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Abstract

We present a new public-coin setup protocol for aggregating BLS signatures on distinct messages. For
n messages the verifier computes just 6 pairings and 6(n+ log(n)) exponentiations–an improvement on
previous aggregate schemes in which the verifier computes n+ 1 pairings. Our aggregate signature is
logarithmic in size. This result uses an inner pairing product argument of knowledge that can be used to
prove membership in pairing-based languages.
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1 Introduction

In this paper we look into argument systems for proving membership in a relation specific language - namely
pairing-based languages. As first observed in the influential paper of Groth and Sahai [GS08], bilinear
pairings are a powerful tool. Essentially, they allow verifiers to directly check that given ga and gb, a group
element C is equal to gab. This check can be carried out without any additional information from the
prover. Thus, using a bilinear pairing, one can check that a quadratic equation in unknown variables is
satisfied. This puts cryptographers in a position of power. With pairings, we can build NIZK arguments in
the plain model [GOS06]; SNARKs with constant sized verifiers [PGHR13]; signature schemes that can be
rerandomised [PS16] and many more primitives. Not only are pairing-based arguments of theoretical interest,
they are widely used in practice and there are standardisation efforts to help the efforts of developers [Lan08].
Nonetheless, pairing operations are computationally intensive and protocols usually prioritise minimising
pairings above other operations such as exponentiations. We thus believe that it is a worthy goal to design
proving systems that can reduce the number of pairing operations that verifiers must perform.

We observe two advantages in designing computation specific provers: (1) there is no requirement to
carry out a reduction to NP (which typically adds orders of magnitude onto the prover complexity), and (2)
cryptographers can find interesting tricks that use the underlying structure of the computation. In this work,
using similar techniques to concurrent work Lai et al. [LMR19], we are able to prove to a verifier that a
pairing-based language is satisfied and our proof size is logarithmic. Our scheme is built from a transparent
setup. Our verifier complexity, while still linear, trades a linear number of pairings for three pairings and a
linear number of group exponentiations. Using this technique, we demonstrate that one can build aggregate
signature schemes in which verifiers only need to compute six pairings for any number of distinct messages.
Our techniques for reducing the number of pairing equations required to verify BLS signatures also work
Pixel [DGNW19] as demonstrated by Vesely in concurrent work [Ves19], and we believe may be extended to
batch verification of SNARKs. Our protocols are secure under a public-coin (transparent) setup.

This paper introduces an aggregatable signature scheme which was inspired by Boneh, Gentry, Lynn
and Shacham [BGLS03]. Where Bohen et al. observed that BLS signatures can be aggregated, they still
require the verifier to compute one pairing per distinct message. We aggregate further by first providing the
output of the pairings, and then using our inner pairing product argument to prove the result correct. As a
result our verifier needs to evaluate just six pairings. That is, no matter how many messages have been signed,
provided one party has performed the aggregation process, all the other verifiers merely need to evaluate the
exponentiations (plus six pairings). The aggregation process is approximately six times the price of verifying
BLS signatures and we require no special structure on the format of our field.

A promising alternative to our approach of proving pairing-based languages is to represent the pairings in
an NP language and prove with a SNARK that the computation is correct [BCTV14]. Bowe et al. achieved
this goal using approximately 20,000 constraints per pairing [BCG+18]. We suggest a means by which our
techniques might be complimentary, as opposed to competing, to these techniques. If one applied a SNARK
to the verifier of our algorithm, it seems likely that the size of the constraint system might be smaller, and
thus affecting the concrete performance of the algorithm. The reason we believe this might follow is because
representing exponentiations inside a SNARK is cheaper than representing pairings inside a SNARK. Further,
our logarithmic sized proof could be hidden inside the witness, and would not affect the size of the resulting
argument. The formal and practical analysis of such an approach is outside the scope of this work and we
leave it as an open research problem.

We present a detailed efficiency analysis of IPP in Table 1. Proof sizes are logarithmic and the verifier
is required to compute a linear number of exponentiations in the number of pairings. The prover costs are
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approximately six times the cost of naive computation.

sizes time complexity

|CRS| |π| prover verifier

G1 n 1 4n 2n
G2 n 1 4n 2n
GT — 6 log(n) 6 log(n) 6 log(n)
e — — 6n 3

Table 1: Computational and communication complexity of IPP.

In our aggregate signature scheme, aggregating n signatures requires 6n exponentiations in G1, 4n
exponentiations in G2, 6 log(n) exponentiations in GT , and 6n + 2 pairings. The aggregated signature
consists of 1 element in G1, 2 elements in G2, and 6 log(n) + 1 elements in GT . The verifier computes 4n
exponentiations in G1, 2n exponentiations in G2, 6 log(n) exponentiations in GT , and 6 pairings. The CRS
required to support these computations consists of n elements in G1 and 1 element in G2.

1.1 Our Techniques

The foundation of this paper is built upon a inner pairing product argument. Using a CRS (w,v) ∈ Gn
1 ×Gn

2 ,
the inner pairing product argument (IPP) is used to show that for in instance x = (T,U, Z) ∈ GT there exists
a witness w = (A,B) ∈ Gn

1 ×Gn
2 such that

T = e(A1, v1) · · · e(Am, vm) ∧ U = e(w1, B1) · · · e(wm, Bm) ∧ Z = e(A1, B1) · · · e(Am, Bm) .

To obtain this argument, we started from Bootle et al.’s inner product argument [BCC+16] and extended it to
the pairing setting. Our inner pairing product argument has logarithmic size, the prover computes a linear
number of pairings, and the verifier computes a linear number of exponentiations in the number of group
elements being paired. We prove our scheme secure under the Double-Pairing Assumption in the interactive
setting.

