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Abstract. We revisit the matrix model for non-interference (NI) probing security of masking
gadgets introduced by Beläıd et al. at CRYPTO 2017. This leads to two main results.
1) We generalise the theorems on which this model is based, so as to be able to apply them
to masking schemes over any finite field — in particular F2 — and to be able to analyse the
strong non-interference (SNI) security notion. We also follow Faust et al. (TCHES 2018) to
additionally consider a robust probing model that takes hardware defects such as glitches
into account.
2) We exploit this improved model to implement a very efficient verification algorithm that
improves the performance of state-of-the-art software by three orders of magnitude. We
show applications to variants of NI and SNI multiplication gadgets from Barthe et al. (EU-
ROCRYPT 2017) which we verify to be secure up to order 11 after a significant parallel
computation effort, whereas the previous largest proven order was 7; SNI refreshing gadgets
(ibid.); and NI multiplication gadgets from Groß et al. (TIS@CCS 2016) secure in presence
of glitches. We also reduce the randomness cost of some existing gadgets, notably for the
implementation-friendly case of 8 shares, improving here the previous best results by 17%
(resp. 19%) for SNI multiplication (resp. refreshing).

Keywords: High-order masking, probing model, multiplication gadget, refreshing gadget,
linear code.

1 Introduction

Since their introduction in the late last century, side-channel attacks and in particular Differential
Power Analysis (DPA) [KJJ99] have developed into one of the most efficient attack techniques on
implementations of cryptographic primitives. The importance of this new threat and its practical
relevance soon lead to the design of appropriate counter-measures, one of the most influential to
date being the “ISW” private multiplication circuit of Ishai, Sahai and Wagner [ISW03]. This is a
foremost example of a masking scheme, where sensitive data are split into several shares using a
secret sharing scheme; the crux of the design is then to devise a way to perform field arithmetic
over the shares without leaking too much information to the adversary in the process.

A major characteristic of a masking scheme is the order at which it is secure: in a probing model
such as the one introduced by Ishai, Sahai and Wagner, a circuit secure at order d is such that no
adversary can learn information about its input and output even when being given d intermediate
values of its computation. The usefulness of increasing the security order is then justified by the
fact that under reasonable assumptions, the number of measurements needed for a successful attack
increases exponentially in d [DFS15].

Unfortunately, high-order schemes also come with a significant overhead, since the complexity of
ISW multiplication is quadratic in d for three relevant metrics: to secure one field multiplication,
one needs 2d(d + 1) sums, (d + 1)2 products and d(d + 1)/2 fresh random masks. This lead to
several attempts to find more efficient multiplication circuits, especially with respect to the last
two metrics.

A number of new schemes for private multiplication were introduced in the past few years by
Beläıd et al. [BBP+16,BBP+17]. At EUROCRYPT 2016, they design a new high-order scheme
whose randomness complexity is decreased to ≈ d2/4 + d, and which can be easily instantiated
over any finite field of characteristic two (they also give specific schemes with even lower cost up to
order 4). The security of this multiplication is analysed in the composable model of non interference
(NI) from Barthe et al. [BBD+16]. This is slightly weaker than the strong non-interference (SNI)
security achieved by ISW multiplication but remains of high practical relevance: for instance, one
can replace half of the multiplications in a masked AES S-box computation by the ones of [BBP+16]
while maintaining the overall strong SNI security for the entire S-box. At CRYPTO 2017, the
same authors propose two new schemes, one with linear bilinear multiplication complexity, and the
other with linear randomness complexity. However, those are complex to securely instantiate and



cannot be done so over F2. As an example, over F28 , Beläıd et al. only manage to instantiate their
algorithms at order 2 and 3 respectively; this was later slightly improved to 4 in both cases by
Karpman and Roche [KR18]. In this second paper, Beläıd et al. also analyse the security of their
schemes thanks to a powerful matrix-based model that they introduce. This model is however
not complete for schemes defined over small fields such as F2; while this was not a limitation
for their schemes, it precludes its full application to this common case. Finally, Barthe et al.
introduced some of the most efficient known NI and SNI multiplication and refreshing schemes at
EUROCRYPT 2017 [BDF+17], selected instances of which were then later improved by Grégoire
et al. [GPSS18] and Barthe et al. [BBD+18].

The above work are chiefly concerned with software-oriented counter-measures, and the pro-
tection of hardware circuits additionally requires to take into account the possibility of physical
defects such as glitches. This can for instance be done by generalising probing security to a robust
variant proposed by Faust et al. [FGP+18], or by following the more physical approach of Bloem
et al. [BGI+18]. As was recently noted by Moos et al. [MMSS19], the analysis of masking schemes
in this harder model is currently quite less mature than in the software case.

On the implementation side, several recent work investigate the efficiency of high-order mask-
ing in practice [GR17,JS17,GJRS18,GPSS18]; they show in particular the increasing feasibility of
masking block ciphers at quite high order such as 7, and the possibility of masking at very high
order such as 31. Such high-order masking may be useful to secure implementations running on
devices with low noise level. This was recently highlighted by a practical attack of Bronchain and
Standaert on a protected AES implementation where the low noise and masking order were found
to be contributing factors to its feasibility [BS19]. From a technical point-of-view, high-order im-
plementations share the common approach of exploiting bitslicing or vectorisation to amortise the
overhead brought by the use of many shares. They also confirm the high cost of randomness gener-
ation; for instance, depending on the random number generator performance and the block cipher
under consideration Journault and Standaert report that 68–92% of the time is spent generating
fresh masks in their 32-share implementations [JS17]. Also, since bitslicing works with operations
at the bit level, this strategy requires the masking to be performed over F2 and these work confirm
the importance of high-order masking schemes over this field with low randomness complexity.

1.1 Our contribution

Our work brings two main contributions. On the theoretical side, we extend the matrix model
of [BBP+17] to be able to prove the security of schemes defined over any finite field, and F2 in
particular; we also extend it to analyse SNI security, whereas it was only formulated in the NI
case by Beläıd et al., and incorporate the robust probing model of Faust et al. [FGP+18] to offer
limited support for verification in presence of glitches. The extension to F2 is particularly relevant
to concrete masking schemes since up to a few exceptions such as the one of [BBP+17], most
schemes are intrinsically defined over this field. A corollary of our new theorems is also a simple
proof that a scheme proven secure over F2 remains so when used over any extension, which is a
common practice.

On the practical side, we use this extended model to derive a very efficient implementation
of a verification algorithm whose performance beats the state-of-the-art maskVerif tool of Barthe
et al. [BBC+19] by three orders of magnitude in the case of software multiplication gadgets; we
illustrate this on software and hardware multiplication and refreshing schemes from the literature.
We then take advantage of our improved verification performance and spend significant computa-
tion effort into proving the security of (variants of) the software multiplication gadgets of Barthe
et al. [BDF+17] at mid-to-high order. This is all the more relevant since those do not have known
generic proof of security at any order and are used in concrete implementations [JS17,GPSS18]. We
verify NI and SNI gadgets up to order 11 at a total combined cost of close to 255 basic operations,
whereas the previously largest proven order was 7. We justify on the way the necessity of perform-
ing this kind of verification for schemes that do not have generic proofs by disproving a conjecture
of Barthe et al. on the security of a natural transformation of NI schemes into SNI ones. Finally,
we propose various improvements to decrease the randomness cost of several software gadgets.
This results for instance in a decrease of 17% (resp. 19%) over the state-of-the-art for 8-share SNI
multiplication (resp. refreshing) schemes, which could then be used as stand-in replacements in the
vectorised implementation of Grégoire et al. [GPSS18].
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1.2 Roadmap

We present the security models and extend the matrix approach from CRYPTO 2017 in Section 2.
We then introduce our verification algorithm and discuss its implementation in Sections 3 and 4.
We conclude with experimental results and the description of new gadgets in Section 5.

1.3 Notation

We use Kn×m to denote the ring of matrices of n rows and m columns over the field K. We write
Ja, a + tK for the set of integers {a, a + 1, . . . , a + t}. Matrices and vectors are named with bold
upper- and lower-case variables respectively; In, 0n×m, 1n×m always denote the n-dimensional
identity matrix and all-zero and all-one n×m matrices respectively, over any field K.

2 Security models for masking schemes

2.1 Simulatability and non-interference

We start by recalling the definitions of the models of non-interference (NI), tight non-interference
(TNI) and strong non-interference (SNI), introduced by Barthe et al. at CCS 2016 [BBD+16]. Our
presentation closely follows the one of Beläıd et al. [BBP+17].

