
Cryptanalysis of the Multivariate Encryption
Scheme EFLASH

Morten Øygarden1, Patrick Felke2, H̊avard Raddum1, and Carlos Cid1,3

1 Simula UiB
2 University of Applied Sciences Emden-Leer

3 Royal Holloway University of London
{morten.oygarden,haavardr}@simula.no,

patrick.felke@hs-emden-leer.de,
carlos.cid@rhul.ac.uk

Abstract. EFLASH is a multivariate public-key encryption scheme pro-
posed by Cartor and Smith-Tone at SAC 2018. In this paper we investi-
gate the hardness of solving the particular equation systems arising from
EFLASH, and show that the solving degree for these types of systems
is much lower than estimated by the authors. We show that a Gröbner
basis algorithm will produce degree fall polynomials at a low degree for
EFLASH systems. In particular we are able to accurately predict the
number of these polynomials occurring at step degrees 3 and 4 in our
attacks. We performed several experiments using the computer algebra
system MAGMA, which indicate that the solving degree is at most one
higher than the one where degree fall polynomials occur; moreover, our
experiments show that whenever the predicted number of degree fall
polynomials is positive, it is exact. Our conclusion is that EFLASH does
not offer the level of security claimed by the designers. In particular, we
estimate that the EFLASH version with 80-bit security parameters offers
at most 69 bits of security.

1 Introduction

Public-key cryptosystems whose security is based on the hardness of solving
multivariate polynomial systems over finite fields have been studied for several
decades. This problem is believed to be hard to solve even for full–scale quantum
computers, and so multivariate cryptography has received increasing attention
the past years as post–quantum cryptography has become ever more important.
A noteworthy initiative in this area is the ongoing post–quantum standardization
process by the National Institute of Standards and Technology (NIST).

One of the earliest and most notable examples of multivariate cryptosystems
is the encryption scheme C∗ proposed by Matsumoto and Imai in 1988 [22]. Their
idea was to let the public polynomial system defined over a small base field have
a secret, but simple description over a larger extension field, where decryption
can be done efficiently. While C∗ was broken by Patarin in 1995 [23], several
schemes were later proposed based on the same underlying idea; these are often

referred to as big field schemes. One generalisation is to make the central map
over the extension field more complex. Examples include HFE and its variants
[24], as well as k–ary C∗ [18]. Another idea is to keep the simple description
over the extension field, but alter the resulting public key with modifiers that
enhance the security against known attacks, as for example done in SFLASH [25]
and PFLASH [7].

While there are presently several multivariate signature schemes that have
resisted years of cryptanalysis, designing multivariate encryption schemes seems
to be much more challenging. Examples of multivariate encryption schemes that
have been successfully cryptanalysed include not only the original C∗ [22][23],
but also HFE [24][3], ABC [28][21], ZFHE [27][5] and SRP [29][26]. This obser-
vation is further echoed by the fact that all four multivariate cryptosystems that
have made it to the second round of the NIST standardization process are signa-
ture schemes. EFLASH [6], proposed by Cartor and Smith-Tone at SAC 2018,
is yet another attempt to design a secure and efficient multivariate encryption
scheme. At its core, EFLASH is a modified C∗ scheme with a new decryption
strategy to maintain effectiveness.

1.1 Our Contribution

We present a direct algebraic cryptanalysis of EFLASH, based on the notion
of first fall degree. We do so by developing a method to estimate this degree
for the equation systems arising from EFLASH – an original approach which
is different from the rank–based analysis that has been used against somewhat
similar HFE variants. We are not only able to predict the first fall degree itself,
but also the exact number of first fall polynomials occurring at step degrees 3
and 4. Our analysis indicates that EFLASH does not offer the level of security
claimed by the designers; in particular, we are able to successfully cryptanalyse
the EFLASH version with 80-bit security parameters. Ultimately, we hope that
our approach can lead to a deeper understanding of the impact similar modifiers
have on big field schemes.

1.2 Organisation

The paper is organised as follows. In Section 2 we go through the required prelim-
inaries for our analysis. This includes a description of EFLASH, a brief discussion
on the complexity of Gröbner basis algorithms, along with the notions of first
fall and solving degrees, as well as some results on univariate and multivariate
representation of polynomials. In Section 3 we present and discuss the previously
suggested bound on the first fall degree of EFLASH. In Section 4 we develop
the theory behind our new approach for estimating this degree for EFLASH,
and put it to the test by experiments in Section 5. We discuss the implications
that our analysis and experiments have on the security of EFLASH in Section
6. Potential follow-up work is discussed in Section 7, with our conclusions in
Section 8.

2 Preliminaries

2.1 Description of EFLASH

EFLASH is a public-key encryption scheme proposed at SAC 2018 [6]. The
system is built around the C∗ encryption scheme by Matsumoto and Imai [22],
using both the minus-modifier that removes some polynomials from the public
key, and the embedding of the plaintext space Fnq into a larger space Fdq . The
signature scheme PFLASH [10, 7] is built in the same way, and EFLASH can be
seen as the encryption variant of PFLASH.

The C∗ scheme has operations taking place in Fdq and Fqd . The encryption
for C∗ can be explained as follows: the plaintext and ciphertext spaces are both
Fdq . Let S and T be two invertible d× d-matrices over Fq, defining linear trans-

formations of Fdq . Fix an isomorphism between Fdq and Fqd , denoted by φ, where

φ : Fdq −→ Fqd . Finally, we have the central mapping X 7→ X1+qΘ over Fqd .
These mappings are combined together into P ′ as follows

P ′ = T ◦ φ−1 ◦X1+qΘ ◦ φ ◦ S. (1)

Since the exponent of X has q-weight 2 and all other operations are linear, P ′

can be expressed as d quadratic polynomials in d variables over Fq. The secret
key of the C∗ scheme are the two matrices S, T , and the public key consists of
the polynomials P ′. Encryption of a plaintext x into the ciphertext y is done by
computing y = P ′(x). Decryption by someone knowing S and T can be done
efficiently by inverting all operations in (1).

In [23] the basic C∗ scheme was broken, by finding bilinear polynomials
fi(x, y) = 0 that relate the plaintext x with the ciphertext y. Computing the
polynomials fi’s turns out to be easy, more so when knowing S and T . In fact,
the most efficient decryption is actually done by inserting the values of y in the
fi’s, and solving the resulting linear system of equations to recover the plaintext.

EFLASH expands the C∗ scheme by adding an embedding π at the beginning
and a projection τ in the end. More specifically, for n < m < d, the operations
π and τ are defined as

π : Fnq −→ Fdq
(x1, . . . , xn) 7−→ (x1, . . . , xn, 0, . . . , 0)

and
τ : Fdq −→ Fmq

(y1, . . . , yd) 7−→ (y1, . . . , ym)

The plaintext space of EFLASH is then Fnq and the ciphertext space is Fmq .
The mappings π and τ are added as wrappers around the C∗ scheme, so the
complete EFLASH mapping P becomes

P = τ ◦ P ′ ◦ π.