To obtain our aggregatable digital signatures, we started from the work of Boneh et al. [BGLS03],
who noted that Boneh-Lynn-Shacham signatures [BLS01] can be aggregated to reduce the space and time
requirements on the verifier. This is useful in blockchain applications where the space and time abilities of
the verifier are assumed to be highly limited. However, when the aggregated signature is applied to more than
one message, Boneh et al.’s the verifier is required to compute one pairing per message. Using our pairing
argument, we show how one can instead provide a proof that the pairing equations are satisfied, and thus
reduce the computational burden on the verifier. One complication is that the verifier’s equation is applied
to hashed messages and not to predetermined random group elements. To combat this, we use the hashed
messages as part of the CRS when we apply the inner product argument.

1.2 Related work

In concurrent work Lai, Malavolta, and Ronge [LMR19] introduce a more generalized inner pairing product
argument. We arrive at an argument system, IPP, in Section 4.1 for a relation which is a subset of the relations
covered by Lai et al.s argument (see [LMR19, Protocol 3]). The advantage of IPP is that even considering a
simplified version of [LMR19] that only covers our simpler relation, IPP requires half the prover and verifier
time, and a CRS half the size. Both systems achieve identical proof sizes and prove the same security notion
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of witness-extended emulation. Additionally, we apply our inner pairing product arguments to different
settings: Lai et al. discuss the applications to zero-knowledge proofs, whereas we discuss the aggregation of
BLS signatures.

Groth and Sahai [GS08] that introduced a method to prove pairing-based languages under zero-knowledge
without reducing to NP (or alternatively under witness indistinguishably with smaller proofs). The group
elements are committed to under either a perfectly binding commitment key or a perfectly hiding commitment
key (and the prover cannot distinguishwhich) and depending onwhich key is used the protocol is either perfectly
sound or perfectly zero-knowledge. This approach has since been improved by Escala and Groth [EG14] and
by Ghadafi et al. [GSW10]. Blazy et al. [BFI+10] noted that it is possible to batch verify pairing equations
that share a source group element. However, their results do not extend to the setting where both source group
elements are different. Our work can be used to aggregate pairing equations where the source group elements
differ. GS proofs are secure in the standard model under standard assumptions. Thus their linear sized proofs
and verifier time are optimal [GW11], whereas our smaller proofs can only be obtained because we are in
the random oracle model. Nonetheless, this means that GS proofs can be used for applications that require
straight-line extractors whereas ours cannot. We also note that, unlike GS proofs [BCC+09], our proofs are
not rerandomisable.

One alternative method for proving the correct evaluation of a pairing relation is to embed the pairing
inside a general purpose circuit and then apply a generalised zero-knowledge proof with sublinear verification
time. The main difficulty with this approach is that the prover time is necessarily at least linear in the number
of gates, and a boolean representation of a pairing equation would require a substantial number of gates.
However, Ben-Sasson et al.[BCTV14] demonstrated that by choosing the field sizes with care, it is possible
to embed pairings inside arithmetic circuits using a moderate number of gates. They further show that if
one has a pairing-based proving system, then it is possible to recursively prove that previous proofs verify,
by ensuring that the field is chosen not only so that it embeds a pairing, but also so that it is the order of
a separate pairing-based group. Compared to our approach, these methods yield proof sizes and verifier
computation which are constant in the security parameter - an improvement upon our approach. However,
each pairing requires tens of thousands of gates, putting a considerable burden on the prover. As such we
believe our approaches complement each other: one could use our argument to reduce the number of pairings
that the verifier must compute, and Ben-Sasson et al.’s approach to prove that the verifier is satisfied. In doing
so one would obtain both a smaller prover and a smaller verifier. Alternatively, if one is not comfortable using
setup assumptions, our approach relies on a trustless setup, whereas Ben-Sasson et al.’s approach depends on
pairing-based SNARKs, which so far we only know how to build under trusted setup.

Boneh et al.[BGLS03] observed that BLS signatures [BLS01] can be aggregated provided that the users
are signing distinct messages. If the messages are not distinct (e.g. multisignatures) then care has to be taken
to avoid rogue key attacks and such as by providing a proof-of-knowledge of the public key [RY07] or applying
recent results by Boneh et al. [BDN18]. While Boneh et al. demonstrated how to generate multisignatures,
they fall short of reducing the number of pairings required to verify an aggregate signature with distinct
messages. This work discusses how to reduce the number of pairings required to verify aggregate signature
and we only discuss the scenario where messages are distinct.

Abe et al. proved that one can commit to group elements in asymmetric bilinear groups under the
double pairing assumption [AFG+16] and that such techniques are helpful for building structure preserving
signatures (i.e. signatures where messages are group elements) in the standard model. This work utilises their
commitment scheme. Where Lai et al. mention that it is possible to use a inner pairing product argument to
reduce the size of Abe et al.’s structure preserving signatures [LMR19], we instead directly use BLS signatures.
These signatures are more efficient - indeed they consist of a single group element per message - and thus
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the proofs generated using them will also be more efficient. Furthermore, where the inner pairing product
argument is in the random oracle model anyway, many of the advantages in using a structure preserving
scheme have already been lost.
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2 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the tuple (a1, . . . , an), and

[ai]
n
i=1 = [[ai,j ]

m
j=1]

n
i=1 as a short-hand for the tuple (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes the

number of entries in a. If x is a binary string then |x| denotes its bit length. For a finite set S, let x $←− S
denote that x is an element sampled at random from S.

We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable n, we implicitly
assume that n = poly(λ). We denote by negl(λ) an unspecified function that is negligible in λ (namely, a
function that vanishes faster than the inverse of any polynomial in λ). When a function can be expressed
in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that A is an efficient adversary
we mean that A is a family {Aλ}λ∈N of non-uniform polynomial-size circuits. If the adversary consists of
multiple circuit families A1,A2, . . . then we write A = (A1,A2, . . . ).

