ordinary RGSW
ciphertexts in T 2d×2.

The following algorithm transforms an uni-encryption (C,D,F) encrypted
by the i-th party into an RGSW ciphertext corresponding to the set of k parties
based on their public key {Pj}j∈[k].

RGSW.Expand((C,D,F), i, {Pj}j∈[k]): It takes as the input a ciphertext (C,D,F) ∈
(T d×2)3, an index i ∈ [k], and a sequence of public keys {Pj}j∈[k]. For each

j ∈ [k], compute the vectors xj ,yj ∈ RdQ by xj [`] = 〈g−1(bj [`]− bi[`]), f0〉 and

yj [`] = 〈g−1(bj [`] − bi[`]), f1〉 for all ` ∈ [d], i.e., [xj |yj ] = MjF ∈ T d×2 where
Mj ∈ Rd×d is the matrix of which `-th row vector is g−1(bj [`]− bi[`]). Return
the expanded ciphertext

C =



c0 0 · · · c1 · · · 0

d0 + x1 d1 · · · y1 · · · 0
...

...
. . .

...
. . .

...

d0 0 · · · d1 · · · 0
...

...
. . .

...
. . .

...

d0 + xk 0 · · · yk · · · d1


∈ T d(k+1)×(k+1).

RGSW.ExtProd(c,C): For an RLWE ciphertext c ∈ T k+1 and an RGSW cipher-

text C ∈ T d(k+1)×(k+1), compute and return the ciphertext c′ = G−1k+1(c) · C
(mod 1) in T k+1.
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A ciphertext C ∈ T d(k+1)×(k+1) is called an extended RGSW encryption of
µ ∈ R corresponding to a secret z = (1, z1, . . . , zk) ∈ Rk+1 if Cz ≈ µ ·Gk+1z
(mod 1). Based on the public information Pj , our ciphertext extension algo-
rithm transforms an uni-encryption (C,D,F) corresponding to the i-th secret
(SKi,PKi) = (zi,Pi) into an extended RGSW ciphertext C which encrypts the
same message under the concatenated secret z = (1, z1, . . . , zk) ∈ Rk+1. It re-
quires O(kd2) polynomial operations, and we need only (2k + 2)d polynomials
to represent C due to its sparsity.

Our scheme also provides the external product algorithm (though our scheme
has no RLWE encryption) which multiplies an RGSW ciphertext to an RLWE
ciphertext where both are encrypted by the same key z. If C is an output of
the RGSW expansion algorithm (so is sparse), then the external product takes
O(kd) polynomial operations.

Security. We claim that the distribution

D0 = {(P,C,D,F) :(z,P)← RGSW.KeyGen(ppRGSW),

(C,D,F)← RGSW.UniEnc(µ, z,P)}

is computationally indistinguishable from the uniform distribution over (T d×2)4

for any µ ∈ R under the RLWE assumption with parameter (N,ψ, α). We con-
sider the following distributions:

D1 = {(P,C,D,F) :P,C,F← U(T d×2), r ← ψ,E← Dd×2
α ,

D = r ·P + E + [0|µ · g] (mod 1).},
D2 = {(P,C,D,F) :P,C,D,F← U(T d×2)}.

First, we can change the RLWE samples P, C, and F of the secret z to random
matrices. Then, D is changed to a uniform distribution using the RLWE as-
sumption of secret r again. Since D2 is independent from µ, our RGSW scheme
is IND-CPA secure.

Correctness. We briefly show the correctness of our ciphertext expansion and
external product algorithms. We refer the reader to Appendix A for a detailed
noise analysis.