Definition 1 (Gadgets). Let f : Kn → Km, u, v ∈ N; a (u, v)-gadget for the function f is a
randomised circuit C such that for every tuple (x1, . . . ,xn) ∈ (Ku)n and every set of random coins
R, (y1, . . . ,ym)← [ C (x1, . . . ,xn;R) satisfies: v∑

j=1

y1,j , . . . ,

v∑
j=1

ym,j

 = f

 u∑
j=1

x1,j , . . . ,

u∑
j=1

xm,j

 .

One further defines xi as
∑u

j=1 xi,j, and similarly for yi; xi,j is called the jth share of xi.

In this definition, a randomised circuit C is a directed acyclic graph whose vertices represent
arithmetic operation gates (addition and multiplication) over K of arity two, or random gates of
arity zero whose outputs are i.i.d. over K for every execution of the circuit, and recorded in the
variable R; the edges of the graph are wires that connect the input and output of the gates together
so as to describe the full computation of a given function.

A probe on a circuit C is a map that for every execution C (x1, . . . ,xn;R) returns the value
propagated on one of the wires of C . One may further distinguish between external probes on the
output wires or output shares yi,j ’s of C , and the remaining internal probes.

Definition 2 (t-Simulatability). Let C be a (u, v)-gadget for f : Kn → Kn, and `, t ∈ N. A set
P = {p1, . . . , p`} of probes of C is said to be t-simulatable if ∃ I1, . . . , In ⊆ J1, uK; #Ii ≤ t and a
randomised function π : (Kt)n → K` such that for any fixed (x1, . . . ,xn) ∈ (Ku)n, {p1, . . . , p`} ∼
{π({x1,i, i ∈ I1}, . . . , {xn,i, i ∈ In})}.

Less formally, a set P of probes on C is t-simulatable if there exists a randomised function
that perfectly simulates the distribution of {p1, . . . , p`} while requiring at most t shares of every
input to C . It is important to remark here that a simulation has to be done for every fixed input
(x1, . . . ,xn), regardless of the fact that one may randomise these inputs across many executions
of C .

Thanks to Definition 2, we may now define the following.

Definition 3 (d-Non-interference). A (u, v)-gadget C for a function over Kn is d-non-interfering
(or d-NI) if and only if for any set P of at most d probes on C ∃ t ≤ d s.t. P is t-simulatable.

Definition 4 (d-Tight non-interference). A (u, v)-gadget C for a function over Kn is d-tight-
non-interfering (or d-TNI) if and only if any set of t ≤ d probes on C is t-simulatable.

Definition 5 (d-Strong non-interference). A (u, v)-gadget C for a function over Kn is d-
strong non-interfering (or d-SNI) if and only if for every set P1 of d1 internal probes and every
set P2 of d2 external probes such that d1 + d2 ≤ d, then P1 ∪ P2 is d1-simulatable.

It is clear that strong non-interference implies tight non-interference at the same order, which
itself implies non-interference. Barthe et al. [BBD+16] showed that tight non-interference did not
imply strong non-interference, but that the composition of a d-NI gadget with a d-SNI one is d-
SNI, while the composition of two d-NI gadgets was not necessarily d-NI. On the other hand they
also showed that non-interference and tight non-interference are in fact equivalent, which in proofs
allows to select the most convenient notion.
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2.2 Matrix model for non-interference

We now recall Theorem 3.5 from Beläıd et al. [BBP+17], which defines a powerful matrix model
to analyze the (T)NI property of a gadget over a sufficiently large field K for which all probes are
bilinear. We then generalise it as Theorem 12 to work with schemes over any finite field (and F2

in particular), and to also analyse SNI security in Theorem 20.
In all of the following, we restrict our interest to gadgets for binary functions1 f : K2 → K,

and the inputs to f (resp. their sharings in a gadget C ) will be denoted a and b (resp. a =
(a0, . . . ,au−1)t, b = (b0, . . . , bu−1)t). We also write the elements of R as a vector r = (r1, . . . , rR)t

Definition 6 (Bilinear probe). A probe p on a (d+ 1, v)-gadget C for a function f : K2 → K
is called bilinear iff. it is an affine function in ai, bj, aibj, rk; 0 ≤ i, j ≤ d, 1 ≤ k ≤ R.
Equivalently, p is bilinear iff. ∃M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, σ ∈ KR and τ ∈ K s.t. p =
atMb+ atµ+ btν + rtσ + τ .

Definition 7 (Functional dependence). An expression E(x1, . . . , xn) is said to functionally
depend on xn iff. ∃ c1, . . . , cn−1 s.t. the mapping xn 7→ E(c1, . . . , cn−1, xn) is not constant.

We now introduce the following condition.

Condition 8 ([BBP+17, Condition 3.2]). A set of bilinear probes P = {p1, . . . , p`} on a
(d+1, v)-gadget C for a function f : K2 → K satisfies Condition 8 iff. ∃λ ∈ K`, M ∈ K(d+1)×(d+1),

µ, ν ∈ Kd+1, and τ ∈ K s.t.
∑`

i=1 λipi = atMb + atµ + btν + τ and all the rows of the block

matrix
(
M µ

)
or all the columns of the block matrix

(
M
νt

)
are non-zero.

In other words, this condition states that there exists a linear combination of probes of P that
does not functionally depend on any random scalar and that functionally depends on either all of
the shares for a or all of the shares for b.

We are now ready to state the following theorem.

Theorem 9 ([BBP+17, Theorem 3.5]). Let P be a set of bilinear probes on a (d+1, v)-gadget
C for a function f : K2 → K. If P satisfies Condition 8, then it is not d-simulatable. Furthermore,
if P is not d-simulatable and #K > d+ 1, then it satisfies Condition 8.

The next immediate corollary is more useful in practice.

Corollary 10 ([BBP+17, Corollary 3.7]). Let C be a (d + 1, v)-gadget for a function f :
K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of d probes on C
satisfying Condition 8. Furthermore, if #K > d+ 1 and there is no set of d probes on C satisfying
Condition 8, then C is d-NI.

For the masking schemes of CRYPTO 2017 [BBP+17] the restriction #K > d + 1 is never an
issue, as they are defined over large fields; however, this condition means that one cannot directly
apply Corollary 10 to prove the security of a scheme over a small field such as F2.

We now sketch a proof of the second statement of Theorem 9 as a preparation to extending it
to any field.

Proof (Theorem 9 right to left, sketch). Let P = {p1, . . . , p`} be a set of bilinear probes that is
not d-simulatable. We call R the block matrix

(
σ1 · · · σ`

)
, where σi denotes as in Definition 6 the

vector of random scalars on which pi depends. Up to a permutation of its rows and columns, the

reduced column echelon form R′ of R is of the shape

(
It 0t,`−t
N 0t

)
, where t < ` is the rank of R

and N is arbitrary. If we now consider the formal matrix P =
(
p1 · · · p`

)t
and multiply it by the

change-of-basis matrix from R to R′, we obtain the matrix P ′ =
(
P ′r P

′
d

)
where P ′r represents t

linear combinations {p′1, . . . , p′t} of probes that each depend on at least one random scalar which
does not appear across any of the other linear combinations, and P ′d represents ` − t linearly
independent linear combinations P ′ = {p′t+1, . . . , p

′
`} of probes that do not depend on any random

scalar. All of the {p′1, . . . , p′t} can then be simulated by independent uniform distributions without
requiring the knowledge of any share, and as P is not d-simulatable, P ′ cannot be d-simulatable
either. W.l.o.g., this means that for every share ai, there is at least one linear combination of probe
in P ′ that depends on it. In other words, the matrix D =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
that records

1 Results for unary functions can then easily be obtained by e.g. fixing one input.
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this dependence has no zero row. We now finally want to show that there is a linear combination(
λt+1 · · · λ`

)t
of elements of P ′ that satisfies Condition 8. This can be done by showing that

∃Λ =
(
Λt+1 · · · Λ`

)t
s.t. DΛ has no zero row, where the Λi’s are the (d + 2) × (d + 2) scalar

matrices of multiplication by the λi’s. By the Schwartz-Zippel-DeMillo-Lipton lemma this is always
the case as soon as #K > d+ 1 [Sch80], and this last step is the only one that depends on K. ut

We now wish to extend Theorem 9 and its corollary to any finite field K. We do this using
the TNI notion rather than NI, and so first state an appropriate straightforward adaptation of
Condition 8:

Condition 11. A set of bilinear probes P = {p1, . . . , p`} on a (d + 1, v)-gadget C for a function
f : K2 → K satisfies Condition 11 iff. ∃λ ∈ K`, M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.∑`

i=1 λipi = atMb + atµ + btν + τ and the block matrix
(
M µ

)
(resp. the block matrix

(
M
νt

)
)

has at least `+ 1 non-zero rows (resp. columns).

