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Abstract. Blind signatures constitute basic cryptographic ingredients for privacy-preserving
applications such as anonymous credentials, e-voting, and Bitcoin. Despite the great variety of
cryptographic applications, blind signatures also found their way in real-world scenarios. Due
to the expected progress in cryptanalysis using quantum computers, it remains an important
research question to find practical and secure alternatives to systems based on classical security
assumptions that are not future-proof. In this work we present BLAZE, a new practical blind sig-
nature scheme from lattice assumptions. With respect to all relevant efficiency metrics BLAZE is
much more efficient than all previous blind signature schemes based on assumptions conjectured
to withstand quantum computer attacks. In particular, BLAZE considerably improves upon the
first (and currently only secure) lattice-based proposal introduced by Rückert at ASIACRYPT
2010 (RBS). For instance, at 128 bits of security signatures are as small as 6.6 KB, which repre-
sents an improvement factor of 13.5 compared to RBS, 2.7 compared to all previous candidates,
and an expansion factor of 2.5 compared to the NIST PQC submission Dilithium. We also give
a highly optimized implementation, which demonstrates the efficiency of BLAZE to be deployed
in practical applications. In particular, generating a blind signature takes just 18 ms, which rep-
resents a factor improvement of 15 compared to RBS. The running times for key generation and
verification are in the same order as state-of-the-art regular signature schemes, however several
orders of magnitudes faster than RBS.
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1 Introduction

Blind signature schemes allow users while interacting with a signer to generate signatures on messages
such that the signer gets no information about the message being signed (blindness). The user in
turn is not able to produce any valid signature without interacting with the signer (one-more unforge-
ability). Blind signatures were proposed by Chaum [Cha82] and have become fundamental building
blocks in privacy-oriented cryptography. One of the main applications of blind signatures is anony-
mous credentials [BL13], which allow users to privately obtain and prove possession of credentials
while revealing as little about themselves as possible. This complies with the European privacy stan-
dards [PotEU01, PotEU09] and the National Strategy for Trusted Identities in Cyberspace [Coo10].
An established real-life use case of blind signatures in anonymous credentials is the U-Prove technol-
ogy [Paq13] designed by Microsoft. U-Prove is one of the technologies, to which the Microsoft’s Open
Specification Promise [Mic07] applies and is integrated for example by Gemalto - a leading digital
security company - in its smart card technology in order to enhance privacy [Gem11]. Another appli-
cation of blind signatures is e-voting systems [KKS17], where authorities blindly sign public keys used
by voters to anonymously cast their votes. An e-voting protocol [AG18], which uses blind signatures
to verify ballots, is implemented and analyzed on the Ethereum blockchain. Further applications of
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Fig. 1. A simplified protocol for anonymous transactions of digital coins. A sender S generates a random serial
number sn, hides it using an algorithm Blind, and sends the blinded number sn∗ together with a coin $ to a
trusted intermediary I, who signs sn∗ and sends its signature σ∗ back to S. Afterwards, S applies an algorithm
UnBlind on σ∗ to obtain a signature σ on sn, and proceeds by sending the pair (sn, σ) to the receiver R. Later,
R simply forwards (sn, σ) to I, who verifies the validity of the signature and send $ to R. Privacy is established
as I cannot link the signature σ to S. The algorithms Blind,UnBlind are realized by any blind signature scheme.

blind signatures include e-cash systems utilizing the Bitcoin blockchain [HBG16], where entities blindly
sign digital coins withdrawn by users for selling and buying products and services over the Internet
and open networks. Figure 1 illustrates a simplified anonymous payment protocol employing blind
signatures.

The above mentioned (real-world) applications rely on classical blind signature schemes, where the
security is based on the hardness of number-theoretic assumptions such as RSA and discrete logarithms.
For instance, the U-Prove protocol implemented by Gemalto employs blind signature constructions,
which are secure as long as computing discrete logarithms is hard [Paq13]. As it is meanwhile known,
number-theoretic assumptions are not secure for the long-term, especially when taking into account the
recent developments of quantum computers. Consequently, these constructions have to be replaced with
blind signature schemes that are comparable in terms of efficiency and secure or at least conjectured to
be secure under quantum computer attacks. More concretely, we need post-quantum candidates of blind
signature schemes in order to further preserve privacy standards and anonymity considerations. While
such proposals do exist [Rüc10, PSM17, BGSS17], they cannot be deployed in practical applications
due to their poor performance as well as large keys and signatures (see Table 1). These facts have a
significant impact on the efficiency of the applications, especially when implementing blind signatures
in constrained devices such as smart cards and wireless sensor networks.

1.1 Our Contributions

In this work we present a new and practical lattice-based blind signature scheme that we call BLAZE.
It is based on the Fiat-Shamir with aborts paradigm [Lyu09] and provides statistical blindness and
strong one-more unforgeability in the random oracle model (ROM) assuming the hardness of RLWE
(ring learning with errors) and RSIS (ring short integer solution) problem. We provide an optimized
implementation of BLAZE attesting its practicality and propose parameters targeting 128 and 192
bits of security. Our software implementation and parameters show that BLAZE is much more efficient
than the previous blind signature schemes [BGSS17, PSM17, Rüc10] based on assumptions believed
to be secure under quantum computer attacks. More precisely, at approximately the same security
level BLAZE achieves significant improvement factors with respect to all efficiency metrics including
key generation, signing, verification, and sizes of keys and signatures. These factors are shown in
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Table 1. Comparison of the existing blind signature schemes that are conjectured to be secure under quantum
computer attacks. The table contents are adopted from Section 5, [Rüc10, Table 3], [PSM17, Table 1,2], and
[BGSS17, Table 1]. The improvement factor for each efficiency metric, e.g., signature size, is obtained by
comparing our scheme BLAZE with the best among the other schemes. We note that only the size of public
keys and signatures are given in [BGSS17].

Sizes in kilo bytes (KB) Times in milliseconds (ms)
Security (bits) Secret key Public key Signature Key generation Signing Verification

This work 128 0.8 3.9 6.6 0.1 17.8 0.1
[Rüc10] 102 23.6 23.6 89.4 52 283 57
[PSM17] 102 36.6 54.6 17.6 9392 3662 2656
[BGSS17] 100 - 15 200 - - -
Improvement factor 29.5 3.8 2.7 520 15.9 570

Table 1. The parameters used in our implementation are in the order of current state-of-the-art ordinary
signature schemes such as the recent lattice-based NIST submission Dilithium [DKL+18]. In fact, we
show in Table 2 that the efficiency of BLAZE is moderately comparable to Dilithium. For instance,
a blind signature produced by BLAZE occupies only 6.6 KB of memory, which is larger by a factor
of 2.5 compared to Dilithium. This is for example suitable for wireless sensor networks, where it is
crucial to decrease the amount of transmitted data in order to reduce the battery power consumption.
Furthermore, the fact that BLAZE is strongly one-more unforgeable (i.e., the same message may be
signed arbitrary many times, which is an important feature for schemes deployed in practice), allows
us to prove BLAZE in the new security model honest-user unforgeability recently proposed by Schröder
and Unruh [SU17, Lemma 10]. It has been shown to be more convenient for blind signature schemes as
it removes certain types of attacks not captured in the traditional security model of blind signatures
due to Pointcheval and Stern [PS00].

1.2 Our Techniques

In order to give an overview of our techniques, it is instructive to sketch the signing protocol of the
blind signature scheme introduced by Rückert [Rüc10] at ASIACRYPT 2010 (RBS), since it is also
lattice-based and Fiat-Shamir-like. RBS is one-more unforgeable in the ROM assuming the hardness
of RSIS. Its complete description can be found in Appendix A. A signature generated by RBS has the
form (r, ĉ, ẑ∗1 , . . . , ẑ∗m) and the signing process works as follows: Upon receiving a “commitment” from
the signer S, the user U hides the signature part ĉ output by a random oracle H. Hiding ĉ ensures
blindness and is accomplished by computing a challenge ĉ∗ = ĉ− û for some random secret element û
and successfully applying rejection sampling to make sure that ĉ∗ indeed masks ĉ. Otherwise U selects
a new û and repeat until success and proceeds by sending ĉ∗ to S. Subsequently, S responds with
elements ẑ∗1 , . . . , ẑ∗m after carrying out rejection sampling, which ensures at this point that S’s response
does not leak information about the secret key. Then, U transforms this response into the signature
part (ẑ1, . . . , ẑm). Here, U further applies rejection sampling to maintain blindness. More precisely, the
polynomials ẑ∗i are concealed within ẑi = ẑ∗i − v̂i, where v̂i are uniformly random masking elements
chosen by U . Finally, U sends a signal to S. This signal allows to prove that no valid signature has
been obtained in case the last rejection sampling step fails and it further indicates that a protocol
restart is required. In addition, the protocol employs statistically hiding and computationally binding
commitments to ensure blindness and one-more unforgeability over repetitions. In other words, U signs
a commitment using a randomness r instead of the message and reveals its opening along with the
signature.