The complete diagram of mappings is shown in Figure 1.

Fn
q

π

Fd
q

S
Fd
q

φ

Fqd
X1+qΘ

Fqd

φ−1

Fd
q

T
Fd
q

τ

Fm
q

Fig. 1: Diagram of EFLASH mappings.

The extra mappings π and τ just add and remove some coordinates, so P
can still be expressed as m quadratic polynomials over Fq in n variables. The
size of the projection τ is an important parameter, so for convenience we define
a = d−m to be the number of polynomials removed from P ′. The public key of
EFLASH consists of the m polynomials in P , and the secret key is still the two
matrices S, T (we assume the exponent Θ is publicly known).

Encryption in EFLASH is done the same way as for C∗: the plaintext x is
transformed into ciphertext y by computing y = P (x). On the other hand de-
cryption is not as completely straightforward as for C∗. For a given ciphertext
y = (y1, . . . , ym), the decryptor will exhaustively try all possible values for the
missing coordinates ym+1, . . . , yd, and decrypt every choice using the bilinear
polynomials fi(x, y) from the C∗ scheme. This results in up to qa possible plain-
texts embedded in Fdq , and the one whose last d − n coordinates are all zero
is chosen as the correct one. As n < m we can expect there will be only one
possible plaintext fulfilling the restriction given by π. In [6] the authors analyse
the probability of there being two or more possible plaintexts matching a given
ciphertext, which would lead to a decryption failure. For the suggested choices
of n,m, d the probability is approximately 2−17, which is still non-negligible.

Table 1 shows the parameters suggested in [6] for 80- and 128-bit security
levels against an attacker with either a classical or quantum computer available.

In the remainder of the paper we will fix q = 2. Although most of the theory
presented in later sections can be generalised to other fields, this is what is often
used in practice and in particular what is suggested in EFLASH (Table 1).

Table 1: Suggested parameters (q, n,m, d) for EFLASH.

80-bit security 128-bit security

classical adversary (2, 80, 96, 101) (2, 134, 150, 159)

quantum adversary (2, 160, 176, 181) (2, 256, 272, 279)

2.2 Gröbner Basis Algorithms

As is the case for all multivariate encryption schemes, the plaintext (a1, ..., an)
associated to the ciphertext (y1, ..., ym) can be found through direct attacks,
that is, by solving the polynomial system

p1(x1, ..., xn) + y1 = ... = pm(x1, ..., xn) + ym = 0,

where pi(x1, ..., xn), 1 ≤ i ≤ m, are the quadratic polynomials that make up
the public key P . The usual strategy for solving such a system is to compute
a Gröbner basis (see [8] for further details) for the ideal 〈pi + yi〉1≤i≤m in the
grevlex monomial order, using a state–of–the–art algorithm such as F4 [14] or
F5 [15]. Since we implicitly include the field equations, the system generates a
radical ideal. The solution of this system can by design be assumed to be unique
and thus we are able to solve it directly from the Gröbner basis, which is by the
above remark x1 + a1, . . . , xn + an for any term ordering.

In our setting the F4 algorithm will proceed step–wise, and to each step there
is an associated step degree D, which is the maximal degree of the polynomials
involved in this step. The complexity of each step is dominated by reduction of
a Macaulay matrix associated with these polynomials. If we define the solving
degree, Dsolv, to be the step degree associated with the largest such matrix (this
notation was introduced in [13]), then the complexity of the algorithm (in the
Boolean case) can be estimated by:

ComplexityGB = O
((Dsolv∑

i=0

(
n

i

))ω)
, (2)

where n is the number of variables and 2 ≤ ω ≤ 3 is the linear algebra constant.
This makes Dsolv crucial for estimating the complexity of a direct attack, but
in general this value is difficult to determine. It is also worth noting that Dsolv

is not necessarily the highest degree encountered in the algorithm; indeed [13]
shows examples of this for HFE–systems, while we will also see examples where
this is the case for EFLASH in Section 5.

An important class of polynomial systems where Dsolv can be determined is
the class of semi–regular sequences [2]. In this case Dsolv will coincide with the
degree of regularity Dreg, which for quadratic polynomial systems over F2 can
be calculated as the degree of the first non–positive term in the series [1]:

Tm,n(z) =
(1 + z)n

(1 + z2)m
. (3)

From experiments it seems to be the case that randomly generated polynomial
systems will behave as semi–regular sequences [2], and the degree of regularity is
in many instances sensible to use for complexity estimation. However, it is well
known that polynomial systems associated with big field multivariate cryptogra-
phy tend to have a lower solving degree than what is predicted by the degree of
regularity; see for example [16]. For these schemes the notion of first fall degree
(Definition 1), which in general provides a lower bound for the solving degree,
has been often used to estimate the complexity of solving such systems [11, 12].
The authors of EFLASH have also chosen this path, and in [6] a bound for the
first fall degree was derived and used to estimate the resistance of this scheme
against algebraic attacks. We will later argue that this derived bound for the first
fall degree is not tight, but the idea of using this invariant as an approximation
for the solving degree seems justified for EFLASH. Indeed, in all our experiments
we find the solving degree to be either the same or one greater than the first fall
degree (see Section 5). We end this subsection by recalling the definition of first
fall degree.

Consider the graded quotient ring B = F2[x1, ..., xn]/〈x21, ..., x2n〉, where Bν ⊂
B is the set of homogeneous polynomials of degree ν in B. Let ph1 , ..., p

h
m ∈ B2

be the homogeneous quadratic part of the polynomials in the public-key P ,
and pli, 1 ≤ i ≤ m be the corresponding linear, or lower-degree, terms, so that
pi = phi + pli. We can then define the map

ψν−2 : Bmν−2 −→ Bν
(f1, ..., fm) 7−→

∑m
i=1 fip

h
i

Any element of ker(ψν−2) is called a syzygy. Now let ν = 4. Then particu-
lar syzygies are the Kozul syzygies, generated by (0, ..., 0, phj , 0, ..., 0, p

h
i , 0, ..., 0)

where phj is in position i and phi is in position j, and the field syzygies generated

by (0, ..., 0, phi , 0, ..., 0) (phi in position i). These syzygies will boil down to the
relations phj p

h
i + phi p

h
j = 0 and (phi)2 = 0. Since they are always present, and not

depending on the polynomials phi themselves, these syzygies generate the trivial
syzygies, T (ψν−2) ⊆ ker(ψν−2).

