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Abstract

We present two new protocols for proving correct computation of a product of n bilinear pairings. The
first protocol is a statistically sound proof with 2 log(n) communication, requiring the verifier compute
only a single pairing and 2(n + log(n)) exponentiations. We show how this statistical inner pairing
product (SIPP) can be used to create a new aggregate signature scheme based on BLS with logarithmic
signature size and verification time that while still linear is concretely faster than previous results. This is
because the verifier time of SIPP is linear only in source group exponentiations, which when computed
as multi-exponentiations take significantly less time than computing the Miller loops that dominate the
pairing product computation directly.

The second protocol proves that the inner pairing product was evaluated correctly on committed vectors
of source group elements, supporting logarithmic aggregation of pairing-based proofs, signatures, etc.
without the need for expensive algebraic constructions such as cycles of pairing-friendly elliptic curves.
Verifying this inner pairing product (IPP) argument requires computing 3 pairings and 2n + 6 log(n)
exponentiations, and proofs are of size 6 log(n) target group elements. As an application, we sketch how
IPP can be used to aggregate n Groth16 zkSNARKs into an O(log(n)) proof.

Both our protocols are public-coin interactive protocols, and thus can be made non-interactive using
Fiat-Shamir (such as is done in the construction of our aggregate signatures). Further, neither protocol
requires a trusted setup—IPP can be initialized with a public-coin setup, while SIPP requires no setup at
all.

Keywords: inner pairing product, bilinear pairings, aggregate signatures, aggregate proofs

This work was completed while at 1Ethereum Foundation, 2UC Berkeley, 3University College London, and 4Stanford University.

1



1 Introduction

Pairing-based cryptography constructions include some of the most efficient signatures [BLS01], zero-
knowledge proofs [GS08; GGPR13], anonymous credentials [BCKL08], and more. These protocols rely on
pairings that enable a verifier to directly check bilinear relations between committed secrets. Concretely, given
ga and gb a verifier can directly check that a group element C is equal to gab. Thus, using a bilinear pairing,
one can check that a quadratic equation in unknown variables is satisfied. It has been shown that this suffices
to build NIZK arguments in the plain model [GOS06], SNARKs with constant sized verifiers [PGHR13],
signature schemes that can be rerandomised [PS16], and many more primitives. Not only are pairing-based
arguments of theoretical interest, they are widely used in practice and there are standardization efforts to help
the efforts of developers [Lan08].

In this work we provide inner-pairing protocols, inspired by the inner product argument from [BCCGP16;
BBBPWM18], that enable a verifier to outsource the verification of pairing equations to a prover. This
has two distinct advantages. First, pairing operations are computationally intensive even compared to
other cryptographic operations such as exponentiations. Our first protocol SIPP outsources n independent
pairings to an untrusted prover who can with small communication convince the verifier that all pairings
were computed correctly. The verifier only needs to perform a single pairing and n exponentiations in each
source group, which can be batched into a multi-exponentiation to achieve a logarithmic speedup in n over
doing each exponentiation individually. For clarity we do not include this optimization in our construction
exposition, but we note that this is what provides the real asymptotic win of SIPP over computing a pairing
product directly. Preliminary verification benchmarks using libzexe1 over curve BLS12-377 suggest a speed
up of approximately 3.8× for 4, 096 pairings and a 7× for 1 million pairings. The protocol can be made
non-interactive and publicly verifiable such that many verifiers can benefit from a single proof.

As an application we introduce an aggregatable signature scheme which is inspired by Boneh, Gentry,
Lynn, and Shacham [BGLS03]. Where Boneh et al. observed that BLS signatures can be aggregated, they
still require the verifier to compute one pairing per distinct message. We aggregate further using the statistical
inner pairing product (SIPP) to prove the result correct. Consequently, our verifier needs to evaluate just
one pairing and a linear number of exponentiations, independent of the number of messages signed. The
aggregation algorithm, computed by an untrusted party who requires no secrets, is approximately twice as
expensive as verifying the BLS signatures directly.

Secondly, many pairing relations are NP relations where it suffices to show that there exist witness group
elements such that some public group elements are in a pairing-based language. In this case a prover sends
some commitment group elements to the verifier. The prover then shows that these elements satisfy a set
of pairing equations via an interactive proof without ever sending the witness group elements. We using a
key homomorphic commitment scheme, we can show that two committed vectors satisfy an inner pairing
product relation (i.e., the product of bilinear pairings between committed equal-length vectors of committed
group elements is equal to some public value). This inner pairing product (IPP) protocol has only logarithmic
communication complexity and can replace sending a linear number of witness group elements. We sketch
how IPP can be used to aggregate n Groth16 [Gro16] pairing-based SNARKs (normally requiring 2n group
one and n group two elements) with just 6 log(2n) target group proof elements. the prover convinces the
verifier that these n SNARKs are valid proofs for n instances. The interactive IPP can be made non-interactive
and publicly verifiable with the Fiat-Shamir transform. This results in a logarithmic sized proof and enables
the first protocol for aggregating SNARKs that does not rely on costly recursive proving techniques.

Both the SIPP and the IPP protocol are structure-preserving (i.e., all public objects including commitments,

1https://github.com/scipr-lab/zexe
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proof elements, and witnesses are bilinear group elements and functional correctness can be verified by only
computing group operations, testing group membership, and evaluating pairing product equations). IPP has a
public coin (transparent) setup, while SIPP requires no setup at all.

The inner pairing products are inspired by the inner product argument of Bulletproofs[BCCGP16;
BBBPWM18] but applied to bilinear relations between group elements rather than an inner product between
committed vectors. The protocols use similar techniques to the concurrent work by Lai et al. [LMR19].
However concretely our protocol uses significantly less communication by being designed for specific relations
(6 log(n) and 2 log(n) vs. 16 log(n)).

We note that both protocols could be replaced by general purpose proving techniques such as general
purpose SNARKs for NP. Our techniques have two distinct advantages over these general purpose techniques.
Firstly, the reduction to an NP statement such as an arithmetic circuit over a finite field is costly and adds
orders of magnitude onto the prover complexity. Secondly, our techniques can potentially be composed
with these general purpose techniques. For example, instead of directly proving that n pairings are valid the
SIPP outsourcing protocol can reduce the verification cost to 2n exponentiations. This ladder verification is
potentially significantly cheaper to arithmetize and can be more efficiently proven to be correct in a general
purpose SNARK.

SIPP IPP
sizes time complexity sizes time complexity

|CRS| |π| prover verifier |CRS| |π| prover verifier

G1 — — n n n 1 2n n
G2 — — n n n 1 2n n
GT — 2 log(n) — 2 log(n) — 6 log(n) — 6 log(n)
e — — 2n 1 — — 6n 3

Table 1: Computational and communication complexity of SIPP and IPP where n is the number of pairings in
the inner pairing product.

We present a detailed efficiency analysis of IPP in Table 1. Proof sizes are logarithmic and the verifier
is required to compute a linear number of exponentiations in the number of pairings. The prover costs are
approximately six times the cost of naive computation.

In our aggregate signature scheme, aggregating n signatures requires 2n exponentiations in both source
groups and 2n pairings. The aggregate signature consists of 2 log(n+ 1) elements inGT and 1 element inG2.
The verifier computes n exponentiations in each of the source groups, 2 log(n) exponentiations in GT , and 1
pairing. The CRS required to support these computations consists of n elements in G1 and 1 element in G2.

1.1 Our Techniques

The foundations of this paper are built upon two variants of an inner product argument which we call SIPP
and IPP. In both the aim of the prover is to demonstrate that a value

Z = e(A1, B1) · · · e(Am, Bm)

has been computed correctly with respect to source group elements A1, B1, . . . , Am, Bm. In our SIPP
argument, these source group elements are given in the clear and the verifier merely aims to outsource the
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work of computing Z. In our IPP argument, the source group elements are hidden inside the commitments

T = e(A1, v1) · · · e(Am, vm) ∧ U = e(w1, B1) · · · e(wm, Bm)

wrt the commitment key (w,v) ∈ Gn
1 ×Gn

2 , and the aim is to compress the quantity of information being
communicated to the verifier (our proof sizes are logarithmic in the target group).