The goal of our new design in BLAZE is to improve all relevant sizes and running times as well as
security. Our observation is that relying on both RLWE and RSIS (as in state-of-the-art lattice-based
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Table 2. Comparing BLAZE and Dilithium [DKL+18] at 128 bits of security. We note that the size of secret
keys is not given for Dilithium in [DKL+18].

Sizes (bytes) Times (cycles)
Secret key Public key Signature Key generation Signing Verification

BLAZE 768 3984 6710 204, 671 35, 547, 397 276, 210
Dilithium - 1472 2701 371, 083 1, 562, 215 375, 708

schemes) in addition to removing the 1st rejection sampling carried out by U constitute the main
measures towards achieving this goal. The latter is established in BLAZE via a new kind of partitioning
and permutation technique, which may be of independent interest. It works as follows: Rather than
adding the masking term û to the challenge ĉ, we use signed rotation polynomials for masking. The
resulting elements still lie in the range of H and are randomized by rotation. Here, it is crucial for H to
output elements with exactly κ entries from {±1} and n− κ entries equal to 0, where n is the number
of entries. A random element with entries in other sets may still leak information even after rotation.
More formally, let R = Z[x]/〈xn + 1〉 and p̂j ∈ R (j = 1, . . . , κ) be signed rotation polynomials, i.e.,
they have the form ±xi for some i ∈ Z. We split the output ĉ of H into κ signed rotation polynomials
ĉ1, . . . , ĉκ. These polynomials have each a coefficient from {±1} and degree at most n − 1. Then,
we “permute” each part ĉj using one of the secret polynomials p̂−1

j . The resulting elements ĉ∗j will
then be signed by S to (ẑ∗j,1, ẑ∗j,2). In order for the final signature (output by U) to be successfully
verified, we must account for the partitioning and rotating. That is, multiplying the received tuples
(ẑ∗j,1, ẑ∗j,2) each with p̂j and summing them up with secret masking terms yields the signature part
(ẑ1, ẑ2). This technique does not only remove one rejection sampling, it also ensures shorter signatures
and speeds up the rejection sampling performed by S. This is because the bound on the norms

∥∥ẑ∗j,i∥∥
becomes significantly smaller. In RBS, the element ĉ∗ has entries bounded by n − 1, whereas BLAZE
preserves the norm

√
κ as in state-of-the-art lattice-based signature schemes, e.g., [DDLL13,DKL+18].

Consequently, S and U can use smaller masking terms for the remaining two rejection sampling steps
and hence the size of the required modulus is also reduced. This already reduces the signature size
by a factor of approximately log(n). We note that κ is much smaller than n and selected such that
outputs of H provide enough security.

In case the last rejection sampling fail, we follow RBS and design a proof of failure allowing U to
convince S that no valid signature has been obtained and hence letting S restart the protocol. This
proof includes all secret elements generated by U during signing. In order to still ensure statistical
blindness, U signs a commitment τ to the message rather than the message itself and includes its
opening in the final signature. The binding property of τ preserves the strong one-more unforgeability.

1.3 Related work

In addition to RBS, there are other lattice-based constructions of blind signatures found in literature.
However, we show in Appendix B that they are unfortunately insecure. More precisely, we show for
the proposal in [ZTZ+17] how the secret key can simply be recovered already after two executions of
its signing protocol. For the rest schemes [CCT+11, ZM14, ZH16,GHWX16,GHW+17] we show that
any user is able to solve the underlying lattice problem in just one execution of the signing protocol.
Concerning lattice-based constructions, this leaves us with the scheme RBS. Other post-quantum blind
signature schemes that we are aware of is the multivariate-based one from [PSM17] and the code-based
one proposed in [BGSS17]. Table 1 shows that BLAZE is more efficient than those schemes in terms of
all efficiency metrics.
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1.4 Outline

In Section 2 we give the background required throughout this work. Then, we present in Section 3 our
new blind signature scheme BLAZE. Afterwards, we describe in Section 4 our software implementation
of the new scheme. Then, we propose in Section 5 concrete parameters and compare BLAZE with
the schemes [BGSS17, PSM17, Rüc10]. Finally, we conclude our results and discuss possible future
directions in Section 6.

2 Preliminaries

This section covers the necessary background required throughout this work. First, we give some
general notation. Then, we formally define blind signature schemes and their security properties in
Section 2.1. Finally, we define lattices and the required lattice problems in Section 2.2.

Notation. We let N,Z,R denote the set of natural numbers, integers, and real numbers, respectively.
For a positive integer k, we let [k] denote the set {1, 2, . . . , k}. We denote column vectors with bold
lower-case letters and matrices with bold upper-case letters. For any positive integer q, we write Zq
to denote the set of integers in the range [− q2 ,

q
2 ) ∩ Z. The Euclidean norm (`2-norm) of a vector v

with entries vi is defined as ‖v‖ = (
∑
i |vi|2)1/2, and its `∞-norm as ‖v‖∞ = maxi |vi|. We define

the ring R = Z[x]/〈xn + 1〉 and its quotient Rq = R/qR, where n is power of 2. A ring element
a0 + a1x+ . . .+ an−1x

n−1 ∈ Rq is denoted by â and it corresponds to a vector a ∈ Znq via coefficient
embedding. Hence, ‖â‖ = ‖a‖ and ‖â‖∞ = ‖a‖∞. We write â = (â1, . . . , âk) ∈ Rkq to denote a vector
of ring elements. Its `2 and `∞ norm is defined by ‖â‖ = (

∑k
i ‖âi‖

2)1/2 and ‖â‖∞ = maxi ‖âi‖∞. We
let Tnκ denote the set of all (n− 1)-degree polynomials with coefficients from {−1, 0, 1} and Hamming
Weight κ. All logarithms in this work are to base 2, and we always denote the security parameter
by λ ∈ N. A function f : N → R is called negligible if there exists an n0 ∈ N such that for all
n > n0, it holds f(n) < 1

p(n) for any polynomial p. With negl(λ) we denote a negligible function in
λ. A probability is called overwhelming if it is at least 1 − negl(λ). The statistical distance between
two distributions X,Y over a countable domain D is defined by ∆(X,Y ) = 1

2
∑
n |X(n)− Y (n)|. The

distributions X,Y are called statistically close if ∆(X,Y ) = negl(λ). We write x← D to denote that
x is sampled according to a distribution D. By x←$ S we denote that x is assigned a uniform random
element from a finite set S . For two algorithms A,B we write (x, y) ← 〈A(a),B(b)〉 to describe the
joint execution of A and B in an interactive protocol with private inputs a for A and b for B as well
as private outputs x for A and y for B. Accordingly, we write A〈·,B(b)〉k(a) if A can invoke up to k
executions of the protocol with B.

2.1 Blind Signatures and their Security

Definition 1 (Blind Signature Scheme). A blind signature scheme BS is a tuple of polynomial-
time algorithms BS=(BS.KGen,BS.Sign,BS.Verify) such that:

– BS.KGen(1λ) is a key generation algorithm that outputs a pair of keys (pk,sk), where pk is a public
(verification) key and sk is a secret (signing) key.