We write {(x;w) : R} to describe a NP relationR between public input x and witness w.
Bilinear groups. The cryptographic primitives that we construct in this paper rely on cryptographic
assumptions about bilinear groups. We formalize these via a bilinear group sampler, which is a probabilistic
polynomial-time algorithm SampleGrp that, on input a security parameter λ (represented in unary), outputs
a tuple 〈group〉 = (G1,G2,GT , q, g, h, e) where G1,G2,GT are groups with order divisible by the prime
q ∈ N, g generates G1, h generates G2, and e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

Galbraith et al. distinguish between three types of bilinear group samplers in [GPS08]. Type I groups
have G1 = G2 and are known as symmetric bilinear groups. Types II and III are asymmetric bilinear groups,
where G1 6= G2. Type II groups have an efficiently computable homomorphism ψ : G2 → G1, while Type
III groups do not have an efficiently computable homomorphism in either direction. Certain assumptions
are provably false w.r.t. certain group types (e.g., DBP only holds for Type III groups), and in general in
this work we assume we are working with working with a Type III groups. We will write SampleGrp3 to
explicitly denote a bilinear group sampler that outputs Type III groups.

We write the group operation multiplicatively for all three groups G1,G2,GT .
Inner pairing product notation. We introduce some special notation related to our inner pairing product
argument, some of which is borrowed from that used to describe the generalized Pedersen inner product
introduced in [BBB+18]. For a scalar x ∈ Fq and vector A ∈ Gn, we let Ax = Ax1 , . . . , A

x
n ∈ Gn,

and for a vector x ∈ Fnq we have Ax =
∏n
i=1A

xi
i ∈ G. For two vectors A ∈ Gn

1 , B ∈ Gn
2 we define

A ∗B =
∏n
i=1 e(Ai, Bi). For two vectors A,A′ ∈ Gn we let A ◦A′ =

∏n
i=1Ai ·A

′
i denote the entrywise

group operation product of two vectors. Where we believe it clear to do so we write A ◦A′ as AA′ and
likewise ai · a

′
i as aia

′
i.

Let A‖A′ = (A0, . . . , An, A
′
0, . . . , A

′
n) be the concatenation of two vectors A ∈ G· and A

′ ∈ G·. To
denote slices of vectors givenA ∈ Gn

· and 0 ≤ ` < n we write

A[:`] = A0, . . . , A`−1 ∈ G`, A[`:] = A`, . . . , An−1 ∈ Gn−`.

For x ∈ Fq we use x
n to denote the vector containing the first n powers of x:

xn = (1, x, x2, . . . , xn−1) ∈ Fnq .
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3 Background

3.1 Definitions

In this section we define what it means for an argument scheme to be sound and an aggregate signature scheme
to be unforgeable. Our definitions are defined in the interactive setting, however since the verifier responses
in all our arguments simply sample random coins, we imagine the constructions would most generally be
realised in the non-interactive setting using random oracles.

3.1.1 Arguments of knowledge

We will later prove that our inner pairing product argument satisfies witness-extended emulation in the sense
that any adversary that convinces the verifier must also know a valid witness. Our definition was inspired by
Bootle et al. [BCC+16]

Definition 3.1 (Witness-extended emulation). The argument system (Setup,Prove,Verify) has witness-
extended emulation if for all deterministic polynomial time provers P∗ there exists a polynomial time emulator
E such that for all pairs of interactive adversaries A1,A2 it holds that∣∣∣∣∣∣∣∣Pr

 A1(tr) = 1

∣∣∣∣∣∣
pp← Setup(1λ)

(x, st)← A2(pp)
tr←

〈
P∗(pp,x, st), V(pp,x)

〉


− Pr

 A1(tr) = 1
∧

(tr is accepting⇒ (x,w) ∈ R)

∣∣∣∣∣∣
pp← Setup(1λ)

(x, st)← A2(pp)

(tr,w)← EO(pp,w)


∣∣∣∣∣∣∣∣

is negligible, where tr is the transcript of communication between P∗ and V , the oracle is given by
O =

〈
P∗(pp,x, st), V(pp,x)

〉
, and permits rewinding to a specific point and resumingwith fresh randomness

from this point onwards.

3.1.2 Aggregatable signatures

An aggregate signature scheme consists of algorithms (Setup,KeyGen, Sign,Verify,Agg,VerifyAgg) that
behave as follows.

• pp
$←− Setup(1λ, n) : an efficient, public-coin setup algorithm that on input a security parameter and

an integer n = 2` indicating the maximum number of signatures that can be aggregated, outputs public
parameters pp.

• (pk, sk)
$←− KeyGen(pp) : The PPT key generation algorithm takes as input the public parametersa bilinear

group description 〈group〉 ∈ Λ, and outputs a secret key sk and the corresponding public key.
• σ ← Sign(pp, sk,m) : The DPT signing algorithm takes as input the public parameters, a secret key and a
messagem ∈ {0, 1}∗. It returns a signature σ.

• 0/1← Verify(pp, pk,m, σ) : The DPT verification algorithm takes as input the public parameters, a public
key, a message and a signature. It outputs 1 if it considers the message to be valid and 0 otherwise.

• (σA, π)← Agg(pp, {pki,mi, σi}
n−1
i=0 ) : The DPT signature aggregation algorithm takes as input the public

parameters and a list of public keys, messages, and signatures. It outputs an aggregate signature and a proof.
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• {0, 1} ← VerifyAgg(pp, {pki,mi}
n−1
i=0 , σA, π) : On input of the public parameters, a list of public keys

and messages, a signature and a proof, the DPT aggregate verification algorithm outputs 1 if it considers
the signature to be valid and 0 otherwise.