To obtain this argument, we started from Bootle et al.’s inner product argument [BCCGP16] and extended
it to the pairing setting. Our inner pairing product argument has logarithmic size, the prover computes a linear
number of pairings, and the verifier computes a linear number of exponentiations in the number of group
elements being paired. In SIPP the verifier can compute the final linear combination of A and B themselves,
and thus we only need to communicate the 2 log(m) target group elements associated with computing Z. In
IPP the verifier must send an additional 4 log(m) target group elements to convince the verifier that they
have computed the final linear combination of A and B correctly. We prove IPP secure under the SXDH
assumption in the interactive setting.

To obtain our aggregatable digital signatures, we started from the work of Boneh et al. [BGLS03],
who noted that Boneh-Lynn-Shacham signatures [BLS01] can be aggregated to reduce the space and time
requirements on the verifier. This is useful in blockchain applications where the space and time abilities of
the verifier are assumed to be highly limited. However, when the aggregated signature is applied to more
than one message, Boneh et al.’s verifier is required to compute one pairing per message. Using our pairing
argument, we show how one can instead provide a proof that the pairing equations are satisfied, and thus
reduce the computational burden on the verifier.

1.2 Related work

In concurrent work Lai, Malavolta, and Ronge [LMR19] introduce a more generalized inner pairing product
argument. We arrive at an argument system, IPP, in Section 4.1 for a relation which is a subset of the relations
covered by Lai et al.s argument (see [LMR19, Protocol 3]). The advantage of IPP is that even considering
a simplified version of [LMR19] that only covers our simpler relation, IPP requires half the prover and
one-quarter verifier time, with a CRS half the size. Both systems achieve identical proof sizes and prove the
same security notion of witness-extended emulation under SXDH. Additionally, we apply our inner pairing
product arguments to different settings: Lai et al. discuss the applications to zero-knowledge proofs, whereas
we discuss the aggregation of BLS signatures.

Groth and Sahai [GS08] that introduced a method to prove pairing-based languages under zero-knowledge
without reducing to NP (or alternatively under witness indistinguishably with smaller proofs). The group
elements are committed to under either a perfectly binding commitment key or a perfectly hiding commitment
key (and the prover cannot distinguishwhich) and depending onwhich key is used the protocol is either perfectly
sound or perfectly zero-knowledge. This approach has since been improved by Escala and Groth [EG14] and
by Ghadafi et al. [GSW10]. Blazy et al. [BFIJSV10] noted that it is possible to batch verify pairing equations
that share a source group element. However, their results do not extend to the setting where both source group
elements are different. Our work can be used to aggregate pairing equations where the source group elements
differ. GS proofs are secure in the standard model under standard assumptions. Thus their linear sized proofs
and verifier time are optimal [GW11], whereas our smaller proofs can only be obtained because we are in
the random oracle model. Nonetheless, this means that GS proofs can be used for applications that require
straight-line extractors whereas ours cannot. We also note that, unlike GS proofs [BCCKLS09], our proofs
are not re-randomizable.

One alternative method for proving the correct evaluation of a pairing relation is to embed the pairing
inside a general purpose circuit and then apply a generalised zero-knowledge proof with sublinear verification
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time. The main difficulty with this approach is that the prover time is necessarily at least linear in the number
of gates, and a boolean representation of a pairing equation would require a substantial number of gates.
However, Ben-Sasson et al.[BCTV14] demonstrated that by choosing the field sizes with care, it is possible
to embed pairings inside arithmetic circuits using a moderate number of gates. They further show that if
one has a pairing-based proving system, then it is possible to recursively prove that previous proofs verify,
by ensuring that the field is chosen not only so that it embeds a pairing, but also so that it is the order of
a separate pairing-based group. Compared to our approach, these methods yield proof sizes and verifier
computation which are constant in the security parameter. However, each pairing requires tens of thousands
of gates, putting a considerable burden on the prover. As such we believe our approaches complement each
other: one could use our argument to reduce the number of pairings that the verifier must compute, and
Ben-Sasson et al.’s approach to prove that the verifier is satisfied. In doing so one would obtain both a smaller
prover and a smaller verifier. Alternatively, if one is not comfortable using setup assumptions, our approach
relies on a trustless setup, whereas Ben-Sasson et al.’s approach depends on pairing-based SNARKs, which
so far we only know how to build under trusted setup.

Boneh et al.[BGLS03] observed that BLS signatures [BLS01] can be aggregated provided that the users
are signing distinct messages. If the messages are not distinct (e.g., multisignatures) then care has to be taken
to avoid rogue key attacks and such as by providing a proof-of-knowledge of the public key [RY07] or applying
recent results by Boneh et al. [BDN18]. While Boneh et al. demonstrated how to generate multisignatures,
they fall short of reducing the number of pairings required to verify an aggregate signature with distinct
messages. This work discusses how to reduce the number of pairings required to verify aggregate signature
and we only discuss the scenario where messages are distinct.

Abe et al. proved that one can commit to group elements in asymmetric bilinear groups under the
double pairing assumption [AFGHO16] and that such techniques are helpful for building structure preserving
signatures (i.e. signatures where messages are group elements) in the standard model. This work utilizes their
commitment scheme. Where Lai et al. mention that it is possible to use a inner pairing product argument
to reduce the size of Abe et al.’s structure preserving signatures [LMR19], we instead directly use BLS
signatures. These signatures are more efficient–they consist of a single group element per message–and thus
the proofs generated using them will also be more efficient. Further, where the inner pairing product argument
is in the random oracle model anyway, many of the advantages in using a structure preserving scheme have
already been lost.

2 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the vector (a1, . . . , an),

and [ai]
n
i=1 = [[ai,j ]

m
j=1]

n
i=1 as a short-hand for the vector (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes

the number of entries in a. We analogously define {ai}
n
i=1 with respect to sets instead of vectors. If x is a

binary string then |x| denotes its bit length. For a finite set S, let x $←− S denote that x is an element sampled
uniformly at random from S.
Inner pairing product notation. We introduce some special notation related to our inner pairing product
argument, some of which is borrowed from that used to describe the generalized Pedersen inner product
introduced in [BBBPWM18]. We write all group operations as multiplication. For a scalar x ∈ F and
vector A ∈ Gn, we let Ax = (Ax1 , . . . , A

x
n) ∈ Gn, and for a vector x = (x1, . . . , xn) ∈ Fn we let

Ax =
∏n
i=1A

xi
i ∈ G. For a bilinear group (G1,G2,GT , q, g, h, e) (see Appendix A.1) and pair of source

group vectors A ∈ Gn
1 , B ∈ Gn

2 we define A ∗B =
∏n
i=1 e(Ai, Bi). For two vectors A,A

′ ∈ Gn we let
A ◦A′ =

∏n
i=1Ai ·A

′
i denote the entrywise group operation product of two vectors.
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Let A‖A′ = (A1, . . . , An, A
′
1, . . . , A

′
m) be the concatenation of two vectors A ∈ G and A′ ∈ G. To

denote slices of vectors givenA ∈ Gn
· and 1 ≤ ` < n we write

A[:`] = (A1, . . . , A`) ∈ G` and A[`:] = (A`+1, . . . , An) ∈ Gn−` .

Languages and relations. We write {(x) : p(x)} to describe a polynomial-time language L ⊆ {0, 1}∗

decided by the polynomial-time predicate p(·). We write {(x;w) : p(x,w)} to describe a NP relation
R ⊆ {0, 1}∗×{0, 1}∗ between instances x and witnessesw decided by the polynomial-time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable
n, we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function that is negligible in
λ (namely, a function that vanishes faster than the inverse of any polynomial in λ). When a function can be
expressed in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that algorithm A is
an efficient we mean that A is a family {Aλ}λ∈N of non-uniform polynomial-size circuits. If the algorithm
consists of multiple circuit families A1, . . . ,An, then we write A = (A1, . . . ,An).

3 Outsourcing inner pairing products

In this section we introduce an interactive, statistically-sound inner pairing product (SIPP) proof system
that produces proofs of pairing products. SIPP requires no setup and is public-coin. The verifier trades off
computing the n pairings directly for n exponentiations (or two multi-exponentiations of size n) in the source
groups. The prover computes just 2n pairings and sends 2 log(n) target group proof elements.

3.1 Construction

In this section we present our inner pairing product proof SIPP for the membership in the language LSIPP
defined by

LSIPP = {(A ∈ Gm
1 , B ∈ Gm

2 , Z ∈ GT ) : Z = A ∗B} .

Without loss of generality assumem is a power of two. Our proof is defined by a recursive protocol that in
each round “folds” vectors A,B into new vectors A′,B′ of length m′ = m/2 such that e(A′,B′) = Z ′.
Both the prover and verifier independently do this folding using a verifier generated challenge.

