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Abstract

We present a generalized inner product argument and demonstrate its applications to pairing-based
languages. As a first instantiation, we introduce a statistically sound proof for the product of n pairings
given public source group elements. This protocol enables outsourcing many pairing equation checks
to an untrusted prover. Proofs are 2 log n target group elements, computed using 2n pairings and n
exponentiations in each source group. There is no setup. The verifier work is dominated by two
multi-exponentiations of size n which require time O(n/ log n). Asymptotically, verification is thus
faster than computing the n Miller loops that dominate the pairing product computation; indeed, our
implementation demonstrates a 8× speedup for a million pairings.

Next, we apply our generalized argument to proving that an inner pairing product is correctly evaluated
with respect to committed vectors of source group elements. With a structured reference string (SRS) we
achieve a log-time verifier whose work is dominated by 6 log n target group exponentiations. Proofs are
of size 6 log n target group elements, computed using 6n pairings and 4n exponentiations in each source
group. We show how this argument can be used to aggregate n Groth16 zkSNARKs into an O(log n)
proof, presenting a more efficient alternative to recursive composition of SNARKs.

Using a combination of our techniques, we build a polynomial commitment scheme with logarithmic
communication andO(

√
d) prover complexity for degree d polynomials (not including the cost to evaluate

the polynomial). With a public-coin setup the verifier runs in O(
√
d) time, and with an SRS the verifier

runs in O(log d) time.

This work was completed while at 1Stanford University, 2Ethereum Foundation, and 3UC Berkeley.
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1 Introduction

Pairing-based cryptography constructions include efficient signatures [BLS01], zero-knowledge proofs [GS08;
GGPR13], anonymous credentials [BCKL08], and more. These protocols rely on pairings that enable
a verifier to directly check bilinear relations between committed secrets. Concretely, given ga and gb a
verifier can directly check that a group element C is equal to gab. Thus, using a bilinear pairing, one can
check that a quadratic equation in unknown variables is satisfied. It has been shown that this suffices to
build NIZK arguments in the plain model [GOS06], SNARKs with constant sized verifiers [PGHR13],
rerandomizable signature schemes [PS16], and many more primitives. Not only are pairing-based arguments
of theoretical interest, they are widely used in practice and there are standardization efforts to help the efforts
of developers [Lan08].

In this work we explore how a generalized inner product argument (GIPA) can be applied to pairing
based languages in order to: (1) outsource pairing equations to a more powerful prover; (2) demonstrate that
committed source group elements are in pairing based languages; (3) build a polynomial commitment scheme
with constant-sized commitments and efficient openings. Our GIPA protocol is a generalization of the inner
product argument for discrete logarithm relations [BCCGP16; BBBPWM18].
SIPP. Our first instantiation of the GIPA protocol is a statistical inner pairing product proof (SIPP). A
prover runs SIPP to create a log-sized, publicly verifiable proof of the correct computation of an inner pairing
product with respect to public source group elements. The protocol can be used to outsource n arbitrary
pairings to a prover. The verifier performs a single pairing and one variable-base multi-exponentiation of size
n in each source group. Group exponentiations are cheaper than pairings and existing multi-exponentiation
algorithms require only O(n/ log(n)) exponentiations. Hence, SIPP asymptotically reduces the number of
cryptographic operations performed by the verifier. In Fig. 1 we demonstrate that SIPP achieves concrete
verifier improvements: our verifier is faster than directly computing the pairing product at 128 pairings.
Further, the verifier savings increases with the number of inputs, empirically validating the asymptotic
improvements. For a million pairings the verifier is more than 8× faster. We also see that, as expected, the
prover runs in approximately 3-4× the time of direct computation. In Section 9, we use SIPP to build a new
aggregate signature for BLS [BLS01] with a faster verifier than previous results [BGLS03; RY07; BDN18].
TIPP. Our second instantiation of GIPA is a trusted setup inner pairing product (TIPP) argument of
knowledge used demonstrate that certain pairing relations hold between committed group elements.TIPP has
logarithmic proof size and verifier time, and linear prover time (all with small constants). Extrapolating from
the results of our IPP implementation, concrete prover time will be only 9–12× direct computation time.
In Section 8 we use TIPP to show how an untrusted party can aggregate n Groth16 SNARKs [Gro16] into a
single log-sized proof with a log-time verifier.
Comparison to using pairing-friendly cycles and SNARKs. An alternative to using SIPP or TIPP is to
prove the same relations by using NP-reductions and a general purpose SNARK. Asymptotically, SIPP and
TIPP have logarithmic proof sizes versus the constant-size proofs of SNARKs such as [Gro16], but our
protocols have much faster prover time and greater compatibility with existing systems.