In other words, Condition 11 states that the expression
∑`

i=1 λipi, which involves ` probes,
functionally depends on no random scalar and on at least `+ 1 shares of a or `+ 1 shares of b, and
hence is a TNI attack. We will then show the following:

Theorem 12. Let P be a set of at most d bilinear probes on a (d+ 1, v)-gadget C for a function
f : K2 → K. If P, is not d-simulatable then ∃P ′ ⊆ P s.t. P ′ satisfies Condition 11.

Corollary 13 (Corollary of Theorems 9 and 12). Let C be a (d + 1, v)-gadget C for a
function f : K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of d
probes on C satisfying Condition 8. Furthermore, if there is no set of t ≤ d probes on C satisfying
Condition 11, then C is d-NI.2

The proof of Theorem 12 essentially relies on the following lemmas, conveniently formulated
with linear codes3:

Lemma 14. Let C1 (resp. C2) be an [n1, k] (resp. [n2, k], n2 > n1) linear code over a finite field
K. Let G1 ∈ Kk×n1 and G2 ∈ Kk×n2 be two generator matrices for C1 and C2 that have no
zero column. Then the concatenated code C1,2 of C1 and C2 generated by G1,2 :=

(
G1 G2

)
has

the following property: ∃ c ∈ C1,2 s.t. wt1(c) < wt2(c), where wt1(·) (resp. wt2(·)) denotes the
Hamming weight function restricted to the first n1 (resp. last n2) coordinates of C1,2.

One may remark that if #K is sufficiently large w.r.t. the parameters of the codes, then by the
Schwartz-Zippel-DeMillo-Lipton lemma there exists a word in C1,2 of maximal wt2 weight, and the
conclusion immediately follows; yet this argument does not hold over any field.

Lemma 15. The statement of Lemma 14 still holds if K is replaced by a matrix ring K′d×d and
if G1 is defined over the subfield of the scalar matrices of K′d×d.

We first recall the following:

Definition 16 (Shortening of a linear code). Let C be an [n, k] linear code over K generated by
G ∈ Kk×n. The shortened code C′ w.r.t. coordinate i ∈ J1, nK is the subcode made of all codewords
of C that are zero at coordinate i, with this coordinate then being deleted.

We also give:

Definition 17 (Isolated coordinate). Let M ∈ Km×n. A coordinate i ∈ J1, nK is called isolated
for the row Mj of M , j ∈ J1,mK, iff. Mj,i 6= 0 and ∀j′ 6= j ∈ J1,mK, Mj′,i = 0.

And:

Procedure 18. We reuse the notation of the statement of Lemma 14. We apply Procedure 18 on
a row of G1,2 by doing the following: denote I1 (resp. I2) the (possibly empty) set of isolated
coordinates on its first n1 (resp. last n2) columns; then if #I1 ≥ #I2, shorten C1,2 w.r.t. all the
coordinates in I1 ∪ I2. Practically, this means deleting from G1,2 the row being processed and all

the columns in I1 ∪ I2. This results in a code C′1,2 generated by
(
G′1 G

′
2

)
where G′1 ∈ K(k−1)×n′1

(resp. G′2 ∈ K(k−1)×n′2) is a submatrix of G1 (resp. G2) and n′1 < n1, n′2 < n2, n′1 < n′2, and
none of the columns of G′1,2 is zero. One may also remark that since G′1 is of rank k − 1, we have
k − 1 ≤ n′1.

2 As Condition 11 directly implies an attack, one could also formulate this corollary solely in terms of this
condition.

3 Recall that an [n, k] linear code over a field K is a k-dimensional linear subspace of Kn.
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We are now ready to prove Lemmas 14 and 15.

Proof (Lemma 14). We prove this lemma by induction using Procedure 18.
In a first step one applies Procedure 18 to every row of G1,2 one at a time and repeats this

process again until either there is no row for which applying the procedure results in a shortening,
or the dimension of the shortened code reaches 1.

In the latter case, this means that the only codeword in G′1,2 ∈ K1×(n′1+n′2) is of full weight
n′1 + n′2 with n′1 < n′2 (since G′1,2 only has a single row and none of its columns is zero). This
induces a codeword c of C s.t. wt1(c) = n′1 and wt2(c) = n′2, so we are done.

In the former case, one is left with a matrix G′1,2 ∈ Kk′×(n′1+n′2), k′ > 1. One then computes the
reduced row echelon form of G′1,2 (this does not introduce any zero column since the elementary
row operations are invertible) and again iteratively applies Procedure 18 on the resulting matrix
as done in the first step. Now either the application of Procedure 18 leads to a shortened code
of dimension 1 and then we are done as above, or we are left with a matrix G′′1,2 ∈ Kk′′×(n′′1 +n′′2 )

which can be of two forms:

1. k′′ = n′′1 . Up to permutation of its columns, G′′1,2 can be written as:(
In′′1 In′′1 In′′1 ∗

)
,

where ∗ is arbitrary. The left k′′×n′′1 block is justified from G′′1,2 being in reduced row echelon
form and having full rank. The right k′′ × n′′2 block is justified from the fact that every row of
the left block has exactly one isolated coordinate; since no simplification can be done anymore
to G′′1,2 by applying Procedure 18, this means that those rows have at least two isolated
coordinates on the right block. This is enough to conclude on the existence of a codeword of C
satisfying the desired property.
Recall that it is not possible to have k′′ > n′′1 from the last remark in Procedure 18. The only
remaining case is then:

2. k′′ < n′′1 . Up to a permutation of its columns, the rank-k′′ matrix G′′1,2 can be written as:(
Ik′′ ∗L Ik′′ Ik′′ ∗R

)
,

and it has no zero column. One then applies Lemma 14 inductively on the code generated by
the submatrix G′′′1,2 :=

(
∗L Ik′′ ∗R

)
which is of strictly smaller length. Let c′′′ = λG′′′1,2 be a

codeword of this latter code that satisfies the desired property, then λG′′1,2 also satisfies it for
C1,2, which concludes the proof.

ut

Proof (Lemma 15). The proof simply consists in remarking that all the steps of the proof of
Lemma 14 can be carried out in the modified setting of Lemma 15. Mainly:

— Definitions 16 and 17 and Procedure 18 naturally generalise to matrices over rings, and the
application of Procedure 18 is unchanged.

— Recall that by induction the left k′ × n′1 submatrix is always of full rank k′, which is also
the rank of G′1,2. Since G1 is defined over scalar matrices, Gauß-Jordan elimination can be
computed as if over a field.

ut

The proof of Theorem 12 then follows.

Proof (Theorem 12). We start similarly from the proof of Theorem 9, and use the same notation:
let P ′ be a set of `−t linearly independent linear combinations of probes of P that do not depend on
any random scalar, and letD =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
be the matrix that records the dependence

of these probes on every share ai.We will show that ∃P ′′ ⊆ P that satisfies Condition 11. To do
this, we introduce two new indicator matrices:

— Let Π ∈ K(d+2)×(d+2)(`−t)×` be s.t. for every p′ ∈ P ′ it records in its rows its dependence
on the probes of P as scalar matrices;4 that is, Π is s.t. p′i =

∑`
j=1 πi,jpj where πi,j is the

scalar on the diagonal of the scalar matrix Πi,j . W.l.o.g., we may assume that every probe of
P appears at least once in a linear combination of P ′, otherwise it is simply discarded, so Π
has no zero column.

4 This use of scalar matrices is only so that Π is defined on the same base structure as ∆ below. As an

example, taking ` = d = 2 and considering two probes in P ′ as p′1 = p1+p2; p′2 = p2, thenΠ =

(
I4 I4
04 I4

)
.
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— Let ∆ ∈ K(d+2)×(d+2)(`−t)×(d+1)
be the matrix that for every p′ ∈ P ′ records in its rows

its dependence on the shares ais; that is if the bilinear probe p′i can be written as p′i =
atM ′b+ atµ′ + btν′ + τ ′, then ∆i,j is set to the diagonal matrix of the jth row of

(
M ′ µ′

)
.5

Note that since by assumption D has no zero row, ∆ has no zero column.

Now we invoke Lemma 15 with Π as G1 and ∆ as G2 the generator matrices for the concatenated
code C1,2. Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear
combination of `′′ := wt1(c) probes of P ′′ ⊆ P that (as linear combinations of elements of P ′) does
not depend on any randomness and s.t. the associated matrix

(
M ′′ µ′′

)
has wt2(c) ≥ `′′ + 1 non-

zero rows (by applying the inverse transformation from ∆ to D), hence P ′′ satisfies Condition 11.
ut

Finally, the proof of Corollary 13 is immediate from Theorems 9 and 12.

2.3 Matrix model for strong non-interference

We now wish to adapt the approach of Theorems 9 and 12 to be able to prove that a scheme is
SNI. This is in fact quite straightforward, and it mostly consists in defining a suitable variant of
Condition 11 and in applying Lemma 15 to well-chosen matrices, to show again that there is a
subset of probes that satisfies the condition whenever there is an attack.