We require that (Setup,KeyGen,Sign,Verify) is unforgeable and that (Setup,KeyGen,Sign,Verify,Agg,Verify)
satisfies signature-extended emulation.

We define a signature scheme to be unforgeable if an adversary cannot output a verifying signature under
a public key which it does not own, even if it can see signed messages. Observe that this notion is less strong
than saying that any adversary that outputs a verifying signature can compute a corresponding secret key —
intuitively this is why aggregation algorithms must be careful to prevent rogue key attacks.

Definition 3.2 (Unforgeable Signature). For a signature scheme (Setup,KeyGen,Sign,Verify) we define the
advantage of an adversary against unforgeability to be defined by AdvforgeA (1λ) = Pr[GameforgeA (1λ)] where
the game GameforgeA is defined as follows.

Main GameforgeA (1λ)

pp
$←− Setup(1λ)

Q← ∅
(pk, sk)

$←− KeyGen(1λ)

(m,σ)
$←− ASign(pk)

Return 1 if (m,σ) 6∈ Q ∧ Verify(pp, pk,m, σ) = 1
Else return 0

Sign(m)

σ ← Sign(pp, sk,m)
Q← Q ∪ {m,σ}
Return σ

We say a signature scheme is unforgeable if all PPT adversaries A have no more than negligible advantage
against Gameforge.

An aggregate signature satisfies signature-extended emulation in the sense that any adversary that outputs
a verifying aggregate signature and proof for a set of public keys and messages must also know a verifying
signature for each public key and message pair. When combined with the notion of unforgeability, this suffices
to demonstrate that an adversary cannot forge aggregate signatures.

Definition 3.3 (Aggregate Unforgeable Signature). For an aggregate signature scheme

(Setup,KeyGen,Sign,Verify,Agg,VerifyAgg)

we define the advantage of an adversary against aggregate unforgeability to be defined by AdvaforgeA (1λ) =

Pr[GameaforgeA (1λ)] where the game GameaforgeA is defined as follows.

Main GameforgeA (1λ)

pp
$←− Setup(1λ)

Q← ∅
(pk0, sk0)

$←− KeyGen(1λ)

({pki,mi}
n−1
i=0 , σA)

$←− ASign(pk0)

Return 1 if (m0) 6∈ Q ∧ Verify(pp, {pki,mi}
n−1
i=0 , σA) = 1

Else return 0

Sign(m)

σ ← Sign(pp, sk0,m)
Q← Q ∪ {m}
Return σ

We say a signature scheme is unforgeable if all PPT adversaries A have no more than negligible advantage
against Gameaforge.
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3.2 Assumptions

Our inner pairing product argument relies on the double pairing assumption. We define our assumptions
relative to the group generator such that the soundness of our argument relies on the existence of a group
generator for which the relevant assumptions hold.

Assumption 1 (Double pairing assumption (DBP)). We say the double pairing assumption holds relative to
SampleGrp3 if for any probabilistic polynomial-time algorithm A

Pr

 (a1, a2) 6= (1, 1)
∧

1 = e(a1, h1)e(a2, h2)

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

(h1, h2)
$←− G2

(a1, a2)← A(〈group〉, h1, h2)


is negligible.

More specifically, we refer to this as the DBPG2
assumption and also define its dual, the DBPG1

assumption, by swapping G1 and G2 in the definition above. In [AFG+16, Lemma 2] Abe et al. prove that if
DDHG holds relative to SampleGrp3 then so does DBPG relative to SampleGrp3.

The q-DBP Assumption is a generalisation of the DBP:

Assumption 2 (q-Double pairing assumption (q-DBP)). We say the q-double pairing assumption holds in
G2 relative to SampleGrp3 if for any efficient A and for all q ≥ 2:

Pr

 (a1, . . . , aq) 6= 1
∧

1 =
∏q
i=1 e(ai, hi)

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

(h1, . . . , hq)
$←− G2

(a1, . . . , aq)← A(〈group〉, h1, . . . , hq)


is negligible.

While we use the q-DBP in the security proof for our PC scheme, by the following lemma we can state
the result in terms of the simpler DBP.

Lemma 3.4. If the DBP holds relative to an asymmetric bilinear group generator SampleGrp3, then the
q-DBP also holds relative to that SampleGrp3.

Proof. For the case q = 2 it is obvious the q-DBP coincides with the DBP. Assume the existence of an
efficient algorithmA that for any q > 2 breaks the q-DBP. We construct an efficient algorithmA′ that breaks
the DBP as follows.

On input of a challenge (〈group〉, h1, h2) the adversary A
′ uniformly samples α3, . . . , αq

$←− Fq for and
computes hi = h

αi
i for i = 3, . . . , q. A′ then runs A on (〈group〉, h1, . . . , hq). Since the distribution of the

h1, . . . , hq that A
′ gives as input to A is identical to in the q-DBP experiment, with more than negligible

probability A outputs a non-trivial q-double pairing, i.e., values a1, . . . , aq such that
∏q
i=1 e(ai, hi) = 1.