Efficiently expressing pairing based languages as arithmetic circuits for general purpose SNARKs requires
the use of pairing-friendly cycles [BCTV14] or two-chains [BCGMMW20]. Known cycles and two-chains
for the 128-bit security level require roughly 780-bit curves, versus the roughly 380-bit curves used when
recursion is not necessary. More efficient pairing-friendly cycles seem elusive at best, with negative results on
their existence for some curve families [CCW19]. Since almost no deployed systems are using pairing-friendly
cycles or two-chains, our protocols also have the added benefit of direct applicability to many systems using
pairing-based cryptography.
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(a) Ratio of the time to compute a direct pairing product to the
time to verify a SIPP for that computation.
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(b) Running time of the SIPP algorithms compared to the time
to directly compute the pairing product.

Figure 1: Measured performance of SIPP compared to the cost of directly computing the pairing product on the
efficient BLS12− 377 elliptic curve [BCGMMW20]. Experiments were performed on a machine with an Intel
Xeon 6136 CPU at 3.0 GHz.

Even with pairing-friendly cycles the reduction of the statements to an arithmetic circuit (or R1CS), the
NP-language for general purpose SNARKs, is very expensive. A single pairing operation requires about
15, 000 R1CS constraints to express. For the most efficient SNARKs such as [Gro16], proving time then
scales quasi-linearly with respect to this (much larger) set of constraints. This stands in stark contrast to the
small constant overhead of our protocol.

1.1 Applications

Polynomial commitments. Polynomial commitment (PC) schemes [KZG10] are commitment schemes
specialized to work with polynomials. A committer outputs a short commitment to polynomial, and then
later may convince a verifier of correctness of an evaluation of that committed polynomial at any point
via a short proof, or “opening”. PC schemes have been used to reduce communication and computation
costs in a vast breadth of applications including proofs of storage and replication [XYZW16; Fis18],
anonymous credentials [CDHK15; FHS19], verifiable secret sharing [KZG10; BDK13], zero-knowledge
arguments [WTSTW18; MBKM19; Gab19; Set19; GWC19; XZZPS19; CHMMVW20]. We use a
combination of inner product arguments in order to build a pairing based inner product argument with
constant-sized commitments, logarithmic-sized openings, and a square root reference string.

Our PC scheme uses a Groth [Gro11] style two-tiered homomorphic commitment and supports both
univariate and bivariate polynomials. We demonstrate how to instantiate it both with a public-coin setup,
achieving square root verifier time, and with an updatable SRS [GKMMM18], achieving log-time verification.
The transparent variant is secure in the plain model under the standard SXDH assumption, and our trusted
setup scheme is secure in the algebraic group model (AGM) [FKL18]. One of the main advantages to our
scheme is the time to produce opening proofs: for univariate polynomials opening costs are square root in the
degree of the polynomial; for bivariate polynomials opening costs are linear in the degree of one variable.
The sublinear opening time is particularly relevant in applications where the commitment is opened many
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polynomial
commitment

communication complexity transparent
setup

time complexity

CRS commitments openings d = 220 Commit Open Verify

Kate et al.[KZG10] d G1 1 G1 1 G1 96b no d G1 d G1 1 P,G1

Bulletproofs [BBBPWM18] d G1 1 G1 log(d) G1 1.3 KB yes d G1 d G1 d G1

Hyrax [WTSTW18]
√
d G1

√
d G1 log(d) G1 33 KB yes d G1

√
d G1

√
d G1

DARKs [BFS19] d GU 1 GU log(d) GU 8.6 KB yes d GU d log(d) GU log(d) GU

Virgo [ZXZS19] 1 1 H log(d)2 H 183 KB yes d log(d) H d log(d) H log(d)2 H
Groth [Gro11] 3

√
d G2

3
√
d GT

3
√
d G1 25 KB yes d G1

2
3
√
d G1

3
√
d P

This work transparent
√
d G2 1 GT log(d) GT 4.6 KB yes d G1

√
d P

√
d G2

This work structured
√
d G2 1 GT log(d) GT 4.1 KB no d G1

√
d P log(d)GT

Table 1: Efficiency comparisons for polynomial commitment schemes. All numbers are given asymptotically.
We use G1,G2,GT to represent groups in a bilinear map, P to represent pairings, GU to represent groups of
unknown order, and H to represent hash functions. For simplicity we only specify the dominant costs e.g., if
there are d G1 and d G2 group exponentiations we simple write d G2. Column 5 is the expected size of one
commitment plus one opening proof at d = 220 over a BN256 curve.

times. This is the case for vector commitment and proof of space applications. Computing a commitment
itself is linear in the number of non-zero coefficients of the polynomial.