Condition 19. A set of ` = `1 + `2 bilinear probes P = {p1, . . . , p`} on a (d + 1, v)-gadget
C for a function f : K2 → K, of which `1 are internal, satisfies Condition 19 iff. ∃λ ∈ K`,
M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.

∑`
i=1 λipi = atMb+atµ+btν+ τ and the block

matrix
(
M µ

)
(resp. the block matrix

(
M
νt

)
) has at least `1 + 1 non-zero rows (resp. columns).

Theorem 20. Let P be a set of at most d bilinear probes on a (d+ 1, v)-gadget C for a function
f : K2 → K, of which `1 are internal. If P is not `1-simulatable then ∃P ′ ⊆ P s.t. P ′ satisfies
Condition 19.

Proof. We reuse the notation of Theorems 9 and 12. The proof is essentially the same as the one of
Theorem 12, except that we only account for internal probes in Π. Let P ′ be a set of `− t linearly
independent linear combinations of probes of P that do not depend on any random scalar, and let
D =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
be the matrix that records the dependence of these probes on every

share ai. From the assumption that P is not `1-simulatable, we have that w.l.o.g., D has at least
`1 + 1 non-zero rows.

— Let Π ∈ K(d+2)×(d+2)(`−t)×`1 be s.t. for every p′ ∈ P ′ it records in its rows its dependence
on the `1 internal probes (w.l.o.g. {p1, . . . , p`1}) of P as scalar matrices; that is, Π is s.t.

p′i =
∑`1

j=1 πi,jpj +
∑`

j=`1+1 αjpj , where πi,j is the scalar on the diagonal of the scalar matrix
Πi,j and the αjs are unimportant. W.l.o.g., we may assume that every internal probe of P
appears at least once in a linear combination of P ′, otherwise it is simply discarded, so Π has
no zero column.

— Let ∆ ∈ K(d+2)×(d+2)(`−t)×d
′

be the matrix that for every p′ ∈ P ′ records in its rows its
dependence on the shares ais. If a row of D is all zero, the corresponding column is not
included in ∆, and since D has at least `1 + 1 non-zero rows, ∆ has at least d′ ≥ `1 + 1
columns none of which are zero.

Now we invoke Lemma 15 with Π as G1 and ∆ as G2 the generator matrices for the concatenated
code C1,2. Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear
combination of `′′ := wt1(c) internal probes to which one can add a linear combination of up to
`2 external probes s.t. it does not depend on any randomness and the associated matrix

(
M ′′ µ′′

)
has wt2(c) ≥ `′′ + 1 non-zero rows. The set P ′′ ⊆ P of these internal and external probes thus
satisfies Condition 19. ut

And we then have the immediate corollary:

Corollary 21. Let C be a (d + 1, v)-gadget for a function f : K2 → K for which all probes are
bilinear. If there is no set of t ≤ d probes on C satisfying Condition 19, then C is d-SNI.
5 This use of diagonal matrices allows to keep track of (the lack of) simplifications when combining several

probes; for instance, if two probes depend on the same ai as aibj and aibj′ with j 6= j′, then the sum
of those probes still depends on ai. Continuing the previous example and taking p′1 = a0b0 + a0b1 +

a1b2 + a2, then the first row of ∆ (whose entries are 4× 4 matrices) is


1 0 0

1 0 0
0 1 0

0 0 1

.
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2.4 Security of binary schemes over finite fields of characteristic two

Let C be a d-NI or SNI gadget for a function defined over F2; a natural question is whether its
security is preserved if it is lifted to an extension F2n . Indeed, the probes available to the adversary
are the same in the two cases, but the latter offers more possible linear combinations

∑`
i=1 λipi,

since the λis are no longer restricted to {0, 1}. We answer this question positively, and give a
simple proof based on Theorems 12 and 20.

Theorem 22. Let C be a d-NI (resp. d-SNI) gadget for a function f : F2
2 → F2, then for any n,

the natural lifting Ĉ of C to f̂ : F2
2n → F2n is also d-NI (resp. d-SNI).

Proof. We only prove the d-NI case, the d-SNI one being similar. From Corollary 13, it is sufficient
to show that if @P for C that satisfies Condition 11, then the same holds for Ĉ . We do this by
showing the following contrapositive: if a set of probes P is not d-simulatable for Ĉ , then it is not
d-simulatable either for C .

From the proofs of Theorems 9 and 12, if P is not d-simulatable for Ĉ , then there is a matrix
D̂ that leads to the existence of P ′ s.t. Condition 11 is satisfied. All we need to do is showing that
a similar matrix D can also be found for C . Since C is defined over F2, the matrices R and P ,
and thence R̂ and P̂ have all their coefficients in {0, 1}. As 1 is its own inverse, the change-of-basis

matrix from R̂ to R̂′ is also binary; equivalently, this means that the Gauß-Jordan elimination of
R̂ can be done in the subfield F2. Thus one only has to take D = D̂ to satisfy Condition 11 on
C . ut

This result is quite useful as it means that the security of a binary scheme only needs to be
proven once in F2, even if it is eventually used in one or several extension fields. Proceeding thusly
is in particular beneficial in terms of verification performance, since working over F2 limits the
number of linear combinations to consider and may lead to some specific optimisations (cf. e.g.
Sections 3 and 4).

Remark. This result was in fact already implicitly used (in a slight variant) by Barthe et al. in
their masking compiler [BBD+15] and in maskVerif [BBC+19], since they use gadgets defined over
an arbitrary structure (K, 0, 1,⊕,	,�). However we could not find a proof, which actually seems
necessary to justify the correctness of this approach and of our algorithms of the next section.

3 An algorithm for checking non-interference

In this section, we present a new efficient algorithm to check if a scheme is (strong) non-interfering.
This algorithm is a modification of the one presented by Beläıd et al. at EUROCRYPT 2016
[BBP+16, Section 8], and its correctness crucially relies on Theorems 12 and 20; it thus only
applies to schemes for which all probes are bilinear, but this is not a hard restriction in practice.

In all of the following we assume that the field K over which the scheme is defined is equal to
F2, which means that we will simultaneously assess its security in that field and all its extensions
(cf. Section 2.4). Some discussion of implementation in the NI case for schemes natively defined
over larger fields (meaning that shares or random masks may be multiplied by constants not in
{0, 1}) for which the new Theorem 12 is not needed can be found in [KR18].

We start by introducing some vocabulary and by recalling the algorithm from Beläıd et al..

Definition 23 (Elementary probes). A probe p is called elementary if it is of the form p = aibj
(elementary deterministic probe) or p = ri (elementary random probe).

Definition 24 (Shares indicator matrix). Let p be a bilinear probe. We call shares indicator
matrix and write Mp the matrix M from Definition 6.

Definition 25 (Randomness indicator matrix). Let p be a bilinear probe. We call randomness
indicator matrix and write σp the column matrix σ from Definition 6.

3.1 The algorithm from EUROCRYPT 2016

At EUROCRYPT 2016, Beläıd et al. presented an efficient probabilistic algorithm to find potential
attacks against the d-privacy notion6 for masking schemes for the multiplication over F2. By
running the algorithm many times and not detecting any attack, one can also establish the security

6 It can also be trivially modified to check attacks against NI security.
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of a scheme up to some probability, but deriving a deterministic counterpart is less trivial. This
algorithm works as follows.

Consider a scheme on which all possible probes P are bilinear, and let HP :=
(
σp

)
, p ∈ P be

the block matrix constructed from the all the corresponding randomness indicator matrices. The
algorithm of [BBP+16, Section 8] starts by finding a set of fewer than d probes whose sum7 does
not depend on any randomness. That is to say, it is looking for a vector x such that HP · x = 0
and wt(x) ≤ d. This can be immediately reformulated as a coding problem, as one is in fact
searching for a codeword of weight less than d in the dual code of HP . This search can then be
performed using any information set decoding algorithm, and Beläıd et al. used the original one
of Prange [Pra62].8 Once such a set has been found, it is tested against [BBP+16, Condition 2]
(which is similar to Condition 8) to determine if it is a valid attack against the d-NI notion, and
[BBP+16, Condition 1] to determine if it is an attack for d-privacy. This procedure is then repeated
until an attack is found or one has gained sufficient confidence in the security of the scheme.

Removing elementary deterministic probes. To make the above procedure more efficient, an
important observation made by Beläıd et al. is that if the sum of every probe of a given set does not
functionally depend on some ai or bj , it is always possible to make it so by adding a corresponding
elementary probe aibj . This can be used to check, say, d-NI security by simply comparing the
number of missing ai or bj to d−wt(x). This allows to reduce the number of probes that one has
to include in P (and thus the dimension of HP), making the algorithm more efficient.