– BS.Sign(sk, pk, µ) is an interactive protocol between a signer S and a user U . The private input of
S is a secret key sk, whereas the private input of U is a public key pk and a message µ ∈ M with
message spaceM. The private output of S is a view V (interpreted as a random variable) and the
private output of U is a signature σ, i.e., (V, σ) ← 〈S(sk),U(pk, µ)〉. We write σ = ⊥ to denote
failure.
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Game BlindBS,S∗(λ)
1: (pk, µ0, µ1, statefind)← S∗(find, 1λ)
2: b←$ {0, 1}
3: stateissue ← S∗〈·,U(pk,µb)〉1,〈·,U(pk,µ1−b)〉1 (issue, state find)
4: σb := U(pk, µb), σ1−b := U(pk, µ1−b)
5: if (σ0 = ⊥ ∨ σ1 = ⊥) then
6: (⊥,⊥)← (σ0, σ1)
7: b∗ ← S∗(guess, σ0, σ1, stateissue)
8: if b∗ = b then
9: return 1
10: return 0

Game ForgeBS,U∗(λ)

1: (pk, sk)← BS.KGen(1λ)
2: H← H(1λ)

3: ((µ1, σ1), ··, (µl, σl))← U∗H(·),〈S(sk),·〉∞(pk)
4: k := number of successful signing invocations
5: if

(
µi 6= µj for all 1 ≤ i < j ≤ l ∧
BS.Verify(pk, µi, σi) = 1, ∀i ∈ [l] ∧
k + 1 = l

)
then

6: return 1
7: return 0

Fig. 2. Security games of blindness and one-more unforgeability.

– BS.Verify(pk, µ, σ) is a verification algorithm that outputs 1 if the signature σ is valid and 0 other-
wise.

Blind signature schemes require the completeness property, i.e., BS.Verify always (or with overwhelming
probability) validates honestly signed messages under honestly created keys. Security of blind signa-
tures is captured by two security notions: blindness and one-more unforgeability [JLO97,PS00]. The
former prevents a malicious signer to learn information about user’s messages. The latter ensures that
each completed execution of BS.Sign yields at most one signature.

Definition 2 (Blindness). A blind signature scheme BS is called (t, ε)-blind if for any adversarial
signer S∗ running in time at most t and working in modes find, issue, and guess, the game BlindBS,S∗(λ)
depicted in Figure 2 outputs 1 with probability Pr[BlindBS,S∗(λ) = 1] ≤ 1

2 + ε, i.e., the advantage of S∗
in the game is given by ε = AdvBS,S∗(λ) =

∣∣Pr[b∗ = b] − 1
2
∣∣. The scheme is statistically blind if it is

(t =∞, ε = negl(λ))-blind.

In the game BlindBS,S∗(λ), S∗ runs (pk, sk) ← BS.KGen(1λ). Then, it chooses two messages µ0, µ1 in
mode find and sends them along with pk to the honest user U , who randomly chooses a bit b. After
that, BS.Sign is executed twice with S∗ (working in mode issue) and U . Depending on b, U outputs
signatures σb, σ1−b in the first and second interaction, respectively. In mode guess, S∗ obtains σ0, σ1
in the original order and has to decide which of the two messages has been signed first. We note that
this must hold even if S∗ chooses the public key maliciously [ANN06]. If U outputs ⊥ in one of both
executions, then S∗ is informed about the failure and does not get any signature.

Definition 3 (One-more Unforgeability). Let H be a family of random oracles. A blind signature
scheme BS is called (t, qSign, qH, ε)-one-more unforgeable in the random oracle model if for any adver-
sarial user U∗ running in time at most t and making at most qSign, qH signing and hash queries, the
game ForgeBS,U∗(λ) depicted in Figure 2 outputs 1 with probability Pr[ForgeBS,U∗(λ) = 1] ≤ ε. The
scheme is strongly (t, qSign, qH, ε)-one-more unforgeable if the condition µi 6= µj in the game changes to
(µi, σi) 6= (µj , σj) for all 1 ≤ i < j ≤ l.

In the game ForgeBS,U∗(λ), U∗ tries to output k + 1 valid pairs (µi, σi), for i ∈ [k + 1], after at most k
successful interactions with S.
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2.2 Lattices and Gaussians

Let B = {b1, . . . ,bk} ∈ Rm×k be a set of linearly independent vectors, where k ≤ m. The m-
dimensional lattice L of rank k generated by B is given by L(B) = {Bx | x ∈ Zk} ⊂ Rm. If m = k,
then L is full-rank. The determinant of L, denoted by det(L), is given by

√
det(B> ·B), where B is

any basis of L.

The discrete Gaussian distribution DL,σ,c over a lattice L with standard deviation σ > 0 and center
c ∈ Rn is defined as follows: The probability of any x ∈ L is given by DL,σ,c(x) = ρσ,c(x)/ρσ,c(L),
where ρσ,c(x) = exp(−‖x−c‖2

2σ2 ) and ρσ,c(L) =
∑

x∈L ρσ,c(x). The subscript c is taken to be 0 when
omitted. The following two lemmas are central results used throughout this work. The first one gives
a tail bound on Gaussian distributed elements, while the second one concerns rejection sampling.

Lemma 1 ([Lyu12, Lemma 4.4]). For any t, η > 0 we have

1. Prx←DZ,σ [|x| > t · σ] ≤ 2 exp(−t2/2).
2. Prx←DZm,σ [‖x‖ > ησ

√
m] ≤ ηm exp(m2 (1− η2)).

Lemma 2 ([Lyu12, Theorem 4.6, Lemma 4.7]). Let V ⊆ Zm with elements having norms bounded
by T , σ = ω(T

√
logm), and h : V → R be a probability distribution. Then there exits a constant

M = O(1) such that
∀v ∈ V : Pr[DZm,σ(z) ≤M ·DZm,σ,v(z); z← DZm,σ] ≥ 1− ε, where ε = 2−ω(logm). Furthermore, the
following two algorithms are within statistical distance δ = ε/M .

1. v← h, z← DZm,σ,v, output (z,v) with probability DZm,σ(z)
M ·DZm,σ,v(z) .

2. v← h, z← DZm,σ, output (z,v) with probability 1/M .

Moreover, the probability that the first algorithm outputs something is at least (1 − ε)/M . If σ = αT
for any positive α, then M = exp( 12

α + 1
2α2 ) with ε = 2−100.

We let RejSamp(x) denote an algorithm that carries out rejection sampling on input x. It outputs 1
if it accepts and 0 otherwise. We write RejSamp(x; r) to specify the randomness r used within the
algorithm. Next, we define the related lattice problems.

Definition 4 (Ring Short Integer Solution (RSIS) Problem). Let n, q, k be positive integers and
β a positive real. Given a uniformly random vector â = (â1, . . . , âk) ∈ Rkq , the Hermite Normal Form
of RSIS problem asks to find a non-zero vector x̂ = (x̂1, . . . , x̂k+1) ∈ Rk+1 such that [â 1] · x̂ = 0
(mod q), where ‖x̂‖ ≤ β. The inhomogeneous RSIS asks to find x̂ ∈ Rk+1 with ‖x̂‖ ≤ β such that
[â 1] · x̂ = û (mod q), for a given û ∈ Rq.

Definition 5 (Ring Learning With Errors (RLWE) Problem). Given poly(n) samples (âi, b̂i) ∈
Rq×Rq, the decision RLWE problem asks to distinguish, with non-negligible advantage, whether (âi, b̂i)
were chosen from the uniform distribution over Rq × Rq or from the distribution that outputs (â, b̂ =
〈â, ŝ〉 + ê (mod q)) for â ←$ Rq, ŝ ←$ Rq, and ê ← χ, where χ is an error distribution over R. The
secret ŝ can also be chosen from χ. The search RLWE problem asks to find ŝ.

Any instance I of the above defined problems is called (t, ε)-hard if any algorithm A running in time
at most t can solve I with probability ε.
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3 BLAZE: The New Blind Signature Scheme

In this section we present BLAZE: our new and practical blind signature scheme. It is statistically
blind and its strong one-more unforgeability is based on the hardness of RLWE and RSIS problem in
the ROM. As opposed to RBS, BLAZE has to pass 2 rejection sampling procedures rather than 3; one
is performed by the signer to conceal the secret key and one by the user to achieve blindness. That
is, we remove one rejection sampling step from the user side by splitting the challenge generated by
the user into monomials with entries from {−1, 1} and permuting them using secret monomials with
entries from {−1, 1} as well.

We first introduce new tools and technical lemmas employed within BLAZE.

Definition 6. Define by T̂ =
{

(−1)s · xi | for s ∈ N and i ∈ Z
}
the set of signed permutation polyno-

mials which represent a rotation multiplied by a sign.

Lemma 3. Let p̂ ∈ T̂ with p̂ = (−1)s · xi for some i ∈ Z and s ∈ {0, 1}. Then, T̂ is a group with
respect to multiplication and the inverse of p̂ is given by p̂−1 = (−1)1−s · xn−i ∈ T̂.