Asymptotically, our scheme positions itself competitively among state-of-the-art PCs (see Table 1). In
terms of concrete efficiency, the trusted setup scheme of Kate et al. [KZG10] allows for constant proof sizes
and verifier time (versus our logarithmic results), whereas our protocol offers quadratic improvements to
opening efficiency and the maximum degree polynomial supported by a SRS of a given size. Smaller SRS size
can have consequences not only for storage and setup efficiencies but also for security. Indeed, it was recently
noted by Gurk et al. [GGW18] that Cheon’s attack on q-type assumptions [Che10] can degrade the security of
some SNARK schemes over BLS12-381 from the advertised 128 bits of security to 114 bits of security.
Aggregating pairing-based SNARKs. We design an aggregator for Groth16 [Gro16] pairing-based
SNARKs based on TIPP. The aggregated proof has logarithmic size. The verifier computation depends
on the cost of uploading the instances in addition to a logarithmic number of target group exponentiations.
We thus obtain a single layer of recursive proofs (i.e., a proof of proofs) that does not depend on inefficient
pairing-friendly cycles or two-chains, nor expensive NP reductions.
Aggregating BLS signatures. We apply our SIPP protocol to BLS signatures [BLS01]. Boneh et al.
observed that BLS signatures can be efficiently aggregated [BGLS03], however, their aggregated signatures
require the verifier to compute one pairing per distinct message. Using SIPP, we derive a new aggregate
signature for BLS where verficiation requires computing a single pairing and a multi-exponentiation in each
source group of size equal to the number of messages being verified. The tradeoff is our aggregate signatures
are logarithmic versus the constant-size aggregate signatures of [BGLS03]. The aggregation algorithm is
computed offline by an untrusted party who requires no secrets.

1.2 Related work

Lai, Malavolta, and Ronge [LMR19] an inner product argument for pairing based languages. Their scheme
runs over a transparent setup, is secure under the SXDH assumption and they discuss the applications of their
argument to zero-knowledge proofs. We present a detailed efficiency analysis of their scheme compared this
work in Table 2.

Groth and Sahai [GS08] introduced a method to prove pairing-based languages under zero-knowledge
without reducing to NP (or alternatively under witness indistinguishably with smaller proofs). The group
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elements are committed to under either a perfectly binding commitment key or a perfectly hiding commitment
key (and the prover cannot distinguishwhich) and depending onwhich key is used the protocol is either perfectly
sound or perfectly zero-knowledge. This approach has since been improved by Escala and Groth [EG14] and
by Ghadafi et al. [GSW10]. Blazy et al. [BFIJSV10] noted that it is possible to batch verify pairing equations
that share a source group element. However, their results do not extend to the setting where both source group
elements are different. Our work can be used to aggregate pairing equations where the source group elements
differ. GS proofs are secure in the standard model under standard assumptions. Thus their linear sized proofs
and verifier time are optimal [GW11], whereas our smaller proofs can only be obtained because we are in
the random oracle model. Nonetheless, this means that GS proofs can be used for applications that require
straight-line extractors whereas ours cannot. We also note that, unlike GS proofs [BCCKLS09], our proofs
are not re-randomizable.

communication complexity transparent
setup

time complexity

|CRS| |π| Prove Verify

[LMR19] 2m G1 + 2m G2 6 logm GT yes 3m G1 + 3m G2 + 10m P 2m G1 + 2m G2 + 6 logm GT
IPP m G1 + m G2 6 logm GT yes 2m G1 + 2m G2 + 6m P m G1 + m G2 + 6 logm GT
TIPP 2m G1 + 2m G2 6 logm GT no 4m G1 + 4m G2 + 6m P 6 logm GT
SIPP — 2 logm GT yes m G1 + m G2 + 2m P m G1 + m G2 + 2 logm GT

Table 2: Efficiency comparison between the inner pairing product protocol of Lai et al. [LMR19], versus our
protocols IPP, TIPP, and SIPP. Small constants have been ommitted. SIPP applies over a modified relation
where the verifier knows all the provers inputs.

Abe et al. proved that one can commit to group elements in asymmetric bilinear groups under the
double pairing assumption [AFGHO16] and that such techniques are helpful for building structure preserving
signatures (i.e. signatures where messages are group elements) in the standard model. This work uses their
commitment scheme.

