
High-order private multiplication in characteristic two
revisited

Nicolas Bordes and Pierre Karpman

Université Grenoble Alpes, France

{nicolas.bordes,pierre.karpman}@univ-grenoble-alpes.fr

Abstract. We revisit the high-order masking schemes for private multiplication introduced
by Beläıd et al. at EUROCRYPT 2016, and the matrix model for non-interference (NI)
security that they develop in their follow-up work of CRYPTO 2017. This leads to two main
results.
1) We generalise the theorems of CRYPTO 2017 so as to be able to apply them to masking
schemes over any finite field — in particular F2 — and to be able to analyse the strong
non-interference (SNI) security notion. This leads to an efficient algorithm that allows us to
computationally check the (S)NI security of binary schemes up to order d = 11.
2) We propose new SNI and NI masking gadgets for multiplication over F2 (and any extension
thereof) up to order 9 and 11 that improve the randomness complexity of the schemes of
EUROCRYPT 2016 and of Ishai, Sahai and Wagner (CRYPTO 2003) respectively. A natural
generalisation of the NI schemes is also conjectured to be secure at any order.

Keywords: High-order masking, multiplication gadgets, linear codes.

1 Introduction

Since their introduction in the late last century, side-channel attacks and in particular Differential
Power Analysis (DPA) [KJJ99] have developed into one of the most efficient attack techniques on
implementations of cryptographic primitives. The importance of this new threat and its practical
relevance soon lead to the design of appropriate counter-measures, one of the most influential to
date being the “ISW” private multiplication circuit of Ishai, Sahai and Wagner [ISW03]. This is a
foremost example of a masking scheme, where sensitive data are split into several shares using a
secret sharing scheme; the crux of the design is then to devise a way to perform field arithmetic
over the shares without leaking too much information to the adversary in the process.

A major characteristic of a masking scheme is the order at which it is secure: in a probing model
such as the one introduced by Ishai, Sahai and Wagner, a circuit secure at order d is such that no
adversary can learn information about its input and output even when being given d intermediate
values of its computation. The usefulness of increasing the security order is then justified by the
fact that under reasonable assumptions, the number of measurements needed for a successful attack
increases exponentially in d [DFS15].

Unfortunately, high-order schemes also come with a significant overhead, since the complexity of
ISW multiplication is quadratic in d for three relevant metrics: to secure one field multiplication,
one needs 2d(d + 1) sums, (d + 1)2 products and d(d + 1)/2 fresh random masks. This lead to
several attempts to find more efficient multiplication circuits, especially with respect to the last
two metrics.

A number of new schemes for private multiplication were introduced in the past few years by
Beläıd et al. [BBP+16,BBP+17]. At EUROCRYPT 2016, they design a new high-order scheme
whose randomness complexity is decreased to ≈ d2/4 + d, and which can be easily instantiated
over any finite field of characteristic two (they also give specific schemes with even lower cost up to
order 4). The security of this multiplication is proven in the composable model of non interference
(NI) from Barthe et al. [BBD+16]. This is slightly weaker than the strong non-interference (SNI)
security achieved by ISW multiplication but remains of high practical relevance: for instance, one
can replace half of the multiplications in a masked AES S-box computation by the ones of [BBP+16]
while maintaining the overall strong SNI security for the entire S-box. At CRYPTO 2017, the same
authors propose two new schemes, one with linear bilinear multiplication complexity, and the other
with linear randomness complexity. However, those are complex to securely instantiate and cannot
be done so over F2. As an example, over F28 , Beläıd et al. originally manage to instantiate their
algorithms at order 2 and 3 respectively and this was later slightly improved to 4 in both cases by
Karpman and Roche [KR18]. In this second paper, Beläıd et al. also analyse the security of their



schemes thanks to a powerful matrix-based model that they introduce. This model is however not
complete for schemes defined over small fields such as F2; while this was not a limitation for their
schemes, it could preclude its direct application to more elementary cases.

On the implementation side, several recent work investigate the efficiency of high-order masking
in practice [GR17,BDF+17,JS17,GJRS18,GPSS18]; they show in particular the increasing feasibil-
ity of masking block ciphers at quite high order such as 7, and the possibility of masking at very
high order such as 31. From a technical point-of-view, these work share the common approach of
exploiting bitslicing or vectorisation to amortise the overhead brought by the use of many shares.
They also confirm the high cost of randomness generation; for instance, depending on the random
number generator performance and the block cipher under consideration Journault and Standaert
report that 68–92% of the time is spent generating fresh masks in their 32-share implementa-
tions [JS17]. Also, since bitslicing works with operations at the bit level, this strategy requires the
masking to be performed over F2 and these work confirm the importance of high-order masking
schemes over this field with low randomness complexity.

1.1 Our contributions

Our work brings two main contributions. We first extend the matrix model of [BBP+17] to be able
to prove the security of schemes defined over any finite field, and F2 in particular; we also extend it
to analyse SNI security, whereas it was only formulated in the NI case by Beläıd et al.. This in turn
allows us to extend a strategy devised in [BBP+16] that efficiently searches for attacks on masking
schemes and probabilistically proves their security: we use our results to make this approach com-
plete and thence able to provide full security proofs, and give an efficient implementation of the
resulting algorithm. For straight (software) multiplication schemes, the verification performance of
our software beats the state-of-the-art maskVerif tool of Barthe et al. [BBC+19] by three orders of
magnitude.

In a second contribution, we introduce new NI and SNI multiplications with reduced randomness
complexity. Our NI scheme is a natural generalisation at any order of a specific scheme at order 4
introduced by Beläıd et al. [BBP+16, Algorithm 6], and it uses up to 3d/4 fewer random masks
than their generic improved multiplication ([BBP+16, Algorithm 4]). We verify its security over any
field of characteristic two up to order 8 using maskVerif and up to order 11 using our own software,
and conjecture that it remains secure at any order. Our SNI schemes are ad hoc transformations
of our NI ones, and are proven secure up to order 8 using maskVerif and 9 using our software;
they significantly improve on the state-of-the-art randomness complexity for orders more than 5:
as an example, for the quite relevant order 7, our SNI multiplication only requires 20 fresh random
masks compared to 28 for ISW.

1.2 Roadmap

We present the security models and extend the matrix approach from CRYPTO 2017 in Section 2.
We then introduce our verification algorithm and discuss its implementation in Sections 3 and 4.
We conclude with the definition of our new multiplication schemes and experimental results on
their verification in Section 5.

1.3 Notation

We use Kn×m to denote the ring of matrices of n rows and m columns over the field K. We write
Ja, bK for the set of integers {a, . . . , b}. Matrices and vectors are named with bold upper- and lower-
case variables respectively; In, 0n×m, 1n×m always denote the n-dimensional identity matrix and
all-zero and all-one n×m matrices respectively, over any field K.

2 Security models for masking schemes

2.1 Simulability and non-interference

We start by recalling the definitions of the models of non-interference (NI), tight non-interference
(TNI) and strong non-interference (SNI), introduced by Barthe et al. at CCS 2016 [BBD+16]. Our
presentation closely follows the one of Beläıd et al. [BBP+17].

2



Definition 1 (Gadgets). Let f : Kn → Km, u, v ∈ N; a (u, v)-gadget for the function f is a
randomised circuit C such that for every tuple (x1, . . . ,xn) ∈ (Ku)n and every set of random coins
R, (y1, . . . ,ym)← [ C (x1, . . . ,xn;R) satisfies: v∑

j=1

y1,j , . . . ,

v∑
j=1

ym,j

 = f

 u∑
j=1

x1,j , . . . ,

u∑
j=1

xm,j

 .

One further defines xi as
∑u

j=1 xi,j, and similarly for yi; xi,j is called the jth share of xi.

In this definition, a randomised circuit C is a directed acyclic graph whose vertices represent
arithmetic operation gates (addition and multiplication) over K of arity two, or random gates of
arity zero whose outputs are i.i.d. over K for every execution of the circuit, and recorded in the
variable R; the edges of the graph are wires that connect the input and output of the gates together
so as to describe the full computation of a given function.

A probe on a circuit C is a map that for every execution C (x1, . . . ,xn;R) returns the value
propagated on one of the wires of C . One may further distinguish between external probes on the
output wires or output shares yi,j ’s of C , and the remaining internal probes.