First the prover commits to a pair of target group elements ZL, ZR that the verifier uses to scale the Z
from the last round to a new target group element Z ′. In the final round of recursion wherem′ = 1 the verifier
simply checks the pairing equation e(A′, B′) = Z ′.

In more detail, the prover and verifier start with vectors A ∈ Gm
1 and B ∈ Gm

2 and a claimed inner
pairing product Z ∈ GT . The prover wishes convince the verifier that Z = A ∗B by engaging in log(m)
rounds of a recursive protocol. The prover and verifier begin each round by each setting m′ = m/2. The
prover first computes

ZL = A[m
′
:] ∗B[:m

′
] and ZR = A[:m

′
] ∗B[m

′
:] ,

sending them as commitments to the verifier. The verifier samples x $←− F and sends x to the prover. The
prover and the verifier then each set

Z ′ = ZxL · Z · Z
x
−1

R and A′ = Ax
[m
′
:]
◦A[:m

′
] and B′ = Bx

−1

[m
′
:]
◦B[:m

′
] .
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The protocol then recurses on (A,B, Z) = (A′,B′, Z ′) until the final round, wherem = 2. In that round
after computing (A′, B′, Z ′) ∈ G1 ×G2 ×GT the verifier accepts the proof if e(A′, B′) = Z ′ and otherwise
rejects it.

Informally, the security of the protocol relies on the fact that in each round if Z ′ = A′ ∗B′, then it holds
with overwhelming probability that Z = A ∗B. This follows from the DeMillo-Lipton-Schwartz–Zippel
lemma: the prover must commit to the coefficients of a polynomial that is then evaluated at a random point;
as elaborated on in the proof of statistical soundness (Theorem 3.1), the probability

Z ′ = A′ ∗B′

m

ZxL · Z · Z
x
−1

R =
(
A[m

′
:] ∗B[:m

′
]

)x
·A ∗B ·

(
A[:m

′
] ∗B[m

′
:]

)x−1

for x $←− F is negligible if ZL, Z, and ZR are not the claimed values. Applying this technique recursively, we
defer the actual pairing check untilm′ = 1 and the verifier need only compute a single pairing.
Pseudocode. We give pseudocode for our protocol in Fig. 1.

3.2 Efficiency

We provide a detailed breakdown of the communication and computation complexity of the protocol in
Table 1. There are log(n) rounds, wherein each the prover sends 2 target group elements ZL, ZR, making the
total proof size 2 log(n) target group elements.

In the first round the prover requires n pairings to compute ZL, ZR. This halves to n/2 in the second and
n/2i in the i-th. Over log(n) rounds the prover computes 2n pairings in total. The verifier computes just one
pairing in the final round. In the first round the prover and verifier require n/2 exponentiations in G1 and n/2
exponentiations in G2 to compute A′ and B′, respectively. This halves to n/4 in the second and n/2i in the
i-th. Over log(n) rounds the prover and verifier each compute a total of n exponentiations in each of the
source groups. To compute Z ′ in each round the verifier computes two target group exponentiations. Over
log(n) rounds the verifier then computes a total of 2 log(n) exponentiations in GT .

We are currently working on an implementation of the SIPP. Preliminary results and estimates show that
the majority of the speedup comes from using multi-exponentiation to verify the final SIPP exponentiation
(see Appendix B for more details on optimizations). Multi-exponentiation algorithms[Pip80] roughly use
λn

log(n) group operations to perform a multi-exponentiation with n bases and λ-bit exponents. Verifying
the pairing product can be sped up by first computing the n Miller loops and then applying a single final
exponentiation to their product [Sco05; Sco07]. However, the computation still scales linearly in n using
this technique and techniques to batch Miller loops achieve a speedup that is just barely sublinear [Sco19].
Preliminary results suggest for 4, 096 pairings the SIPP verifier is 3.8 times faster than directly checking the
pairing product by first computing the Miller loops and then doing a single final exponentiation. For 1 million
pairings this advantage increases to a factor of 7.

3.3 Security

We prove the following theorem showing SIPP satisfies statistical soundness in Appendix C.1.

Theorem 3.1 (Statistical soundness of SIPP). The protocol defined by Fig. 1 for the language LSIPP has
statistical soundness (Definition A.3).
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Prove(〈group〉,A,B, Z) Verify(〈group〉,A,B, Z)

m′ = m/2 m′ = m/2

ZL = A[m
′
:] ∗B[:m

′
]

ZR = A[:m
′
] ∗B[m

′
:]

ZL, ZR ∈ GT

x
$←− F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m′ ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x ∈ F

A′ = Ax
[m
′
:] ◦A[:m

′
] A′ = Ax

[m
′
:] ◦A[:m

′
]

B′ = Bx
−1

[m
′
:] ◦B[:m

′
] B′ = Bx

−1

[m
′
:] ◦B[:m

′
]

Z ′ = Zx
L · Z · Z

x
−1

R

Recurse on (〈group〉,A′,B′, Z ′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Else m′ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A′ = Ax
1 ·A0

B′ = Bx
−1

1 ·B0

Z ′ = Zx
L · Z · Z

x
−1

R

Return 1 if e(A′, B′) = Z ′, else 0

Figure 1: A statistically sound protocol for outsourcing pairings.

4 An inner pairing product argument

In this section we introduce an interactive argument of knowledge that allows a prover to prove knowledge of
two committed vectors of source group elements such that their pairing inner product is equal to some public
value. This argument has logarithmic-sized proofs and wide ranging applications to proving. We note that
while it is possible to achieve significantly smaller proof sizes and verifier time using SNARKs, the prover
costs can pose as a significant barrier to adopting such protocols in practice. The pairing product equations
must be reduced to a set of NP constraints, and the prover time will scale quasi-linearly with respect to this
(much larger) set of constraints.

4.1 Construction

We use the non-hiding variant of the AFGHO[AFGHO16] commitment scheme to commit to a vector of
group elements in G1 and one in G2. The commitment is simply the pairing product of the group elements
with a vector of random group elements in the other source group, i.e. T ← A ∗ v and U ← w ∗B for
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w ∈ Gm
1 ,v ∈ Gm

2 defined in the CRS.
We present our inner pairing product argument IPP which proves that given T and U that Z = A ∗B,

i.e. Z is the inner pairing product betweenA andB.
More formally the relationRpair is defined by{

(〈group〉,w ∈ Gm
1 , v ∈ Gm

2 , T, U, Z ∈ GT ; A ∈ Gm
1 , B ∈ Gm

2 ) :
T = A ∗ v ∧ U = w ∗B ∧ Z = A ∗B

}
.

Without loss of generality assumem is a power of two. Our argument is defined by a recursive protocol that
in each loop “scales” vectorsA,B,v,w into new vectorsA′,B′,v′,w′ of lengthm′ = m/2. In each loop
the prover also commits a set of values that the verifier uses to update target group elements T,U, Z from the
last round to new T ′, U ′, Z ′ ∈ GT . The recursive protocol proceeds until the final round of recursion where
m = 1 and the inputs are source group elements A,w ∈ G1, B, v ∈ G2 sent to the verifier from the prover
and the T,U, Z the verifier derived the penultimate round. In this final round the prover reveals A,B and the
verifier (who has computed v, w) outputs “accept” iff

e(A, v) = T and e(w,B) = U and e(A,B) = Z.

Our key insight is that the inner product argument of Bootle et al. [BCCGP16] can be adapted to work over a
pairing-based language. While one might be tempted to use the improved inner product argument of Bünz et
al. [BBBPWM18], we warn the reader that in our pairing-based setting such a scheme would be insecure (we
would require a version of DBP that works assuming the adversary outputs elements in both source groups–an
assumption which is provably false).

We now describe the protocol that runs in each round untilm = 1. The prover setsm′ = m/2 and then
computes the 6 target group elements

TL = A[:m
′
] ∗ v[m′:] TR = A[m

′
:] ∗ v[:m′]

UL = w[m
′
:] ∗B[:m

′
] UR = w[:m

′
] ∗B[m

′
:]

ZL = A[:m
′
] ∗B[m

′
:] ZR = A[m

′
:] ∗B[:m

′
]

and then sends them all to the verifier. Next, the verifier samples a fresh challenge x $←− F and sends x to the
prover. The prover and the verifier each independently compute

v′ = vx
−1

[:m
′
]
◦ v[m′:] ∈ Gm

′

2 w′ = wx
[:m
′
]
◦w[m

′
:] ∈ Gm

′

1

The verifier alone computes the target group elements

T ′ = T xL · T · T
x
−1

R U ′ = UxL · U · U
x
−1

R Z ′ = ZxL · Z · Z
x
−1

R

The prover alone computesA′ = Ax
[:m
′
]
◦A[m

′
:] ∈ Gm

′

1 B′ = Bx
−1

[:m
′
]
◦B[m

′
:] ∈ Gm

′

2 and the protocol

recurses on
(
〈group〉,w′ ∈ Gm

′

1 , v′ ∈ Gm
′

2 , T ′, U ′, Z ′ ∈ GT ; A′ ∈ Gm
′

1 , B′ ∈ Gm
′

2

)
.