3.2 A new algorithm based on enumeration

We now describe a new algorithm based on a partial enumeration of the power set ℘(P) of P.
The idea is to simply consider every sum of fewer than d probes and to check if it depends
on all shares and no random masks, relying on Corollaries 13 and 21 for correctness. Since the
cost of such an enumeration quickly grows with the size of P, we then follow and extend the
above observation by Beläıd et al. and only perform the enumeration on a reduced set. We first
describe a simple extension of this “dimension reduction” strategy, before detailing the algorithms
themselves. A more elaborate dimension reduction process is then described in Section 3.3, and we
discuss implementation aspects in Section 4.

Removing elementary random probes. It is easy to adapt a deterministic enumeration so that
one can completely remove elementary random probes; it suffices to remark that if the sum of
every probe of a given set functionally depends on some ri, it is always possible to make it not so
by adding the corresponding elementary probes.

Combining the two above observations, we may remove every elementary probe from the set
P.9 This can be summarized by saying that in the enumeration, one is not restricted anymore to
finding exactly a combination of fewer than d probes that depends on all shares and no random
masks, as it is enough to find a combination of ` ≤ d probes that depends on u shares and v masks
as long as d − ` ≥ (d + 1 − u) + v, since the missing shares and extra masks can be dealt with
elementary probes in a predictable way. This is in fact exactly the check that is performed in our
implementation in the case of NI security, as is detailed and justified below.

Checking a scheme for non-interference. We now state the following:

Proposition 26. Let C be a (d+ 1, v)-gadget for a function f : F2
2 → F2 for which all probes are

bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on na shares
ais, nb shares bjs, and nr random scalars ris. Let Q1 be one of the smallest sets of elementary
probes needed to complete Q0 such that Q0 ∪ Q1 satisfies Condition 11 and functionally depends
on all the ais or all the bis.10 Then n1 := #Q1 = nr + (d+ 1−max(na, nb)).

7 That is, the only non-trivial linear combination over F2 that depends on all the elements of the set.
8 One may remark that since information set decoding relies on Gaussian elimination, the cost of one step

of this algorithm increases more than linearly in the size of P.
9 Note that this means that one would not detect the existence of an attack that would use only elementary

probes. However, it is easy to see from their definitions that ` such probes functionally depend on at
most ` shares, and so can never lead to a non-trivial attack.

10 This additional constraint is not in itself necessary, but it simplifies the overall algorithm.
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Proof. An elementary probe functionally depends on either one ri or one ai and one bj , but not
both. Thus, the minimum number of elementary probes needed to cancel every ri and to add the
d+1−na (resp. d+1−nb) missing ais (resp. bjs) in Q0 is nr +(d+1−na) (resp. nr +(d+1−nb)).
Thus, #Q1 = min(nr + d+ 1− na, nr + d+ 1− nb) = nr + d+ 1−max(na, nb). ut

This proposition can then be used in a straightforward way to check if a scheme is d-NI. To do
so, one simply has to enumerate every set Q0 ∈ ℘(P) of d non-elementary probes or fewer and to
check if n0 +n1 ≤ d. By Corollary 13, if no such set Q0 can be completed as in Proposition 26 and
still contain fewer than d probes, then the scheme is d-NI.

Checking a scheme for strong non-interference. We only need to adapt Proposition 26 to
distinguish between internal and external probes:

Proposition 27. Let C be a (d+ 1, v)-gadget for a function f : F2
2 → F2 for which all probes are

bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on na shares
ais, nb shares bjs, and nr random scalars ris. Let nI denote the number of internal probes in Q0.
Then there is a set Q1 of nr elementary random probes such that Q0 ∪ Q1 satisfies Condition 19
iff. max(na, nb) > nI + nr.

Proof. Recall that all elementary probes are internal. If Q0 does not satisfy Condition 19, then
adding an elementary deterministic probe increases by at most one the number of non-zero rows,
while increasing by one the total number of probes, so this completed set does not satisfy Q0 either.
It is thus enough to only consider random probes in Q1.

ForQ = Q0∪Q1 to satisfy Condition 19, it is necessary to cancel all the potential randomness ris
on which Q0 depends; so Q1 must be the (possibly empty) set of the nr corresponding elementary
random probes. Now Q contains nI +nr internal probes and it functionally depends on na ais and
nb bjs. Thus it satisfies Condition 19 iff. max(na, nb) > nI + nr. ut

This proposition can then be used in a straightforward way to check if a scheme is d-SNI. To
do so, one simply has to enumerate every set Q0 ∈ ℘(P) of d non-elementary probes or fewer and
to check if max(na, nb) > nI +nr and n0 +nr ≤ d. If no such set satisfying this condition is found,
then the scheme is d-SNI by Corollary 21.

3.3 Dimension reduction

To further reduce the size of the space to explore during the verification, it may be possible to
filter additional non-elementary probes from the set P, in the case where they can be replaced
by “better” ones. To do this while ensuring the correctness of our verification algorithm, we first
define the following:

Definition 28 (Equipotent sets). Let P := ∪vk=0Pk and P ′ := ∪vk=0P ′k be two sets of probes on
a (d+ 1, v)-gadget C for a function f : F2

2 → F2 for which all probes are bilinear, where Pk (resp.
P ′k) denotes the probes on the wires of C that are connected to the output share ck. Then P ′ is
said to be equipotent to P iff.:

— #P ′ ≤ #P
— ∀k,∀λ ∈ K#Pk ,∃λ′ ∈ K#P′k , wt(λ′) ≤ wt(λ) for which, reusing the notation of Definition 6,∑

pi∈P λipi and
∑

p′i∈P′
λ′ip
′
i are such that:

— σ = σ′

— supp(M) ⊆ supp(M ′), supp(µ) ⊆ supp(µ′), supp(ν) ⊆ supp(ν′), where by supp(A) we
denote the set of non-zero coefficients of A.

In other words a set is equipotent to another iff. the shares and randomness dependence of any
linear combination of elements of the latter can be “covered” by a linear combination of equal or
lower weight of the former. We then have:

Lemma 29. If two linear combinations of probes
∑
λipi and

∑
λ′ip
′
i functionally depend on dis-

joint sets of elementary probes and shares aibj, ai and bj, then their sum functionally depends on
the union of those sets.

Proof. Immediate, since using the notation of Definition 6, the supports of M , µ, ν are disjoint
from the ones of M ′, µ′, ν′. ut
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Finally, we conclude with the following:

Proposition 30. Let P and P ′ be two equipotent sets of probes on a (d + 1, v)-gadget C for a
function f : F2

2 → F2 for which all probes are bilinear and for which all output shares functionally
depend on pairwise disjoint sets of elementary probes and shares aibj, ai and bj. Then if Q ⊆ P
satisfies Condition 11, ∃Q′ ⊆ P ′, #Q′ ≤ #Q that also satisfies Condition 11.

Proof. Let us write Q as ∪vk=0Qk (resp. Q′ as ∪vk=0Q′k) where Qk (resp. Q′k) denotes the probes
on the wires of C that are connected to the output share ck. Let

∑
pi∈Q λipi denote one linear

combination of elements of Q whose existence is guaranteed by its satisfying Condition 11, which

we rewrite as:
∑

k

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i . For each λ(k), let λ′(k) be the coefficients for one of the linear

combination of elements of Q′k whose existence is guaranteed by P ′ being equipotent to P. Then

by applying Lemma 29 to each of
∑

k

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i and

∑
k

∑
p
(k)
i ∈Q′k

λ
′(k)
i p

(k)
i , it follows that

the latter does not functionally depend on any elementary random probe ri, and the elementary
deterministic probes and shares on which it functionally depends is a superset of the ones on which
depends the former; thus Q′ satisfies Condition 11. ut

Examples. Consider a set P of two probes a0b0 + r0 +a0b1 and a0b0 + r0 +a0b1 +a1b0 on the
same output share. Then provided that none of the aibj appear in other output shares, this set
can be simplified by keeping only the second probe, since it covers all the shares of the first one.

On the other hand, a set containing two probes a0b0 +r0 +a0b1 +a1b0 and a0b0 +r0 +a0b1 +
a1b0+r1 cannot be simplified since the two probes do not include exactly the same random masks.

We will see in Section 5 how Proposition 30 can be used in practice to significantly improve
verification performance. The nature of the probes that can be removed of course depends on the
scheme under consideration, and we will later detail how to do this for some concrete gadgets.

3.4 Adaptation to the robust probing model

From a security perspective, a major difference between software and hardware masked imple-
mentations of cryptographic algorithms is that in the latter case, physical defects may render the
countermeasure ineffective. In the case of one such phenomenon known as glitches, a probe at
an arithmetic gate (i.e. an addition or a multiplication) can leak more to the adversary than its
sole output — something that is not taken into account in the usual probing model. In an effort
to remedy this situation, Faust et al. recently proposed to extend probing security into a robust
probing model [FGP+18], able to take several types of hardware defects into account. In the case
of glitches, this is done by assuming that a probe at an arithmetic gate leaks the union of what is
leaked by its two inputs. One consequence is that if two arithmetic gates are connected together,
leakage at the first one also propagates to the second. To stop this propagation, one must then use
a memory gate (a register), which only leaks its output value.