Definition 2 (t-Simulability). Let C be a (u, v)-gadget for f : Kn → Kn, and `, t ∈ N. A set
P = {p1, . . . , p`} of probes of C is said to be t-simulable if ∃ I1, . . . , In ⊆ J1, uK; #Ii ≤ t and a
randomised function π : (Kt)n → K` such that for any fixed (x1, . . . ,xn) ∈ (Ku)n, {p1, . . . , p`} ∼
{π({x1,i, i ∈ I1}, . . . , {xn,i, i ∈ In})}.

Less formally, a set P of probes on C is t-simulable if there exists a randomised function
that perfectly simulates the distribution of {p1, . . . , p`} while requiring at most t shares of every
input to C . It is important to remark here that a simulation has to be done for every fixed input
(x1, . . . ,xn), regardless of the fact that one may randomise these inputs across many executions
of C .

Thanks to Definition 2, we may now define the following.

Definition 3 (d-Non-interference). A (u, v)-gadget C for a function over Kn is d-non-interfering
(or d-NI) if and only if any set of at most d probes on C is t-simulable, t ≤ d.

Definition 4 (d-Tight non-interference). A (u, v)-gadget C for a function over Kn is d-tight-
non-interfering (or d-TNI) if and only if any set of t ≤ d probes on C is t-simulable.

Definition 5 (d-Strong non-interference). A (u, v)-gadget C for a function over Kn is d-
strong non-interfering (or d-SNI) if and only if for every set P1 of d1 internal probes and every
set P2 of d2 external probes such that d1 + d2 ≤ d, then P1 ∪ P2 is d1-simulable.

It is clear that strong non-interference implies tight non-interference at the same order, which
itself implies non-interference. Barthe et al. [BBD+16] showed that tight non-interference did not
imply strong non-interference, but that the composition of a d-NI gadget with a d-SNI one is d-
SNI, while the composition of two d-NI gadgets was not necessarily d-NI. On the other hand they
also showed that non-interference and tight non-interference are in fact equivalent, which in proofs
allows to select the most convenient notion.

2.2 Matrix model for non-interference

We now recall Theorem 3.5 from Beläıd et al. [BBP+17], which defines a powerful matrix model
to analyze the (T)NI property of a gadget over a sufficiently large field K for which all probes are
bilinear. We then generalise it as Theorem 12 to work with schemes over any finite field (and F2

in particular), and to also analyse SNI security.
In all of the following, we restrict our interest to gadgets for binary (multiplication) functions

f : K2 → K, and the inputs to f (resp. their sharings in a gadget C ) will be denoted a and
b (resp. a = (a0, . . . ,au−1)t, b = (b0, . . . , bu−1)t). We also write the elements of R as a vector
r = (r1, . . . , rR)t

Definition 6 (Bilinear probe). A probe p on a (d+ 1, v)-gadget C for a function f : K2 → K
is called bilinear iff. it is an affine function in ai, bj, aibj, rk; 0 ≤ i, j ≤ d, 1 ≤ k ≤ R.
Equivalently, p is bilinear iff. ∃M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, σ ∈ KR and τ ∈ K s.t. p =
atMb+ atµ+ btν + rtσ + τ .

3



Definition 7 (Functional dependence). An expression E(x1, . . . , xn) is said to functionally
depend on xn iff. ∃ c1, . . . , cn−1 s.t. the mapping xn 7→ E(c1, . . . , cn−1, xn) is not constant.

We now introduce the following condition.

Condition 8 ([BBP+17, Condition 3.2]). A set of bilinear probes P = {p1, . . . , p`} on a
(d+1, v)-gadget C for a function f : K2 → K satisfies Condition 8 iff. ∃λ ∈ K`, M ∈ K(d+1)×(d+1),

µ, ν ∈ Kd+1, and τ ∈ K s.t.
∑`

i=1 λipi = atMb + atµ + btν + τ and all the rows of the block

matrix
(
M µ

)
or all the columns of the block matrix

(
M
νt

)
are non-zero.

In other words, this condition states that there exists a linear combination of probes of P that
does not functionally depend on any random scalar and that functionally depends on either all of
the shares for a or all of the shares for b.

We are now ready to state the following theorem.

Theorem 9 ([BBP+17, Theorem 3.5]). Let P be a set of bilinear probes on a (d+1, v)-gadget
C for a function f : K2 → K. If P satisfies Condition 8, then it is not d-simulable. Furthermore,
if P is not d-simulable and #K > d+ 1, then it satisfies Condition 8.

The next immediate corollary is more useful in practice.

Corollary 10 ([BBP+17, Corollary 3.7]). Let C be a (d + 1, v)-gadget for a function f :
K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of d probes on C
satisfying Condition 8. Furthermore, if #K > d+ 1 and there is no set of d probes on C satisfying
Condition 8, then C is d-NI.

For the masking schemes of CRYPTO 2017 [BBP+17] the restriction #K > d + 1 is never an
issue, as they are defined over large fields; however, this condition means that one cannot directly
apply Corollary 10 to prove the security of a scheme over a small field such as F2.

We now sketch a proof of the second statement of Theorem 9 as a preparation to extending it
to any field.

Proof (Theorem 9 right to left, sketch). Let P = {p1, . . . , p`} be a set of bilinear probes that is not
d-simulable. We call R the block matrix

(
σ1 · · · σ`

)
, where σi denotes as in Definition 6 the vector

of random scalars on which pi depends. Up to a permutation of its rows and columns, the reduced

column echelon form R′ of R is of the shape

(
It 0t,`−t
N 0t

)
, where t < ` is the rank of R and N is

arbitrary. If we now consider the formal matrix P =
(
p1 · · · p`

)t
and multiply it by the change-

of-basis matrix from R to R′, we obtain the matrix P ′ =
(
P ′r P

′
d

)
where P ′r represents t linear

combinations {p′1, . . . , p′t} of probes that each depend on at least one random scalar which does not
appear across any of the other linear combinations, and P ′d represents ` − t linearly independent
linear combinations P ′ = {p′t+1, . . . , p

′
`} of probes that do not depend on any random scalar. All of

the {p′1, . . . , p′t} can then be simulated by independent uniform distributions without requiring the
knowledge of any share, and as P is not d-simulable, P ′ cannot be d-simulable either. W.l.o.g., this
means that for every share ai, there is at least one linear combination of probe in P ′ that depends
on it. In other words, the matrix D =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
that records this dependence has

no zero row. We now finally want to show that there is a linear combination
(
λt+1 · · · λ`

)t
of

elements of P ′ that satisfies Condition 8. This can be done by showing that ∃Λ =
(
Λt+1 · · · Λ`

)t
s.t. DΛ has no zero row, where the Λi’s are the (d+ 2)× (d+ 2) scalar matrices of multiplication
by the λi’s. By the Schwartz-Zippel-DeMillo-Lipton lemma this is always the case as soon as
#K > d+ 1 [Sch80], and this last step is the only one that depends on K. ut

We now wish to extend Theorem 9 and its corollary to any finite field K. We do this using
the TNI notion rather than NI, and so first state an appropriate straightforward adaptation of
Condition 8:

Condition 11. A set of bilinear probes P = {p1, . . . , p`} on a (d + 1, v)-gadget C for a function
f : K2 → K satisfies Condition 11 iff. ∃λ ∈ K`, M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.∑`

i=1 λipi = atMb + atµ + btν + τ and the block matrix
(
M µ

)
(resp. the block matrix

(
M
νt

)
)

has at least `+ 1 non-zero rows (resp. columns).

4



In other words, Condition 11 states that the expression
∑`

i=1 λipi, which involves ` probes,
functionally depends on at least `+ 1 shares of a or `+ 1 shares of b, and hence is a TNI attack.
We will then show the following:

Theorem 12. Let P be a set of at most d bilinear probes on a (d+ 1, v)-gadget C for a function
f : K2 → K. If P, is not d-simulable then ∃P ′ ⊆ P s.t. P ′ satisfies Condition 11.