Pseudocode. In Fig. 2 we present the interactive protocols (Prove,Verify).

9



Prove(〈group〉,w,v,A,B) Verify(〈group〉,w,v, T, U, Z)

m′ = m/2 m′ = m/2

TL = A[:m
′
] ∗ v[m

′
:]

TR = A[m
′
:] ∗ v[:m

′
]

UL = w[m
′
:] ∗B[:m

′
]

UR = w[:m
′
] ∗B[m

′
:]

ZL = A[:m
′
] ∗B[m

′
:]

ZR = A[m
′
:] ∗B[:m

′
]

TL, TR, UL, UR, ZL, ZR ∈ GT

x
$←− F

x ∈ F

v′ = vx
−1

[:m
′
] ◦ v[:m

′
] v′ = vx

−1

[:m
′
] ◦ v[:m

′
]

w′ = wx
[:m
′
] ◦w[m

′
:] w′ = wx

[:m
′
] ◦w[m

′
:]

A′ = Ax
[:m
′
] ◦A[m

′
:] T ′ = T x

L · T · T
x
−1

R

B′ = Bx
−1

[:m
′
] ◦B[m

′
:] U ′ = Ux

L · U · U
x
−1

R

Z ′ = Zx
L · Z · Z

x
−1

R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m′ ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recurse on (〈group〉,w′,v′,A′,B′) Recurse on (〈group〉,w′,v′,A′,B′,
T ′, U ′, Z ′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Else m′ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A′ ∈ G1, B
′ ∈ G2

Return 1 if e(A′, v′) = T ′

∧ e(w′, B′) = U ′

∧ e(A′, B′) = Z ′,

else 0

Figure 2: Protocol for inner pairing product argument.

Transparent setup. Note that generating the public parameters pp = (〈group〉,v,w) does not require a
trusted setup. The Setup algorithm can use a hash functionHn : {0, 1}∗ → Gn

1 ×Gn
2 that, given a small seed

(public randomness), outputs the group elements needed to run IPP. Where support for memory-constrained
devices that cannot store the entire CRS is needed, it is possible to define this hash function to allow individual
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CRS elements to be computed on-the-fly (at a cost to efficiency).

4.2 Efficiency

We provide a detailed breakdown of the communication and computation complexity of the protocol in Table 1.
Our protocol requires log(n) rounds. In each round of Fig. 2 the prover and verifier independently compute
new generators v′,w′ requiring 4n exponentiations: 2n in the first round, n in the second round, and 2n

2
j−1 in

the j-th. (2n of these exponentiations are in G1 and 2n in G2.) The verifier alone computes the T ′, U ′, Z ′

values, requiring an additional 6 log(n) exponentiations in GT . The prover alone computes the newA′,B′

values–an additional 2n exponentiations in each source group.
The TL, TR, UL, UR, ZL, ZR values the prover computes in each round require 6n pairings to compute:

3n in the first round, 3n
2 in the second round, and 3n

2
j−1 in the j-th. These elements, 6 log(n), are sent to the

verifier along with the final A ∈ G1 and B ∈ G2. The verifier needs compute just 3 pairings to check the 3
equations in the final round.

4.3 Security

We prove the following theorem showing IPP satisfies computational witness-extended emulation in Ap-
pendix C.2.

Theorem 4.1 (Computational witness-extended emulation of IPP). The protocol defined by Fig. 2 for the NP
relationRpair has computational witness-extended emulation (Definition A.5) under SXDH.

5 An aggregate signature scheme based on BLS

Boneh, Lynn, and Shacham introduced the BLS signature scheme [BLS01] which supports offline aggrega-
tion [BGLS03]. This is different from aggregate Schnorr signatures [BR93] which require signers to remain
online throughout the signing process. In this section we describe an aggregate signature scheme where the
verifier is required to compute just one pairing for any number of signatures. Previous aggregate signature
schemes based on BLS [BGLS03; RY07; BDN18] have constant-sized (Oλ(1)) aggregate signatures and
require computing n+ 1 pairings to verifying an aggregate signature over n distinct messages. Our scheme
trades off space for time, requiring the verifier compute just 1 pairing and n-sized multi-exponentiations in
the source groups at the cost of a logarithmic-sized signature.

The basic BLS signature scheme is given in Fig. 3. Our description is given over Type III bilinear groups
as opposed to the original scheme which was described only over the less efficient Type II bilinear groups.
Note that the source groups that the public keys, signatures, and hashed messages are in can be swapped.
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Setup(1λ)

〈group〉 ← SampleGrp3(1
λ)

Return 〈group〉

KeyGen(〈group〉)
sk

$←− F
pk← gsk

Return (pk, sk)

Sign(〈group〉, sk,m) :

h ∈ G2 ← RO2(m)

σ ← hsk

Return σ

Verify(〈group〉, pk,m, σ)

h ∈ G2 ← RO2(m)
Check e(g, σ) = e(pk, h)
Return 1 if check passes
Else return 0

Figure 3: The BLS signature scheme where RO2 : {0, 1}∗ → G2 is a random oracle.

5.1 Construction

We introduce a pair of algorithms (AggSign,VerifyAgg) that extends the BLS signature scheme into a
aggregate signature scheme.

Recall from Appendix A.5 that AggSign is given some public parameters (here a group description
〈group〉), a list of public keys [pki]

n
i=1, a set of distinct messages {mi}

n
i=1, and a list of signatures [σi]

n
i=1.

The aggregator begins by computing σA =
∏
i σi. Next, they use SIPP.Prove to produce a proof π that

e(g−1, σA) ·
n∏
i=1

e(apki,RO2(mi)) = 1 .

The aggregator returns Σ← (σA, π).
The verifier running VerifyAgg is given group description 〈group〉, public keys [pki]

n
i=1, distinct messages

{mi}
n
i=1, and aggregate signature Σ. The verifier then has the full inputs it needs to run SIPP.Verify, and

outputs the result of checking the inner pairing product proof.
Pseudocode. We present pseudocode for our BLS aggregation protocol in Fig. 4.

AggSign(〈group〉, [pki]
n
i=1, {mi}

n
i=1, [σi]

n
i=1) :

(h1, . . . , hn)← (RO2(mi), . . . ,RO2(mn))
σA ←

∏n
i=1 σi

π ← SIPP.Prove(〈group〉, g−1‖apk, σA‖h, 1)
Σ← (σA, π)
Return Σ

VerifyAgg(〈group〉, [pki]
n
i=1, {mi}

n
i=1,Σ) :

(σA, π)← Σ
(h1, . . . , hn)← (RO2(mi), . . . ,RO2(mn))

Check SIPP.Verify(〈group〉, g−1‖apk, σA‖h, 1, π)
Return 1 if both checks pass
Else return 0

Figure 4: Aggregation and verification algorithms for an aggregate signature scheme.
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5.1.1 Discussion

We make a few remarks on the construction. First, to call SIPP in a non-interactive protocol such as this
one, we must first apply the Fiat-Shamir transformation, where in each round the messages the prover sends
(including the public parameters and instance in the first round) are input to a random oracle, which outputs
the next verifier challenge.

Second, we observe that σA is exactly the aggregate signature in the aggregate signature schemes [BGLS03]
and [RY07]. Combining the pairing equations in this way results in a verification equation that only achieves
aggregate unforgeability and does not achieve the stronger notion of batch verification (see Remark A.8). The
standard way of doing batch verification is using the small exponent test (see Appendix B) to combine the
pairing equations, but making this test publicly-verifiable requires hashing all inputs to obtain the exponents,
which is clearly incompatible with aggregation. We remark that IPP can be used to create an aggregate
signature that achieves batch verification at a cost to signature size and verifier time, but we leave the
formulation of this construction as an exercise to the reader.