Proof. Let p̂1 = (−1)s1 · xi1 , p̂2 = (−1)s2 · xi2 ∈ T̂, then p̂1 · p̂2 = (−1)s1+s2 · xi1+i2 ∈ T̂ . A simple
calculation shows that p̂ · p̂−1 = (−1)s ·xi · (−1)1−s ·xn−i = −xn ≡ 1 mod 〈xn + 1〉. Thus, every p̂ ∈ T̂
has an inverse p̂−1 ∈ T̂ and the neutral element is given by the constant polynomial 1. ut

The following lemma helps proving that partitions of a challenge ĉ multiplied with a signed rotation
are independent from the initial challenge. This will be used when proving blindness.

Lemma 4. Let ĉ ∈ Tnκ and ĉ1, . . . , ĉκ be a partition such that ĉ =
∑κ

1 ĉi and each ĉi contains exactly
the i-th non-zero entry of ĉ at exactly the same position. Furthermore, let ĉ∗1 = p̂−1

1 · ĉ1, . . . , ĉ
∗
κ = p̂−1

κ · ĉκ
for random signed rotations p̂1, . . . , p̂κ ∈ T̂. Then, ĉ∗i , ĉi ∈ T̂ and for any d̂ ∈ Tnκ we have

Pr
p̂i←$T̂

[(ĉ∗1, . . . , ĉ∗κ) = (p̂−1
1 ĉ1, . . . , p̂

−1
κ ĉκ) | ĉ] = (1a)

Pr
p̂i,ĉi←$T̂

[(ĉ∗1, . . . , ĉ∗κ) = (p̂−1
1 ĉ1, . . . , p̂

−1
κ ĉκ)] = (2n)−κ (1b)

Proof. For any partitioning we have ĉi ∈ T̂, since it contains only one ±1 at exactly the same position
as ĉ. Furthermore, ĉi ∈ T̂ can be transformed into any element of T̂ via a signed rotation p̂ ∈ T̂.
Let ĉ be any element from Tnκ and ĉ1, . . . , ĉκ be any partition of ĉ. Then, for any fixed ĉ∗i ∈ T̂ there
exists exactly one set of elements p̂−1

1 , . . . , p̂−1
κ ∈ T̂ such that ĉ∗1 = p̂−1ĉ1, . . . , ĉ

∗
κ = p̂−1

κ ĉκ. Thus,
probability (1a) evaluates to (2n)−κ. Next, we recall that for any fixed ĉ∗i ∈ T̂ and fixed ĉi ∈ T̂ there
exists exactly one p̂i ∈ T̂ such that ĉ∗i = p̂−1

i ĉi. Thus, probability (1b) evaluates to∑
ĉ∈Tnκ

Pr
p̂i←$T̂

[(ĉ∗1, . . . , ĉ∗κ) = (p̂−1
1 ĉ1, . . . , p̂

−1
κ ĉκ) | ĉ] · P [ĉ] = (2n)−κ .

ut

In the following we give a detailed description of our new blind signature scheme BLAZE. We let Expand
be a public random function on λ-bit strings (e.g., a pseudorandom function). It takes a random input
seed and expands it to any desired length. This function is solely used for saving bandwidth as it is
deterministic, i.e., given an input it always produces the same output. We let H be a public hash function

8



BS.KGen(1λ)

1: seed←$ {0, 1}λ
2: â ∈ Rq ← Expand(seed)
3: ŝ1, ŝ2 ← Dn

Z,σ

4: b̂← âŝ1 + ŝ2 (mod q)
5: sk := (ŝ1, ŝ2), pk := (seed, b̂)
6: return (sk, pk)

BS.Verify(seed, b̂, µ, (τ ′, r, ẑ1, ẑ2, ĉ))
1: â← Expand(seed)
2: (ẑ1, ẑ2)← Decompress(ẑ1, ẑ2)
3: if

(
‖(ẑ1, ẑ2)‖ ≤ B ∧ ĉ =
H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′,Com(µ; r))

)
4: return 1
5: return 0

BS.Sign(ŝ1, ŝ2, seed, µ)
Signer S(ŝ1, ŝ2) User U(seed, µ)
â← Expand(seed)
ŷ∗1,1, . . . , ŷ

∗
κ,1 ← Dn

Z,s∗

ŷ∗1,2, . . . , ŷ
∗
κ,2 ← Dn

Z,s∗

for j = 1, . . . , κ :
ŷj ← âŷ∗j,1 + ŷ∗j,2 (mod q)
ŷ1, . . . , ŷκ r, r′, ρ←$ {0, 1}λ, â← Expand(seed)

τ ← Com(µ; r), τ ′ ← Com(ρ; r′)
p̂1, . . . , p̂κ ←$ T̂, ê1, ê2 ← Dn

Z,s
ĉ← H(âê1 + ê2 +

∑κ

1 p̂j ŷj (mod q), τ ′, τ)
ĉ :=

∑κ

1 ĉj , ĉj ∈ T̂
for j = 1, . . . , κ : ĉ∗j ← p̂−1

j · ĉj

for j = 1, . . . , κ : ĉ∗1, . . . , ĉ
∗
κ

ẑ∗j,1 ← ŷ∗j,1 + ŝ1ĉ
∗
j , ẑ∗j,2 ← ŷ∗j,2 + ŝ2ĉ

∗
j

if RejSamp(ẑ∗1,1, . . . , ẑ∗κ,2) = 0 restart
ẑ∗1,1, . . . , ẑ

∗
κ,2

v̂1 ←
∑κ

1 p̂j ẑ
∗
j,1, v̂2 ←

∑κ

1 p̂j ẑ
∗
j,2

ẑ1 ← ê1 + v̂1, ẑ2 ← ê2 + v̂2
if RejSamp(ẑ1, ẑ2; ρ) = 1
result← ok
(ẑ1, ẑ2)← Compress(ẑ1, ẑ2)

else result← (τ, ρ, r′, p̂1, . . . , p̂κ, ê1, ê2, ĉ)

if result 6= ok result
τ ′ ← Com(ρ; r′), ẑ1 ← ê1 +

∑κ

1 p̂j ẑ
∗
j,1, ẑ2 ← ê2 +

∑κ

1 p̂j ẑ
∗
j,2

if
(∑κ

1 p̂j ĉ
∗
j = ĉ = H(âê1 + ê2 +

∑κ

1 p̂j ŷj (mod q), τ ′, τ) ∧
ĉ = H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) ∧
RejSamp(ẑ1, ẑ2; ρ) = 0

)
restart

return (µ, (τ ′, r, ẑ1, ẑ2, ĉ))

Fig. 3. A description of the new blind signature scheme BLAZE.

modeled as a random oracle and randomly chosen from the family {H : {0, 1}∗ → Tnκ}. We further let
Com : {0, 1}∗ × {0, 1}λ → {0, 1}λ be a statistically hiding and computationally binding commitment
function. Finally, we let Compress and Decompress be functions for (de)compressing Gaussian elements
(see Section 4 for description). The respective algorithms of BLAZE are formalized in Figure 3.

Key Generation. Given 1λ the algorithm chooses a uniform random seed ∈ {0, 1}λ and expands it
to a polynomial â ∈ Rq using Expand. The secret key consists of two polynomials sk = (ŝ1, ŝ2) chosen
from Dn

Z,σ, while the public key is given by pk = (seed, b̂ = âŝ1 + ŝ2 (mod q)).
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Signing. Given sk, seed, and a message µ the signer S samples 2κ masking terms ŷ∗j,1, ŷ∗j,2 ← Dn
Z,s∗ for

j ∈ [κ] and sends ŷj = âŷ∗j,1 + ŷ∗j,2 (mod q) to the user U . Upon receiving the commitments ŷ1, . . . , ŷκ,
U computes τ = Com(µ; r) and τ ′ = Com(ρ; r′) for random r, r′, ρ ∈ {0, 1}λ, â = Expand(seed),
and selects random elements p̂1, . . . , p̂κ ∈ T̂ and polynomials ê1, ê2 from Dn

Z,s. Then, U generates
ĉ = H(âê1 + ê2 +

∑κ
1 p̂iŷi (mod q), τ ′, τ) ∈ Tnκ. Subsequently, U splits ĉ into partitions ĉ1, . . . , ĉκ ∈ T̂

such that ĉ =
∑κ

1 ĉj and the jth partition ĉj contains the jth non-zero entry of ĉ at exactly the
same position. Then, U masks each partition ĉj by computing ĉ∗j = p̂−1

j · ĉj for all j ∈ [κ] using the
signed rotations p̂1, . . . , p̂κ. Upon receiving the partitions ĉ∗j , S signs them. To this end, S computes
ẑ∗j,1 = ŷ∗j,1 + ŝ1ĉ