Corollary 13 (Corollary of Theorems 9 and 12). Let C be a (d + 1, v)-gadget C for a
function f : K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of d
probes on C satisfying Condition 8. Furthermore, if there is no set of t ≤ d probes on C satisfying
Condition 11, then C is d-NI.1

The proof of Theorem 12 essentially relies on the following lemmas, conveniently formulated
with linear codes:

Lemma 14. Let C1 (resp. C2) be an [n1, k] (resp. [n2, k], n2 > n1) linear code over a finite field
K. Let G1 ∈ Kk×n1 and G2 ∈ Kk×n2 be two generator matrices for C1 and C2 that have no
zero column2. Then the concatenated code C1,2 of C1 and C2 generated by G1,2 :=

(
G1 G2

)
has

the following property: ∃ c ∈ C1,2 s.t. wt1(c) < wt2(c), where wt1(·) (resp. wt2(·)) denotes the
Hamming weight function restricted to the first n1 (resp. last n2) coordinates of C1,2.

One may remark that if #K is sufficiently large w.r.t. the parameters of the codes, then by the
Schwartz-Zippel-DeMillo-Lipton lemma there exists a word in C1,2 of maximal wt2 weight, and the
conclusion immediately follows; yet this argument doesn’t hold over any field.

Lemma 15. The statement of Lemma 14 still holds if K is replaced by a matrix ring K′d×d and
if G1 is defined over the subfield of the scalar matrices of K′d×d.

We first recall the following:

Definition 16 (Shortening of a linear code). Let C be an [n, k] linear code over K generated by
G ∈ Kk×n. The shortened code C′ w.r.t. coordinate i ∈ J1, nK is the subcode made of all codewords
of C that are zero at coordinate i, with this coordinate then being deleted.

We also give:

Definition 17 (Isolated coordinate). Let M ∈ Km×n. A coordinate i ∈ J1, nK is called isolated
for the row Mj of M , j ∈ J1,mK, iff. Mj,i 6= 0 and ∀j′ 6= j ∈ J1,mK, Mj′,i = 0.

And:

Procedure 18. We reuse the notation of the statement of Lemma 14. We apply Procedure 18 on
a row of G1,2 by doing the following: denote I1 (resp. I2) the (possibly empty) set of isolated
coordinates on its first n1 (resp. last n2) columns; then if #I1 ≥ #I2, shorten C1,2 w.r.t. all the
coordinates in I1 ∪ I2. Practically, this means deleting from G1,2 the row being processed and all

the columns in I1 ∪ I2. This results in a code C′1,2 generated by
(
G′1 G

′
2

)
where G′1 ∈ K(k−1)×n′1

(resp. G′2 ∈ K(k−1)×n′2) is a submatrix of G1 (resp. G2) and n′1 < n1, n′2 < n2, n′1 < n′2, and
none of the columns of G′1,2 is zero. One may also remark that since G′1 is of rank k − 1, we have
k − 1 ≤ n′1.

We are now ready to prove Lemmas 14 and 15.

Proof (Lemma 14). We prove this lemma by induction using Procedure 18.
In a first step, one successively applies Procedure 18 to all the rows of G1,2 until either there is

no row for which applying the procedure results in a shortening, or the dimension of the shortened
code reaches 1.

In the latter case, this means that G′1,2 ∈ K1×(n′1+n′2) is of full weight n′1 + n′2, n′1 < n′2. This
induces a codeword c of C s.t. wt1(c) = n′1 and wt2(c) = n′2, so we are done.

In the former case, one is left with a matrix G′1,2 ∈ Kk′×(n′1+n′2), k′ > 1. One then computes
the reduced row echelon form of G′1,2 and applies Procedure 18 again on the resulting matrix. Now
either the application of Procedure 18 leads to a shortened code of dimension 1 and then we are
done as above, or we are left with a matrix G′′1,2 ∈ Kk′′×(n′′1 +n′′2 ) which can be of two forms:

1 As Condition 11 directly implies an attack, one could also formulate this corollary solely in terms of this
condition.

2 Those can be assumed to exist w.l.o.g., as otherwise one of the codes would in fact have a smaller length.

5



1. k′′ = n′′1 . Up to permutation of its columns, G′′1,2 can be written as:(
In′′1 In′′1 In′′1 ∗

)
,

where ∗ is arbitrary. The left k′′×n′′1 block is justified from G′′1,2 being in reduced row echelon
form and having full rank. The right k′′ × n′′2 block is justified from the fact that every row of
the left block has exactly one isolated coordinate; since no simplification can be done anymore
to G′′1,2 by applying Procedure 18, this means that those rows have at least two isolated
coordinates on the right block. This is enough to conclude on the existence of a codeword of C
satisfying the desired property.
Recall that it is not possible to have k′′ > n′′1 from the last remark in Procedure 18. The only
remaining case is then:

2. k′′ < n′′1 . Up to a permutation of its columns, the rank-k′′ matrix G′′1,2 can be written as:(
Ik′′ ∗L Ik′′ Ik′′ ∗R

)
,

and it has no zero column (since the elementary row operations are invertible). One then applies
Lemma 14 inductively on the code generated by the submatrix G′′′1,2 :=

(
∗L Ik′′ ∗R

)
which is

of strictly smaller length. Let c′′′ = λG′′′1,2 be a codeword of this latter code that satisfies the
desired property, then λG′′1,2 also satisfies it for C1,2, which concludes the proof.

ut

Proof (Lemma 15). The proof simply consists in remarking that all the steps of the proof of
Lemma 14 can be carried out in the modified setting of Lemma 15. Mainly:

— Definitions 16 and 17 and Procedure 18 naturally generalise to matrices over rings, and the
application of Procedure 18 is unchanged.

— Recall that by induction the left k′ × n′1 submatrix is always of full rank k′, which is also
the rank of G′1,2. Since G1 is defined over scalar matrices, Gauß-Jordan elimination can be
computed as if over a field.

ut

The proof of Theorem 12 then follows.

Proof (Theorem 12). We start similarly from the proof of Theorem 9, and use the same notation:
let P ′ be a set of `−t linearly independent linear combinations of probes of P that do not depend on
any random scalar, and letD =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
be the matrix that records the dependence

of these probes on every share ai.We will show that ∃P ′′ ⊆ P that satisfies Condition 11. To do
this, we introduce two new indicator matrices:

— Let Π ∈ K(d+2)×(d+2)(`−t)×` be s.t. for every p′ ∈ P ′ it records in its rows its dependence
on the probes of P as scalar matrices; that is, Π is s.t. p′i =

∑`
j=1 πi,jpj where πi,j is the

scalar on the diagonal of the scalar matrix Πi,j . W.l.o.g., we may assume that every probe of
P appears at least once in a linear combination of P ′, otherwise it is simply discarded, so Π
has no zero column.

— Let ∆ ∈ K(d+2)×(d+2)(`−t)×(d+1)
be the matrix that for every p′ ∈ P ′ records in its rows

its dependence on the shares ais; that is if the bilinear probe p′i can be written as p′i =
atM ′b+ atµ′ + btν′ + τ ′, then ∆i,j is set to the diagonal matrix of the jth row of

(
M ′ µ′

)
.

Note that since by assumption D has no zero row, ∆ has no zero column.

Now we invoke Lemma 15 with Π as G1 and ∆ as G2 the generator matrices for the concatenated
code C1,2. Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear
combination of `′′ := wt1(c) probes of P ′′ ⊆ P that (as linear combinations of elements of P ′) does
not depend on any randomness and s.t. the associated matrix

(
M ′′ µ′′

)
has wt2(c) ≥ `′′ + 1 non-

zero rows (by applying the inverse transformation from ∆ to D), hence P ′′ satisfies Condition 11.
ut

Finally, the proof of Corollary 13 is immediate from Theorems 9 and 12.

2.3 Matrix model for strong non-interference

We now wish to adapt the approach of Theorems 9 and 12 to be able to prove that a scheme is
SNI. This is in fact quite straightforward, and it mostly consists in defining a suitable variant of
Condition 11 and in applying Lemma 15 to well-chosen matrices, to show again that there is a
subset of probes that satisfies the condition whenever there is an attack.

6



Condition 19. A set of ` = `1 + `2 bilinear probes P = {p1, . . . , p`} on a (d + 1, v)-gadget
C for a function f : K2 → K, of which `1 are internal, satisfies Condition 19 iff. ∃λ ∈ K`,
M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.

∑`
i=1 λipi = atMb+atµ+btν+ τ and the block

matrix
(
M µ

)
(resp. the block matrix

(
M
νt

)
) has at least `1 + 1 non-zero rows (resp. columns).