Concretely, the robust probing model defines a leakage set L(p) of possibly more than one value
for every probe p at an arbitrary gate. This is more complex than, and not directly compatible
with the usual probing security model and how we exploit it in our algorithm, where a probe leaks
a single expression and verification implies enumerating and summing all subsets of size up to
some order d. Nevertheless, one can opt for the following simple two-step strategy: 1) iterate over
all subsets P of d probes or fewer; 2) then compute and check every possible full-weight linear
combination of values leaked by this set of probes. In a non-robust model and for schemes over F2,
step 2) only involves a single expression (viz. the sum of all the single values leaked by each probe),
but in a robust model there are in general

∏
p∈P

(
2#L(p) − 1

)
expressions to consider (since for

each probe one must now consider all the non-trivial binary linear combinations of the values it
leaked).

Related work. The maskVerif tool [BBC+19] is also able to check security in presence of glitches,
and similarly relies on the robust probing model for that purpose.

Another approach to analyse hardware schemes has been proposed by Bloem et al. [BGI+18].
Even if the underlying model is not the same as the one of Faust et al., one of the steps in the ver-
ification also involves computing and considering leakage sets formed by every linear combination
of the inputs to arithmetic gates.
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4 Implementation

We now describe an efficient C implementation of the algorithm of the previous section for K = F2.
Our software is publicly available at: https://github.com/NicsTr/binary_masking.

4.1 Data structures and vectorisation

To evaluate if a set of probes P may lead to an attack, it is convenient to define the following:

Definition 31 (Attack matrix). The attack matrix AP of a set of probes P is defined as the
sum of the share indicator matrices of the probes in P:

AP =
∑
p∈P

Mp.

Definition 32 (Noise matrix). The noise matrix BP of a set of probes P is defined as the sum
of the randomness indicator matrices of the probes in P:

BP =
∑
p∈P

σp.

One can then simply compute the quantities na, nb and nr needed in Propositions 26 and 27 as
the number of non-zero rows or columns of these two matrices. To analyse a given scheme, one then
just has to provide a full description of Mp and σp for every non-elementary probe. Additionally,
since Proposition 27 requires to compute the number of internal probes nI in a set, those have to
be labelled as such.

We inline all data structures and store them in either standard or vector registers. AP is stored
twice, once row-wise and once column-wise, in order to avoid the otherwise costly transposition
needed to compute both its row and its column “Hamming weight”. For schemes at order d ≤ 15,
each row or column fits within a 16-bit words leading to a quite efficient vectorised Hamming weight
computation, as shown in Listing 1. We also provide a slower implementation for schemes at higher
order; in this case actually proving the security with our algorithm is likely to be intractable due
to the combinatorial explosion of the number of sets to consider, yet a partial run may still be able
to detect attacks, in the fashion of the original algorithm from EUROCRYPT 2016.

int popcount256_16(__m256i v)

{

return __builtin_popcountl(_mm256_cmpgt_epi16_mask(v, _mm256_setzero_si256()));

}

Listing 1: Hamming weight computation of a vector of dimension 16 over 16-bit words using
AVX512VL and AVX512BW; a variant with only a few more instructions can be used with only
AVX2.

4.2 Amortised enumeration & parallelisation

Recall that to prove the security of a scheme at order d, the algorithm of Section 3 requires to
enumerate all the

∑d
i=1

(
n
i

)
subsets of a (possibly filtered) set of probes P of size n. For a subset

P ′ ⊆ P of size `, a näıve approach in computing AP′ would use `− 1 additions, and this for every
such P ′. However, a well-known optimisation for this kind of enumeration is instead to go through
all the subsets of a fixed weight in a way that ensures that two consecutive sets P ′ and P ′′ only
differ by two elements. One can then compute, say, AP′′ efficiently by updating AP′ with one
addition and one subtraction. We do this in our implementation by using a so-called “revolving-
door algorithm” (cf. e.g. [Knu11, Algorithm R]) for the Nijenhuis-Wilf-Liu-Tang “combination
Gray code”[NW78,LT73].

In the robust probing model setting, one may also need to enumerate more than one expression
for a given set of probes. This can still be done efficiently with Gray codes: an outer mixed-radix
code can be used to go through the

∏
p∈P′(2

#L(p) − 1) considered linear combinations by only
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“incrementing” the leaked value of a single probe at a time, and an inner binary code can be used
to efficiently implement this incrementation for every probe.

The enumeration can also be easily parallelised, and the main challenge is to couple it with the
above amortised approach. This can in fact be done quite efficiently, as the combination Gray code
that we use possesses an efficient unranking map from the integers to arbitrary configurations [Wal].
One can then easily divide a full enumeration of a total of n combinations into j jobs by starting
each of them independently at one of the configurations given by the unranking of i×n/j, i ∈ J0, jJ.

4.3 From high-level representation to C description

We use a custom parser to convert a readable description of a masking scheme into a C description
of its probes’ indicator matrices.

Each line of the high-level description corresponds to an output share. The available symbols
are:

— sij which represents a product aibj ;
— ri which represents a random mask ri;
— a space ‘ ’, a binary operator which represents an addition (i.e. XOR) gate;
— parentheses, which allow explicit scheduling of the operations;
— |, a postfixed unary operator which represents the use of a register to store the expression that

is before the symbol. This is only needed for an analysis in presence of glitches.

Additionally, the user needs to specify the order d of the scheme as well as the list of random masks
used.

The scheduling of the operations needed to compute the output shares is important, as it
determines the probes available to the adversary. In that respect, the parser uses by default an
implicit left-to-right scheduling and addition gates have precedence over registers. As an example
the scheme whose output shares are defined as:

c0 = ((((a0b0 ⊕ r0)⊕ a0b1)⊕ a1b0)⊕ r1)

c1 = ((((a1b1 ⊕ r1)⊕ a1b2)⊕ a2b1)⊕ r2)

c2 = ((((a2b2 ⊕ r2)⊕ a2b0)⊕ a0b2)⊕ r0)

is described by the file:
ORDER = 2

MASKS = [r0, r1, r2]

s00 r0 s01 s10 r1

s11 r1 s12 s21 r2

s22 r2 s20 s02 r0

Another example is the following DOM-indep multiplication by Groß et al., which is NI at
order two even in the presence of glitches:

ORDER = 2

MASKS = [r0, r1, r2]

s00 (s01 r0|) (s02 r1|)

(s10 r0|) s11 (s12 r2|)

(s20 r1|) (s21 r2|) s22

Fig. 1: High-level representation of the glitch-resistant DOM-indep multiplication at order
2 [GMK16].

5 Applications

In this section we apply our fast implementation of the verification algorithm of Section 3 to
various state-of-the-art masking gadgets and also propose new improved instances in medium
order, including better SNI multiplication and refreshing gadgets for the practically-relevant case
of 8 shares.

We analyse:
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— In Section 5.1: NI and SNI multiplication gadgets originally from [BDF+17,GPSS18].
— In Section 5.2: SNI refreshing gadgets originally from [BDF+17,BBD+18].
— In Section 5.3: Glitch-resistant NI multiplication from [GMK16].

5.1 NI and SNI multiplication gadgets

We first study a family of multiplication gadgets that were introduced by Barthe et al. at EU-
ROCRYPT 2017 [BDF+17] and used in the efficient masked AES implementation of Grégoire
et al. [GPSS18] (who also propose improvements in the 4-share setting) and in the very high order
implementations of Journault and Standaert [JS17].

Our motivations in doing so are the following: since there is no known security proof at arbitrary
order for these schemes, it is natural to try to prove them computationally at the highest possible
order. Barthe et al. originally did this up to order 7,11 and we manage to reach order 11 both for
NI and SNI security, which represents a significant improvement.12 A second motivation is that the
verification of multiplication gadgets quickly becomes intractable with increasing order, and such a
task allows us to clearly demonstrate our performance gain over maskVerif. Finally, this improved
verification efficiency is exploited in trying to find ad hoc gadget variants with lower cost.

On the negative side our verification shows that a conjecture from Barthe et al. on the security
of a natural strategy to convert NI multiplication into SNI fails at order 10. More positively, we were
able to find ad hoc conversions tuned to every NI multiplication we considered, which sometimes
also bring a significant improvement in randomness cost over Barthe et al.’s strategy. For instance
we are able to gain 17% for an 8-share, 7-SNI gadget similar to the one used in [GPSS18]. Finally
using a slight variant of Barthe et al.’s gadget generation algorithm, we occasionally obtain some
improvements also in the NI case, notably at order 5.