∗
j and ẑ∗j,2 = ŷ∗j,2 + ŝ2ĉ

∗
j . Subsequently, S proceeds by applying rejection sampling

(RejSamp) and making sure that ẑ∗j,1, ẑ∗j,2 leak no information about sk. If RejSamp outputs 0, S restarts
the protocol. Upon receiving ẑ∗j,1, ẑ∗j,2 for j ∈ [κ], U computes v̂1 =

∑κ
1 p̂j ẑ

∗
j,1 and v̂2 =

∑κ
1 p̂j ẑ

∗
j,2. In

order for the verification to succeed, the signature part (ẑ1, ẑ2) output by U must be brought into
the form ẑ1 = ŷ∗1 + ŝ1ĉ, ẑ2 = ŷ∗2 + ŝ2ĉ for some polynomials ŷ∗1 , ŷ∗2 . This is attained by multiplying
ẑ∗j,1, ẑ

∗
j,2 with the elements p̂j , summing them up with the masking terms ê1, ê2, and apply RejSamp

to conceal the distribution of ẑ∗j,1, ẑ∗j,2 from S. Thus, U must already have taken this into account via
the inputs to H after the first move. In fact, we must have âŷ∗1 + ŷ∗2 = âê1 + ê2 +

∑κ
1 p̂j ŷj (mod q).

Therefore, U sets ẑ1 = ê1 +
∑κ

1 p̂j ẑ
∗
j,1 and ẑ2 = ê2 +

∑κ
1 p̂j ẑ

∗
j,2. Finally, U compresses (ẑ1, ẑ2) using

Compress and sends result = ok to S. The signature is given by (τ ′, r, ẑ1, ẑ2, ĉ). If RejSamp outputs 0,
U sends S a proof of failure by setting result = (τ, ρ, r′, p̂1, . . . , p̂κ, ê1, ê2, ĉ). This allows S to perform
3 checks (see Figure 3) in order to verify that U has not obtained a valid signature and hence restarts
the protocol. Note that the randomness ρ used in the last rejection sampling must be part of the proof
of failure. However, it cannot be part of the signature, since it may leak information about the secret
terms involved in computing ẑ1, ẑ2. This is why BLAZE includes the commitment τ ′ in the signature
as well as in the input of H generating ĉ in order to preserve security.

Verification. On input (seed, b̂, µ, (τ ′, r, ẑ1, ẑ2, ĉ)) the verifier uses Expand to compute â out of seed, de-
compresses (ẑ1, ẑ2) using Decompress. It accepts if and only if ‖(ẑ1, ẑ2)‖ is smaller than some predefined
bound B and the output of H on

(
âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′,Com(µ; r)

)
is equal to ĉ.

In the following we prove completeness, blindness, and strong one-more unforgeability of BLAZE.

Theorem 1. Let Com be a statistically hiding and computationally binding commitment function. Let
α∗, α, η > 0, s∗ = α∗

√
κ · ‖(ŝ1, ŝ2)‖, s = ηα

√
2κns∗, and B = ηs

√
2n. After at most M = MS ·MU

repetitions, any blind signature produced by BLAZE is validated with probability at least 1− 2−λ, where
MS = exp( 12

α∗ + 1
2α∗2 ) and MU = exp( 12

α + 1
2α2 ) are the expected number of repetitions by the signer

and user, respectively.

Proof. For an honestly generated signature (τ ′, r, ẑ1, ẑ2, ĉ), the pair (ẑ1, ẑ2) is distributed according to
D2n

Z,s and bounded by ηs
√

2n = B with probability 1 − η2n exp(n(1 − η2)) (Lemma 1). By choosing
η such that this probability ≤ 2−λ we have ‖(ẑ1, ẑ2)‖ ≤ B with probability 1 − 2−λ. The condition
H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) = ĉ is satisfied due to the correctness of Com and the following:

âẑ1 + ẑ2 − b̂ĉ = â
(
ê1 +

κ∑
1
p̂j ẑ
∗
j,1

)
+
(
ê2 +

κ∑
1
p̂j ẑ
∗
j,2

)
− b̂ĉ

= â
(
ê1 +

κ∑
1

(ŝ1ĉj + p̂j ŷ
∗
j,1)
)

+ ê2 +
κ∑
1

(ŝ2ĉj + p̂j ŷ
∗
j,2)− b̂ĉ

= âê1 + ê2 +
κ∑
1
p̂j
(
âŷ∗j,1 + ŷ∗j,2

)
+ ĉ (âŝ1 + ŝ2)− b̂ĉ

= âê1 + ê2 +
κ∑
1
p̂j ŷj (mod q) .
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Next, applying rejection sampling (Lemma 2) by the signer accepts with probability

DZ2κn,s∗(z∗)/(MSDZ2κn,s∗,v∗(z∗)),

where z∗,v∗ are the vector representations of (ẑ∗1,1, . . . , ẑ∗κ,2), (ŝ1ĉ
∗
1, . . . , ŝ1ĉ

∗
κ, ŝ2ĉ

∗
1, . . . , ŝ2ĉ

∗
κ) and the

expected number of repetitions is given byMS = exp( 12
α∗+ 1

2α∗2 ) for s∗ = α∗ ‖v∗‖ = α∗
√
κ ‖(ŝ1, ŝ2)‖. Fi-

nally, rejection sampling performed by the user side accepts with probabilityDZ2n,s(z)/(MUDZ2n,s,v(z)),
where z,v are the vector representations of (ẑ1, ẑ2), (

∑κ
1 p̂j ẑ

∗
j,1,
∑κ

1 p̂j ẑ
∗
j,2) and the expected number of

repetitions is MU = exp( 12
α + 1

2α2 ) for s = α ‖v‖. The entries of v are distributed according to Dn
Z,
√
κs∗

(see [BF11, Theorem 9]). Hence, ‖v‖ ≤ η
√

2κns∗ and s = ηα
√

2κns∗. Therefore, the total expected
number of repetitions is M = MS ·MU . ut

Theorem 2. Let Com be a statistically hiding and computationally binding commitment function. The
scheme BLAZE is (t =∞, ε = 2−100

MU
)-blind.

Proof. In the game BlindBS,S∗(λ) given in Definition 2 the adversarial signer S∗ selects two mes-
sages µ0, µ1 and interacts with the user U twice, i.e., U(seed, µb) in the first run and subsequently
U(seed, µ1−b) for a random bit b chosen by U . We show that after each interaction, U does not leak
any information about the respective message being signed. More precisely, the exchanged messages
during protocol execution together with the user’s output (interpreted as random variables) are inde-
pendently distributed, especially also from the message being signed. This requires analyzing only the
signature part (ẑ1, ẑ2), since τ ′ is a statistically hiding commitment, r is uniformly random, ĉ ∈ Tnκ
and ĉ∗1, . . . , ĉ∗κ ∈ T̂ are uniformly random and independently distributed by Lemma 4.

Let (ẑ1, ẑ2)b and (ẑ1, ẑ2)1−b be the signature parts output by U(seed, µb) and U(seed, µ1−b), respectively.
They have the form (ẑ1, ẑ2) = (ê1 +

∑κ
1 p̂j ẑ

∗
j,1, ê2 +

∑κ
1 p̂j ẑ

∗
j,2), where p̂1, . . . , p̂κ are uniform random

elements from T̂, the polynomials ẑ∗1,1, . . . , ẑ∗κ,2 are each distributed as Dn
Z,s∗ , and ê1, ê2 are distributed

according toDZn,s. When applying rejection sampling (Lemma 2) on the pairs (ẑ1, ẑ2)b, (ẑ1, ẑ2)1−b, they
completely hide (ẑ∗1,1, . . . , ẑ∗κ,2)b, (ẑ∗1,1, . . . , ẑ∗κ,2)1−b, respectively, and become independently distributed
within statistical distance of 2−100

MU
from D2n

Z,s. Finally, we note that if the protocol needs to be restarted,
then the user selects fresh r, r′, ρ, p̂1, . . . , p̂κ, and ê1, ê2. Therefore, protocol executions are independent
of each other and hence the signer does not get information about the message being signed. Moreover,
the proof of failure also maintains blindness due to the statistical hiding property of Com. ut

Remark 1. Similar to RBS, we note that BLAZE remains blind under the stronger blindness definition
given in [ANN06], i.e., even if pk is chosen maliciously by S∗. This is because the above proof does
not exploit any special features of the key. Furthermore, selective failure blindness [CNS07] is already
achieved since a commitment to the message is being signed using a statistically hiding commitment
scheme [FS09].