Finally, we discuss multisignature schemes. Ristenpart et al. [RY07] and Boneh et al. [BDN18] introduced
multisignature schemes, which allow multiple signatures on the same message to be aggregated into a single
group element (the multisignature), and additionally for the corresponding public keys to be aggregated
into a single group element (the aggregate public key). The multisignature and aggregate public key can
then be verified using the original BLS verification equation. Ristenpart et al. require all signers output
valid proof-of-possession for each public key which they output. Boneh et al. present an alternative that
involves hashing the public keys to create a random challenge that’s used both in computing the multisignature
and aggregate public key. We refer the reader to the respective works for construction details and proofs,
and simply observe that their techniques could be used in conjunction with ours to produce an aggregate
multisignature scheme as defined in [BDN18].

5.2 Efficiency

Verifying n signatures on n different messages using VerifyAgg requires computing n hashes and then
running SIPP.Verify. Running AggSign requires n hash evaluations and a call to SIPP.Prove. Ignoring small
constants, the prover computes a total of 2n pairings, n exponentiations in each source group, and n hashes.
The verifier computes 1 pairing, n exponentiations in each source group, and n hashes.

The aggregate signatures consists of log2(n) elements in GT and 1 element in G2.

5.3 Security

We prove our aggregate signature scheme is computationally unforgeable in the random oracle model under
ψ-co-CDH in Appendix C.3.

Theorem 5.1. The scheme in described in Section 5.1 and Fig. 4 is an unforgeable aggregate signature
scheme (Definition A.7) in the random oracle model under ψ-co-CDH (Assumption 3).

6 Aggregating Groth16 proofs

We now quickly sketch how the inner pairing product can be used to verify that n independently generated
Groth16 proofs on independent instances can be aggregated to aO(log(n)) sized proof. While zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zkSNARKs) have constant-sized proofs and verifiers, in
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many settings such as blockchains a verifier needs to read and verify many proofs created by independent
provers. We show how the IPP protocol run by an untrusted aggregator can be used to aggregate these proofs
into a small logarithmic sized batch proof. The verifiers only need to check the aggregated batch proof to be
convinced of the existence of the underlying pairing-based SNARKs.

To date the most efficient zkSNARK is due to Groth [Gro16] and consists of 3 group elements and 1
verification equation that requires three pairings to check. Given an instance x = (a0, . . . , a`) and a proof
π = (A,B,C), the verifier must check that

e(A,B) = e(gα, hβ) · e(X,hγ) · e(C, hδ)

where X ∈ G1 depends only on the instance x. x, α, β, and δ form the SRS trapdoor and e(gα, hβ),

[g(βui(x)+αvi(x)−wi(x))/γ ]`i=0, h
γ , and hδ form part of public SRS.

Given n instances [[ai,j ]
`
i=0]

n
j=1 and proofs [(Aj , Bj , Cj)]

n
j=1, checking each equation separately requires

performing 3n pairings and exponentations (factoring in that e(gα, hβ) can be precomputed). To reduce this
computation to a single verification, the verifier can take a random linear combination between all equations.
That is, the verifier samples r1, . . . , rn

$←− F and then checks whether

A−r ∗B · e(Cr, hδ) · e(Xr, hγ) · e(gαR, hβ) = 1 , (1)

where R =
∑n

j=1 rj .
This reduction is known as the small exponent test (SET), and if this equation holds, thenwith overwhelming

probability each individual verification holds [BGR98]. It therefore suffices to check this one pairing product
instead of checking all SNARKs individually.

Note that the verifier, who has access to the instances can compute e(Xr, hγ) · e(gαR, hβ) on its own.
The challenge, thus, becomes to convince the verifier that there exists vectors of group elementsA,B and C,
such that A−r‖Cr ∗B‖hδ is equal to some constant. hδ is the concatenation of n copies of hδ.

To do this the verifier commits toA‖C andC‖hδ using the Abe et al. [AFGHO16] commitment scheme.
That is, given a CRS vL,vR ∈ Gn

2 ,wL andwR ∈ Gn
1 they set T ← A‖C∗vL‖vR andU ← wL‖wR∗B‖h

δ .
Note that just like the Pedersen vector commitment [Ped92] used in the inner product argument of Bootle

et al. [BCCGP16] this commitment is key-homomorphic. That is given a commitment T to a vector A using
a commitment key v, T is also a commitment to a vectorAr using the commitment key vr

−1

.
In the SNARK aggregation protocol the prover sends T and U . The verifier then generates a random

challenge vector r used to create the combined SNARK verification equation and sends it to the prover. Both
the prover and verifier update the CRS such that T is a commitment to A−r‖Cr. The verifier then computes
Z ← e(X−r, hγ) · e(g−αR, hβ) using the CRS and the instances X . Note that if the batch verification
equation (Eq. (1)) holds then Z should be equal to e(A−r,B) · e(Cr, hδ). The prover and verifier then run
IPP to show that this inner pairing product relation holds.

The protocol can be made non-interactive and publicly verifiable using the Fiat-Shamir transform. This
results in a logarithmic sized aggregation of n Groth16 snarks without the need for expensive pairing-friendly
cycles of elliptic curves.
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A Preliminaries

In this section we present formalizations of a number of primitives and cryptographic assumptions we
construct and rely on in this paper. In Appendix A.1 we formalize the notion of a bilinear group sampler,
in Appendix A.2 we present the cryptographic assumptions our constructions rely on, in Appendix A.3 we
define proof and argument systems, in Appendix A.4 we introduce a forking lemma we use in proving security
of IPP, and in Appendix A.5 we define aggregate signature schemes.

A.1 Bilinear groups

The cryptographic primitives that we construct in this paper rely on cryptographic assumptions about bilinear
groups. We formalize these via a bilinear group sampler, which is an efficient algorithm SampleGrp that
given a security parameter λ (represented in unary), outputs a tuple 〈group〉 = (G1,G2,GT , q, g, h, e) where
G1,G2,GT are groups with order divisible by the prime q ∈ N, g generates G1, h generates G2, and
e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

Galbraith et al. distinguish between three types of bilinear group samplers in [GPS08]. Type I groups
have G1 = G2 and are known as symmetric bilinear groups. Types II and III are asymmetric bilinear groups,
where G1 6= G2. Type II groups have an efficiently computable homomorphism ψ : G2 → G1, while Type
III groups do not have an efficiently computable homomorphism in either direction. Certain assumptions
are provably false w.r.t. certain group types (e.g., SXDH only holds for Type III groups), and in general in
this work we assume we are working with working with a Type III groups. We will write SampleGrp3 to
explicitly denote a bilinear group sampler that outputs Type III groups.

A.2 Cryptographic assumptions

IPP relies on the symmetric external Diffie-Hellman (SXDH) assumption, which states that the decisional
Diffie-Hellman problem is hard in both source groups of a bilinear group. As remarked in Appendix A.1, the
SXDH is only believed to hold in Type III groups. We define our assumptions relative to a Type III group
generator such that the soundness of our argument relies on the existence of a group generator for which
SXDH holds.

Assumption 1 (Double pairing assumption (DBP)). We say the double pairing assumption holds relative to
SampleGrp3 if for any efficient algorithm A

Pr

 (a1, a2) 6= (1, 1)
∧

1 = e(a1, h1)e(a2, h2)

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

(h1, h2)
$←− G2

(a1, a2)← A(〈group〉, h1, h2)

 ≤ negl(λ) .

More specifically, we refer to this as the DBPG2
assumption and also define its dual, the DBPG1

assumption,
by swappingG1 andG2 in the definition above. In [AFGHO16, Lemma 2] Abe et al. prove that if DDH holds
in a source group relative to SampleGrp3, then DBP also holds in that source group relative to SampleGrp3.
Thus if SXDH holds, then the DBP holds in both source groups.

The q-DBP Assumption is a generalization of the DBP:

Assumption 2 (q-Double pairing assumption (q-DBP)). We say the q-double pairing assumption holds in
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G2 relative to SampleGrp3 if for any efficient A and for all q > 2 ∈ N:

Pr

 (A1, . . . , Aq) 6= 1G1

∧
1GT

=
∏q
i=1 e(Ai, hi)

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

(h1, . . . , hq)
$←− G2

(A1, . . . , Aq)
$←− A(〈group〉, h1, . . . , hq)

 ≤ negl(λ) .

Ultimately, we rely on the q-DBP holding in both source groups in the security proof of IPP. By the following
lemma we can state the result in terms of the simpler DBP. Finally, using the aforementioned lemma
from [AFGHO16] we can tie the security of our argument to the existence of a bilinear group generator for
which SXDH holds.