Theorem 20. Let P be a set of at most d bilinear probes on a (d+ 1, v)-gadget C for a function
f : K2 → K, of which `1 are internal. If P is not `1-simulable then ∃P ′ ⊆ P s.t. P ′ satisfies
Condition 19.

Proof. We reuse the notation of Theorems 9 and 12. The proof is essentially the same as the one of
Theorem 12, except that we only account of internal probes in Π. Let P ′ be a set of `− t linearly
independent linear combinations of probes of P that do not depend on any random scalar, and let
D =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
be the matrix that records the dependence of these probes on every

share ai. From the assumption that P is not `1-simulable, we have that w.l.o.g., D has at least
`1 + 1 non-zero rows.

— Let Π ∈ K(d+2)×(d+2)(`−t)×`1 be s.t. for every p′ ∈ P ′ it records in its rows its dependence
on the `1 internal probes (w.l.o.g. {p1, . . . , p`1}) of P as scalar matrices; that is, Π is s.t.

p′i =
∑`1

j=1 πi,jpj +
∑`

j=`1+1 αjpj , where πi,j is the scalar on the diagonal of the scalar matrix
Πi,j and the αjs are unimportant. W.l.o.g., we may assume that every internal probe of P
appears at least once in a linear combination of P ′, otherwise it is simply discarded, so Π has
no zero column.

— Let ∆ ∈ K(d+2)×(d+2)(`−t)×d
′

be the matrix that for every p′ ∈ P ′ records in its rows its
dependence on the shares ais. If a row of D is all zero, the corresponding column is not
included in ∆, and since D has at least `1 + 1 non-zero rows, ∆ has at least d′ ≥ `1 + 1
columns none of which are zero.

Now we invoke Lemma 15 with Π as G1 and ∆ as G2 the generator matrices for the concatenated
code C1,2. Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear
combination of `′′ := wt1(c) internal probes to which one can add a linear combination of up to
`2 external probes s.t. it does not depend on any randomness and the associated matrix

(
M ′′ µ′′

)
has wt2(c) ≥ `′′ + 1 non-zero rows. The set P ′′ ⊆ P of these internal and external probes thus
satisfies Condition 19. ut

And we then have the immediate corollary:

Corollary 21. Let C be a (d + 1, v)-gadget for a function f : K2 → K for which all probes are
bilinear. If there is no set of t ≤ d probes on C satisfying Condition 19, then C is d-SNI.

2.4 Security of binary schemes over finite fields of characteristic two

Let C be a d-NI or SNI gadget for a function defined over F2; a natural question is whether its
security is preserved if it is lifted to an extension F2n . Indeed, the probes available to the adversary
are the same in the two cases, but the latter offers more possible linear combinations

∑`
i=1 λipi,

since the λis are no longer restricted to {0, 1}. We answer this question positively, and give a
simple proof based on Theorems 12 and 20.

Theorem 22. Let C be a d-NI (resp. d-SNI) gadget for a function f : F2
2 → F2, then for any n,

the natural lifting Ĉ of C to f̂ : F2
2n → F2n is also d-NI (resp. d-SNI).

Proof. We only prove the d-NI case, the d-SNI one being similar. From Corollary 13, it is sufficient
to show that if @P for C that satisfies Condition 11, then the same holds for Ĉ . We do this by
showing the following contrapositive: if a set of probes P is not d-simulable for Ĉ , then it is not
d-simulable either for C .

From the proofs of Theorems 9 and 12, if P is not d-simulable for Ĉ , then there is a matrix D̂
that leads to the existence of P ′ s.t. Condition 11 is satisfied. All we need to do is showing that a
similar matrix D can also be found for C . Since C is defined over F2, the matrices R and P , and
thence R̂ and P̂ have all their coefficients in {0, 1}. As 1 is its own inverse, the change-of-basis

matrix from R̂ to R̂′ is also binary; equivalently, this means that the Gauß-Jordan elimination of
R̂ can be done in the subfield F2. Thus one only has to take D = D̂ to satisfy Condition 11 on
C . ut

7



This result is quite useful as it means that the security of a binary scheme only needs to be
proven once in F2, even if it is eventually used in one or several extension fields. Proceeding thusly
is in particular beneficial in terms of verification performance, since working over F2 limits the
number of linear combinations to consider and may lead to some specific optimisations (cf. e.g.
Sections 3 and 4).

Remark. This result somewhat seems to be folklore and (a slight variant) is in fact already implicitly
used by Barthe et al. in their masking compiler [BBD+15], since they use gadgets defined over an
arbitrary structure (K, 0, 1,⊕,	,�). However, we could not find a proof of the exact statement
given above, which is the one we need in our case to justify the correctness of the algorithm of the
next section.

3 An algorithm for checking non-interference

In this section, we present a new efficient algorithm to check if a scheme is (strong) non-interfering.
This algorithm is a modification of the one presented by Beläıd et al. at EUROCRYPT 2016
[BBP+16, Section 8], and its correctness crucially relies on Theorems 12 and 20; it thus only
applies to schemes for which all probes are bilinear, but this is not a hard restriction in practice.

In all of the following we assume that the field K over which the scheme is defined is equal to
F2, which means that we will simultaneously assess its security in that field and all its extensions
(cf. Section 2.4). Some discussion of implementation in the NI case for schemes natively defined
over larger fields (meaning that shares or random masks may be multiplied by constants not in
{0, 1}) for which the new Theorem 12 is not needed can be found in [KR18].

We start by introducing some vocabulary and by recalling the algorithm from Beläıd et al..

Definition 23 (Elementary probes). A probe p is called elementary if it is of the form p = aibj
(elementary deterministic probe) or p = ri (elementary random probe).

Definition 24 (Shares indicator matrix). Let p be a bilinear probe. We call shares indicator
matrix and write Mp the matrix M from Definition 6.

Definition 25 (Randomness indicator matrix). Let p be a bilinear probe. We call randomness
indicator matrix and write σp the column matrix σ from Definition 6.

3.1 The algorithm from EUROCRYPT 2016

At EUROCRYPT 2016, Beläıd et al. presented an efficient probabilistic algorithm to find potential
attacks against the d-privacy notion3 for masking schemes for the multiplication over F2. By
running the algorithm many times and not detecting any attack, one can also establish the security
of a scheme up to some probability, but deriving a deterministic counterpart is less trivial. This
algorithm works as follows.

Consider a scheme on which all possible probes P are bilinear, and let HP :=
(
σp

)
, p ∈ P be

the block matrix constructed from the all the corresponding randomness indicator matrices. The
algorithm of [BBP+16, Section 8] starts by finding a set of fewer than d probes whose sum4 does
not depend on any randomness. That is to say, it is looking for a vector x such that HP · x = 0
and wt(x) ≤ d. This can be immediately reformulated as a coding problem, as one is in fact
searching for a codeword of weight less than d in the dual code of HP . This search can then be
performed using any information set decoding algorithm, and Beläıd et al. used the original one
of Prange [Pra62].5 Once such a set has been found, it is tested against [BBP+16, Condition 2]
(which is similar to Condition 8) to determine if it is a valid attack against the d-NI notion, and
[BBP+16, Condition 1] to determine if it is an attack for d-privacy. This procedure is then repeated
until an attack is found or one has gained sufficient confidence in the security of the scheme.

3.2 Dimension reduction

Before describing our algorithm itself, we discuss a few ways to significantly decrease the size of
the eventual enumeration space.

3 It can also be trivially modified to check attack against NI security.
4 That is, the only non-trivial linear combination over F2 that depends on all the elements of the set.
5 One may remark that since information set decoding relies on Gaussian elimination, the cost of one step

of the algorithm of Beläıd et al. increases more than linearly in the size of P.

8



Removing elementary deterministic probes. To make the above procedure more efficient, an im-
portant observation made by Beläıd et al. is that if the sum of every probe of a given set does not
functionally depend on some ai or bj , it is always possible to make it so by adding a corresponding
elementary probe aibj . This can be used to check, say, d-NI security by simply comparing the
number of missing ai or bj to d−wt(x). This allows to reduce the number of probes that one has
to include in P (and thus the dimension of HP), making the algorithm more efficient.