Recovering the secret key of BLAZE is as hard as RLWE. Thus, we prove its strong one-more unforge-
ability assuming the hardness of RLWE, i.e., we assume that the public key (â, b̂) is chosen uniformly
at random.

Theorem 3. Let Com be a statistically hiding and computationally binding commitment function. The
scheme BLAZE is strongly (tA, qSign, qH, εA)-one-more unforgeable if (inhomogeneous) RSIS is (tD, εD)-
hard. That is, if it is hard to find (v̂1, v̂2, v̂3) 6= 0 such that ‖(v̂1, v̂2)‖ ≤ 2B + s/α and ‖v̂3‖∞ ≤ 2
satisfying âv̂1 + v̂2 = v̂3b̂ (mod q), where tD ≤ tA + q

qSign
H (qSign + qH), εD ≥ min{ εfork

2(k+1) , εabort}, and
k ≤ qSign denotes the successful signing queries. The probabilities εfork, εabort are given in the proof.
The signing algorithm produces a signature with probability (1 − 2−100)/M , where M is the average
repetition rate of the signing protocol.
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Proof. We assume that there exists a forger A that wins the one-more unforgeability game given in
Definition 3 with probability εA. We construct a reduction algorithm D that finds (v̂1, v̂2, v̂3) 6= 0 as
described in the theorem statement with probability εD.

Setup. The input of D is a random pair (â, b̂) ∈ Rq × Rq. The reduction D then randomly selects
answers for random oracle queries {ĉ1, . . . , ĉqH}. Then, it runs the forger A with input (â, b̂).

Random Oracle Query. The reduction D maintains a list LH, which includes pairs of random oracle
queries and their answers from Tnκ. If H was previously queried on some input, then D looks up its
entry in LH and returns its answer ĉ ∈ Tnκ. Otherwise, it returns the first unused ĉ and updates the
list.

Blind Signature Query. Upon receiving signature queries from the forger A as a user, D interacts
as a signer with A according to the signing protocol. However, rather than computing ẑ∗1,1, . . . , ẑ∗κ,2 as
described in Figure 3, D directly samples these elements from Dn

Z,s∗ and sends them back to the forger
A with probability ≈ 1/MS (Lemma 2). The same applies for ẑ1, ẑ2 with probability ≈ 1/MU . Hence,
the signature is generated with probability ≈ 1/(MS ·MU ) = 1/M .

Output. After k ≤ qSign successful executions of the signing protocol, A outputs k + 1 distinct and
valid pairs of messages and corresponding signatures (µ1, sig1), . . . , (µk+1, sigk+1). Then, one of the
following two cases applies:

Case 1. D finds two signatures of messages µ, µ′ ∈ {µ1, . . . , µk+1} with the same ĉ. In this case the
verification algorithm yields

H(âẑ1 + ẑ2 − b̂ĉ (mod q), τ ′, τ) = H(âẑ′1 + ẑ′2 − b̂ĉ (mod q), ν′, ν) .

With overwhelming probability this implies that µ = µ′ and âẑ1 + ẑ2 = âẑ′1 + ẑ′2 mod q (otherwise,
A would have found a second preimage of ĉ or the binding property of Com does not hold). Since
µ = µ′, this implies that (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2). This yields â(ẑ1 − ẑ′1) + (ẑ2 − ẑ′2) = 0 (mod q). Since
(ẑ1, ẑ2) 6= (ẑ′1, ẑ′2), it must be that ẑ1 6= ẑ′1 or ẑ2 6= ẑ′2. Therefore, w.l.o.g. it holds that ẑ1 6= ẑ′1. Since
the signatures are valid, we have ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′1, ẑ′2)‖ ≤ B. Hence, ‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B.

Case 2. If all signatures output by A have distinct random oracle answers, then D guesses an index
i ∈ [k + 1] such that ĉi = ĉj for some j ∈ [qH]. Then, it records the pair (µi, (τ ′, r, ẑ1, ẑ2, ĉi)) and
invokesA again with the same random tape and random oracle queries {ĉ1, . . . , ĉj−1, ĉ

′
j , . . . , ĉ

′
qH
}, where

{ĉ′j , . . . , ĉ′qH} are fresh random elements. After the second invocation, the output of A (by assumption)
includes a pair (µ′i, (τ ′′, r′′, ẑ′1, ẑ′2, ĉ′i)). By the General Forking Lemma [BN06] we have ĉi 6= ĉ′i with
probability εfork (see below). Therefore, with overwhelming probability (binding and second preimage
security) we have âẑ1 + ẑ2 − b̂ĉi = âẑ′1 + ẑ′2 − b̂ĉ′i (mod q). Thus, we obtain

â(ẑ1 − ẑ′1) + (ẑ2 − ẑ′2) = b̂(ĉi − ĉ′i) (mod q) .

Since both signatures are valid, we have ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′1, ẑ′2)‖ ≤ B. This implies that
‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B. Moreover we have ‖(ĉi − ĉ′i)‖∞ ≤ 2.

The reduction D retries at most qk+1
H times with different random tape and random oracle queries.

Analysis. According to Lemma 2, simulating the computation of ẑ∗1,1, . . . , ẑ∗κ,2 by D (without having
the secret key) is statistically indistinguishable from generating them as described in the protocol, and
the simulation produces these elements with probability ≈ 1/MS as in a real execution.

Next, one of the k + 1 pairs output by A is by assumption not generated during the execution of the
signing protocol. The probability of correctly guessing the index i corresponding to this pair is 1/(k+1).

The probability that ĉi was a random oracle query made by A is 1 − 1/|Tnκ|, where |Tnκ| = 2κ
(
n
κ

)
.
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Table 3. A prefix-free encoding due to [DLL+17] for the high-order bits of an integer z (mod q) = z1 · 2τ + z0
distributed according to DZ,σ, where σ ≈ 2τ .

Integer 0 1 -1 k ≥ 2 −k ≤ −2
Representation 00 01 10 1102k−41 1102k−31
Bits 2 2 2 2k − 1 2k

Thus, the probability that ĉi = ĉj is εA − 1/|Tnκ|. Furthermore, with probability 1/2, one of the qk+1
H

runs of A yields the map {(i, j) : ĉi = ĉj}. According to the General Forking Lemma, the probability
that ĉi 6= ĉ′i and ĉ′i is used by A in the forgery is at least εfork ≥

(
εA − 1

|Tnκ |

)
·
(
εA−1/|Tnκ |
qSign+qH − 1

|Tnκ |

)
.

Therefore, the success probability of D is given by εD ≥
εfork

2(k + 1) , which is non-negligible if εA is

non-negligible.

Finally, we analyze the case that users can generate a valid signature after an aborted interaction with
the signer. Together with the elements ŷ1, . . . , ŷκ, ẑ∗1,1, . . . , ẑ∗κ,2, and ĉ∗1, . . . , ĉ

∗
κ, the output result =

(τ, ρ, r′, p̂1, . . . , p̂κ, ê1, ê2, ĉ) of an aborted interaction satisfies the 3 checks carried out by S in the last
step (see Figure 3). In the following we denote these checks by C1, C2, and C3. Now, assume that a
user U obtains a valid signature (τ ′′, r′′, ẑ′1, ẑ′2, ĉ′) from an aborted interaction. If ĉ′ = ĉ, then by C2
we obtain â(ẑ1− ẑ′1) + ẑ2− ẑ′2 = 0 (mod q). The case ẑ1 = ẑ′1 contradicts C3, hence ẑ1 6= ẑ′1. Note that
‖(ẑ1, ẑ2)‖ ≤ B+ηs∗

√
2κn = B+s/α, hence ‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B+s/α. If ĉ′ 6= ĉ, then U may hide

ĉ′ in ĉ∗1, . . . , ĉ∗κ. In this case we have ĉ∗j = p̂−1
j ĉj = p̂

′−1

j ĉ′j by C1, where p̂′j 6= p̂j for all j ∈ [κ]. Hence,
p̂−1
j = p̂

′−1

j ĉ′j ĉ
−1
j . Therefore, U must be able to predict the output of H in order to compute p̂−1

j . The
success probability by an aborted interaction is at least εabort ≥ εA(1−1/|Tnκ|), which is non-negligible
if εA is non-negligible. Therefore, the overall success probability of D is εD ≥ min{ εfork

2(k+1) , εabort}. ut

Remark 2. As mentioned in Section 1.2, strong one-more unforgeability already implies strong honest-
user unforgeability [SU17, Lemma 10]. Furthermore, the above proof assumes that â is given, while
it is actually generated from a seed in order to save bandwidth by only storing the seed instead of
the whole polynomial. Security with this assumption can be proven by the following simple reduction:
Assuming the existence of an adversary A against BLAZE, we construct an adversary B against a
variant of BLAZE with public key (â, b̂). By modeling the function Expand as a programmable random
oracle, B chooses a random seed′, reprograms Expand(seed′) = â, and invokes A on input (seed′, b̂).
The output of B is then the same forgery generated by A.