In the case A outputs a non-trivial q-double pairing, A′ sets a′1 = a1 and computes a′2 = a2 ·
∏q
i=3 a

αi
i ,

and outputs a double pairing a′1, a
′
2. Since A runs in probabilitic polynomial-time in λ and succeeds with

more than negligible probabilty, so does A′. Clearly, for q super-polynomial in λ, no efficient adversary A
can exist.
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3.3 Forking lemma

We will use the following forking lemma from [BCC+16, Lemma 1] in our proof of witness-extended
emulation:

Theorem 3.5 (Forking lemma). Let (Prove,Verify) be a (2µ+ 1)-move, public-coin interactive protocol. Let
E be a witness extraction algorithm that always succeeds in extracting a witness from an (n1, . . . , nµ)-tree
of accepting transcripts in probabilistic polynomial time. Assume that

∏µ
i=1 ni is bounded above by a

polynomial in the security parameter λ. Then (Prove,Verify) has witness-extended emulation.
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4 Inner pairing product argument

It has long been known that pairing-based languagues are expressive enough to capture many relations
of interest: indeed Groth-Sahai proofs are often used to build applications such as voting schemes and
anonymous credentials. However, many constructions for pairing-based languages have had one significant
drawback being that the size of proofs and the cost of the verifier are linearly linked to the pairing product
equation being solved. Considering the proofs are interactive, in the standard model it is not possible to
achieve better than this. In this section we discuss how in the interactive setting (or the non-interactive setting
with random oracles) one can achieve logarithmic sized proofs for pairing-based languages. The prover costs
are only a small constant factor more expensive then verifying the statement directly. The verifier costs
decrease from a constant number of pairings to a constant number of group exponentiations; further, in the
universal SRS model we design a logarithmic verifier.

We note that while it is possible to achieve significantly smaller proof sizes and verifier time using
SNARKs, the prover costs can pose as a significant barrier to adopting such protocols in practice. The pairing
product equations must be reduced to a set of NP constraints, and the prover time will scale quasi-linearly
with respect to this (much larger) set of constraints.

4.1 Construction

In this section we present our inner pairing product argument IPP for the relation:

Rpair =

{
(〈group〉,w ∈ Gm

1 , v ∈ Gm
2 , T, U, Z ∈ GT ; A ∈ Gm

1 , B ∈ Gm
2 ) :

T = A ∗ v ∧ U = w ∗B ∧ Z = A ∗B

}
. (1)

Without loss of generality assumem is a power of two. Our argument is defined by a recursive protocol that
in each loop “scales” vectors A,B,v,w into new vectors A′,B′,A′,B′, repectively, of lengthm′ = m/2.
In each loop the prover also commits a set of values that the verifier uses to update target group elements
T,U, Z from the last round to new T ′, U ′, Z ′ ∈ GT . The recursive protocol proceeds until the final round of
recursion wherem = 1 and the inputs are source group elements A,w ∈ G1, B, v ∈ G2 sent to the verifier
from the prover and the T,U, Z the verifier derived the penultimate round. In this final round the prover
reveals A,B and the verifier (who has computed v, w) outputs “accept” iff

e(A, v) = T and e(w,B) = U and e(A,B) = Z.

Our key insight is that the inner product argument of Bootle et al. [BCC+16] can be adapted to work over a
pairing-based language. While one might be tempted to use the improved inner product argument of Bunz et
al. [BBB+18], we warn the reader that in our pairing-based setting such a scheme would be insecure (we
would require a version of DBP that works assuming the adversary outputs elements in both source groups–an
assumption which is provably false).

We now describe the protocol that runs in each round untilm = 1. The prover setsm′ = m/2 and then
computes the 6 target group elements

TL = A[:m
′
] ∗ v[m′:] TR = A[m

′
:] ∗ v[:m′]

UL = w[m
′
:] ∗B[:m

′
] UR = w[:m

′
] ∗B[m

′
:]

ZL = A[:m
′
] ∗B[m

′
:] ZR = A[m

′
:] ∗B[:m

′
]

12



and then sends them all to the verifier. Next, the verifier samples a fresh challenge x $←− F and sends x to the
prover. The prover and the verifier independently compute

T ′ = T x
2

L · T · T
x
−2

R v′ = vx
−1

[:m
′
]
◦ vx

[m
′
:]

∈ Gm
′

2

U ′ = Ux
2

L · U · U
x
−2

R w′ = wx
[:m
′
]
◦wx

−1

[m
′
:]
∈ Gm

′

1

Z ′ = Zx
2

L · Z · Z
x
−2

R

The prover finally computes

A′ = Ax
[:m
′
]
◦Ax

−1

[m
′
:]
∈ Gm

′

1 B′ = Bx
−1

[:m
′
]
◦Bx

[m
′
:]
∈ Gm

′

2

and the protocol recurses on(
〈group〉,w′ ∈ Gm

′

1 , v′ ∈ Gm
′

2 , T ′, U ′, Z ′ ∈ GT ; A′ ∈ Gm
′

1 , B′ ∈ Gm
′

2

)
.

Pseudocode. In Fig. 1 we present the interactive protocols (Prove,Verify).
Transparent setup. Note that generating the public parameters pp = (〈group〉,v,w) does not require a
trusted setup. Indeed the Setup algorithm can use a hash function Hn : {0, 1}∗ → Gn

1 ×Gn
2 that on input

of a small seed (public randomness), outputs the group elements needed to run IPP. Where support for
memory-constrained devices that cannot store the entire CRS is needed, it is possible to define this hash
function to allow individual CRS elements to be computed on-the-fly at a cost to efficiency.

4.2 Efficiency

Our protocol requires log(n) rounds. In each round of Fig. 1 the prover and verifier independently compute
new generators v′,w′ requiring 4n exponentiations: 2n in the first round, n in the second round, and 2n

2
j−1 in

the j-th. (2n of these exponentiations are in G1 and 2n in G2.) Both parties must also compute the T ′, U ′, Z ′

values, requiring an additional 6 log(n) exponentiations in GT . The prover alone computes the newA′,B′

values–an additional 2n exponentiations in each source group.
The TL, TR, UL, UR, ZL, ZR values the prover computes in each round require 6n pairings to compute:

3n in the first round, 3n
2 in the second round, and 3n

2
j−1 in the j-th. These elements, 6 log(n), are sent to the

verifier along with the final A ∈ G1 and B ∈ G2. The verifier needs compute just 3 pairings to check the 3
equations in the final round.