Removing elementary random probes. The preceding remark can be extended to random probes as
well: if the sum of every probe of a given set functionally depends on some ri, it is always possible
to make it not so by adding the corresponding elementary probes. We thus also remove such probes
from the input set of our algorithm, which no longer contains any elementary probe at all.6

Removing redundant probes. To further reduce the size of the space to explore during the
verification, we will filter out some probes from the set P that can always be replaced by “better”
ones. To do this while ensuring the correctness of our verification algorithm, we first define the
following:

Definition 26 (Equipotent sets). Let P := ∪vk=0Pk and P ′ := ∪vk=0P ′k be two sets of probes on
a (d+ 1, v)-gadget C for a function f : F2

2 → F2 for which all probes are bilinear, where Pk (resp.
P ′k) denotes the probes on the wires of C that are connected to the output share ck. Then P and
P ′ are called equipotent iff.:

— #P ′ ≤ #P
— ∀k,∀λ ∈ K#Pk ,∃λ′ ∈ K#P′k , wt(λ′) ≤ wt(λ) for which, reusing the notation of Definition 6,∑

pi∈P λipi and
∑

p′i∈P′
λ′ip
′
i are such that:

— σ = σ′

— supp(M) ⊆ supp(M ′), supp(µ) ⊆ supp(µ′), supp(ν) ⊆ supp(ν′), where by supp(A) we
denote the set of non-zero coefficients of A.

Lemma 27. If two linear combinations of probes
∑
λipi and

∑
λ′ip
′
i functionally depend on dis-

joint sets of elementary probes and shares aibj, ai and bj, then their sum functionally depends on
the union of those sets.

Proof. Immediate, since using the notation of Definition 6, the supports of M , µ, ν are disjoint
from the ones of M ′, µ′, ν′. ut

Proposition 28. Let P and P ′ be two equipotent sets of probes on a (d + 1, v-gadget C for a
function f : F2

2 → F2 for which all probes are bilinear and for which all output shares functionally
depend on pairwise disjoint sets of elementary probes and shares aibj, ai and bj. Then if Q ⊆ P
satisfies Condition 11, ∃Q′ ⊆ P ′, #Q′ ≤ #Q that also satisfies Condition 11.

Proof. Let us write Q as ∪vk=0Qk (resp. Q′ as ∪vk=0Q′k) where Qk (resp. Q′k) denotes the probes
on the wires of C that are connected to the output share ck. Let

∑
pi∈Q λipi denote one linear

combination of elements of Q whose existence is guaranteed by its satisfying Condition 11, which

we rewrite as:
∑

k

∑
pi∈Qk

λ
(k)
i pi. For each λ(k), let λ′(k) be the coefficients for one of the linear

combination of elements of Q′k whose existence is guaranteed by Q and Q′ being equipotent.

Then by applying Lemma 27 to each of
∑

k

∑
pi∈Qk

λ
(k)
i pi and

∑
k

∑
pi∈Q′k

λ
′(k)
i pi, it follows that

the latter does not functionally depend on any elementary random probe ri, and the elementary
deterministic probes and shares on which it functionally depends is a superset of the ones on which
depends the former; thus Q′ satisfies Condition 11. ut

We will see in Section 5 how Proposition 28 can be used in practice to significantly improve
verification performance. The nature of the probes that can be removed of course depends on the
scheme under consideration, and we will later detail how to do this for our gadgets.

3.3 A new algorithm based on enumeration

We now describe a new algorithm based on a partial enumeration of ℘(P). The correctness relies
on Corollaries 13 and 21, and dimension reduction is used to further decrease the size of the set
P. We discuss our implementation of this algorithm in Section 4.

6 Note that this means that one would not detect the existence of an attack that would use only elementary
probes. However, it is easy to see from their definitions that ` such probes functionally depend on at
most ` shares, and so can never lead to a non-trivial attack.

9



Checking a scheme for non-interference. We now state the following:

Proposition 29. Let C be a (d+ 1, v)-gadget for a function f : F2
2 → F2 for which all probes are

bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on na shares
ais, nb shares bjs, and nr random scalars ris. Let Q1 be one of the smallest sets of elementary
probes needed to complete Q0 such that Q0 ∪ Q1 satisfies Condition 11 and functionally depends
on all the ais or all the bis.7 Then n1 := #Q1 = nr + (d+ 1−max(na, nb)).

Proof. An elementary probe functionally depends on either one ri or one ai and one bj , but not
both. Thus, the minimum number of elementary probes needed to cancel every ri and to add the
d+1−na (resp. d+1−nb) missing ais (resp. bjs) in Q0 is nr +(d+1−na) (resp. nr +(d+1−nb)).
Thus, #Q1 = min(nr + d+ 1− na, nr + d+ 1− nb) = nr + d+ 1−max(na, nb). ut

This proposition can then be used in a straightforward way to check if a scheme is d-NI. To do
so, one simply has to enumerate every set Q0 ∈ ℘(P ′) of d non-elementary probes or fewer and to
check if n0 +n1 ≤ d. By Corollary 13, if no such set Q0 can be completed as in Proposition 29 and
still contain fewer than d probes, then the scheme is d-NI.

Checking a scheme for strong non-interference. We proceed as above.

Proposition 30. Let C be a (d+ 1, v)-gadget for a function f : F2
2 → F2 for which all probes are

bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on na shares
ais, nb shares bjs, and nr random scalars ris. Let nI denote the number of internal probes in Q0.
Then there is a set Q1 of nr elementary random probes such that Q0 ∪ Q1 satisfies Condition 19
iff. max(na, nb) > nI + nr.

Proof. Recall that all elementary probes are internal. If Q0 does not satisfy Condition 19, then
adding an elementary deterministic probe increases by at most one the number of non-zero rows,
while increasing by one the total number of probes, so this completed set does not satisfy Q0 either.
It is thus enough to only consider random probes in Q1.

ForQ = Q0∪Q1 to satisfy Condition 19, it is necessary to cancel all the potential randomness ris
on which Q0 depends; so Q1 must be the (possibly empty) set of the nr corresponding elementary
random probes. Now Q contains nI +nr internal probes and it functionally depends on na ais and
nb bjs. Thus it satisfies Condition 19 iff. max(na, nb) > nI + nr. ut

This proposition can then be used in a straightforward way to check if a scheme is d-SNI. To
do so, one simply has to enumerate every set Q0 ∈ ℘(P ′) of d non-elementary probes or fewer and
to check if max(na, nb) > nI +nr and n0 +nr ≤ d. If no such set satisfying this condition is found,
then the scheme is d-SNI by Corollary 21.

4 Implementation

We now describe an efficient C implementation of the algorithm of the previous section over F2

that we use to prove the security of our schemes of Section 5 up to order d = 11 over any field
of characteristic two (see Section 5.5 for details). Our software is publicly available at: https:
/github.com/NicsTr/binary_masking.

4.1 Data structures and vectorisation

To evaluate if a set of probes P may lead to an attack, it is convenient to define the following:

Definition 31 (Attack matrix). The attack matrix AP of a set of probes P is defined as the
sum of the share indicator matrices of the probes in P:

AP =
∑
p∈P

Mp.

Definition 32 (Noise matrix). The noise matrix BP of a set of probes P is defined as the sum
of the randomness indicator matrices of the probes in P:

BP =
∑
p∈P

σp.

7 This additional constraint is not in itself necessary, but it simplifies the overall algorithm.

10

https:/github.com/NicsTr/binary_masking
https:/github.com/NicsTr/binary_masking


One can then simply compute the quantities na, nb and nr needed in Propositions 29 and 30 as
the number of non-zero rows or columns of these two matrices. To analyse a given scheme, one then
just has to provide a full description of Mp and σp for every non-elementary probe. Additionally,
since Proposition 30 requires to compute the number of internal probes nI in a set, those are
described separately.

We inline all data structures and store them in either standard or vector registers. AP is stored
twice, once row-wise and once column-wise, in order to avoid the otherwise costly transposition
needed to compute both its row and its column “Hamming weight”. For schemes at order d ≤ 15,
each row or column fits within a 16-bit words leading to a quite efficient vectorised Hamming
weight computation, as shown in Figure 1. We also provide a slower implementation for schemes
at higher order; in this case actually proving the security with our algorithm is intractable due to
the combinatorial explosion of the number of sets to consider, yet a partial run may still be able
to detect attacks, in the fashion of the original algorithm from EUROCRYPT 2016.

int popcount256_16(__m256i v)

{

return __builtin_popcountl(_mm256_cmpgt_epi16_mask(v, _mm256_setzero_si256()));

}

Fig. 1: Hamming weight computation of a vector of dimension 16 over 16-bit words using
AVX512VL and AVX512BW; an only slightly less efficient alternative can be used with only
AVX2.