We give details of our improvements in Table 5 in Appendix A, and the descriptions of all the
gadgets at https://github.com/NicsTr/binary_masking.

The NI multiplication gadget family of [BDF+17, Algorithm 3]. We give in Algorithm 1
a description of a slightly modified variant of [BDF+17, Algorithm 3], which occasionally gives
better gadgets than the original. We also provide a small script to automatically generate a scheme
at a given order at https://github.com/NicsTr/binary_masking.

This description relies on the following convenient definition:

Definition 33 (Pair of shares).
Let (aibj), i, j ∈ J0, dK be the input shares of a (d+ 1, v) gadget. We define α̂i,j as:

α̂i,j =

{
aibj if i = j

aibj + ajbi otherwise

Extension to SNI security. One can derive an SNI multiplication gadget from Algorithm 1 by
doing the following: 1) proving NI security at some order d; 2) proving SNI security at the same
order for a refreshing gadget ; 3) composing the two gadgets.

This strategy can for instance be implemented with the refreshing gadgets also introduced
in [BDF+17] that we discuss in the next Section 5.2, but Barthe et al. already remarked that it
was in fact apparently not necessary to use full refreshing gadgets and that one could do better
by using a degraded variant thereof: in a nutshell, one starts from a secure NI multiplication and
simply masks every output share with a fresh random mask and then again with the mask of the
following share in a circular fashion. This is illustrated for 7-share gadgets in Figure 2.

Barthe et al. then conjecture in [BDF+17] that this transformation is always enough to convert
an NI scheme into an SNI one. However we could check that this is not true for 11- and 12-share
gadgets: the respective instantiations of Algorithm 1 are NI, but the transformation fails to provide
SNI multiplications. Yet it is in fact still possible to derive an 11-share, 10-SNI multiplication gadget
at no additional cost by simply rotating the last repeated masks by two positions instead of one,
for a total cost of 44 random masks.

We explored several other transformation strategies, trying to exploit the special shape of the
NI multiplication gadgets as much as possible. This almost always improved on the use of a new

11 We ourselves used the latest version of maskVerif to do so up to order 8.
12 This however still cannot theoretically justify the use of this masked multiplication at order 31 as is

done in [JS17].
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Algorithm 1: A conjectured d-NI (d + 1, d + 1)-gadget for multiplication over fields of
characteristic two.
Input : S = {α̂i,j , 0 ≤ i ≤ j ≤ d}
Input : R = {ri}, i ∈ N
Output: (ci)0≤i≤d, such that

∑d
i=0 ci =

∑d
i=0 ai

∑d
i=0 bi

for i←[ 0 to d do
ci ←[ α̂i,i

S ←[ S \ {α̂i,i}
end
R′ ←[ {}
j ← [ 1
while S 6= ∅ do

for i← [ 0 to d do
if j ≡ 1 mod 2 then

ci ←[ ci + r (j−1)
2

.(d+1)+i

R′ ← [ R′ ∪
{
r (j−1)

2
.(d+1)+i

}
else

ci ←[ ci + r (j−2)
2

.(d+1)+(i+1 mod (d+1))

R′ ← [ R′ \
{
r (j−2)

2
.(d+1)+(i+1 mod (d+1))

}
end
if S 6= ∅ then

ci ←[ ci + α̂i,((i+j) mod (d+1))

S ←[ S \ {α̂i,((i+j) mod (d+1))}
else

break
end

end
j ←[ j + 1

end
k ←[ #R′
for i←[ 0 to d do

ci ←[ ci + r (j−1)
2

(d+1)+(i+1 mod k)

end

s00 r00 s01 s10 r01 s02 s20 r07 s03 s30 r08

s11 r01 s12 s21 r02 s13 s31 r08 s14 s41 r09

s22 r02 s23 s32 r03 s24 s42 r09 s25 s52 r10

s33 r03 s34 s43 r04 s35 s53 r10 s36 s63 r11

s44 r04 s45 s54 r05 s46 s64 r11 s40 s04 r12

s55 r05 s56 s65 r06 s50 s05 r12 s51 s15 r13

s66 r06 s60 s06 r00 s61 s16 r13 s62 s26 r07

(a) 6-NI multiplication, 14 random masks.

s00 r00 s01 s10 r01 s02 s20 r07 s03 s30 r08 r14 r20

s11 r01 s12 s21 r02 s13 s31 r08 s14 s41 r09 r15 r14

s22 r02 s23 s32 r03 s24 s42 r09 s25 s52 r10 r16 r15

s33 r03 s34 s43 r04 s35 s53 r10 s36 s63 r11 r17 r16

s44 r04 s45 s54 r05 s46 s64 r11 s40 s04 r12 r18 r17

s55 r05 s56 s65 r06 s50 s05 r12 s51 s15 r13 r19 r18

s66 r06 s60 s06 r00 s61 s16 r13 s62 s26 r07 r20 r19

(b) 6-SNI multiplication, 21 random masks (not op-
timal).

Fig. 2: 6-NI and SNI gadgets for multiplication.

mask for every share (the current exception being the order-8 gadget), usually requiring only
about half. For instance our best 11-share gadget in fact only requires 39 masks instead of the
above 44 as shown in Figure 3, and we found a 7-SNI multiplication with only 20 masks shown
in Figure 4, which is 4 less than [BDF+17]. While this latter improvement is somewhat moderate
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at about 17%, this 8-share case is quite relevant due to its use in the efficient vectorised masked
AES implementation of Grégoire et al. [GPSS18]; using our new variant should then result in a
noticeable decrease in randomness usage.

We provide a summary of the cost of the multiplication gadgets that we have verified and their
improvement over the previously best known ones in Appendix A, and we give their full description
at https://github.com/NicsTr/binary_masking.

s00 r00 s01 s10 r01 s02 s20 r11 s03 s30 r12 s04 s40 r22 s05 s50 r23 r40

s11 r01 s12 s21 r02 s13 s31 r12 s14 s41 r13 s15 s51 r23 s16 s61 r24 r41

s22 r02 s23 s32 r03 s24 s42 r13 s25 s52 r14 s26 s62 r24 s27 s72 r25 r42

s33 r03 s34 s43 r04 s35 s53 r14 s36 s63 r15 s37 s73 r25 s38 s83 r26 r43

s44 r04 s45 s54 r05 s46 s64 r15 s47 s74 r16 s48 s84 r26 s49 s94 r27 r44

s55 r05 s56 s65 r06 s57 s75 r16 s58 s85 r17 s59 s95 r27 s5a sa5 r28 r45

s66 r06 s67 s76 r07 s68 s86 r17 s69 s96 r18 s6a sa6 r28 s60 s06 r29 r40

s77 r07 s78 s87 r08 s79 s97 r18 s7a sa7 r19 s70 s07 r29 s71 s17 r30 r41

s88 r08 s89 s98 r09 s8a sa8 r19 s80 s08 r20 s81 s18 r30 s82 s28 r31 r42

s99 r09 s9a sa9 r10 s90 s09 r20 s91 s19 r21 s92 s29 r31 s93 s39 r32 r43

saa r45 sa0 s0a r00 sa1 s1a r21 sa2 s2a r11 sa3 s3a r32 sa4 s4a r22 r44 r10

Fig. 3: 10-SNI gadget for multiplication, using 39 random masks.

s00 r00 s01 s10 r01 s02 s20 r08 s03 s30 r09 s04 r20

s11 r01 s12 s21 r02 s13 s31 r09 s14 s41 r10 s15 r21

s22 r02 s23 s32 r03 s24 s42 r10 s25 s52 r11 s26 r22

s33 r03 s34 s43 r04 s35 s53 r11 s36 s63 r12 s37 r23

s44 r04 s45 s54 r05 s46 s64 r12 s47 s74 r13 s40 r20

s55 r05 s56 s65 r06 s57 s75 r13 s50 s05 r14 s51 r21

s66 r06 s67 s76 r07 s60 s06 r14 s61 s16 r15 s62 r22

s77 r07 s70 s07 r00 s71 s17 r15 s72 s27 r08 s73 r23

Fig. 4: 7-SNI gadget for multiplication, using 20 random masks.

Verification performance. We now analyse the performance of our verification software on these
multiplication schemes, and compare it with the one of the latest version of maskVerif [BBC+19].13

Probes filtering. Following the results of Section 3.3, we use a filtering process to reduce the
initial set of probes that one has to enumerate prove security. For the gadgets of Algorithm 1 and
their SNI counterparts, this means removing probes of the form: α̂∗,∗+

∑
(r∗+α̂∗,∗)+r∗+a∗b∗,

14

and the equipotency of the filtered set and the original one is verified by an exhaustive check on the
subsets corresponding to every output share. Intuitively, the idea is that one can always replace in
an attack a probe of the above form with one that includes one extra ajbi term, i.e. one of the form
α̂∗,∗ +

∑
(r∗ + α̂∗,∗) + r∗ + α̂∗,∗, since the latter only adds an additional functional dependence

on the input shares “for free”.
The concrete impact of filtering on the verification performance of our schemes can be seen in

Table 1, where we give the size of the attack sets to enumerate before and after this filtering.