4.2.1 Optimizations

Following Section 3.1 of Bünz et al. [BBB+18], the verifier can delay their exponentiations until the final
round. After a pre-computation requiring n multi-exponentiations in F of size at most log(n), the verification
can be reduced to five multi-exponentiations: one of size n in each of the source groups and three of size
2 log(n) in GT . This technique halves the number of group exponentiations that the verifier computes.
Additionally, multi-exponentiations can be computed faster than separate exponentiations (see Chapter 6
of [BBB+18] for more details).
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Prove(〈group〉, w,A ∈ Gm
1 , v,B ∈ Gm

2 , T, U, Z ∈ GT ) Verify(〈group〉, g,h, T, U, Z)

ifm = 1:
A ∈ G1, B ∈ G2

if e(A, v) = T ∧ e(w,B) = U ∧ e(A,B) = Z:
return “accept”

else:

m′ = m/2
TL = A[:m

′
] ∗ v[m′:]

TR = A[m
′
:] ∗ v[:m′]

UL = w[m
′
:] ∗B[:m

′
]

UR = w[:m
′
] ∗B[m

′
:]

ZL = A[:m
′
] ∗B[m

′
:]

ZR = A[m
′
:] ∗B[:m

′
]

m′ = m/2

TL, TR, UL, UR, PL, PR ∈ GT

x
$←− F?qx

T ′ = T x
2

L · T · T
x
−2

R ∈ GT

v′ = vx
−1

[:m
′
]
◦ vx

[m
′
:]
∈ Gm

′

2

U ′ = Ux
2

L · U · U
x
−2

R ∈ GT

w′ = wx
[:m
′
]
◦wx

−1

[m
′
:]
∈ Gm

′

1

Z ′ = Zx
2

L · Z · Z
x
−2

R ∈ GT

A′ = Ax
[:m
′
]
◦Ax

−1

[m
′
:]
∈ Gm

′

1

B′ = Bx
−1

[:m
′
]
◦Bx

[m
′
:]
∈ Gm

′

2

T ′ = T x
2

L · T · T
x
−2

R

v′ = vx
−1

[:m
′
]
◦ vx

[m
′
:]

U ′ = Ux
2

L · U · U
x
−2

R

w′ = wx
[:m
′
]
◦wx

−1

[m
′
:]

Z ′ = Zx
2

L · Z · Z
x
−2

R

continue

Figure 1: Protocol for inner pairing product argument.
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4.3 Security

In this section we prove that, under the DBP assumption, IPP satisfies witness-extended emulation.
Now we prove the following theorem:

Theorem 4.1 (Inner pairing product argument). The argument defined by Protocol 1 forRpair has perfect
completeness and witness-extended emulation for either extracting a non-trivial q-double pairing in one of
the source groups, or extracting a valid witnessA,B.

Proof. To prove witness-extended emulation we construct an efficient extractor E that uses n2 transcripts, as
need by Theorem 3.5. On input (pair,v,w, T, U, Z) our extractor either extracts a witness (A,B) such that
relationRpair holds, or a non-trivial q-double pairing in one of the source groups. Note that the hardness of
computing am′-double pairing that breaks q-DBP in G1 given w

′ ∈ Gm
′

1 implies the hardness of computing
am-double pairing given w ∈ Gm

1 (and likewise with respect to G2, v
′, and v). We proceed by an inductive

argument showing in each loop of the protocol we either extract a witness or a non-trivial q-double pairing.
In the base case where m = 1 the prover reveals the witness (A,B) in the protocol and the relations

T = e(A, v), U = e(w,B), and Z = e(A,B) can be checked directly.
For m > 1 the extractor runs the prover to get TL, TR, UL, UR, ZL, and ZR. The extractor then

rewinds the prover 4 times to giving it four challenges {x0, x1, x2, x3}
$←− (F?q)

4 to obtain four pairs
(A′i, B

′
i) ∈ Gm

′

1 ×Gm
′

2 such that for i ∈ [4] it holds that

T
x
2
i

L · T · T
x
−2
i

R = A′i ∗
(
v
x
−1
i

[:m
′
]
◦ vxi

[m
′
:]

)
U
x
2
i

L · U · U
x
−2
i

R =

(
w
xi
[:m
′
]
◦wx

−1
i

[m
′
:]

)
∗B′i

Z
x
2
i

L · Z · Z
x
−2
i

R = A′i ∗B
′
i.

(2)

We use the first three challenges to compute ν1, ν2, ν3 ∈ F?q such that

3∑
i=1

νix
2
i = 1,

3∑
i=1

νi = 0,

3∑
i=1

νix
−2
i = 0.

Then we can write TL as

TL =
3∏
i=1

(
T
x
2
i

L · T · T
x
−2
i

R

)νi
=

3∏
i=1

(
A′i ∗

(
v
x
−1
i

[:m
′
]
◦ vxi

[m
′
:]

))νi
:= AL ∗ v.

Using the same technique we can derive expressions

TL = AL ∗ v T = AC ∗ v TR = AR ∗ v
UL = w ∗BL U = w ∗BC UR = w ∗BR

ZL = YL Z = YC ZR = YR.