Lemma A.1. If the DBP holds relative to an asymmetric bilinear group generator SampleGrp3, then the
q-DBP also holds relative to SampleGrp3.

Proof. For the case q = 2 it is obvious the q-DBP coincides with the DBP. Assume the existence of an
efficient algorithmA that for any q > 2 breaks the q-DBP. We construct an efficient algorithmA′ that breaks
the DBP as follows.

On input of a challenge (〈group〉, h1, h2) the adversary A
′ uniformly samples α3, . . . , αq

$←− F for and
computes hi = h

αi
i for i = 3, . . . , q. A′ then runs A on (〈group〉, h1, . . . , hq). Since the distribution of the

h1, . . . , hq that A
′ gives as input to A is identical to in the q-DBP experiment, with more than negligible

probability A outputs a non-trivial q-double pairing, i.e., values a1, . . . , aq such that
∏q
i=1 e(ai, hi) = 1.

In the case A outputs a non-trivial q-double pairing, A′ sets a′1 = a1 and computes a′2 = a2 ·
∏q
i=3 a

αi
i ,

and outputs a double pairing a′1, a
′
2. Since A is efficient and succeeds with more than negligible probabilty,

the same can be said of A′.

Our construction of aggregatable signatures relies on the ψ-co-Diffie-Hellman (ψ-co-CDH) assump-
tion [BDN18].

Assumption 3 (ψ-co-Diffie Hellman assumption). We say the ψ-co-CDH assumption holds relative to
SampleGrp3 if for all efficient adversaries A it holds that

Pr

 C = hαβ

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

(α, β)
$←− F

C ← Aψ(〈group〉, gα, gβ, hβ)

 ≤ negl(λ) ,

where the adversaryAψ has oracle access to an isomorphism function ψ : G2 → G1 defined ψ(x) = glogh(x).

A.3 Proof systems

Both of the inner pairing product protocols we introduce in this work are proof systems. SIPP is a proof system
that allows a prover to make publicly verifiable proofs attesting to the correct computation of a pairing equation
with respect to public inputs. SIPP is then a statistically sound proof of membership for a polynomial-time
language. While the verifier could compute the pairing equation themselves in polynomial-time, SIPP is
practically useful because verifying a proof of a claimed result is computationally less expensive.

IPP is proof system that allows a prover to prove knowledge of some private witness inputs whose
pairing inner product is given as part of the public instance. IPP has computational soundness (specifically
computational witness-extended emulation), and thus we refer to it as an argument of knowledge for a NP
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relation. IPP is useful in applications where the verifier doesn’t need all the inputs to the pairing equation, but
rather just needs to be convinced such inputs exist such an equation is satisfied.
Public-coin protocols. A protocol is public-coin if each verifier message to the prover is an independently
and uniformly sampled random string of some prescribed length (or an empty string). Interactive public-coin
protocols can be made non-interactive by applying the Fiat-Shamir transformation [FS86]. All the protocols
introduced in this work are public-coin, and in Section 5 we indeed apply the Fiat-Shamir transformation to
SIPP in order to support non-interactive aggregation of BLS signatures.
Avoiding trusted setup. The most efficient proof systems use a trusted setup, where the security guarantees
rely on some honest party correctly executing a private-coin Setup algorithm. SIPP avoids the need for setup
altogether, while IPP supports a public-coin setup algorithm that can be carried out with public randomness.

A.3.1 Statistically sound proofs

We first define interactive proof systems (Prove,Verify) for polynomial-time languages. In general proof
systems must satisfy two properties: completeness and soundness. Perfect completeness means that for every
x ∈ L, the honest prover will always convince the honest verifier to accept. Statistical soundness means that
even an unbounded adversary has a negligible chance of convincing the honest verifier to accept an instance
x 6∈ L. We define these properties formally below.

Definition A.2 (Perfect completeness). The proof system (Prove,Verify) for a language L has perfect
completeness if for all instances x ∈ L it holds that

Pr
[
〈Verify,Prove〉(1λ,x) = 1

]
= 1 .

Definition A.3 (Statistical soundness). The proof system (Prove,Verify) for a language L has statistical
soundness if for all instances x and adversaries it holds that

Pr
[
〈Verify,A〉(1λ,x) = 1 ∧ x 6∈ L

]
≤ negl(λ) .

A.3.2 Arguments of knowledge

We now define interactive arguments of knowledge (Setup,Prove,Verify) for NP relations, following Bootle
et al. [BCCGP16]. We note that while not made explicit in our definitions below, the relationR is parametrized
by the public parameters pp generated during the proof system setup.

Perfect completeness means the honest prover can always convince a verifer to accept x ∈ L(R) provided
they know a witness w such that (x,w) ∈ R.

Definition A.4 (Perfect completeness). The argument system (Setup,Prove,Verify) for a relation R has
perfect completeness if for all instance-witness pairs (x,w) ∈ R it holds that

Pr
[
〈Verify,Prove(w)〉(pp,x) = 1

∣∣∣ pp← Setup(1λ)
]

= 1 .

Informally, computational witness-extended emulation means that for all efficient provers there exists an
emulator that with overwhelming probability produces the same argument, and when that argument is
accepting, the emulator also extracts a valid witness (again, with overwhelming probability).
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Definition A.5 (Computational witness-extended emulation). The argument system (Setup,Prove,Verify)
for a relationR has witness-extended emulation if for all deterministic, efficient provers P∗ there exists an
efficient emulator E such that for all pairs of efficient interactive adversaries A1,A2 it holds that∣∣∣∣∣∣∣∣Pr

 A1(tr) = 1

∣∣∣∣∣∣
pp← Setup(1λ)

(x, st)← A2(pp)
tr← 〈P∗(st), V〉(pp,x)



− Pr

 A1(tr) = 1
∧

(tr is accepting⇒ (x,w) ∈ R)

∣∣∣∣∣∣
pp← Setup(1λ)

(x, st)← A2(pp)

(tr,w)← EO(pp,x)


∣∣∣∣∣∣∣∣ ≤ negl(λ) ,

where tr is the transcript of communication between P∗ and V , the transcript oracle is given by O =
〈P∗(st), V〉(pp,x), and permits rewinding to a specific point and resuming with fresh randomness for the
verifier from this point onwards.

In the definition st can be interpreted as the state of P∗, including its randomness. Whenever P∗ creates a
valid argument in state st, then with all but negligible probability E can extract a witness. This makes IPP an
argument of knowledge.

By resuming with fresh randomness we mean that the local random tape of the verifier is replaced
by a string of some prescribed length chosen uniformly at random. Therefore, it is possible that after
rewinding a verifier issues the same challenge. This happens with negligible probability and in our proof
of witness-extended emulation for IPP we do not deal with this case. Instead, we construct an extractor
that on input a statement and a (n1, . . . , nk)-tree of accepting transcripts (see Appendix A.4), outputs a
corresponding witness with overwhelming probability, and then we apply Lemma A.6.

A.4 Forking lemma

Suppose that we have a (2k + 1)-move public-coin argument with k challenges x1, . . . , xk is sequence. Let
ni ≥ 1 for 1 ≤ i ≤ k. Consider

∏k
i=1 ni accepting transcripts with challenges in the following ree format.

The tree has depth k and
∏k
i=1 ni leaves. The root of the tree is labeled with the statement. Each node of

depth i < k has exactly nk children, each labeled with a distinct value for the ith challenge xi. This can
be referred to as a (n1, . . . , nk)-tree of accepting transcripts. In the following lemma it is assumed each
challenge x1, . . . , xk is uniformly sampled from a super-polynomial space in the security parameter λ.

The following forking lemma is used in our proof that IPP has computational witness-extended emulation.
It is a slightly modified version of the forking lemma from [BCCGP16, Lemma 1], which requires that the
malicious prover used to produce the transcripts is computationally bounded, and allows the extractor to fail
with negligible probability. This modified statement is directly implied by the proof in [BCCGP16].

LemmaA.6 (Forking lemma). Let (Setup,Prove,Verify) be a (2k+1)-move, public-coin interactive protocol.
Let E be an efficient witness extraction algorithm that succeeds with overwhelming probability in extracting
a witness from an (n1, . . . , nk)-tree of accepting transcripts produced by an efficient malicious prover
interacting with an honest verifier. Assume that

∏k
i=1 ni is bounded above by a polynomial in the security

parameter λ. Then (Setup,Prove,Verify) has computational witness-extended emulation.