Let (zj ,Pj)← RGSW.KeyGen(ppRGSW) be independently generated RGSW keys
for j ∈ [k] and let (C,D,F) ← RGSW.UniEnc(µ, zi,Pi) be an uni-encryption of
µ under the i-th key. We claim that C ← RGSW.Expand((C,D,F), i, {Pj}j∈[k])
is an RGSW encryption of µ corresponding to the concatenated secret z =
(1, z1, . . . , zk), i.e., Cz ≈ µ ·Gk+1z (mod 1). Since c0 + zi · c1 = Czi ≈ µ · g
(mod 1), it suffices to show that (d0 + xj) + zj · d1 + zi · yj ≈ µzj · g (mod 1)
for all j ∈ [k]. It is derived from the following equations:

d0 + zj · d1 ≈ µzj · g + r ·Pizj ≈ µzj · g + r · (bi − bj) (mod 1),

xj + zi · yj = MjFzi ≈ r ·Mjg ≈ r · (bj − bi) (mod 1).

Now let us suppose that c ∈ T k+1 is an RLWE ciphertext and C ∈ T d(k+1)×(k+1)

is an RGSW encryption of µ with respect to the secret z ∈ Rk+1, i.e., Cz ≈
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µ ·Gk+1z (mod 1). Then their external product c′ ← RGSW.ExtProd(c,C) sat-
isfies that 〈c′, z〉 = G−1k+1(c) · Cz ≈ G−1k+1(c) · µGk+1z ≈ µ · 〈c, z〉 (mod 1), as
desired.

4 Our MKHE Scheme

4.1 Description

In this section, we explicitly describe an MKHE scheme based on the LWE and
RGSW schemes. Our scheme can bootstrap a ciphertext after the evaluation of
a binary gate as in TFHE [10], but it requires to pre-compute the bootstrapping
key corresponding to the set of parties involved in a computation.

MKHE.Setup(1λ):

– Run LWE.Setup(1λ) to generate the parameter ppLWE = (n, χ, α,Bks, dks).
– Run RGSW.Setup(1λ) to generate the parameter ppRGSW = (N,ψ, β,B, d,a).
– Return the generated public parameters pp = (ppRGSW, ppLWE).

MKHE.KeyGen(pp):

– Run (z,P) ← RGSW.KeyGen(ppRGSW) and set the public key as PK = P. We
write t = (z0,−zN−1, . . . ,−z1) ∈ ZN for z(X) = z0+z1X+· · ·+zN−1XN−1.

– Sample the LWE secret s = (s1, . . . , sn)← ψ.
– Generate (C`,D`,F`)← RGSW.UniEnc(s`, z,P) for ` ∈ [n] and set the boot-

strapping key as BK = {(C`,D`,F`)}`∈[n].
– Generate the key-switching key KS← LWE.KSGen(t, s).
– Return the secret key s. Publish the triple (PK,BK,KS) of public, bootstrap-

ping, and key-switching keys.

We remark that for any a(X) = a0 + a1X + · · · + aN−1X
N−1 ∈ T and

the vector of its coefficients a = (a0, . . . , aN−1) ∈ TN , the constant term of
a(X) · z(X) ∈ T is equal to 〈a, t〉 modulo 1.

MKHE.Enc(m): For an input bit m ∈ {0, 1}, run LWE.Enc(m) and return an LWE

encryption with the scaling factor 1/4. The output ciphertext ct = (b,a) ∈ Tn+1

satisfies b+ 〈a, s〉 ≈ 1
4m (mod 1).

The dimension of a ciphertext increases after homomorphic computations.
The indices of related parties should be stored together with a ciphertext for the
correct decryption and homomorphic operations.

MKHE.Dec(ct, {sj}j∈[k]): For a ciphertext ct = (b,a1, . . . ,ak) ∈ Tkn+1 and a

tuple of secrets (s1, . . . , sk), return the bit m ∈ {0, 1} which minimizes |b +∑k
j=1〈aj , sj〉 −

1
4m|.