Now for each x ∈ {x1, x2, x3, x4} and the correspondingA
′,B′ we can rewrite 2 as(

Ax
2

L,[:m
′
]
◦AC,[:m

′
] ◦A

x
−2

R,[:m
′
]

)
∗ v = T

x
2
i

L · T · T
x
−2
i

R = A′ ∗
(
vx
−1

[:m
′
]
◦ vx

[m
′
:]

)
w ∗

(
Bx

2

L,[:m
′
]
◦BC,[:m

′
] ◦B

x
−2

R,[:m
′
]

)
= U

x
2
i

L · U · U
x
−2
i

R =
(
wx

[:m
′
]
◦wx

−1

[m
′
:]

)
∗B′.
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This implies that
(A′)x

−1

= Ax
2

L,[:m
′
]
◦AT,[:m

′
] ◦A

x
−2

R,[:m
′
]

(A′)x = Ax
2

L,[m
′
:]
◦AT,[m

′
:] ◦A

x
−2

1,[m
′
:]

(B′)x = Bx
2

L,[:m
′
]
◦BC,[:m

′
] ◦B

x
−2

R,[:m
′
]

(B′)x
−1

= Bx
2

L,[m
′
:]
◦BC,[m

′
:] ◦B

x
−2

R,[m
′
:]

A′ ∗B′ = Y x
2

L · YC · Y
x
−2

R

(3)

If any of the first four of these equalities do not hold, we directly obtain a q-double pairing in one of the source
groups. If the equalities hold, we can deduce that for each challenge x ∈ {x1, x2, x3, x4}

1 = Ax
3

L,[:m
′
]
Ax
C,[:m

′
]
Ax
−1

R,[:m
′
]
A−x
L,[m

′
:]
A−x

−1

C,[m
′
:]
A−x

−3

R,[m
′
:]

1 = Bx
3

L,[m
′
:]
Bx
C,[m

′
:]
Bx

−1

R,[m
′
:]
B−x
L,[:m

′
]
B−x

−1

C,[:m
′
]
B−x

−3

R,[:m
′
]

The only way this equality holds for all 4 challenges is if

AL,[:m
′
] = AR,[m

′
:] = BL,[m

′
:] = Bx

−3

R,[:m
′
]
= 1

AT,[m
′
:] = AR,[:m

′
] AT,[:m

′
] = AL,[m

′
:]

BU,[m
′
:] = BL,[:m

′
] BU,[:m

′
] = BR,[m

′
:]

Plugging these expressions into 3 we have that

A′ = Ax
C,[:m

′
]
◦Ax

−1

C,[m
′
:]

and B′ = Bx
−1

C,[:m
′
]
◦Bx

C,[m
′
:]
.

Using these relations we can see that

Y x
2

L · YC · Y
x
−1

R = A′ ∗B′

= Ax
C,[:m

′
]
Ax
−1

C,[m
′
:]
∗Bx

−1

C,[:m
′
]
Bx
C,[m

′
:]

=
(
AC,[:m

′
] ∗BC,[m

′
:]

)x2
·AC ∗BC ·

(
AC,[m

′
:] ∗BC,[:m

′
]

)x−2

Since this holds for each x ∈ {x1, x2, x3, x4} it must be that Z = AC ∗ BC . Thus, the extractor either
extracts a q-double pairing or the witness (AC ,BC).

Using Theorem 3.5 we see the extractor requires 4log2(n) = n2 transcripts and thus runs in expected
polynomial time in n and λ, concluding that the protocol has witness-extended emulation.
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5 Aggregating BLS signatures with distinct messages

Boneh, Lynn, and Shacham introduced the BLS signature scheme [BLS01] which supports off-line aggrega-
tion [BGLS03]. This is different from aggregate Schnorr signatures [BR93] which require signers to remain
online throughout the signing process. In this section we describe an aggregate signature scheme where the
verifier is required to compute just three pairings for any number of signatures, even with distinct messages.
This is at the expense of a logarithmic aggregation proof in the target group and the verifier must still compute
a linear number of hashes and exponentiations.

The basic BLS signature scheme is given in Figure 2. Our description is given over Type III bilinear
groups as opposed to the original scheme which was described only over the less efficient Type II bilinear
groups. Boneh et al. [BDN18] remarked that the original security proof still applies in Type III groups under
the stonger ψ-co-CDH assumption.

KeyGen(〈group〉) :

sk
$←− F

pk← gsk

return (pk, sk)

Sign(〈group〉, sk,m) :

h1 ∈ G2 ← Hash2(m)

σ1 ← hsk1
return σ1

Verify(〈group〉, pk,m, σ) :

h1 ∈ G2 ← Hash2(m)
Check e(g, σ) = e(pk, h1)
Return 1 if check passes
Else return 0

Figure 2: The BLS signature scheme where Hash2 is a hash function that maps the message space to the second
source group Hash2 : {0, 1}∗ → G2. We have not described the setup algorithm, which is simply used to
determine 〈group〉.

Remark 5.1. Boneh et al. [BDN18] designed an aggregate multisignature scheme based on BLS signatures
where the signature consists of a single group element and verification consists of two pairing equations and a
linear number of group exponentiations. However, we observe that their techniques can only be applied when
all users that are signing the same message, and whereas our techniques apply to the more general setting
where messages may be different. If one wanted to aggregate multi-signatures, we suspect a combination of
these schemes would yield promising results.

Using IPP as a subroutine, we introduce a new pair of efficient algorithms (BLS.Agg,BLS.VerifyAgg).
The algorithm BLS.Agg is a non-interactive signature aggregation protocol, where the prover performing
the aggregation does not need to know any secrets. Informally, the prover computes the right side of the
original verification equation, and they additionally compute T and a proof of its correct computation using
IPP.Prove. The verifier then checks this proof using IPP.Verify and if it accepts, it then outputs the result of
checking the equality e(g, σ) = T .

5.1 Construction

We present pseudocode for the BLS.{Agg,VerifyAgg} protocols in Figure 3. The protocols are directly given
with respect to their random oracles because this allows us to define non-interactive protocols for signature
schemes.