Observe that it is possible to take any NP relation R and define a relation R′ = R ∪ RSXDH, where
RSXDH encompasses instance-witness pairs assumed computationally hard to find under the SXDH. Such a

21



transformation of the relation is implicitly considered in [BBBPWM18] when proving their inner-product
argument satisfies statistical witness-extended emulation.

A.5 Aggregate signatures

Our definitions of an aggregate scheme follow [BDN18]. An aggregate signature scheme consists of a 5-tuple
of efficient algorithms (Setup,KeyGen, Sign,AggSign,VerifyAgg) that behave as follows:

• Setup(1λ)→ pp : a public-coin setup algorithm that, given a security parameter λ (represented in unary),
outputs a set of public system parameters pp.

• KeyGen(pp)
$−→ (pk, sk) : a key generation algorithm that, given public parameters pp, outputs a public-

secret key pair (pk, sk).
• Sign(pp, sk,m)→ σ : a signing algorithm that, given a secret key sk and messagem ∈ {0, 1}∗, returns a
signature σ.

• AggSign(pp, [pki]
n
i=1, {mi}

n
i=1, [σi]

n
i=1)→ Σ : an offline signature aggregation algorithm that, given a set

of n (aggregate public key, message, signature)-triplets {(apki,mi, σi)}
n
i=1, outputs aggregate signature Σ.

• VerifyAgg(pp, [pki]
n
i=1, {mi}

n
i=1,Σ)→ 0/1 : an aggregate signature verification algorithm that, given a

set of n (aggregate public key, message)-pairs {(apki,mi)}
n
i=1 and an aggregate signature Σ, returns 1 or 0

to indicate the signature is valid or invalid, respectively.

We require that an aggregate signature scheme (Setup,KeyGen, Sign,AggSign,VerifyAgg) satisfy unforge-
ability. Informally, in the unforgeability game an adversary is given a challenge public key and signing oracle
access to the corresponding secret key. Their goal is to output a valid aggregate signature for a set of distinct
messages and a list of corresponding public keys, where for some index j the challenge public key is lined up
with a message they did not previously query the oracle on.

Definition A.7 (Computationally unforgeable aggregate signature). For an aggregate signature scheme
(Setup,KeyGen,Sign,AggSign,VerifyAgg) we define the advantage of an adversary against unforgeability
to be defined by AdvforgeA (1λ) = Pr

[
GameforgeA (1λ) = 1

]
where the game GameforgeA is defined as follows.

GameforgeA (1λ)

pp← Setup(1λ)

(pk∗, sk∗)
$←− KeyGen(pp)

Q← ∅
([pki]

n
i=1, {mi}

n
i=1,Σ)← ASign(pp, pk∗)

If ∃j : pk∗ = pkj ∧ mj 6∈ Q ∧ VerifyAgg(pp, [pki]
n
i=1, {mi}

n
i=1,Σ) :

Return 1
Else return 0

Sign(m)

σ ← Sign(pp, sk∗,m)
Q← Q ∪ {m}
Return σ

We say an aggregate signature scheme is computationally unforgeable if for all efficient adversaries A it
holds that AdvforgeA (1λ) ≤ negl(λ).

Note that an unforgeable aggregate signature scheme implies an unforgeable signature scheme as defined
in [BDN18].
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Remark A.8. (Batch verification) While often used interchangably, we note that there is a distinction to be
made between our notions of batch verification and aggregate signatures. In particular, a batch verification
algorithm does not require any third party advice in order to verify multiple signatures. An adversary against
batch verification succeeds if they can output a set of signatures such that at least one signature would fail
verification if checked individually, but the set still passes batch verification. This is a different notion that
aggregate unforgeability defined above. Our schemes require third party advice (the aggregated signature
and proof) to enable verifiers to check multiple signatures at the same time, and thus we merely satisfy
aggregatability and not batch verification. For further discussion on batch verification versus aggregate
signatures see [CHP07].

B Optimizations and trade-offs

In this section we present a small survey optimizations we are aware of that can be applied to the protocols we
introduce.
Delayed Multi-exponentiations. In inner product arguments the verifier can delay their exponentiations
until the final round. After a small precomputation in the field (see section 3.1 of Bünz et al. [BBBPWM18] for
details), verification can be reduced to five multi-exponentiations: one of size n in each of the source groups
and one (SIPP) or three (IPP) of size 2 log(n) in the target group. Using Pippenger’s multi-exponentiation
algorithm [Pip80], one obtains a log(n) speedup over computing n exponentiations individually.

The prover can also perform its scaling work in each round using multi-exponentiations.
Batching pairing final exponentiations. Bilinear pairings can generally be broken down into two parts:
an initial Miller loop computation and then a target group exponentiation (sometimes called the final
exponentiation). When computing a pairing product it is possible to run the Miller loop of each pairing,
compute the product of the values, and the compute just a single final exponentiation on that product [Sco19].
Prover time can generally be halved or better by applying this technique.

An additional small speedup can be gained by batching some of the computation of the Miller loops
themselves as described in [Sco19].
Sparse Exponents. Pairing-friendly curves at the 128-bit security level generally have a prime-order
subgroup of at least 256 bits. For simplicity in our constructions, we have the verifier draw their challenges
from a scalar field of this size, when they really only need to draw challenges from a space of size 2128.
Using sparse and/or complex exponents in particular can result in a very significant speedup for the prover
[CL06], and possibly for the verifier. Indeed, the verifier should expect negligible benefit for large n with this
technique if they combine it with previous technique of delaying their multi-exponentiations, since the final
exponent values derived in the pre-computation step will no longer be sparse. Sparse exponents provide a
constant speedup, versus the logarithmicly increasing speedup of Pippenger’s algorithm; the size n at which
delaying the multi-exponentiation becomes faster will depend on the curve parameters.
Minimizing proof size and verifier time in IPP. Assume that compressed G2 elements are twice the size
of compressed G1 elements, and compressed GT are six times the size of compressed G1 elements. In IPP,
if one wishes to minimize proof size, then it is optimal to end the recusion early at m = 16 and send the
vectorsA ∈ G16

1 ,B ∈ G16
2 . If one wishes to minimize verifier time, then sendingA,B as above and then

running SIPP on the those vectors is optimal.
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C Deferred proofs

In this section we provide proofs for Theorems 3.1, 4.1 and 5.1.

C.1 Proof of Theorem 3.1

Here we prove Theorem 3.1.

Proof. We prove soundness inductively by showing that in each round ifZ ′ = A′∗B′ then with overwhelming
probability Z = A ∗B. To see this, fix any target group generator and denote by zL, z, zR,a, and b the
discrete logarithms of ZL, Z, ZR,A, andB, respectively. Consider the Laurent polynomial

f(X) = zLX + z + zRX
−1 −

m
′∑

i=1

(
am′+ibiX

−1 + aibi + am′+ibm′+i + aibm′+iX
)
.

Evaluated at a point x $←− F it holds that f(X) = 0 with probability at most 2/|F|. This probability follows
from the observation that f(x) ∈ F[x, x−1] ∼= F[x, y]/(xy − 1). Using the isomorphism that maps f(x) to
f(x, y) our claim then follows from the DeMillo-Lipton-Schwartz–Zippel lemma. This is exactly the check
the verifier performs in the exponent when they check that ZxL ·Z ·Z

x
−1

R = Z ′ = A′ ∗B′, where as observed
in the completeness proof it holds that

A′ ∗B′ =
(
A[m

′
:] ∗B[:m

′
]

)x
·A ∗B ·

(
A[:m

′
] ∗B[m

′
:]

)x−1

.

Security thus inductively follows from the fact that in the final round the verifier checks that Z ′ is equal to
e(A′, B′). More precisely, the soundness error ε is at most 2 log(m)/|F|.

C.2 Proof of Theorem 4.1

Here we prove Theorem 4.1.