Definition 1. The first fall degree associated with the quadratic polynomial sys-
tem p1, ..., pm is the natural number

Dff = min{ d ≥ 2 | ker(ψd−2)/T (ψd−2) 6= 0 }.

Remark 1. The elements (0, ..., 0, phj , 0, ..., 0, p
h
i , 0, ..., 0) and (0, ..., 0, phi , 0, ..., 0)

will, strictly speaking, not be syzygies themselves when solving for p1, ..., pm in
F2[x1, ..., xn]. For example, phj pi+p

h
i pj 6= 0 will in general be of degree 3. We still

call these degree falls trivial, as they do not give any new or useful information
in an actual attack. This fact can be seen as follows.

When trying to solve a system by multiplying equations with all monomials
up to some degree, the multiplications are done by increasing degrees. That is,
all monomials of degree ≤ D− 1 are used before multiplying with monomials of

degree D. The Kozul syzygies will give the degree fall polynomial

phj pi + phi pj = phj (phi + pli) + phi (phj + plj) = phj p
l
i + phi p

l
j .

However, the very same polynomial can be expressed using only multiplication
with the lower-degree monomials in plj and pli:

plipj + pljpi = pli(p
h
j + plj) + plj(p

h
i + pli) = plip

h
j + pljp

h
i .

Hence the degree fall generated by phi and phj does not give us anything new
when we already have multiplied with all lower-degree terms. Moreover it is a
priori clear that these polynomials reduce to zero modulo pj , pi and therefore
give no new information when computing a Gröbner basis, except slowing the
computation down.

The same holds for the field syzygies, where it is easy to see that the poly-
nomial pipi = pi can be ”generated” by the (lower-degree) constant 1 as 1 · pi.

2.3 Univariate and Multivariate Representation of Polynomials

Our analysis will rely heavily on the easy description the central map of EFLASH
has as univariate polynomial over the extension field. The idea of exploiting this
simple description in cryptanalysis was also used in the Kipnis–Shamir attack
on HFE in [20], and we refer to their work for further details on the following
result. We will write w(t) to denote the binary weight of an integer t. Recall that
this is defined as

∑
zi, where t =

∑
zi2

i is the 2–adic representation of t.

Theorem 1. Let P (X) ∈ F2d [X]/〈X2d + X〉 and fix an isomorphism φ be-
tween F2d and (F2)d. With this isomorphism, P (X) admits d unique polynomi-
als p1, ..., pd ∈ F2[x1, ..., xd]/〈x21 +x1, ..., x

2
d+xd〉. Furthermore, the degree of the

polynomials p1, ..., pd is given by max{w(t) | Xt ∈MP }, where MP is the set of
monomials in P (X) with non-zero coefficients.

Based on this result we will define the 2–weight associated with a polynomial

P (X) ∈ F2d [X]/〈X2d +X〉 to be w(P) =max{w(t) | Xt ∈MP }. There are two
particular actions over the extension field, and their corresponding actions over
the base field, that are worth pointing out. First, we note that raising P (X)

to a power of 2, i.e. (P (X))2
i

, will correspond to applying an invertible linear
transformation on the associated multivariate polynomials p1, ..., pd.

The second action is that the multivariate polynomials associated with the
product H(X)P (X) will be d sums of the form

∑
hjpi, where hi is a multivariate

polynomial of maximum degree equal to w(H). These actions (on the multivari-
ate polynomials) are exactly the ones performed by Gröbner basis algorithms.
Linear maps do not affect the degree of the polynomials, so if T ◦φ−1◦P (X)◦φ◦S
is the central map of an unmodified big field scheme (e.g. original C∗ or HFE),
then the degree fall polynomials encountered when computing a Gröbner basis

can be described by the two aforementioned actions on the univariate polynomial
P (X). More specifically, we will call any combination

F (X) =
∑
i,j

[Ci,jHi(X)P (X)]2
j

∈ F2d [X]/〈X2d +X〉,

where

w(F) < w(P) + max{w(Hi)},

a 2–weight fall polynomial. This will in turn admit d multivariate degree fall
polynomials.

We note that in the Faugère–Joux attack on HFE [16] these 2–weight fall
polynomials are the reason for the effectiveness of algebraic attacks on this cryp-
tosystem. Likewise, in [18] specific q–weight fall polynomials (i.e. the natural
generalisation to other fields of size q) were constructed in order to show the
first fall degree of k–ary C∗, another generalisation of C∗. Things get more com-
plicated as modifiers are added to the public key, particularly in the case for the
minus modifier. However we will describe how to deal with this in Section 4.

3 Suggested First Fall Degree Bound

In this section we discuss an upper bound for the first fall degree that was sug-
gested for EFLASH in [6]4. Since EFLASH can be seen as a special case of HFE-,
the bound is derived following a similar line of reasoning as was used for this
latter scheme in [12]. The idea is to first examine how the minus modifier affects
the Q–rank of the quadratic form associated with the central map, and then
apply this to the upper bound derived in Theorem 4.1 of [11]. The arguments
made in Section 5.1 of [6] is that the minus modifier is even more effective at
increasing the Q–rank when applied to EFLASH than it is for HFE-, due to the
extreme sparseness of the central map of the former. This led to the following
upper bound for EFLASH [6]:

Dff,EFLASH ≤ a+ 3. (4)

However we argue that focusing on Q–rank alone does not reveal the entire
picture when the (unmodified) central map is as simple as it is in EFLASH. To
this end we introduce the following notation, which will also be important for
our own estimates of first fall degree:

Definition 2. Consider the quotient ring F2d [X]/〈X2d + X〉, and an instance
of C∗. Let y ∈ Fd2 represent a given ciphertext, and V = φ ◦ T−1(y). We then
define

Q = X1+2Θ + V (5)

4 The authors call this the degree of regularity, but are in fact describing the first fall
degree.

to represent the central map associated to C∗ over F2d [X]/〈X2d +X〉. We also
define the following 2–weight fall equations:

α = X2d−ΘQ+X2ΘQ2d−Θ = X2d−ΘV +X2ΘV 2d−Θ , (6)

β1 = XQ = X2+2Θ +XV and (7)

β2 = X2ΘQ = X1+2Θ+1

+X2ΘV. (8)

Since we are not removing any polynomials (i.e. a = 0), Equation (4) predicts
that the polynomial Q defined above has first fall degree 3 (this is also pointed
out in Example 4.3 in [11]). Here Q is treated as any polynomial with Q–rank
2, and following the proof of Theorem 4.1 in [11], we find that the predicted
first fall degree is due to the existence of the univariate polynomials β1 and
β2, which would correspond to quadratic multivariate polynomials. However, in
the definition above there is also a third 2–weight fall polynomial, α, which will
correspond to linear multivariate polynomials (these are the same that Patarin
found in his original attack on C∗ [23]). Thus there seems to be more information
in the system than what is captured by methods based on the Q–rank alone. It is
indeed the case that removing public polynomials makes it more difficult for an
attacker, but we will see in the next section that there may still be combinations
of multivariate degree fall polynomials, generated by the relations α, β1 and β2
present in the polynomial system. Again, methods based on the Q–rank alone
do not seem to fully capture this.