First, a transparent setup phase is needed to produce a CRS with n elements in G1 and one element in G2.
This setup also determines the bilinear group.
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The aggregator and verifier begin by ensuring that these messages are distinct, and then query a random
oracle to obtain values h0, . . . , hn−1 ∈ G2. The aggregator then computes the aggregated signature simply
by multiplying all the signatures together. However they also need to prove that

e(g, σA) =

n−1∏
i=0

e(pki, hi).

Now we are going to use our IPP protocol, and we want to argue that the inner product of T with an easily
computable value is equal to a second easily computable value if and only if T is correct. The aggregate
sends T =

∏n−1
i=0 e(pki, hi) to a random oracle. Observe that T is one of the input values to the inner product

and not the output value. The random oracle returns r ∈ F. It then holds that

n−1∏
i=0

e(pki, v
r
i

) = T ∗
n−1∏
i=0

e(wi, v
r
i

i )

with high probability if and only if

T =
n−1∏
i=0

e(pki, hi).

Note that

U =
n−1∏
i=0

e(wi, v
ri) ∧ Z =

n−1∏
i=0

e(pki, v
ri
i )

each only require one pairing to evaluate. We can see this by rearranging the pairing equations

U =

n−1∏
i=0

e(wi, v
r
i

) =

n−1∏
i=0

e(wr
i

i , v) = e(

n−1∏
i=0

wr
i

i , v)

and

Z =

n−1∏
i=0

e(pki, v
r
i

) =

n−1∏
i=0

e(pkr
i

i , v) = e(

n−1∏
i=0

pkr
i

i , v).

Having decided on the values T , U , Z, the prover and verifier are ready to run the IPP protocol to show
that

n−1∏
i=0

e(pki, vi) = T ∗
n−1∏
i=0

e(wi, vi)

and thus that

T =

n−1∏
i=0

e(pki, hi).

If the verifier is convinced that T was computed correctly, then all that is left to do is check the original
aggregate signature verification equation, namely that

e(G1, σA) = T.

It returns 1 if this holds.
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Setup(1λ, n) :

〈group〉 $←− SampleGrp3(1
λ)

w0, . . . , wn−1
$←− G1

v ← G2

pp← (〈group〉,w, v)
Return pp

BLS.Agg(pp, {pki,mi, σi}
n−1
i=0 ) :

if i 6= j ∧ mi = mj return ⊥
h1, . . . , hn−1 ← RO2(m0), . . . ,RO2(mn−1)

σA ←
∏n−1
i=0 σi

T ← pk ∗ h
r ← ROF(T )

U ←
∏n−1
i=0 e(wi, v

r
i

)

Z ←
∏n−1
i=0 e(pk

r
i

i , v)

π
$←− IPPProve

 〈group〉,w,pk ∈ Gn
1 ,

h, vr ∈ Gn
2 ,

T, U, Z ∈ GT


Return (σA, T, π)

BLS.Verify(pp, {pki,mi}
n−1
i=0 ) :

if i 6= j ∧ mi = mj return ⊥
h1, . . . , hn−1 ← RO2(m0), . . . ,RO2(mn−1)
r ← ROF(T )

U ←
∏n−1
i=0 e(wi, v

r
i

)

Z ←
∏n−1
i=0 e(pk

r
i

i , v)
Check IPPVerify(〈group〉,w,h, T, U, Z)

Check e(g, σA)
?
= T

Return 1 if checks pass

Figure 3: An aggregated BLS signature scheme where ROF is a random oracle that returns field elements and
RO2 is a random oracle that returns elements in G2.
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5.2 Efficiency

Verifying n signatures on n different messages using BLS.VerifyAgg requires running IPP.Verify and an
additional 2n exponentiations in G1 and 2 pairings to compute U and Z. They also compute a final pairing to
check if e(g, σA) = T . In total, this makes 4n exponentiations in G1, 2n exponentiations in G2, 6 log(n)
exponentiations in GT , and 6 pairings. Running BLS.Agg requires running IPP.Prove and an additional 2n
exponentiations in G1 and 2 pairings to compute U and Z. In total, this makes 6n exponentiations in G1,
4n exponentiations in G2, 6 log(n) exponentiations in GT , and 6n+ 2 pairings. The output (σA, T, π) of
the aggregator consists of 1 element in G1, 2 elements in G2, and 6 log(n) + 1 elements in GT . The CRS
required to support these computations consists of n elements in G1 and 1 element in G2.

5.3 Security

Theorem 5.2. The aggregate signature scheme in Figure 3 has aggregate unforgeability if the inner pairing
product argument IPP has witness-extended emulation and the ψ-co-CDH assumption holds.

Proof. Let A be an adversary against aggregate unforgeability that convinces BLS.VerifyAgg. We show that
if A succeeds then we can break the witness-extended emulation of the IPP protocol ψ-co-CDH assumption.

We have that A convinces the IPP verifier. Thus there exists an emulator that outputs

A0, . . . , An−1

such that T =
∏n−1
i=0 e(Ai, hi) and

n−1∏
i=0

e(Ai, v
ri) =

n−1∏
i=0

e(pkr
i

i , v) (4)

Setting si = logg(pki) and ai = logg(Ai), we observe that (4) holds if and only if

n−1∑
i=0

(ai − si)r
i = 0.

By the Schartz-Zippel Lemma this holds with negligible probability unless (ai − si) = 0 for all i, implying
that Ai = pki. Hence either σA satisfies

e(g, σA) =

n−1∏
i=0

e(Ai, hi)

or A breaks the witness-extended emulation of IPP with overwhelming probability.
The rest of the proof that given an adversary that can compute σA there exists an adversary that breaks the

ψ-co-CDH assumption now follows from a modification of Theorem 3.2 in [BGLS03].
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