MKHE.NAND(ct1, ct2, {(PKj ,BKj ,KSj)}j∈[k]): It takes as input two LWE cipher-

texts ct1 ∈ Tk1n+1 and ct2 ∈ Tk2n+1, where [k] is the set of indices of the parties
that are involved in either ct1 or ct2. For j ∈ [k], we denote by PKj = Pj ,
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BKj = {(Cj,`,Dj,`,Fj,`)}`∈[n] and KSj the public key, bootstrapping key and
key-switching key of the j-th party, respectively.

This algorithm consists of three phases. The first step expands the input
LWE ciphertexts and evaluate the NAND gate homomorphically over encrypted
plaintexts.

1-1. Extend ct1 and ct2 to the ciphertexts ct
′
1, ct

′
2 ∈ Tkn+1 which encrypt the

same messages under the concatenated secret key s = (s1, . . . , sk) ∈ Zkn.
It is simply done by rearranging the components and putting zeros in the
empty slots.

1-2. Compute ct
′

= ( 5
8 ,0, . . . ,0)− ct

′
1 − ct

′
2 (mod 1).

To be precise, if an input ciphertext cti = (bi,ai,1, . . . ,ai,ki) is an encryp-
tion corresponding to a tuple (j1, . . . , jki) ∈ [k]k1 of indices, then (1-1) re-

turns ct
′
i = (bi,a

′
i,1, . . . ,a

′
i,k) where a′i,j =

{
ai,` if j = j` for some ` ∈ [ki],

0 otherwise;
for

j ∈ [k]. It is clear from the definition that 〈cti, (1, sj1 , . . . , sjki
)〉 = 〈ct′i, (1, s)〉 for

s = (s1, . . . , sk).

If 〈ct′i, (1, s)〉 = 1
4mi + ei (mod 1) for some errors ei ∈ R, then the output

ciphertext satisfies that 〈ct′, (1, s)〉 = 1
2m+e′ (mod 1) for m = NAND(m1,m2)

and e′ = ± 1
8 − e1 − e2 which is bounded by 1

4 when |ei| ≤ 1
16 . The next step,

called homomorphic accumulator [17], is to evaluate the decryption circuit of
an extended LWE ciphertext using the external product of RGSW scheme for
bootstrapping.

2-1. For i ∈ [k] and ` ∈ [n], run Ci,` ← RGSW.Expand((Ci,`,Di,`,Fi,`), {Pj}j∈[k])
to generate an RGSW encryption of si,` under the secret z = (1, z1, . . . , zk) ∈
Rk+1. Return the shared bootstrapping key BK := {Ci,`}i∈[k],`∈[n].

2-2. Let ct
′

= (b′,a′1, . . . ,a
′
k) ∈ Tkn+1. Compute b̃ = b2N · b′e and ãi = b2N · a′ie.

Initialize the RLWE ciphertext as ACC = (− 1
8h(X) · X b̃,0) ∈ T k+1 where

h(X) =
∑
−N

2 <j<
N
2
Xj = 1 +X + · · ·+X

N
2 −1 −X N

2 +1 − · · · −XN−1.

2-3. Let ãi = (ãi,`)`∈[n] for i ∈ [k]. Compute

ACC← ACC + RGSW.ExtProd((X ãi,` − 1) · ACC,Ci,`)

recursively for all i ∈ [k] and ` ∈ [n].

2-4. Return ACC← ( 1
8 ,0) + ACC (mod 1).

In (2-1), we generate the bootstrapping key corresponding to the k parties
involved in this computation. The accumulator ACC is initialized in (2-2) as a

trivial RLWE encryption of − 1
8h(X) · X b̃. The main computation is done in

(2-3) based on the Mux gate [10]. In each step, it homomorphically selects one
of ACC and X ãi,` · ACC using the encryption Ci,` of si,` ∈ {0, 1}. The output is
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an RLWE ciphertext satisfying

〈ACC, z〉 ≈ −1

8
h(X) ·X b̃+

∑k
i=1〈ãi,si〉

= −1

8

 ∑
−N

2 <j<
N
2

Xj

 ·X b̃+
∑k

i=1〈ãi,si〉 (mod 1).