Another notable difference between EFLASH and HFE- is the large dimen-
sion of the embedding (n < d) present in the former. We will see that this
modifier also plays a role in determining the number of degree fall polynomials
in a system. While it does not have the same impact as the minus modifier, there
are parameters for which this affects the first fall degree of a system; see Section
5 for examples.

4 The First Fall Degree of EFLASH

This section starts off with a brief discussion on the impact the choice of Θ may
have on the security of EFLASH. The condition that gcd(2d − 1, 2Θ + 1) = 1 is

needed for the map X1+2Θ to be a bijection, and has been a requirement for this
family of cryptosystems ever since the original paper of Matsumoto and Imai
[22]. While not explicitly stated in [6], it seems reasonable to assume that this is
also the case for EFLASH. We will later see that the total number of degree fall
polynomials in the original C∗–scheme will have a big impact on the complexity
of algebraic attacks towards EFLASH.

The question of how different choices of Θ affect the number of degree fall
polynomials has partly been studied in [9]. In that work the authors consider
the effect Θ has on the number of linearisation equations, which can be seen
as a special subset of degree fall polynomials of degree 1. Examples of special
values for Θ from this work are Θ = d/3 and Θ = 2d/3. In these cases it is

shown that there are only 2d/3 linearisation equations, and so it is unlikely that
these choices for Θ can be used in an efficient instantiation of EFLASH (as d
linear equations are used for decryption). On the other hand, there are also cases
found in [9] that renders more than d linear equations, which could benefit an
attacker. What would amount to special cases in our analysis will ultimately go
beyond linear equations: for D = 3, degree falls polynomials will also include
quadratic polynomials, and cubic polynomials when D = 4. It is beyond the
scope of this paper to identify every such special case. Therefore for the rest
of this paper, unless otherwise stated, all equations and formulas are assumed
to hold for general choices of Θ. General is here used in a non–technical sense
by which we mean that we expect the result in question to hold for all values
Θ = 0, 1, . . . , d− 1, save for a few exceptions.

4.1 The Effect of Removing Polynomials

We wish to obtain a representation of the central map of EFLASH that in
some sense not only preserves the easy description given over the univariate
polynomial ring, but also keeps track of what is lost due to the minus modifier,
τ . Consider the cryptosystem in a state before τ has been applied (but after
the linear transformation T , see Figure 1). Finding a plaintext associated with
a fixed ciphertext would amount to solving the system of quadratic polynomials
pi(x1, ..., xn) = 0, for 1 ≤ i ≤ d (for ease of notation we are assuming the fixed
ciphertext to be part of the pi–polynomials). Let

q1
q2
...
qd

 = T−1

p1
p2
...
pd

 , (9)

in other words, each qi is a linear combination of the polynomials p1, ..., pd.
Even though the polynomials pj are depending on the x–variables, we will at

an intermediate step want to consider them as formal variables. In an effort to
keep the notation precise, we will write p̂1, ..., p̂a to denote the polynomials as
formal variables that will be removed by τ . On the other hand, p̄a+1, ..., p̄d will
denote the formal variables associated with the polynomials unaffected by τ (i.e.
the public polynomials). We will also write q∗i to denote the linear combinations
defined in Equation (9), but now depending on the formal variables p̂j and p̄k.

In the previous section we have considered sums of the form
∑
X2i1+...+2ikQ2j

in the univariate polynomial ring F2d [X]/〈X2d + X〉. We will now inspect the
same sums, but treat Q as a formal variable in the bivariate polynomial ring

AXQ := F2d [X,Q]/〈X2d + X,Q2d + Q〉. We will furthermore write Q as Q =
(q∗1 + q∗2γ + ... + q∗dγ

d−1), where γ is a primitive element associated with the
isomorphism φ. We then consider the following composition of maps:

AXQ (F2[x1, ..., xn, p̂1, ..., p̂a, p̄a+1, ..., p̄d])
d (F2[x1, ..., xn])d

φ−1 evP,a

where evP,a acts entry–wise in the d–vector space by ”evaluating” the formal
variables p̂ to 0, and regarding p̄ as polynomials in x–variables. To be more
precise, evP,a : (z1, ..., zd) 7→ (ev∗P,a(z1), ..., ev∗P,a(zd)), where:

ev∗P,a : F2[x1, ..., xn, p̂1, ..., p̄d] −→ F2[x1, ..., xn]

xi 7−→ xi for 1 ≤ i ≤ n
p̂j 7−→ 0 for 1 ≤ j ≤ a
p̄k 7−→ pk(x1, ..., xn) for a+ 1 ≤ k ≤ d.

It is straightforward to check that if t is an integer with 2–weight D − 2, then
evP,a ◦ φ−1(XtQ) will result in d polynomials of degree at most D, which are
generated by the public polynomials pa+1, ..., pd. We will use this new notation
to show the following lemma, which will be key in our ensuing analysis. An
interpretation is that the minus modifier τ only obscures the degree fall poly-
nomials by adding polynomials generated from a small set, namely the removed
polynomials p1, ..., pa.

Lemma 1. Let evP,0◦φ−1(
∑
Xk1Qk2) give d polynomials over F2[x1, ..., xn] that

are degree fall polynomials of degree < D = w(k1) + 2w(k2). Then, for a > 0
the degree D–parts of the d polynomials evP,a ◦ φ−1(

∑
Xk1Qk2) are generated

by p1, ..., pa.

Proof. Let g be any of the d polynomials in F2[x1, ..., xn, p̂1, ..., p̄d], that are in
the image of φ−1(

∑
Xk1Qk2). Fix polynomials h1, h2, ..., ha+1 such that we can

write g on the triangular form:

g = h1(x1, ..., xn, p̂2, ..., p̂a, p̄a+1, ..., p̄d)p̂1

+ h2(x1, ..., xn, p̂3, ..., p̂a, p̄a+1, ..., p̄d)p̂2

...