4 Implementation

In this section we give some important details about the implementation of BLAZE. There are several
aspects subject to optimization. We follow the protocol and provide some insights into our optimiza-
tions. First, the choice of the ring Rq = Zq[x]/〈xn+1〉 for n a power of 2 allows for efficient NTT-based
polynomial multiplication. It further offers a suitable set of signed permutation polynomials T̂. Due to
our choice of q = 231 − 217 + 1, modular reduction works highly efficient according to [Sei18], however
without the need for Barret reductions. From seed we directly generate the NTT representation of â as
it is always used just in the context of multiplications. By this we save one NTT transformation. We
further improve the running time by omitting bit-reversals during NTT transformations in accordance
to [Sei18]. We use the framework [MW17] in order to efficiently generate discrete Gaussians of arbi-
trary size that are centered around zero. Effectively, we apply the NTT twice, i.e., when multiplying
with â. In the other cases, we do not need any multiplications at all. For instance, multiplication with
elements p̂ ∈ T̂ requires just to rotate the respective polynomial and change the signs, if necessary.
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Table 4. A review of parameters and sizes of keys and signatures for BLAZE.

Parameter Description Bounds
λ security parameter
n dimension power of 2
q modulus prime, q = 1 (mod 2n)
σ standard deviation (secret key) σ > 0

κ Hamming weight of H’s output 2κ
(
n
κ

)
≥ 2λ

s∗ standard deviation (signer) s∗ = α∗
√
κ ‖(ŝ1, ŝ2)‖, α∗ > 0

s standard deviation (signatures) s = ηα
√

2κns∗, α, η > 0,
η2n exp(n(1− η2)) ≤ 2−λ

M number of repetitions M = MS ·MU , MS = exp( 12
α∗ + 1

2α∗2 ),
MU = exp( 12

α
+ 1

2α2 )
secret key size (bit) 2ndlog(tσ + 1)e, 2e−t2/2 ≤ 2−λ
public key size (bit) ndlog qe+ λ
signature size without compression (bit) κ(1 + dlogne) + 2ndlog(ts+ 1)e+ 2λ

For the inversion of a monomial p̂ ∈ T̂, we apply Lemma 3. Since elements ĉ∗i are also elements of T̂,
multiplication essentially corresponds to a rotation as described before. Our random oracle H outputs
random elements from the set Tnκ. We apply the “inside-out” version of the Fisher-Yates shuffle, which
is perfectly suitable for this kind of distributions. For generating uniform random bits, we expand
a seed of large enough entropy to the desired output length using Shake. For instance, we generate
the NTT transformation of the polynomial â in this way. We also use Shake in combination with the
Fisher-Yates shuffle as a random oracle in order to hash inputs of H to an element in Tnκ. For the
verification step we compare the squared lengths of the polynomials with the squared bound B2 rather
than using square roots. Finally, we describe the implementation of (De)Compress. Gaussian integers
are optimally represented via Huffman encoding as carried out for instance in [DDLL13,DLL+17]. We
consider the simplified approach proposed in [DLL+17, Section B.5]. Let z be an integer distributed
according to DZ,σ. Then, z can be written as z (mod q) = z1 · 2τ + z0, where σ ≈ 2τ . The value z0
is almost uniform and hence is left uncompressed, while z1 is encoded using the prefix-free encoding
proposed in [DLL+17, Table 3], which we review in Table 3. On average, representing z requires in
total ≈ τ + 2.25 bits.

5 Concrete Parameters and Comparison

In this section we propose concrete parameters for BLAZE and compare our results with the previous
blind signature schemes [BGSS17, PSM17, Rüc10]. We review the parameter description of BLAZE
in Table 4. The table also shows the theoretical sizes of keys and signatures, which we explain first.
We then describe our parameter selection and the methodology to estimate the security. We note
that parameters for the scheme [BGSS17] and [PSM17, Rüc10] were selected targeting 100 and 102
bits of security, respectively. Therefore, we select our parameters targeting approximately the same
security level, namely 128 bits. We also propose further parameters for 192 bits of security (paranoid).
Benchmarking our parameters were carried out on an Intel Core i7-6500U, operating at 2.3 GHz and
8GB of RAM.

Sizes. The secret key consists of 2 polynomials with entries from DZ,σ. By Lemma 1 these entries are
bounded by tσ with probability 1 − 2 exp(−t2/2), where t is chosen such that this probability is at
least 1− 2−λ. Therefore, these polynomials require 2ndlog(tσ + 1)e bits. The public key consists of a
polynomial from Rq and a seed of λ bits. Hence, it occupies ndlog qe + λ bits. Finally, the signature
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Table 5. Parameters for BLAZE targeting 128 and 192 bits of security. Sizes are given in KB.

λ n q σ κ α∗ α s∗ s MS MU M sk size pk size signature size
128 1024 ≈ 231 0.5 16 20 25 2172.2 11796306 1.8 1.6 2.9 0.8 3.9 6.6
192 2048 ≈ 231 1 22 12 20 4322.7 31142799.7 2.7 1.8 4.9 2.5 7.8 14.1

consists of two polynomials with entries from DZ,s in addition to a polynomial from Tnκ and two strings
of λ bits. Thus, its size is bounded by κ(1 + dlogne) + 2ndlog(ts+ 1)e+ 2λ bits.

Parameters. Table 5 shows the parameters selected for BLAZE. We give some insights of how these
parameters were selected. We set n = 1024, which is a typical choice for lattice-based schemes targeting
medium or high security levels. The modulus q is chosen large enough such that the underlying RSIS
instance provides the desired security level. At the same time, q is also small enough such that the
RLWE instance underlying the public key and with the associated standard deviation σ is also hard
enough. We set κ such that the cardinality of Tnκ is large enough for security. The parameters α∗, α,MS ,
and MU are selected as carried out in regular signature schemes such as [DDLL13,DLL+17].

Security. We describe the methodology used to estimate the security of the proposed parameters. We
considered the asymptotically best algorithms known to solve the underlying lattice problems with no
memory restrictions. More precisely, we used the well known and widely used LWE estimator [APS15]
(with commit-id 62b5edc on 2019-09-11) to measure the hardness of recovering the secret key. Fur-
thermore, we considered the lattice reduction algorithm BKZ [SE94,CN11] to estimate the hardness of
forging signatures. BKZ uses a solver for the shortest vector problem (SVP) in lattices of dimension b,
where b is called the block size. The best known SVP solver [BDGL16] runs in time ≈ 20.292b. Running
BKZ with block size b on an n-dimensional lattice L takes time 8n20.292b+16.4 [BDGL16,Alb17]. After

calling BKZ we obtain a vector of length δn · det(L)1/n, where δ =
(
b · (πb) 1

b /(2πe)
) 1

2(b−1) [Che13].
By Theorem 3, forging a signature implies finding (v̂1, v̂2, v̂3) 6= 0 such that âv̂1 + v̂2 = v̂3b̂, where
‖(v̂1, v̂2)‖ ≤ 2B+ s/α and ‖v̂3‖∞ ≤ 2. This amounts to solving RSIS for the matrix (â, 1, b̂) with norm
bound β =

√
(2B + s/α)2 + 4n. Given β we determined δ by setting β = δn ·det(L)1/n. Then we used

the formula of δ given above to deduce the minimum block size b required for BKZ to achieve δ. Then
we computed the cost of BKZ.