Since b̃+
∑k
i=1〈ãi, si〉 ≈ (2N) · 〈ct′, (1, s)〉 ≈ N ·m (mod 2N), the constant term

of 〈ACC, z〉 is approximately equal to either − 1
8 (if m = 0) or 1

8 (otherwise;
m = 1), which is 1

4m−
1
8 . Finally, the term 1

8 is cancelled out in (2-4).
In the last step, we transform ACC into an LWE ciphertext and run the

multi-key-switching algorithm as follows.

3-1. For ACC = (c0, c1, . . . , ck) ∈ T k+1, let b′′ be the constant term of c0 and
a′′i be the coefficient vector of ci for i ∈ [k]. Construct the LWE ciphertext
ct
′′

= (b′′,a′′1 , . . . ,a
′′
k) ∈ TkN+1.

3-2. Let KS = {KSi}i∈[k]. Run the multi-key-switching algorithm and return the

ciphertext ct← LWE.MKSwitch(ct
′′
,KS).

As we noted above, 〈a′′i , ti〉 (mod 1) is equal to the constant term of cizi
for i ∈ [k]. Hence, (3-1) returns an LWE ciphertext ct

′′
satisfying 〈ct′′, (1, t)〉 ≈

1
4m (mod 1). The next step (3-2) switches the LWE key and outputs an LWE
ciphertext ct ∈ Tkn+1 such that 〈ct, (1, s)〉 ≈ 1

4m (mod 1), as desired.

Security. Our scheme is semantically secure under the (R)LWE assumptions
described in the previous section, so the parameters ppLWE and ppRGSW should be
chosen properly to achieve at least λ-bit of security level.

It also requires a circular security assumption because each party publishes
uni-encryptions of s1, . . . , sn encrypted by z, and a key-switching key from t =
(z0,−zN−1, . . . ,−z1) to s. However, our circular security assumption is exactly
the same as one in TFHE [10], and it is no stronger than the circular security
assumptions in bootstrappable HE schemes [19] such as [17, 22, 7, 9].

Correctness. Our scheme should satisfy the following conditions to guarantee
its correctness:

– In (2-1), the quantized ciphertext (b̃, ã1, . . . , ãk) ∈ Zkn+1
2N should satisfy b̃+∑k

j=1〈ãj , sj〉 = N ·m+ ẽ for some ẽ ∈ Z with |ẽ| < N/2. This noise ẽ consists

of two parts ẽ = 2N · e′ + e′′ for e′ = ± 1
8 − e1 − e2 from the step (1-2) and

a rounding error e′′ = (b̃− 2N · b′) +
∑k
j=1〈ãj − 2N · a′j , sj〉.

– The error e ∈ R of an output LWE ciphertext ct should be small enough
for the correct decryption and further computations. It is the sum of the
constant term of an RLWE error which is accumulated from the external
products during (2-3), and the multi-key-switching error from (3-2).

We provide a rigorous noise estimation in Appendix A. We refer the reader to
Section 5 for a recommended parameter set.
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Type Space

ct kn+ 1

BK (2k + 2)k · nN · d
KS k · (n+ 1)N · dks ·Bks

Type Time

BK Generation O(k2 · nN logN · d2)

Accumulator O(k2 · nN logN · d)

Multi-key-switching O(k · nN · dks)
Table 2. Space (number of torus elements) and time (number of scalar operations)
complexity of our scheme.

Performance. We run the expand algorithm k · n times for the generation
of bootstrapping key (2-1), and we recall that a single expansion algorithm
takes O(kd2) polynomial operations. The total complexity is O(k2N logNnd2) =
Õ(k2Nn) scalar operations since one polynomial operation takes O(N logN)
scalar operations. The size of bootstrapping key grows quadratically with the
number of parties since it consists of k · n expanded RGSW ciphertexts each of
which can be represented by (2k + 2)d elements in T . Hence the size of BK is
(2k + 2)kNnd = Õ(k2Nn) torus elements.