+ ha(x1, ..., xn, p̄a+1, ..., p̄d)p̂a

+ ha+1(x1, ..., xn, p̄a+1, ..., p̄d)

Recall that when a > 0 then ev∗P,a(p̂j) = 0 for 1 ≤ j ≤ a. Since we are working
over a field of characteristic 2, we can equivalently think of this as addition with
all terms containing the p̂j–variables and then evaluating everything using ev∗P,0.
Note that all p̂i change to p̄i when evaluated with ev∗P,0 instead of ev∗P,a. This
can then be written out as follows:

ev∗P,a(g) = ev∗P,0(g +
∑

1≤i≤a

hip̄i)

= ev∗P,0(g) + ev∗P,0(
∑

1≤i≤a

hip̄i)

= ev∗P,0(g) +
∑

1≤i≤a

hipi.

By assumption ev∗P,0(g) has degree < D so any term of degree D must come
from

∑
1≤i≤a hipi, which proves the statement.

One observation that can be drawn from this lemma is that if the number of
degree fall polynomials that would be generated by a similar polynomial system
with a = 0 exceed the number of highest degree combinations generated by the
removed polynomials (i.e. the possible combinations of xi1 ...xiD−2

p̂j), then there
will be linear combinations of the degree fall polynomials that can be written
without the use of p̂j–elements. These can in turn be found by an attacker
through the use of Gröbner basis algorithms. This is the intuition that will be
further explored in the following subsections, but first we illustrate the point for
the bilinear equations in the following example:

Example 1. Consider an EFLASH instance with a = 1. Recall from Equa-

tion (6) in Definition 2 that the bilinear relations come from α = X2d−ΘQ +

X2ΘQ2d−Θ . By Lemma 1 we can write evP,1 ◦ φ−1(α) as d polynomials in the
ring F2[x1, ..., xn], whose degree 3–part are linear combinations of xip̂1 for 1 ≤
i ≤ n. This means that the homogeneous degree 3–part has at most dimension n,
whereas the image of evP,1 ◦φ−1(α) has dimension d (under the assumption that
the resulting d polynomials are linearly independent). Since d > n for EFLASH,
this means that there will be d− n different independent linear combinations of
these polynomials that can be written without using p̂1. As a result a Gröbner
basis algorithm will find d− n linear relations at D = 3.

It is worth pointing out that the embedding modifier π, while needed to
protect against differential attacks and more sophisticated attacks, as e.g. in
[4], actually weakens the effect of the minus modifier τ . Indeed, had there been
no embedding, i.e. d = n, we would not expect to find any linear relations at
D = 3 in the example above. Thus in this special case we see there is a trade-off
between π and τ . Without the embedding one would have to deal with the above
mentioned attacks while the classic attack by Patarin would be prevented. On the
other hand, by applying the embedding you would get back parts of the linear
relations from Patarin’s classical attacks while preventing the above attacks.
This shows that more research is required to better understand how to securely
combine the two kinds of modifiers.

In the next two subsections we will focus on how things evolve when in-
creasing the step degree D. We start by generalising Example 1 to include more
degree falls at D = 3.

4.2 First Fall Polynomials at D = 3

In Definition 2 we saw that with a = 0, we will in addition to the linear poly-
nomials given by α (Equation (6)) also have two more quadratic degree falls
given by β1 and β2 (Equations (7) and (8)). The 3d multivariate polynomials
associated to these will in general account for all the degree fall polynomials
that show up at step degree D = 3. Lemma 1 implies that when a > 0 these

polynomials will generally be of degree 3, where the degree 3–part is further
generated by the polynomials xipj , for 1 ≤ i ≤ n and 1 ≤ j ≤ a. Hence there
are 3d resulting polynomials where the top degree is generated by na elements,
and so an estimate of the number of degree fall polynomials at D = 3 can be
found by merely subtracting the two. To be more precise, recall from Section
2.2 that ker(ψD−2)/T (ψD−2) denotes the vector space of non–trivial degree fall
polynomials at degree D. We write {#Pdf}D = dim

(
ker(ψD−2)/T (ψD−2)

)
for

its dimension, and derive the following estimate for {#Pdf}3:

N3(n, d, a) = 3d− na. (10)

When N3 is negative, we do not expect to find any degree fall polynomials. In
this case we take max{N3, 0} as the estimate for {#Pdf}3. The accuracy of this
estimate will be tested in Section 5

4.3 First Fall Polynomials at D = 4

The analysis gets more complicated at step degree 4, mainly due to the syzygies
appearing in the polynomial system at this degree. More specifically we wish to
find out what polynomials in AXQ that will correspond to multivariate degree
falls that are considered trivial, in the sense of Remark 1, by Gröbner basis
algorithms. The following lemma classifies these polynomials.

Lemma 2. The polynomials associated with

evP,a ◦ φ−1
[
(X1+2Θ)2

k1
Q2k2

]
, for 0 ≤ k1, k2 ≤ d− 1.

can be written on the form:∑
1≤i≤d

a+1≤j1≤d
i 6=j1

bi,j1pipj1 +
∑

a+1≤j2≤d

cj2pj2 , for bi,j1 , cj2 ∈ F2. (11)

Proof. We prove the statement for the case k2 = 0 (other values of k2 can be
written as a power of 2 of this case). For the ciphertext (y1, ..., yd), write:

y′1
y′2
...
y′d

 = T−1

y1
y2
...
yd

 .
Recall that we included the ciphertext in the definition of the pi–polynomials,

so this must be accounted for when considering X1+2Θ (which will contain no
constant terms). We then have:

(X1+2Θ)2
k1
Q =

[d∑
i=1

(qi + y′i)γ
(i−1)2k1

]
·
[d∑
j=1

q∗j γ
j−1
]
,

and so if g is any of the d polynomials in φ−1
(
(X1+2Θ)2

k1
Q
)
, we can write:

g = q∗1

[d∑
i=1

g1i(qi + y′i)

]
+ ...+ q∗d

[d∑
i=1

gdi(qi + y′i)

]
for some gji ∈ F2. Recall that the qi’s are linear combinations of p1, ...pd (written
out in F2[x1, ..., xn]) and will be unaffected by ev∗p,a. The q∗i ’s are linear com-
binations of the formal variables p̂1, ..., p̄d. Since the evaluation map sends all
the variables p̂1, ...p̂a to zero, the statement (11) in the lemma now follows from
ev∗p,a(g).

We note that a system of quadratic polynomials p1, ..., pd with the property that
a sum of the form

∑
i 6=j bi,jpipj , with bi,j ∈ F2, results in a non–trivial degree fall

(i.e. one not generated by Kozul Syzygies) would be a very degenerate system,
not suitable for multivariate cryptography. We may assume therefore that a
polynomial system associated with C∗ is very unlikely to have this property.
Thus, under the assumption that no such non–trivial relation exists, Lemma
2 implies that any degree fall polynomial that originates from a sum of the

form
∑
k1,k2

ck1,k2(X1+2Θ)2
k1
Q2k2 is simply a linear combination of the public

polynomials pa+1, ..., pd. As this gives no new information to an attacker, it
should be regarded as trivial (similar to what was discussed in Remark 1).