4.2 Amortised enumeration & parallelisation

Recall that to prove the security of a scheme at order d, the algorithm of Section 3 requires to
enumerate all the

∑d
i=1

(
n
i

)
subsets of an appropriately filtered set of probes P of size n. For a

subset P ′ ⊆ P of size `, a näıve approach in computing, say, AP′ would need ` − 1 additions
for every such P ′. However, a well-known optimisation for such an enumeration is instead to go
through all the subsets of a fixed weight in a way that ensures that two consecutive sets P ′ and P ′′
only differ by two elements. One can then compute, say, AP′′ efficiently by updating AP′ with one
addition and one subtraction. We do this in our implementation by using a so-called “revolving-
door algorithm”, see e.g. [Knu11, Algorithm R], for the Nijenhuis-Wilf-Tang-Liu “combination
Gray code”[NW78,LT73].

The enumeration can also be easily parallelised, and the main challenge is to couple it with the
above amortised approach. This can in fact be done quite efficiently, as the combination Gray code
that we use possesses an efficient unranking map from the integers to arbitrary configurations [Wal].
One can then easily divide a full enumeration of a total of n combinations into j jobs by starting
each of them independently at one of the configurations given by the unranking of i×n/j, i ∈ J0, jJ.

4.3 Integration with the tool from EUROCRYPT 2016

We reuse the tool of [BBP+16]8 and complete it to convert a high-level description of a masking
scheme into the C description of its probes’ indicator matrices that we need.

This tool already provides a sage parser for a simple text format, where each line corresponds
to an output share and consists in a series of space-separated elementary probes “sij” (standing
for aibj) or ri (standing for ri). The scheduling of the operations needed to compute the output
shares is important, as it determines the probes available to the adversary. In that respect, the
parser uses by default an implicit left-to-right scheduling. As an example the scheme whose output
shares are defined as:

c0 = ((((a0b0 ⊕ r0)⊕ a0b1)⊕ a1b0)⊕ r1)

c1 = ((((a1b1 ⊕ r1)⊕ a1b2)⊕ a2b1)⊕ r2)

c2 = ((((a2b2 ⊕ r2)⊕ a2b0)⊕ a0b2)⊕ r0)

8 Available at https://github.com/fabrice102/private_multiplication.

11

https://github.com/fabrice102/private_multiplication


is described by the file:
s00 r00 s01 s10 r01

s11 r01 s12 s21 r02

s22 r02 s20 s02 r00

5 New private multiplication schemes

In this section we present new algorithms for private multiplication over fields of characteristic two.
We first introduce a new family of NI schemes in Section 5.1 and their extensions to SNI security
in Section 5.2. This is followed by a discussion about their possible applications and experimental
verification results.

5.1 Non-interfering schemes

We propose a new family of (d+ 1, d+ 1)-gadgets for multiplication that we have experimentally
verified to be d-NI for d ∈ J1, 11K (see Section 5.5 for more details), and that we conjecture to
be d-NI for any d. This family is designed as a generalisation of the specific 4-NI scheme given
in [BBP+16, Algorithm 6].

We start with a convenient notation:

Definition 33 (Pair of shares).
Let (aibj), i, j ∈ J0, dK be the input shares of a (d+ 1, v) gadget. We define α̂i,j as:

α̂i,j =

{
aibj if i = j

aibj + ajbi otherwise

Our family of schemes is then defined by the following Algorithm 1, of which we provide an
implementation at https://github.com/NicsTr/binary_masking.

Periodicity. By construction, the shape of the schemes of Algorithm 1 exhibits a period of four in
the order d. For a given d, one has to add (d+ 1)2 different aibj terms. Following our algorithm,
one first includes the (d + 1) shares of the form aibi each in one output share, and all of the
following input shares are coming by two; one is thus left with ((d+ 1)2 − (d+ 1))/2 = d(d+ 1)/2
pairs. Those remaining pairs as well fresh random values are then added to the d + 1 outputs ci
in sequence. Since each random mask is included exactly twice, the shape of the scheme is then
determined by d(d+ 1)/2 mod 2(d+ 1), that is to say by d mod 4.

Complexity. We give explicit formulas for the sum, product, and randomness complexity of Al-
gorithm 1 in Table 1, and compare it with the generic scheme of Beläıd et al. from EURO-
CRYPT 2016.9 The worst case randomness complexity of our scheme occurs when d ≡ 1 mod 4,
and the best when d ≡ 0 mod 4, then needing 3d/4 fewer random masks than [BBP+16, Algo-
rithm 4]. The product complexity of both algorithms is equal and entirely due to the computation
of the aibj terms, but our algorithm is better in terms of sum complexity. This latter is some-
what irrelevant for masking over large fields, since the cost is then dominated by the product and
randomness complexity; however, for masking over F2, products and sums have a similar cost.

We also give explicit figures for d ≤ 11 in Appendix A, Table 6.

5.2 Strong non-interfering schemes

We do not propose a generic family of new SNI schemes, but use a heuristic that successfully
converts (most of) our new NI multiplications into SNI ones. The idea is to notice that from the
point of view of an SNI attacker, an external probe (i.e. a probe on an output share) is especially
powerful as it is not counted in the number of shares available to the simulator. We thus simply
try to reduce the impact of such probes by systematically masking the output shares with fresh
randomness.

Applying this heuristic results in ad hoc SNI multiplication gadgets experimentally verified to
be secure up to order 9. However, this same heuristic seems to fail starting from d = 10, and our
verification software finds attacks within seconds against all the candidate SNI gadgets that we
tried for that order and beyond.

9 Recall however that they also provide better algorithms at order 2, 3 and 4.

12

https://github.com/NicsTr/binary_masking


Algorithm 1: A d-NI (d+ 1, d+ 1)-gadget for multiplication over fields of characteristic
two
Input : S = {α̂i,j , 0 ≤ i ≤ j ≤ d}
Input : R = {ri}, i ∈ N
Output: (ci)0≤i≤d, such that

∑d
i=0 ci =

∑d
i=0 ai

∑d
i=0 bi

for i←[ 0 to d do
ci ←[ α̂i,i

S ←[ S \ {α̂i,i}
end
R′ ←[ {}
j ← [ 1
while S 6= ∅ do

for i← [ 0 to d do
if j ≡ 1 mod 2 then

ci ←[ ci + r (j−1)
2

.(d+1)+i

R′ ← [ R′ ∪
{
r (j−1)

2
.(d+1)+i

}
else

ci ←[ ci + r (j−2)
2

.(d+1)+(i+1 mod (d+1))

R′ ← [ R′ \
{
r (j−2)

2
.(d+1)+(i+1 mod (d+1))

}
end
if S 6= ∅ then

ci ←[ ci + α̂i,((i+j) mod (d+1))

S ←[ S \ {α̂i,((i+j) mod (d+1))}
else

break
end

end
j ←[ j + 1

end
k ←[ #R′
for i←[ 0 to d do

ci ←[ ci + r (j−1)
2

(d+1)+(i+1 mod k)

end

Table 1: Complexity comparison for d-NI multiplication

Metric [BBP+16, Algorithm 4] Algorithm 1

Sum
d(7d+10)

4
(d even) (d + 1)(d + 2

⌈
d
4

⌉
) (d�≡1 mod 4)

(7d+1)(d+1)
4

(d odd) (d + 1)(2
⌈
d
4

⌉
+ d− 1) + 2 (d ≡ 1 mod 4)

Product (d + 1)2 (d + 1)2

Randomness
( d2

4
) + d (d even) (d + 1)

⌈
d
4

⌉
(d�≡1 mod 4)

(d2−1)
4

+ d (d odd) (d + 1)
⌈
d
4

⌉
− d+1

2
+ 1 (d ≡ 1 mod 4)

We give the full description of our ad-hoc SNI gadgets at https://github.com/NicsTr/

binary_masking , and provide explicit cost figures in Table 6, Appendix A. It is important to
note that these gadgets do not always improve on ISW multiplication [ISW03]: our 1-SNI multi-
plication is more expensive, and the cost is identical at order 2,3,4 and 6. Yet they give notable
improvements for the remaining orders 5,7,8 and 9; for instance, our 7-SNI multiplication uses only
20 fresh random masks compared to 28 for ISW —a close to 30% improvement.