Comparison. Table 1 shows that BLAZE significantly improves upon the schemes [BGSS17,PSM17,
Rüc10] with respect to all relevant efficiency metrics and considerably large improvement factors. We
note that we considered only the best parameter set proposed for RBS in [Rüc10, Table 3] for the
target security level of 102 bits.

6 Conclusion

We highlight few notable conclusions from our results and possible future work. We presented BLAZE,
a new practical lattice-based blind signature scheme providing statistical blindness under adversely-
chosen keys [ANN06] and the strongest version of unforgeability [SU17] in the ROM. We have shown
that BLAZE improves upon all previous works on blind signatures based on assumptions conjectured
to withstand quantum computer attacks.

Similar to RBS, the unforgeability proof of BLAZE requires the signing queries qSign to be limited to
o(λ). As mentioned in [Rüc10] and originally by Pointcheval and Stern [PS00], this constraint is an
artifact of the proof and is not unusual for efficient blind signatures. It was left open to achieve a
polynomial-time reduction in both qSign and key size. We extend this research question to investigating
the security of BLAZE in the quantum random oracle model (QROM). A possible direction towards
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this goal may involve the results of Kiltz et al. [KLS18] on the security of Fiat-Shamir signatures in
QROM. For instance, the security in QROM may be obtained by considering a variant of BLAZE
whose underlying identification scheme admits lossy public keys as defined in [AFLT12] (see [KLS18]
for further details). Further improvements that can be made on BLAZE’s design are the following:

– Adapt the compression technique of Bai and Galbraith [BG14] such that signatures consist of only
one Gaussian polynomial ẑ1 rather than a pair (ẑ1, ẑ2). However, this approach requires further
security analysis, since the property of strong one-more unforgeability is then not directly preserved.
Consequently, the security of the resulting scheme under the new security model by Schröder and
Unruh [SU17] cannot be established in a straightforward way.

– Reduce the complexity of BS.Sign by compressing all Gaussian elements exchanged using the
algorithm Compress, i.e., by compressing ẑ∗1,1, . . . , ẑ∗κ,2 from the 3rd move and ê1, ê2 included in the
proof of failure.

– Modify BLAZE so that its security is based on the module version of SIS and LWE [LS15]. This
allows for more flexibility when selecting parameters.

– Finally, we note that by modifying BLAZE so that key recovery is based on RSIS rather than RLWE,
it can directly be transformed into an identity-based blind signature scheme. Secret keys can then
be extracted from the master secret key using any preimage sampleable trapdoor function, e.g.,
due to [MP12].
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A The Blind Signature Scheme by Rückert

In this section we review the blind signature scheme proposed by Rückert [Rüc10]. For any positive
integer x we write Rq,x to denote the subset of the ring Rq consisting of all polynomials with coefficients
in the set {−x, . . . , 0, . . . , x}. The scheme uses a random oracle H : {0, 1}∗ → Rq,1 and a commitment
function Com : {0, 1}∗ × {0, 1}n → {0, 1}n that is statistically hiding and computationally binding.
Key generation, signing, and verification are described in Figure 4.

B Cryptanalysis of other Lattice-Based Blind Signature Schemes

In this section we show how a user can simply compute the secret key of the lattice-based blind
signature scheme given in [ZTZ+17]. Furthermore, we explain how the underlying SIS problem of all
earlier identity-based (ID-based) blind signature proposals [CCT+11,ZM14,ZH16,GHWX16,GHW+17]
can be solved by a user due to a design flaw.

B.1 Key Recovery of a Blind Signature Proposal

We describe a key recovery attack on a blind signature scheme proposed in [ZTZ+17]. We sketch its
key generation and signing protocol and only explain the elements required for our analysis.
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BS.KGen(1λ)
1: â1, . . . , âm ←$ Rq
2: ŝ1, . . . , ŝm ←$ Rq,d
3: b̂←

∑m

1 âiŝi (mod q)
4: sk := (ŝ1, . . . , ŝm)
5: pk := (â1, . . . , âm, b̂)

BS.Verify(â1, .., âm, b̂, µ, (r, ẑ1, .., ẑm, ĉ))
1: if ẑi ∈ Rq,z for all i ∈ [m] ∧ ĉ =

H
(∑m

1 âiẑi − b̂ĉ (mod q),Com(µ; r)
)

2: return 1
3: return 0

BS.Sign(ŝ1, . . . , ŝm, â1, . . . , âm, µ)
Signer S(ŝ1, . . . , ŝm) User U(â1, . . . , âm, b̂, µ)
ŷ∗1 , . . . , ŷ

∗
m ←$ Rq,y

ŷ∗ ←
∑m

1 âiŷ
∗
i (mod q)

ŷ∗ r←$ {0, 1}n, C ← Com(µ; r)
û←$ Rq,n, v̂1, . . . , v̂m ←$ Rq,v
ĉ← H(ŷ∗ − b̂û−

∑m

1 âiv̂i, C)
ĉ∗ ← ĉ− û
if ĉ∗ 6∈ Rq,n−1 start over a new û

for i = 1, . . . ,m : ĉ∗

ẑ∗i ← ŷ∗i + ŝiĉ
∗

if ẑ∗i 6∈ Rq,z∗ restart
ẑ∗1 , . . . , ẑ

∗
m for i = 1, . . . ,m :

ẑi ← ẑ∗i − v̂i
if ẑi 6∈ Rq,z, result← (C, û, v̂i, ĉ)
else result← ok

if result 6= ok result

if
(
ĉ∗ + û = ĉ = H(ŷ∗ − b̂û−

∑m

1 âiv̂i (mod q), C) ∧
H(
∑m

1 âi(ẑ∗i − v̂i)− b̂ĉ (mod q), C) = ĉ ∧
ẑ∗i − v̂i 6∈ Rq,z for some i ∈ [m]

)
restart

return (µ, (r, ẑ1, . . . , ẑm, ĉ))

Fig. 4. A formal description of the blind signature scheme by Rückert [Rüc10].

The secret key is an (n× n)-matrix S with coefficients from {−1, 0, 1} and the verification key is two
(n × n)-matrices (P,H), where P = b2ρ(S) + 1c · In, ρ(S) is the spectral radius of S, and H is the
Hermite normal form of P− S. Signing is performed as follows:

1. The user sends an n-dimensional vector u to the signer, where u contains the message being signed
and some random elements.

2. The signer sends z′ = u− buP−1e(P− S) back to the user.
3. The user outputs z = z′T−1 − e as a part of the signature, where T, e are included in u.

The secret key S can be computed as follows. The user selects two random vectors u1,u2 such that
x = bu1P−1e − bu2P−1e is invertible and initiates the signing protocol twice by sending u1,u2,
respectively. After receiving z′1, z′2, the secret key is then given by S = (z′1 − z′2 −u1 + u2 + xP) · x−1.
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B.2 Forgeability of Earlier ID-Based Blind Signatures

We describe a design flaw in the previous identity-based blind signature schemes [CCT+11,ZM14,ZH16,
GHWX16,GHW+17] which are based on lattices. They all follow the same framework to blindly sign
messages. This framework employs the preimage sampleable trapdoor function3 introduced in [GPV08].
It works as follows: Given a public random (n × m)-matrix A with a short basis for the lattice
Λ⊥q (A) =

{
e ∈ Zm : Ae = 0 (mod q)

}
as a secret trapdoor. Signing is performed as follows.

1. The user sends an n-dimensional vector y = Ax + c · t (mod q) to the signer, where x is an m-
dimensional Gaussian vector, c ∈ Znq is the hash value of the message being signed, and t is a small
integer.

2. The signer samples a preimage e such that Ae = y (mod q) and sends it back to the user.
3. The user outputs the signature z = (e − x) · t−1 (mod q). We note that two of the proposals we

analyze here consider t as an invertible Gaussian (n× n)-matrix, although the signature z cannot
be obtained by multiplying an m-dimensional vector with an (n× n)-matrix.

Verification is performed by checking that Az = c (mod q). Apparently, it is assumed that the signing
protocol is stateful in order to prevent re-querying attack. That is, the signer has a local storage
for returning the same preimage of previous signing queries. Nevertheless, any user can simply send
y = Ax (mod q) and let the signer return a preimage x′ of y. Thus, we obtain A(x−x′) = 0 (mod q),
where x− x′ is short and non-zero vector with high probability, since collisions always exist.

3 We note that Rückert [Rüc10] already pointed out that blind signatures cannot be implemented using this
trapdoor function.
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