We may now return to the question of what degree fall combinations that
should be counted. The polynomials α, β1 and β2 discussed earlier, when multi-
plied with X2i will also generate degree fall polynomials for D = 4. Indeed, our
experiments suggest that all of degree fall polynomials at this step degree are
generated by these elements.

At first glance there will be 3dn multivariate polynomials associated with
the elements X2iα, X2iβ1 and X2iβ2 for 1 ≤ i ≤ d. Note that here we are using
the fact that the variable X may be written using linear combinations of the

n variables x1, ..., xn. Hence, multiplying by all X,X2, ..., X2d−1

will effectively
only give n different combinations, as opposed to d. However, not all of these
should be counted, for various reasons. We list the exceptions below:

– Xβ1 = X2Q and X2Θβ2 = X2Θ+1

Q are both elements belonging to D = 3.

– X2Θβ1 = X1+2ΘQ = Xβ2, will be cases of the trivial degree falls discussed

in Lemma 2. The same is true for X2d−Θβ1 = (X1+2Θ)2
d−Θ

Q and X22Θβ2 =

(X1+2Θ)2
Θ

Q. Lastly, the following is a sum of two trivial degree falls: Xα =

(X1+2Θ)2
d−Θ

Q+X1+2ΘQ2d−Θ .

– From X2d−Θα = X2d−Θ+1

Q+X2d−Θ+2ΘQ2d−Θ = X2d−Θ+1

Q+
(
X22Θβ1

)2d−Θ
we see that X2d−Θα can be written out as a polynomial generated by β1,
and one regular polynomial of degree 3. For this reason, the degree fall

polynomials generated by either X2d−Θα or X22Θβ1 do not bring anything
new to the system once the other has been created, and so only one should

be counted. The same is true for X2Θα = X2d−Θβ2 +X2Θ+1

Q2d−Θ .

There are two, five and two relations from the first to last bullet point,
respectively, which do not count towards generating new degree fall polynomials
made from X2iα,X2iβ1 and X2iβ2. Summing these up we find that the adjusted
number of degree fall polynomials at a = 0 should be (3n− 9)d.

At first it may seem that the degree 4 part will be generated by a
(
n
2

)
elements,

namely all combinations xixj p̂k, but this does not take into account the trivial
syzygies arising from the fact that the p̂k’s are ultimately polynomials in the xi–
variables. Thus one should retract all combinations of trivial syzygies involving
the p̂k–elements, namely the field syzygies; p̂2k+ p̂k = 0 and Kozul syzygies of the
types p̂ip̂k+p̂kp̂i = 0, for i, k ∈ {1, . . . , a}, and p̂kp̄j+p̄j p̂k = 0, for k ∈ {1, . . . , a}
and j ∈ {a+1, . . . , d}. There are a such field equations,

(
a
2

)
of the Kozul syzygies

of the first type and a(d − a) Kozul syzygies of the second type. This sums up
to

a+

(
a

2

)
+ a(d− a) = ad+

a− a2

2
,

which should be subtracted from a
(
n
2

)
to give the precise number of degree

fall polynomials lost due to τ . Similar to the case D = 3, we can now add
together everything discussed so far to obtain an estimate of the number of
linearly independent degree fall polynomials at D = 4:

N4(n, d, a) = (3n− 9)d− a
(
n

2

)
+ ad+

a− a2

2
. (12)

Again, N4 may become negative, so we take max{N4, 0} to be our estimate
for {#Pdf}4.

5 Experimental Results

We now present experimental results to test the validity of the formulas from the
previous section predicting the number of first fall polynomials. In the first set
of experiments (Table 2) we vary the choices of parameters d, n, a and Θ. The
numbers N3 and N4 have been calculated according to equations (10) and (12),
and the predicted first fall degree is the first degree where we expect a positive
value. We then give the first fall degree and the number of first fall polynomials
obtained at this step from the Gröbner basis routine in the MAGMA computer
algebra system. In all our experiments the degree of the first fall polynomials were
maximal, i.e. one less than the first fall degree. The solving degree is measured as
the degree associated with the step having the largest matrix in the algorithm.
In Section 5.1 of [6] the authors note that smaller EFLASH–systems could be
solved at degree equal to or one lower than for random systems of the same
parameters (Dreg in our notation). As the systems (and hence also Dreg) grow
in size, it was suggested to use the bound in Equation (4), namely a + 3. We
have included both Dreg and this bound in the last two columns of the table
for comparison. One can notice that these values do not seem to be an adequate
measure of the solving degree in our experiments.

Table 2: Experimental Results for EFLASH with varying parameters.

d n a θ N3/N4 Dff Dff {#Pdf}Dff Dsolv a+ 3 Dreg

(predicted) (Magma) (Magma)

51 49 5 13 -92/1403 4 4 1403 4 8 9

51 49 3 13 6/3660 3 3 6 4 6 9

53 39 7 13 -114/887 4 4 887 5 10 7

56 40 9 8 -192/-336 ≥ 5 4 20 5 12 7

56 40 4 8 8/3314 3 3 8 4 7 7

60 50 4 8 -20/3794 4 4 3794 4 7 8

63 50 3 7 39/5394 3 3 39 4∗ 6 8

63 50 3 5 39/5394 3 3 39 4∗ 6 8

∗ The highest degree reached in MAGMA was 5, but this step occurred after 50 linear
relations were found, and consequently had little impact on the running time.

Note that the first two entries satisfy the condition n > d−a = m. This is to
emphasise that the validity of our theory is not only restricted to EFLASH (e.g.
the parameters in the PFLASH signature scheme are taken to be n > d − a).
There are several observations from Table 2 that we would like to point out.
The first is that when at least one of the predictions N3 and N4 is positive,
then our theory accurately predicts both the first fall degree and the number
of polynomials obtained. An odd case in this regard happens in the fourth row,
where we do not expect any degree fall polynomials at D = 4, but the GB
algorithm is still able to find a small number of them. Secondly, we note that
the recorded first fall degree and solving degrees are either the same or one
apart in all the experiments. It is possible that this relation may be understood
through the number of first fall polynomials. For example, a low {#Pdf}Dff
could imply Dsolv = Dff + 1, whereas a large {#Pdf}Dff implies Dsolv = Dff ,
but any further exploration into this is beyond the scope of this paper.

The third point we wish to elaborate on from Table 2 is that the last two
experiments differs only in Θ = 7 and 5. Here 7 is a divisor of d = 63, while 5 is
not. We obtain the same number of degree fall polynomials, indicating that for
direct methods it does not seem to make a difference whether Θ divides d, as
opposed to other attacks (see e.g. [17]).