We stress that the bootstrapping key BK depends only on the public in-
formation (public/bootstrapping key) of involved parties and so it can be used
repeatedly for any computations related to the same set of parties. In addition,
the bootstrapping key can be reused when a new party joins: we only need to
compute one additional row from the previously generated bootstrapping keys
Ci,` instead of generating them from the beginning again.

The accumulator (2-3) recursively evaluates the external product between
extended RLWE and RGSW ciphertexts k ·n times. As explained in the previous
section, a single external product requires O(kd) polynomial operations. Hence
the total complexity is O(k2nN logNd) = Õ(k2nN) scalar operations.

Finally, KS is the concatenation of k key-switching keys and the multi-key-
switching algorithm has k times the complexity of the ordinary key-switching
algorithm. The time and space complexity of our MKHE scheme is summarized
in Table 2.

4.2 Discussion

In the previous section, we introduced an MKHE scheme which supports the
evaluation of a NAND gate. However, we can simply design some variants of
this basic scheme with better functionality and versatility.

More bootstrapped gates. In this paper, we described only the Multi-Key
bootstrapped NAND gate, but any arbitrary binary bootstrapped gate (such as
AND, OR, XOR, etc.) can be evaluated in the same way, as it is done in TFHE:
it is sufficient to modify the initial linear combination before bootstrapping.

Time-Space Tradeoff. We stress again that the size of an expanded bootstrap-
ping key BK grows quadradically with the number of parties, which is larger
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than the linear size of a simple concatenation of individual bootstrapping keys
{BKj}j∈[k]. Brakerski and Perlman [5] suggested a method to reduce down the
memory requirement by generating a temporary evaluation key in each step.
This idea can be applied to our scheme to have a linearly-growing space com-
plexity, however, we lose the reusability of a expanded bootstrapping key and
the total complexity grows.

Threshold Decryption. HE has some attractive applications in the construc-
tion of advanced cryptographic primitives such as round-efficient MPC [15, 1,
21, 30, 27]. In particular, the distributed property of threshold HE [23, 2] makes
an important role to achieve this functionality.

Since our MKHE scheme is based on the standard LWE encryption, the
techniques for threshold decryption such as noise smudging (a.k.a. noise flood-
ing) [1] can be directly applied to our scheme as follows. The noise distribution,
parametrized by a constant γ > 0, should have a medium size which is smaller
than 1 but sufficiently larger than the error of an input ciphertext to prevent the
leakage of extra information beyond the decrypted value. See [1] for parameter
choice and security proof.

MKHE.PartDec(ct, si): For a ciphertext ct = (b,a1, . . . ,ak) ∈ Tkn+1 and the i-
th secret si, sample an error ei ← Dγ and return the value pi = 〈ai, si〉 + ei
(mod 1).

MKHE.Merge(b, {pj}j∈[k]): For the first entry b of an input ciphertext and the

partial decryptions {pj}j∈[k], output the bit m ∈ {0, 1} which minimizes |b +∑k
j=1 pj −

1
4m|.

Faster Evaluation of a Look-Up Table (LUT). There have been some
progresses in TFHE-type schemes to accelerate the evaluation of a LUT. For
example, Chillotti et al. [11] suggested a vertical packing method for TRLWE
combined with a circuit bootstrapping algorithm which gives a speed-up com-
pared to the gate-by-gate bootstrapping, while Bonnoron et al. [3] (see also [6])
suggested a method to encrypt more than one bit in a single ciphertext. It is
easy to see that these techniques are directly applicable to our MKHE scheme.