Proof. To prove witness-extended emulation we construct an efficient extractor E that uses n2 transcripts, as
need by Theorem A.6. On input (pair,v,w, T, U, Z) our extractor either extracts a witness (A,B) such that
relationRpair holds, or a non-trivial q-double pairing in one of the source groups. Note that the hardness of
computing am′-double pairing that breaks q-DBP in G1 given w

′ ∈ Gm
′

1 implies the hardness of computing
am-double pairing given w ∈ Gm

1 (and likewise with respect to G2, v
′, and v). We proceed by an inductive

argument showing in each loop of the protocol we either extract a witness or a non-trivial q-double pairing.
In the base case where m = 1 the prover reveals the witness (A,B) in the protocol and the relations

T = e(A, v), U = e(w,B), and Z = e(A,B) can be checked directly.
Form > 1 the extractor runs the prover to get TL, TR, UL, UR, ZL, and ZR. The extractor then rewinds

the prover, giving it three distinct challenges {x1, x2, x3}
$←− F, to obtain three pairs (A′i, B

′
i) ∈ Gm

′

1 ×Gm
′

2

such that for i ∈ [3] it holds that

T
xi
L · T · T

x
−1
i

R = A′i ∗
(
v
x
−1
i

[:m
′
]
◦ v[m′:]

)
U
xi
L · U · U

x
−1
i

R =
(
w
xi
[:m
′
]
◦w[m

′
:]

)
∗B′i

Z
xi
L · Z · Z

x
−1
i

R = A′i ∗B
′
i

(2)
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We use the first three challenges to compute ν1, ν2, ν3 ∈ F?q such that

3∑
i=1

νixi = 1,

3∑
i=1

νi = 0,

3∑
i=1

νix
−1
i = 0.

Then we can write TL as

TL =

3∏
i=1

(
T
xi
L · T · T

x
−1
i

R

)νi
=

3∏
i=1

(
A′i ∗

(
v
x
−1
i

[:m
′
]
◦ vxi

[m
′
:]

))νi
=
(
©3
i=1(A

′
i)
x
−1
i vi‖(A′i)

xivi
)
∗ v

We defineAL such thatAL ∗ v = TL. By using different systems of equations to define ν1, ν2, ν3, we can
use the same technique to derive expressions

TL = AL ∗ v T = AC ∗ v TR = AR ∗ v
UL = w ∗BL U = w ∗BC UR = w ∗BR

ZL = YL Z = YC ZR = YR

Now for each x ∈ {x1, x2, x3, } and the correspondingA
′,B′ we can rewrite 2 as

A′ ∗
(
vx
−1

[:m
′
]
◦ v[m′:]

)
= T xL · T · T

x
−1

R =
(
Ax
L ◦AC ◦A

x
−1

R

)
∗ v(

wx
[:m
′
]
◦w[m

′
:]

)
∗B′ = UxL · U · U

x
−1

R = w ∗
(
Bx
L ◦BC ◦B

x
−1

R

)
A′i ∗B

′
i = Z

xi
L · Z · Z

x
−1
i

R = Y x
L · YC · Y

x
−1

R

Then assuming the q-DBP holds in both source groups it is implied that with all but negligible probability
that it holds for each x ∈ {x1, x2, x3} and correspondingA

′,B′ that

(A′)x
−1

= Ax
L,[:m

′
]
◦AC,[:m

′
] ◦A

x
−1

R,[:m
′
]

(A′)x = Ax
L,[m

′
:]
◦AC,[m

′
:] ◦A

x
−1

R,[m
′
:]

(B′)x = Bx
L,[:m

′
]
◦BC,[:m

′
] ◦B

x
−1

R,[:m
′
]

(B′)x
−1

= Bx
L,[m

′
:]
◦BC,[m

′
:] ◦B

x
−1

R,[m
′
:]

(3)

If any of the first four of these equalities do not hold, we directly obtain am′-double pairing in one of the
source groups. If the equalities hold, we can deduce that for each challenge x ∈ {x1, x2, x3}

1 = Ax
2

L,[:m
′
]
◦
(
AC,[:m

′
] ◦A

−1
L,[m

′
:]

)x
◦
(
AR,[:m

′
]) ◦A

−1
C,[m

′
:]

)x−1

◦A−x
−2

R,[m
′
:]

(4)

1 = Bx
2

L,[m
′
:]
◦
(
BC,[m

′
:] ◦B

−1
L,[:m

′
]

)x
◦
(
BR,[m

′
:] ◦B

−1
C,[:m

′
]

)x−1

◦B−x
−2

R,[:m
′
]

(5)

where Eq. (4) follows from the first two equations in Eq. (3) and and Eq. (5) follows from the second two
equations in Eq. (3). The only way this equality holds for all 3 challenges is if

AL,[:m
′
] = AR,[m

′
:] = BL,[m

′
:] = BR,[:m

′
] = 1
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AL,[m
′
:] = AC,[:m

′
] AR,[:m

′
] = AC,[m

′
:]

BL,[:m
′
] = BC,[m

′
:] BR,[m

′
:] = BC,[:m

′
]

Plugging these expressions into 3 we have that

A′ = Ax
C,[:m

′
]
◦Ax

−1

C,[m
′
:]

and B′ = Bx
−1

C,[:m
′
]
◦Bx

C,[m
′
:]
.

Using these relations we can see that

ZxL · ZC · Z
x
R = A′ ∗B′

=
(
Ax
C,[:m

′
]
◦Ax

−1

C,[m
′
:]

)
∗
(
Bx

−1

C,[:m
′
]
◦Bx

C,[m
′
:]

)
=
(
AC,[:m

′
] ∗BC,[m

′
:]

)x
·AC ∗BC ·

(
AC,[m

′
:] ∗BC,[:m

′
]

)x−1

Since this holds for each x ∈ {x1, x2, x3} it must be that Z = AC ∗BC . Thus, the extractor either extracts a
q-double pairing or the witness (AC ,BC).

Using Theorem A.6 we see the extractor requires 3log2(n) < n2 transcripts and thus runs in expected
polynomial time in n and λ, concluding that the protocol has witness-extended emulation.

C.3 Proof of Theorem 5.1

Here we prove Theorem 5.1.

Proof. Let A be an adversary against aggregate unforgeability that convinces BLS.VerifyAgg after making
no more than qH queries of the form (m). We show that if A succeeds then we can break the soundness of
the SIPP protocol or we can break the ψ-co-CDH assumption in the random oracle model.

Set B to be an adversary that behaves as follows.

1. Receive ψ-co-CDH challenge (gα, gβ, hβ) with respect to the bilinear group pair. Choose k $←−
{1, . . . , qH}.

2. Set q = 1 and run A on input pk∗ = gα. When A queries RO on (m) then program RO such that:

• if (m) is already assigned, return assigned response.

• if pk 6= pk∗ choose r $←− F and assign hr to (m). Return hr.

• if pk = pk∗ and q 6= k, choose r $←− F and assign hr to (m). Return hr.

• if pk = pk∗ and q = k, assign hβ to (m) and increment q = q + 1. Return hβ .

3. When A queries Sign on {mi, pki}
n−1
i=0 then for pki = pk∗:

• if (m) is already assigned to hβ , return ⊥.
• if q = k return ⊥

Else, for all pk0, . . . , pkn−1, program RO such that:

• if (mi) is already assigned, return assigned response h
ri .
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• else choose ri
$←− F and assign hri to (mi). Return h

ri .

Set σA =
∏n−1
i=0 ψ(pki)

ri by querying ψ(·) on each pki = gski to obtain hski . Return σA.

4. When A returns {pki,mi}, σA, π, let j be the index such that pkj = pk∗ (abort if there is no such index).
Abort if RO(mj) 6= hβ .

5. If e(g, σA) 6=
∏n−1
i=0 e(pki,RO(mi)) return g

−1‖pk, σA‖h, 1, π.

6. Compute B = σA
∏n−1
i=0,i 6=j ψ(pki)

−ri . Return B.

We will now argue that

AdvaforgeA (1λ) ≤ qHAdv
sound
B (1λ) + qHAdv

ψ−co−CDH
B (1λ).

First observe that the probability that B correctly guesses the (pk∗||m) which is output by A in Step 4
is 1

qH
. This is because A cannot distinguish between the different oracle queries, and A queries RO on a

maximum of qH values. Further, at least of these query values is not called by the Sign simulation, because
otherwise A would be forced to return (pk∗,m) which it has queried Sign on (recall messages are distinct).

Assuming that B correctly guesses k, then either e(g, σA) =
∏n−1
i=0 e(pki,RO(mi)) or B succeeds against

the soundness of the SIPP protocol.
Assuming that B correctly guesses k and that e(g, σA) =

∏n−1
i=0 e(pki,RO(mi)), then with pkj = pk∗

σA = hαβ
n−1∏

i=0,i 6=j
hskiri .

Thus B = σA
∏n−1
i=0,i 6=j ψ(pki)

ri satisfies
B = hαβ.

Hence B succeeds against ψ-co-CDH.
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