In the next set of experiments we have fixed the value of the parameters
d = 56, n = 40 and Θ = 8, while only varying the number a of removed public
polynomials. Note that when a = 9 this is the same case as presented in row 2
of Table 2. In these experiments we only present N4 from equation (12) and the
first fall degree and number of first fall polynomials measured by MAGMA.

For 6 ≤ a ≤ 8 in Table 3 we find a positive value for N4 and in these cases
the theory exactly matches the experimental results. For 9 ≤ a ≤ 11 the theory
predicts no degree fall polynomials at D = 4, but MAGMA is still able to find a
small number of degree fall polynomials here. We see that this number decreases
by 9 as a is increased. When a = 12 public polynomials have been removed, no
degree fall polynomials are detected at D = 4, but a substantial amount is found
at D = 5.

Table 3: Effects of increasing a for d = 56, n = 40, Θ = 8. The entry marked with ∗

has been measured at D = 5.

a Measured Dff N4 {#Pdf}Dff
6 4 1857 1857

7 4 1127 1127

8 4 396 396

9 4 −336 20

10 4 −1069 11

11 4 −1803 2

12 5 −2538 8552∗

This type of behaviour observed for 9 ≤ a ≤ 11, with a small set of degree
fall polynomials not predicted by Equation (12) has also been observed for other
sets of parameters, so we do not believe that the parameters considered in Table
3 form a special case with regards to this. At this point we are not able to explain
what causes these degree fall polynomials.

6 Security Estimation for EFLASH

Based on our results from previous sections, we now examine the suggested 80–
bit security parameters for EFLASH versus classical and quantum adversaries
(Table 1), using our formula for N4(n, d, a) in Equation (12). We find

N4(80, 101, 5) = 8026 and N4(160, 181, 5) = 22546,

which means that we expect that these sets of parameters will both admit a first
fall degree of 4. From the experiments in the previous section we observed that
when N4 gives a positive number, it predicts the number of degree fall polynomi-
als precisely. Furthermore, in all our experiments we find that the solving degree
is at most one greater than the first fall degree. In Table 4 we have computed
the complexity of solving the EFLASH equation system on these parameter sets
using Equation (2) when Dsolv is 4 and 5. We have chosen to include two values
that are typically used for ω: 2.4 corresponding to the smallest known value
(here up to 1 decimal precision), and 2.8 which is the value from Strassen’s algo-
rithm. From Table 4 we find that both sets of parameters fail to achieve 80–bit
security in all scenarios, with the exception of the parameters versus quantum
adversaries under the most pessimistic (for an attacker) assumptions (ω = 2.8
and Dsolv = 5).

For the suggested 128–bit security parameters in Table 1 we get a negative
number for N4 and so we are not able to predict the first fall degree for these
cases. We have however seen that the minus modifier does not work as effectively
for EFLASH as initially believed, and so it is very likely that these parameters
will also fail to achieve their proposed security level.

Table 4: The complexity of solving the 80–bit security parameters suggested with re-
spect to a classical adversary (left table) and a quantum adversary (right table).

ω
Dsolv 4 5

2.4 250 259

2.8 258 269

ω
Dsolv 4 5

2.4 259 271

2.8 269 283

7 Further Work

Following the attack described in this paper, one may wonder whether it is
possible to fix the EFLASH scheme. We have seen that the relations β1 and β2
play a crucial role in the low first fall degree for this system. They are a direct
consequence of the small base field, so it seems natural to try and choose a larger
base field to mitigate this. The problem with this approach is that the condition
for the central map to be injective, gcd(qd− 1, qΘ + 1) = 1, can only be satisfied
when q is even. Furthermore, if Fq is chosen to be a small extension field of F2,
then the system can always be solved as a system over F2, and so the existence
of β1, β2 ultimately seems unavoidable. The minus modifier does help, but as we
have seen it also strongly affects the efficiency of decryption in EFLASH. Since
qa needs to be low in order for decryption to be efficient, the designer is limited
in the use of this modifier. For these reasons we cannot think of parameters that
would result in instances of EFLASH that seem both efficient and secure.

A related question is whether the analysis presented here would have an
impact on the security of the signature scheme PFLASH. As mentioned earlier,
EFLASH and PFLASH share the same central map, and so the latter will also
suffer from the same degree fall generators α, β1 and β2. The main difference is
that signature schemes can allow a significant number of public polynomials to
be removed without becoming inefficient. This can be seen from the suggested
parameters for PFLASH in [7], where roughly one third of the public polynomials
are removed. We are at this point not able to conclude either way on the security
of the current PFLASH parameters, but our work shows the need for an updated
security analysis against direct attacks for this scheme.

It will also be interesting to see if the ideas presented in this work may have
an impact on other multivariate big field schemes that also benefit from the
minus modifier. We point out that our methods not only predict the first fall
degree, but also the number of degree fall polynomials obtained at this degree. It
remains to be seen if this information can be used in other ways by an attacker.

One idea is to use this information in conjunction with the Joux–Vitse algo-
rithm [19]. For example, if we predict k degree fall polynomials at degree D, then
it may be the case that combining MacD−1 and the k degree fall polynomials of
degree ≤ D − 1 leads to optimal parameter choices for this algorithm (see [19]
for notation and more details on this). This could be paricularly interesting in
cases where the first fall degree and solving degree may be far apart.

8 Conclusions

With the prospect of quantum computers becoming a reality, cryptographers
have looked for quantum-safe public-key encryption algorithms that can replace
RSA. The C∗ scheme was proposed more than 30 years ago and is based on the
MQ problem which is considered quantum-safe. However, the basic C∗ scheme
was quickly broken and cryptographers have since tried to find variants that
may lead to secure quantum-safe public-key schemes. Some signature schemes
built around the C∗ construction have indeed withstood cryptanalysis; however
it has proven to be much harder to come up with secure and efficient encryption
algorithms based on it. EFLASH is one recent attempt.

However we have shown in this work that non-trivial degree fall polynomi-
als arise rather early in a Gröbner basis attack when the central mapping is
just a power-function and q is even (in particular when q = 2, as suggested for
EFLASH). Two techniques that have been proposed for overcoming the deficien-
cies of the basic C∗ system are to embed the plaintext space in a larger field,
and to remove some of the polynomials in the public key before it is published.
In this work we have seen that these two techniques to some extent work against
each other, and we have shed some light on how much security is actually gained
by the removal of some of the public polynomials.

During this work we were able to explain and give formulas for how many
degree fall polynomials will appear at step degrees 3 and 4 in a solving algorithm.
Experiments of fairly large instances show that our formulas give the exact
number of degree fall polynomials when the predicted number is positive, giving
confidence that we have captured the whole picture in our analysis. However, in
some cases we get a few non-trivial degree fall polynomials when our formulas
predict none, so more research is needed to explain these.