5 Experimental Results

We present a proof-of-concept implementation to convince the reader that our
scheme is practical. The implementation took a few days of coding and it is based
on the TFHE library [12], which takes 13ms to execute a gate bootstrapping.
All experiments are performed on a Intel Core i7-4910MQ at 2.90GHz laptop,
running on a single thread. Our source code is publicly available at https:

//github.com/ilachill/MK-TFHE.
In Table 3, we present three candidate parameter sets which guarantee both

the security and correctness. We set the LWE/RLWE secret distributions χ and
ψ as the uniform distributions over the set of binary vectors in Zn and over the
polynomials in R with binary coefficients, respectively. We adapt the same LWE
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Set
LWE RLWE (RGSW)

n α Bks dks N β B d

I

500 2.43 · 10−5 22 8 1024 3.29 · 10−10
27 4

II 26 5

III 24 8
Table 3. Recommended parameter sets.

and RLWE parameters as in the TFHE implementation which achieve 152-bit
security level based on the security analysis in [13]. We show in Appendix A that
the standard deviation of bootstrapping error grows linearly on the number of
parties. Hence the growth of parameter with respect to the maximal number of
involved parties is very slow. We control the noise by changing the decomposition
degree and exponent which do not affect the security level.

We adapt a space-time trade-off technique in [17, 10] which reduces the com-
plexity of key-switching procedure by publishing all LWE encryptions of a·Biks ·tj
for i ∈ [dks], j ∈ [N ], and a ∈ ZBks

, compared to the encryptions of Biks ·tj in the
scheme description. Hence our implementation of multi-key-switching is purely
represented by a summation of LWE vectors. It does not make any change in
asymptotic complexity.

Set KG BK KS ct k BK gen BK KS ct NAND

I 1.5s 46.9MB 62.6MB 2.0KB 2 0.4s 93.8MB 125.3MB 3.9KB 0.15s

II 1.6s 58.6MB 62.6MB 2.0KB
2 0.6s 117.2MB 125.3MB 3.9KB 0.19s

4 3.0s 390.6MB 250.5MB 7.8KB 0.72s

III 2.2s 93.8MB 62.6MB 2.0KB

2 1.2s 187.5MB 125.3MB 3.9KB 0.30s

4 6.9s 625.0MB 250.5MB 7.8KB 1.27s

8 35.8s 2.20GB 501.0MB 15.6KB 5.15s

Table 4. Performance of our implementation.

Our experimental results are summarized in Table 4. On the left side of the
table, we describe the local complexity of our scheme such as key generation
timing of each party. This part is independent from k. The rest of the table
presents the global performance of our scheme corresponding to the multi-key
operation. The parameter sets I, II and III support homomorphic computation
for any number of parties up to 2, 4 and 8, respectively. A smaller parameter
has a better peformance but a larger parameter makes the scheme more flexible.
For example, III takes twice as long compared to I in the two-party case, but
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it allows more parties to join the computation dynamically. We observe that
the size of ciphertexts and bootstrapping timing grow linearly and quadratically
with k, as expected.
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A Noise Estimation

For the decomposition base B and degree d, let ε2 = 1/(12B2d) be the variance
of uniform distribution over the interval (−1/2Bd, 1/2Bd]. We denote by VB ={

1
12 (B2 − 1) if B is odd,
1
12 (B2 + 2) if B is even;

the mean square of a uniform distribution over Z ∩
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(−B/2, B/2]. We similarly define ε2ks and VBks
based on the parameter Bks

and dks for the key-switching algorithm. We set the RGSW and LWE secret
distributions χ, ψ as uniform distributions over {0, 1}N and {0, 1}n, respectively.

The variance of a random variable e over R is denoted by Var(e). For a
random variable e over R[X]/(XN + 1), it denotes the variance of a coefficient
when all coefficients have the same variance. If e is a vector of random variables,
Var(e) denotes the maximum of its entries’ variances.

We mainly compute the variance of a noise. Our average-case analysis is based
on the heuristic assumption that a noise behaves like a Gaussian distribution,
which has been empirically shown in the previous work (Fig. 11, [13]).