5.3 Examples

We present two d-NI gadgets and the corresponding d-SNI variants in Figure 2, using the concise
notation of the tool from EUROCRYPT 2016 recalled in Section 4.3.

The description of our other gadgets can be found at https://github.com/NicsTr/binary_

masking.

13

https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking


s00 r00 s01 s10 r01 s02 s20 r07 s03 s30 r08

s11 r01 s12 s21 r02 s13 s31 r08 s14 s41 r09

s22 r02 s23 s32 r03 s24 s42 r09 s25 s52 r10

s33 r03 s34 s43 r04 s35 s53 r10 s36 s63 r11

s44 r04 s45 s54 r05 s46 s64 r11 s40 s04 r12

s55 r05 s56 s65 r06 s50 s05 r12 s51 s15 r13

s66 r06 s60 s06 r00 s61 s16 r13 s62 s26 r07

(a) 6-NI multiplication, 14 random masks

s00 r00 s01 s10 r01 s02 s20 r07 s03 s30 r08 r14 r20

s11 r01 s12 s21 r02 s13 s31 r08 s14 s41 r09 r15 r14

s22 r02 s23 s32 r03 s24 s42 r09 s25 s52 r10 r16 r15

s33 r03 s34 s43 r04 s35 s53 r10 s36 s63 r11 r17 r16

s44 r04 s45 s54 r05 s46 s64 r11 s40 s04 r12 r18 r17

s55 r05 s56 s65 r06 s50 s05 r12 s51 s15 r13 r19 r18

s66 r06 s60 s06 r00 s61 s16 r13 s62 s26 r07 r20 r19

(b) 6-SNI multiplication, 21 random masks

s00 r00 s01 s10 r01 s02 s20 r06 s03 s30 r07

s11 r01 s12 s21 r02 s13 s31 r07 s14 s41 r08

s22 r02 s23 s32 r03 s24 s42 r08 s25 s52 r09

s33 r03 s34 s43 r04 s35 s53 r09 r06

s44 r04 s45 s54 r05 s40 s04

s55 r05 s50 s05 r00 s51 s15

(c) 5-NI multiplication, 10 random masks

s00 r00 s01 s10 r01 s02 s20 r06 s03 s30 r07 r10

s11 r01 s12 s21 r02 s13 s31 r07 s14 s41 r08 r11

s22 r02 s23 s32 r03 s24 s42 r08 s25 s52 r09

s33 r03 s34 s43 r04 s35 s53 r09 r06

s44 r04 s45 s54 r05 s40 s04 r10

s55 r05 s50 s05 r00 s51 s15 r11

(d) 5-SNI multiplication, 12 random masks

Fig. 2: 5-and-6 NI and SNI gadgets for multiplication.

5.4 Applications

Example of the AES field inversion. To show the usefulness of their new NI multiplication,
Beläıd et al. improve in [BBP+16, Proposition 7.7] the SNI field inversion circuit of [BBD+15]
(which is the costliest part of computing a masked AES S-box). This improvement consists in
replacing two of the four SNI multiplications by NI multiplications, and since they did not propose
any new SNI schemes, they use ISW multiplication for the other two.

We use the same example to demonstrate in Table 2 the impact of our new schemes at order
8 and 9. In the former case, this reduces the need for fresh randomness by 25% and the number
of sums by more than 15%; in the latter, there is again a reduction of fresh randomness by nearly
25% and of sums by about 12%. It is interesting to notice that the randomness improvements due
to the NI and SNI gadgets are markedly different in these two cases: at order 8 both of our gadgets
reduce the cost in equal proportion, but at order 9 most of the gain is due to the SNI one.

Finally, note that the algorithms of [BBP+17] could in principle give even better results, but
there is no known instantiation of them over F28 at order more than 4 [KR18].

Bitsliced high-order masking. A recent trend in practical implementations of high-order mask-
ing schemes is to use a parallel or bitsliced approach, see e.g. [GR17,BDF+17,JS17,GJRS18,GPSS18].
In that respect, since our schemes are naturally defined over F2, they seem to be good candidates to
replace the algorithms of [BBP+16] and [ISW03] whenever these are used. This would for instance
not easily be the case for the algorithms of [BBP+17] even if high-order instantiations could be

14



Table 2: Cost of the d-SNI AES field inversion at order d = 8 and d = 9 using the circuit of
[BBP+16, Section 7.2]. All quantities are over F28 .

d = 8 d = 9

[BBP+16] §5 [BBP+16] §5

Sums 2× 132 + 2× 144 2× 108 + 2× 126 2× 160 + 2× 180 2× 142 + 2× 150
= 552 = 468 = 680 = 600

Products 4× 81 4× 81 4× 100 4× 100
= 324 = 324 = 400 = 400

Random masks 2× 24 + 2× 36 2× 18 + 2× 27 2× 29 + 2× 45 2× 26 + 2× 30
= 120 = 90 = 148 = 112

found as they require multiplications by elements of extension fields, which is incompatible with
a bitsliced approach.10 Yet, as is shown by Goudarzi et al. [GJRS18], different tradeoffs may be
available for optimised implementations of different schemes. It would thus be an interesting future
work to precisely assess the cost of vectorised implementations of our gadgets.

5.5 Verification performance

We conclude this section with an evaluation of the performance of our verification software from
Sections 3 and 4, that we use to prove the security of our schemes.

Probes filtering. Following the results of Section 3.2, we use a filtering process to reduce the
initial set of probes that one has to enumerate to prove security into a smaller equipotent subset.
For our schemes, this means removing probes of the form: α̂∗,∗+

∑
(r∗+ α̂∗,∗) + r∗+a∗b∗,

11 and
the equipotency of the filtered set and the original one is verified by an exhaustive check on the
subsets corresponding to every output share. Intuitively, the idea is that one can always replace in
an attack a probe of the above form with one that includes one extra ajbi term, i.e. one of the form
α̂∗,∗ +

∑
(r∗ + α̂∗,∗) + r∗ + α̂∗,∗, since the latter only adds an additional functional dependence

on the input shares “for free”.
The concrete impact of filtering on the verification performance of our schemes can be seen in

Table 3, where we give the size of the attack sets to enumerate before and after this filtering.

Performance. For order d ≤ 10, we have run our software on a single core of the retourdest

server, which features a single Intel Xeon Gold 6126 at 2.60 GHz. The corresponding timings are
given in Table 3. At peak performance, we are able to enumerate ≈ 227.5 candidate attack sets per
second for NI verification, while SNI performance is slightly worse.

Using filtered set significantly improves verification time, especially at high order. For instance,
the running times of 2 and 6 hours for NI and SNI multiplication at order 9 are an order of
magnitude faster than the 3 and 6 days initially spent before we implemented filtering. This
optimisation was also essential in allowing to check the security of our 10-NI gadget in less than
one calendar day (using parallelisation); it would otherwise have taken a rather costly 1 core-year.

We also tested a multi-threaded implementation of our software on schemes at order 8 ∼ 10,
using all 12 physical cores of the same Xeon Gold 6126; the results are shown in Table 4. While
we do not have many data points, the speed-up offered by the parallelisation seems to be close to
linear, albeit slightly less for NI verification: the 9-SNI multi-threaded wall time is ≈ 11.7 times
less than the single-threaded one, and multi-threading for 9- and 10-NI saves a factor ≈ 9.7.

The largest instance that we verified is the NI multiplication at order d = 11. We relied heavily
on parallelisation to enumerate the ≈ 252.72 possible attack sets,12 using up to 16 nodes of the
Dahu cluster.13 Each node has two 16-core Intel Xeon Gold 6130 at 2.10 GHz, and when using

10 On high-end architectures, one might still be able to pack several multiplications using an instruction
such as pclmulqdq, but that would arguably not be “pure” bitslicing.

11 This corresponds exactly to the probes made of an even number of a∗b∗ terms.
12 This is after filtering of the initial ≈ 259 sets.
13 https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu

15

https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu


hyperthreading allows to enumerate ≈ 231.38 sets per second. This overall lead to a wall-time of
only three days.