Performance. For order d ≤ 10 (except the 10-SNI case) we have run our software on a single
core of the retourdest server, which features a single Intel Xeon Gold 6126 at 2.60 GHz. The
corresponding timings are given in Table 1. At peak performance, we are able to enumerate ≈ 227.5

candidate attack sets per second for NI verification, while SNI performance is slightly worse.
Using filtered sets significantly improves verification time, especially at high order. For instance,

the running times of 2 and 6 hours for NI and SNI multiplication at order 9 are an order of
magnitude faster than the 3 and 6 days initially spent before we implemented filtering. This
optimisation was also essential in allowing to check the security of 10-NI multiplication in less than
one calendar day on a single machine (using parallelisation); it would otherwise have taken a rather
costly 1 core-year.

13 Available at https://gitlab.com/benjgregoire/maskverif.
14 This corresponds exactly to the probes made of an even number of a∗b∗ terms.
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We also tested a multi-threaded implementation of our software on schemes at order 8 ∼ 10,
using all 12 physical cores of the same Xeon Gold 6126; the results are shown in Table 2. While
we do not have many data points, the speed-up offered by the parallelisation seems to be close to
linear, albeit slightly less for NI verification: the 9-SNI multi-threaded wall time is ≈ 11.7 times
less than the single-threaded one, and multi-threading for 9- and 10-NI saves a factor ≈ 9.7.

The largest instances that we verified are NI (resp. SNI) multiplication at order d = 11, which
represents a significant computation. We relied heavily on parallelisation to enumerate the ≈ 252.72

(resp. ≈ 254.48) possible attack sets,15 using up to 40 nodes of the Dahu cluster.16 Each node has
two 16-core Intel Xeon Gold 6130 at 2.10 GHz, and when using hyperthreading allows to enumerate
≈ 231.38 sets per second. This cluster was also used to verify the best version of our 10-SNI gadget.

Comparison with maskVerif. We used the maskVerif tool from Barthe et al. [BBC+19] to
check the security of the gadgets at order 6 to 8. Due to system constraints, we could not run
the verification on retourdest, and instead defaulted to the older hpac, which features an Intel
Xeon E5-4620 at 2.20 GHz. Yet since the maskVerif implementation is parallel and may use up
to four threads, we believe that comparison with our single-threaded performance is nonetheless
meaningful.

The running times are summarised in Table 3. Comparing with Table 1, it is notable that our
own software is faster by three orders of magnitude, for instance taking one minute to check 8-NI
multiplication versus two days for maskVerif.

Table 1: Running time of our verification software (sequential).

Order d log2(number of sets) Wall time
Before/After filtering Best (after filtering)

1
NI 2.6/2.6 < 0.01 sec.

SNI 2.6/2.6 < 0.01 sec.

2
NI 6.3/5.5 < 0.01 sec.

SNI 6.3/5.5 < 0.01 sec.

3
NI 10.4/8.9 < 0.01 sec.

SNI 11.2/9.96 < 0.01 sec.

4
NI 15.0/12.6 < 0.01 sec.

SNI 16.4/14.6 < 0.01 sec.

5
NI 21.2/18.6 < 0.01 sec.

SNI 21.7/19.3 < 0.01 sec.

6
NI 27.1/23.9 0.09 sec.

SNI 28.0/25.3 0.28 sec.

7
NI 32.7/28.7 2.43 sec.

SNI 33.6/30.6 11.70 sec.

8
NI 38.5/33.7 1 min. 17 sec.

SNI 40.3/36.3 9 min. 28 sec.

9
NI 45.6/40.5 2 h. 18 min.

SNI 46.3/41.6 6 h. 30 min.

10
NI 52.6/47.1 9 days 3h.

SNI 53.5/48.4 —

5.2 SNI refreshing gadgets

We used our software to verify the SNI security of some (variations of) refreshing gadgets introduced
in [BDF+17], and subsequently improved in [GPSS18,BBD+18]. Such schemes are useful when

15 This is after filtering of the initial ≈ 259 (resp. ≈ 259.76) sets.
16 https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu
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Table 2: Running time of our verification software (parallel, 12 threads).

Order d Wall time

8
NI 7.43 sec.

SNI 47.0 sec.

9
NI 14 min. 20 sec.

SNI 33 min. 20 sec.

10
NI 22 h. 30 min.

SNI —

Table 3: Running time of maskVerif (parallel, up to 4 threads) [BBC+19].

Order d Wall time

6
NI 2 min. 44 sec.

SNI 8 min. 11 sec.

7
NI 1 h. 39 min.

SNI 5 h. 54 min.

8
NI 2 days 10h.

SNI 13 days 6h.

designing large circuits based on gadgets satisfying composable security notions since they help in
providing strong security for the overall design. However, refreshing also comes with a significant
cost in terms of randomness while not performing any sort of useful computation, leading several
prior work to try finding new low-complexity gadgets.

The best current results come from [BBD+18] who prove the SNI security at any order of
a “block” refreshing gadget introduced in [BDF+17], when iterated enough times. Yet together
with [GPSS18], they also remark that it is possible to make significant improvements in practice
at the cost of losing generic proofs, and they give cheaper alternatives verified secure up to order
16.

Our contribution here is an 8-share, 7-SNI refreshing gadget shown in Figure 5 that only needs
13 masks, which improves slightly on the best gadget from [BBD+18], which requires 16. Since
such gadgets are used in the implementation of [GPSS18], it could again lead to actual practical
gains.

We also compared the verification time of our tool with the one of maskVerif on the largest
“RefreshZero” instances of [BBD+18], and actually have worse performance. For instance, even
using 24 threads on the 12-core retourdest, verifying RefreshZero14[1,3] took us about 3 hours 40

minutes, while [BBD+18] reports an “Order of Magnitude” of 1 hour 30 minutes. We suspect this
to be caused by the fact that there is no obvious probe filtering to be done on this sort of gadget,
whereas maskVerif is likely able to successfully exploit their structure to reduce the number of
attack sets to consider.

s00 r00 r01 r10 r20

s11 r01 r02 r11 r20

s22 r02 r03 r12 r20

s33 r03 r04 r13 r20

s44 r04 r05 r10

s55 r05 r06 r11

s66 r06 r07 r12

s77 r07 r00 r13

Fig. 5: 7-SNI refreshing gadget, using 13 random masks..
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5.3 Glitch-resistant NI multiplication

We conclude with a brief application to the DOM-indep family of multiplication gadgets introduced
by Groß et al. [GMK16]. While those schemes are not more efficient than the state-of-the-art in
terms of randomness complexity, their main advantage is their resistance to glitches. A description
of an instantiation at order 2 can be found in Figure 1, and at any order less than 7 in the
supporting material.

These gadgets can be instantiated at an arbitrary order d but do not come with a generic
security proof guaranteeing the security of the result. We then have used our implementation to
verify that instantiations up to order 7 are NI in the robust probing model. The verification at
order 7 takes less than 2 hours on a single core of retourdest. The running times are summarised
in Table 4.

Table 4: Running time of our verification software on the DOM-indep schemes (sequential).

Order d Wall time

1 < 0.01 sec.

2 < 0.01 sec.

3 < 0.01 sec.

4 < 0.01 sec.

5 0.75 sec.

6 1 min. 04 sec.

7 1 h. 57 min.
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A Explicit randomness cost of multiplication gadgets

We give here the randomness cost for multiplication gadgets that were verified to be NI or SNI by
Barthe et al. in [BDF+17], and by us in Section 5. Note that Beläıd et al. also propose optimized
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gadgets in [BBP+16] up to order 4, that ISW is also better than [BDF+17] at order 3 and that
Grégoire et al. already proposed improvements at this same order in [GPSS18]. The main range of
interest of this table is thus at order 5 and beyond.

Table 5: Explicit randomness cost of multiplication gadgets

Order d Defined and verified in [BDF+17] Defined or verified in §5

Random masks Random masks

2 SNI 3 =

3
NI 4 =

SNI 8 5

4
NI 5 =

SNI 10 9

5
NI 12 10

SNI 18 12

6
NI 14 =

SNI 21 18

7
NI — 16

SNI 24 20

8
NI — 18

SNI — 27

9
NI — 26

SNI — 30

10
NI — 33

SNI — 39

11
NI — 36

SNI — 42
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