Ciphertext Expansion. Let us suppose that

(zj ,Pj)← RGSW.KeyGen(ppRGSW) for j ∈ [k],

(C,D,F)← RGSW.UniEnc(µ, zi,Pi) for µ ∈ R, and

C← RGSW.Expand(C,D,F, {Pj}j∈[k]).

Then, we have

c0 + zi · c1 = Czi = µ · g + ec (mod 1),

d0 + zi · d1 = Dzi = µzi · g + r · ei + Eizi (mod 1),

and

(d0 + xj) + zi · yj + zj · d1

= (d0 + zj · d1) + (xj + zi · yj) (mod 1)

= ([0|µ · g] + r ·Pi + Ei) zj + MjFzi (mod 1)

= µzj · g + r · (bi + zj · a) + Eizj + Mj(r · g + ef ) (mod 1)

= µzj · g + r · (bi − bj) + r · ej + Eizj + r · (bj − bi + e′) + Mjef (mod 1)

= µzj · g + (r · (ej + e′) + Eizj + Mjef ) (mod 1),

where e′ ∈ Rd is the error vector such that e′[`] = 〈g−1(bj [`] − bi[`]),g〉 −
(bj [`]− bi[`]) for ` ∈ [d].

A noise in the third formula has the largest variance. It is computed by

Var(r · (ej + e′) + Eizj + Mjef ) = (N/2)ε2 + (1 +N + dNVB)β2

since Var(r) = 1/2, Var(ej) = β2, Var(e′) = ε2, Var(Eizj) = (1 + N/2)β2, and
Var(Mjef ) = dN · VB · β2.

Rounding Error. In (2-2), we compute b̃ = b2N · b′e and ãi = b2N · a′ie. We
assume that each of the rounding errors behaves like a uniform random variable
on the interval R (mod 1) = (−0.5, 0.5]. Therefore, the total rounding error

(b̃− b2N · b′e) +
∑k
j=1〈ãj − b2N · a′je, sj〉 has the variance of 1

12 (1 + kn/2).

External Product. We consider the external product between an (extended)
RLWE and RGSW ciphertexts c and C. The RGSW ciphertext will satisfy Cz =
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µ ·Gk+1z+e for a plaintext µ and an error vector e. We denote by VarErr(C) =
Var(e). The external product outputs an RLWE ciphertext c′ satisfying

〈c′, z〉 = G−1k+1(c) ·Cz (mod 1)

= G−1k+1(c) · (µ ·Gk+1z + e) (mod 1)

= µ · 〈c, z〉+
(
µ · 〈e′, z〉+ G−1k+1(c) · e

)
(mod 1)

for the decomposition error e′ = G−1k+1(c) ·Gk+1 − c. Therefore, the variance of

external product error eep = µ · 〈e′, z〉+ G−1k+1(c) · e is

Var(eep) = µ2 · ε2(1 + kN/2) + (k + 1)dN · VB · VarErr(C)

since Var(e′) = ε2 and Var(G−1k+1(c)) = VB . Note that we do not include the
error in the phase 〈c, z〉 of the input RLWE ciphertext for simpler analysis of
Mux gate.

Mux Gate. Suppose that c0, c1 are RLWE ciphertexts and C is an RGSW
encryption of µ ∈ {0, 1} with error e. The mux gate is to compute c = c0 +
RGSW.ExtProd(c1 − c0,C) to choose cµ homomorphically:

〈c, z〉 = 〈c0, z〉+ G−1k+1(c1 − c0) · (µ ·Gk+1z + e) (mod 1)

= (1− µ) · 〈c0, z〉+ µ · 〈c1, z〉+
(
µ · 〈e′, z〉+ G−1k+1(c1 − c0) · e

)
(mod 1),

for the decomposition error e′ = G−1k+1(c1 − c0) ·Gk+1 − (c1 − c0). The noise

has the variance of µ2 · ε2(1 + kN/2) + (k + 1)dN · VB · VarErr(C), exactly the
same as external product.