Comparison with maskVerif. We have also verified the security of our gadgets at order 6 to 8
with the maskVerif tool from Barthe et al. [BBC+19].14 Due to system constraints, we could not
run the verification on retourdest, and instead defaulted to the older hpac, which features an
Intel Xeon E5-4620 at 2.20 GHz. Yet since the maskVerif implementation is parallel and may use
up to four threads, we believe that comparison with Table 3 is nonetheless meaningful.

The running times are summarised in Table 5. Comparing with Table 3, it is notable that
our own software is faster by three orders of magnitude, for instance taking one minute to check
8-NI multiplication versus two days for maskVerif. However, it must be noted that maskVerif is
much more generic than our software, and is in particular able to analyse the security of hardware
countermeasures in presence of glitches.

Table 3: Running time of our verification software (sequential)

Order d log2(number of sets) Wall time
Before/After filtering Best (after filtering)

1
NI 2.6/2.6 < 0.01 sec.

SNI 2.6/2.6 < 0.01 sec.

2
NI 6.3/5.5 < 0.01 sec.

SNI 6.3/5.5 < 0.01 sec.

3
NI 10.4/8.9 < 0.01 sec.

SNI 11.2/9.96 < 0.01 sec.

4
NI 15.0/12.6 < 0.01 sec.

SNI 16.6/15.0 < 0.01 sec.

5
NI 21.2/18.6 < 0.01 sec.

SNI 21.7/19.3 < 0.01 sec.

6
NI 27.1/23.9 0.09 sec.

SNI 28.7/26.2 0.59 sec.

7
NI 32.7/28.7 2.43 sec.

SNI 33.6/30.0 7.52 sec.

8
NI 38.5/33.7 1 min. 17 sec.

SNI 40.3/36.3 9 min. 28 sec.

9
NI 45.6/40.5 2 h. 18 min.

SNI 46.3/41.6 6 h. 30 min.

10 NI 52.6/47.10 9 days 3h.

Table 4: Running time of our verification software (parallel, 12 threads)

Order d Wall time

8
NI 7.43 sec.

SNI 47.0 sec.

9
NI 14 min. 20 sec.

SNI 33 min. 20 sec.

10 NI 22 h. 30 min.

14 Available at https://gitlab.com/benjgregoire/maskverif.

16

https://gitlab.com/benjgregoire/maskverif


Table 5: Running time of maskVerif (parallel, up to 4 threads) [BBC+19]

Order d Wall time

6
NI 2 min. 44 sec.

SNI 9 min. 0 sec.

7
NI 1 h. 39 min.

SNI 5 h. 54 min.

8
NI 2 days 10h.

SNI 13 days 6h.

Acknowledgments

We thank Clément Pernet for his part in the proof of Lemma 14, Yann Rotella for an early
discussion on the possibility of further filtering, and the authors of [BBC+19] for providing us
access to an up-to-date version of maskVerif.

This work is partially supported by the French National Research Agency in the framework of
the Investissements d’avenir programme (ANR-15-IDEX-02).

Some of the computations presented in this paper were performed using the GRICAD in-
frastructure (https://gricad.univ-grenoble-alpes.fr), which is partially supported by the
Equip@Meso project (ANR-10-EQPX-29-01) of the Investissements d’Avenir programme.

References

BBC+19. Gilles Barthe, Sonia Beläıd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire, and
François-Xavier Standaert. maskVerif: Automated Verification of Higher-Order Masking in
Presence of Physical Defaults. In ESORICS 2019 (to appear), 2019. Available at https://

eprint.iacr.org/2018/562.

BBD+15. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, and Benjamin Grégoire.
Compositional Verification of Higher-Order Masking: Application to a Verifying Masking Com-
piler. IACR Cryptology ePrint Archive, 2015:506, 2015.

BBD+16. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-Interference and Type-Directed Higher-
Order Masking. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 116–129. ACM, 2016.

BBP+16. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and
Damien Vergnaud. Randomness Complexity of Private Circuits for Multiplication. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, volume 9666 of Lecture Notes
in Computer Science, pages 616–648. Springer, 2016.

BBP+17. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and
Damien Vergnaud. Private Multiplication over Finite Fields. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, volume 10403 of Lecture Notes in Computer Science, pages
397–426. Springer, 2017.

BDF+17. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Stan-
daert, and Pierre-Yves Strub. Parallel Implementations of Masking Schemes and the Bounded
Moment Leakage Model. In Coron and Nielsen [CN17], pages 535–566.

CN17. Jean-Sébastien Coron and Jesper Buus Nielsen, editors. Advances in Cryptology — EURO-
CRYPT 2017, volume 10210 of Lecture Notes in Computer Science, 2017.

dah. The Dahu cluster. https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/

Hardware:Dahu.

DFS15. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making Masking Security
Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer
Science, pages 401–429. Springer, 2015.

FG18. Junfeng Fan and Benedikt Gierlichs, editors. Constructive Side-Channel Analysis and Secure
Design — COSADE 2018, volume 10815 of Lecture Notes in Computer Science. Springer, 2018.

GJRS18. Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier Standaert. Secure
Multiplication for Bitslice Higher-Order Masking: Optimisation and Comparison. In Fan and
Gierlichs [FG18], pages 3–22.

GPSS18. Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko Stoffelen. Vectorizing
Higher-Order Masking. In Fan and Gierlichs [FG18], pages 23–43.

17

https://gricad.univ-grenoble-alpes.fr
https://eprint.iacr.org/2018/562
https://eprint.iacr.org/2018/562
https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu
https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu


GR17. Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking Be in Software?
In Coron and Nielsen [CN17], pages 567–597.

ISW03. Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003.

JS17. Anthony Journault and François-Xavier Standaert. Very High Order Masking: Efficient Imple-
mentation and Security Evaluation. In Wieland Fischer and Naofumi Homma, editors, CHES
2017, volume 10529 of Lecture Notes in Computer Science, pages 623–643. Springer, 2017.

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Michael J.
Wiener, editor, CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–
397. Springer, 1999.

Knu11. Donald E. Knuth. Combinatorial Algorithms, Part 1, volume 4A of The Art of Computer
Programming. Addison Wesley, 2011.

KR18. Pierre Karpman and Daniel S. Roche. New Instantiations of the CRYPTO 2017 Masking
Schemes. In Thomas Peyrin and Steven D. Galbraith, editors, ASIACRYPT 2018, volume
11273 of Lecture Notes in Computer Science, pages 285–314. Springer, 2018.

LT73. C. N. Liu and Donald T. Tang. Enumerating Combinations of m Out of n Objects [G6] (Algo-
rithm 452). Commun. ACM, 16(8):485, 1973.

NW78. Albert Nijenhuis and Herbert S. Wilf. Combinatorial algorithms for computers and calculators.
Academic Press, second edition, 1978.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans. Information
Theory, 8(5):5–9, 1962.

Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27(4):701–717, 1980.

Wal. Timothy R. Walsh. A simple sequencing and ranking method that works on almost all gray
codes. Unpublished research report. Available at: https://www.labunix.uqam.ca/~walsh_t/
papers/sequencing_and_ranking.pdf.

18

https://www.labunix.uqam.ca/~walsh_t/papers/sequencing_and_ranking.pdf
https://www.labunix.uqam.ca/~walsh_t/papers/sequencing_and_ranking.pdf


A Explicit costs of multiplication gadgets

We only provide a comparison of our gadgets with [ISW03] and [BBP+16, Alg. 4]. In the latter
case, better algorithms were already provided by the authors up to order 4. The main range of
interest of our gadgets is thence at order 5 and beyond.

Table 6: Explicit costs of multiplication gadgets

Order d [BBP+16, Alg. 4] (NI) §5.1 (NI)
[ISW03] (SNI) §5.2 (SNI)

Random masks Sums Random masks Sums

1
NI • • 2 5

SNI 1 4 2 5

2
NI 3 12 3 12

SNI 3 12 3 12

3
NI 5 22 4 20

SNI 6 24 6 24

4
NI 8 38 5 30

SNI 10 40 10 40

5
NI 11 54 10 50

SNI 15 60 12 54

6
NI 15 78 14 70

SNI 21 84 21 84

7
NI 19 100 16 88

SNI 28 112 20 96

8
NI 24 132 18 108

SNI 36 144 27 126

9
NI 29 160 26 142

SNI 45 180 30 150

10 NI 35 200 33 176

11 NI 41 234 36 204

19


	High-order private multiplication in characteristic two revisited