Based on our analysis we are very confident that we will indeed see a large
number of non-trivial degree fall polynomials at step degree 4 for the suggested
80-bit security parameter sets for EFLASH. In all likelihood the solving degree
for an actual EFLASH system will then be at most 5, giving solving complexities
significantly lower than the claimed security. This means that EFLASH does
not withstand direct Gröbner basis attacks, and should therefore be considered
insecure.

References

1. M. Bardet, J.-C. Faugere, B. Salvy, and B.-Y. Yang. Asymptotic behaviour of
the degree of regularity of semi-regular polynomial systems. In Proc. of MEGA,
volume 5, 2005.

2. M. Bardet, J.-C. Faugère, and B. Salvy. Complexity of Gröbner basis computation
for Semi-regular Overdetermined sequences over F2 with solutions in F2. 2003.
[Research Report] RR-5049, INRIA, inria-00071534.

3. L. Bettale, J. Faugère, and L. Perret. Cryptanalysis of HFE, multi-HFE and
variants for odd and even characteristic. Des. Codes Cryptogr., 69(1):1–52, 2013.

4. F.-P.-A. Bouillaguet, Charles and G. Macario-Rat. Practical Key-recovery For All
Possible Parameters of SFLASH.

5. D. Cabarcas, D. Smith-Tone, and J. A. Verbel. Key Recovery Attack for ZHFE.
In Post-Quantum Cryptography - 8th International Workshop, PQCrypto 2017,
Utrecht, The Netherlands, June 26-28, 2017, Proceedings, volume 10346 of Lecture
Notes in Computer Science, pages 289–308. Springer, 2017.

6. R. Cartor and D. Smith-Tone. EFLASH: A New Multivariate Encryption Scheme.
In C. Cid and M. Jacobson Jr., editors, Selected Areas in Cryptography – SAC
2018, volume 11349 of Lecture Notes in Computer Science, pages 281–299. Springer
International Publishing, 2019.

7. M.-S. Chen, B.-Y. Yang, and D. Smith-Tone. PFLASH - secure asymmetric
signatures on smart cards. Lightweight Cryptography Workshop 2015, 2015.
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=926103.

8. D. A. Cox, J. Little, and D. O’shea. Using algebraic geometry, volume 185. Springer
Science & Business Media, 2006.

9. A. Diene, J. Ding, J. E. Gower, T. J. Hodges, and Z. Yin. Dimension of the
linearization equations of the Matsumoto-Imai cryptosystems. In International
Workshop on Coding and Cryptography, pages 242–251. Springer, 2005.

10. J. Ding, V. Dubois, B.-Y. Yang, O. C.-H. Chen, and C.-M. Cheng. Could SFLASH
be Repaired? In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Languages and Program-
ming, pages 691–701, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

11. J. Ding and T. J. Hodges. Inverting HFE systems is quasi-polynomial for all fields.
In Annual Cryptology Conference, pages 724–742. Springer, 2011.

12. J. Ding and T. Kleinjung. Degree of regularity for HFE-. IACR Cryptology ePrint
Archive, 2011:570, 2011.

13. J. Ding and D. Schmidt. Solving degree and degree of regularity for polynomial
systems over a finite fields. In Number Theory and Cryptography, pages 34–49.
Springer, 2013.

14. J. C. Faugere. A new efficient algorithm for computing Gröbner bases (F4). Journal
of pure and applied algebra, 139(1-3):61–88, 1999.

15. J. C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F 5). In Proceedings of the 2002 international symposium on
Symbolic and algebraic computation, pages 75–83. ACM, 2002.

16. J.-C. Faugere and A. Joux. Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In Annual International Cryptology Confer-
ence, pages 44–60. Springer, 2003.

17. P. Felke. On the Affine Transformations of HFE-Cryptosystems and Systems
with Branches. In Coding and Cryptography, International Workshop, WCC 2005,
Bergen, Norway, March 14-18, 2005. Revised Selected Papers, pages 229–241, 2005.

18. P. Felke. On the security of biquadratic C∗ public-key cryptosystems and its
generalizations. Cryptography and Communications, pages 1–16, 2018.

19. A. Joux and V. Vitse. A crossbred algorithm for solving Boolean polynomial
systems. In International Conference on Number-Theoretic Methods in Cryptology,
pages 3–21. Springer, 2017.

20. A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Annual International Cryptology Conference, pages 19–30.
Springer, 1999.

21. J. Liu, Y. Yu, B. Yang, J. Jia, S. Wang, and H. Wang. Structural Key Recovery
of Simple Matrix Encryption Scheme Family. The Computer Journal, 61, 10 2018.

22. T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In D. Barstow, W. Brauer,
P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller,
J. Stoer, N. Wirth, and C. G. Günther, editors, Advances in Cryptology — EURO-
CRYPT ’88, pages 419–453, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

23. J. Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt’88. In Annual International Cryptology Conference, pages 248–261. Springer,
1995.

24. J. Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
Two new families of asymmetric algorithms. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 33–48. Springer, 1996.

25. J. Patarin, N. Courtois, and L. Goubin. FLASH, a fast multivariate signature
algorithm. In D. Naccache, editor, Topics in Cryptology - CT-RSA 2001, The
Cryptographer’s Track at RSA Conference 2001, San Francisco, CA, USA, April
8-12, 2001, Proceedings, volume 2020 of Lecture Notes in Computer Science, pages
298–307. Springer, 2001.

26. R. A. Perlner, A. Petzoldt, and D. Smith-Tone. Total Break of the SRP Encryp-
tion Scheme. In Selected Areas in Cryptography - SAC 2017 - 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers,
volume 10719 of Lecture Notes in Computer Science, pages 355–373. Springer,
2018.

27. J. Porras, J. Baena, and J. Ding. ZHFE, a New Multivariate Public Key En-
cryption Scheme. In Post-Quantum Cryptography - 6th International Workshop,
PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, volume
8772 of Lecture Notes in Computer Science, pages 229–245. Springer, 2014.

28. C. Tao, A. Diene, S. Tang, and J. Ding. Simple Matrix Scheme for Encryption.
In Post-Quantum Cryptography - 5th International Workshop, PQCrypto 2013,
Limoges, France, June 4-7, 2013. Proceedings, volume 7932 of Lecture Notes in
Computer Science, pages 231–242. Springer, 2013.

29. T. Yasuda and K. Sakurai. A Multivariate Encryption Scheme with Rainbow. In
Information and Communications Security - 17th International Conference, ICICS
2015, Beijing, China, December 9-11, 2015, Revised Selected Papers, volume 9543
of Lecture Notes in Computer Science, pages 236–251. Springer, 2016.