Accumulation. The initial RLWE ciphertext has no noise. All bootstrapping
keys Ci,` have the same variance of noise VarErr(Ci,`) = (N/2)ε2 + (1 + N +
dNVB)β2 from the expansion algorithm. We recursively evaluate the mux gate k·
n times and an encrypted secret si,` is sampled uniformly from {0, 1}. Therefore,
the output of accumulator has an error of variance

1

2
kn · ε2(1 + kN/2) + (k + 1)kdnN · VB ·

(
(N/2)ε2 + (1 +N + dNVB)β2

)
. (1)

Multi-Key Switching. Let ct = (b,a1, . . . ,ak) be an input LWE ciphertext
and ct

′
= (b′,a′1, . . . ,a

′
k) be the output of multi-key-switching algorithm. Then,

we have

〈ct′, (1, s)〉 = b+

k∑
i=1

(b′i + 〈a′i, si〉) (mod 1)

= b+

k∑
i=1

N∑
j=1

〈g−1ks (ai,j), ti,j · gks + ei,j〉 (mod 1)

= 〈ct, (1, t)〉+

k∑
i=1

N∑
j=1

(
ti,j · e′i,j + 〈g−1ks (ai,j), ei,j〉

)
(mod 1)
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for the decomposition error e′i,j = 〈g−1ks (ai,j),g〉 − ai,j . As a result, the variance

of a multi-key-switching error eks =
∑k
i=1

∑N
j=1

(
ti,j · e′i,j + 〈g−1ks (ai,j), ei,j〉

)
is

obtained by

Var(eks) = kN

(
1

2
ε2ks + dksVBks

α2

)
. (2)

We note that this term does not include the error of input LWE ciphertext. If
〈ct′, (1, t)〉 = 1

4m + e (mod 1) for a bit m ∈ {0, 1} and an error e ∈ R, then ct′

will be an encryption of the same message m with error e′ = e+ eks.

Multi-Key Switching (modified). Different from the previous algorithm, the
key-switching key of the i-th party consists of LWE encryptions of a · B`ks · ti,j
for 1 ≤ j ≤ N , 0 ≤ ` < dks and a ∈ ZBks

encrypted under the secret si. For an
input LWE ciphertext ct = (b,a1, . . . ,ak), the (modified) multi-key switching
algorithm computes g−1(ai,j) = (ai,j,`)0≤`<dks

for each 1 ≤ i ≤ k and 1 ≤ j ≤
N , and then compute the summation of LWE encryptions of ai,j,` ·B`ks · ti,j for
1 ≤ i ≤ k, 1 ≤ j ≤ N and 0 ≤ ` < dks. Therefore, the output ciphertext ct

′

satisfies that

〈ct′, (1, s)〉 = b+

k∑
i=1

N∑
j=1

dks−1∑
`=0

g−1ks (ai,j)[`] ·B`ks · ti,j + ei,j,ai,j,` (mod 1)

= b+

k∑
i=1

N∑
j=1

(ai,j + e′i,j) · ti,j +

k∑
i=1

N∑
j=1

dks−1∑
`=0

ei,j,ai,j,` (mod 1)

= 〈ct, (1, t)〉+

 k∑
i=1

N∑
j=1

ti,j · e′i,j +

k∑
i=1

N∑
j=1

dks−1∑
`=0

ei,j,ai,j,`

 (mod 1),

for the decomposition error e′i,j = 〈g−1ks (ai,j),g〉−ai,j . As a result, the variance of

a multi-key-switching error eks =
∑k
i=1

∑N
j=1 ti,j ·e′i,j+

∑k
i=1

∑N
j=1

∑dks−1
`=0 ei,j,ai,j,`

is obtained by

Var(eks) = kN

(
1

2
ε2ks + dksα

2

)
, (3)

which is smaller than that of standard key-switching error (2).

Bootstrapping. The bootstrapping noise is simply the sum of the accumulation
and multi-key-switching errors so that it has the variance of (1) + (3).