In Table 1 we compare the efficiency of various polynomial commitment schemes. Kate et al.[KZG10]
introduced a pairing based polynomial commitment scheme with constant sized proofs. Their scheme is
secure under an updatable setup in the algebraic group model. Groth [Gro11] designed a pairing based “batch
product argument” secure under SXDH. This argument that can be seen as a form of polynomial commitment
scheme. Under discrete-logarithm assumptions, Bayer and Groth designed a zero-knowledge proving system
to show that a committed value is the correct evaluation of a known polynomial [BG13]. Both the prover and
verifier need only compute a logarithmic number of group exponentiations, however verifier costs are linear
in the degree of the polynomial. Wahby et al. proved that it is possible to use the inner product argument of
Bulletproofs to build a polynomial commitment scheme [WTSTW18]. Bowe et al. [BGH19] argued that the
inner product argument of Bulletproofs is also highly aggregatable, to the point where aggregated proofs can
be verified using a one off linear cost and an additional logarithmic factor per proof.

Polynomial commitment schemes have also been constructed using Reed-Solomon codes [ZXZS19].
These commitments use highly efficient symmetric key primitives, however the protocols that use them
require soundness boosting techniques that result in large constant overheads. Bünz et al.[BFS19] designed
a polynomial commitment scheme in groups of unknown order such as RSA groups or class groups with
efficient verifier time and small proof sizes. However, it requires super-linear commitment and prover time.
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2 Technical Overview

Generalized Inner Product Argument. At the heart of this work is a generalized inner product argument.
We generalize the techniques of [BCCGP16; BBBPWM18] to apply to commitment schemes that are doubly
homomorphic i.e.

CM((ck1 + ck2); (M1 +M2)) = CM(ck1,M1) + CM(ck1,M2) + CM(ck2,M1) + CM(ck2,M2)

and inner products that are bilinear i.e.

〈a + b, c + d〉 = 〈a, c〉+ 〈a,d〉+ 〈b, c〉+ 〈b,d〉.

Not coincidently we see that our generalized argument is highly applicable to bilinear maps. We apply GIPA
to three different inner products

〈, 〉 : Gm
1 ×Gm

2 7→ GT , 〈A,B〉 =
∏m−1
i=0 e(Ai, Bi)

〈, 〉 : Gm
1 × Fm 7→ G1, 〈A, b〉 =

∏m−1
i=0 A

bi
i

〈, 〉 : Fm × Fm 7→ F, 〈a, b〉 =
∑m−1

i=0 aibi

SIPP and TIPP. We use our first inner product to obtain SIPP with respect to the identity commitment.
We also use our first inner product to obtain TIPP with respect to a commitment scheme that has a structured
commitment key. The actual commit algorithm works the same as that of Abe et al.[AFGHO16]: given a
commitment key (v0, v1) ∈ G2 the commitment to (A0, A1) ∈ G2

1 is given by e(A0, v0)e(A1, v1). However
by using a structured setup we get that the components computed by the verifier in GIPA are highly structured;
indeed they correspond to a KZG [KZG10] polynomial commitment to a polynomial that Bowe et al. [BGH19]
reason can be computed in logarithmic time. Thus we outsource the verifier work to the prover. The prover
demonstrates their honest intent by opening the KZG commitment to the correct evaluation (which the verifier
computes themselves).
Polynomial commitment. Following Groth [Gro11] we use two-tiered homomorphic commitments: i.e.
commitments to commitments. Suppose we wish to commit to a polynomial

f(X,Y ) = f0(Y ) + f1(Y )X + . . .+ fm−1(Y )Xm−1

=
∑m−1

i=0 fi(Y )Xi.

We can view this polynomial in matrix form

f(X,Y ) = (1, X,X2, . . . , Xm−1)


a0,0 a0,1 a0,2 . . . a0,`−1

a1,0 a1,1 a1,2 . . . a1,`−1

a2,0 a2,1 a2,2 . . . a2,`−1
...

. . .
...

am−1,0 am−1,1 am−1,2 . . . am−1,`−1




1
Y

Y 2

. . .

Y `−1


One first computes commitmentsA0, . . . , Am−1 to the polynomials f0(Y ), . . . , fm−1(Y ). Next one commits
to the commitments: T = CM(A0, . . . , Am−1).

On receiving an opening challenge (x, y) the prover evaluates the first tier at x to obtain a commitment
A to f(x, Y ). This is done using a multiexponentiation IPP argument (MIPP). The prover then opens the
second tier commitment A at y in order to obtain eval = f(x, y). This is done using a univariate polynomial
commitment scheme: in the transparent version we use Bulletproofs [BBBPWM18] and in the structured
setup version we use KZG. See Figure 2 for a depiction.
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Figure 2: Our polynomial commitment scheme for f(X,Y ).

3 Preliminaries

Notation. We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the vector

(a1, . . . , an), and [ai]
n
i=1 = [[ai,j ]

m
j=1]ni=1 as a short-hand for the vector (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m);

|a| denotes the number of entries in a. We analogously define {ai}
n
i=1 with respect to sets instead of vectors.

If x is a binary string then |x| denotes its bit length. For a finite set S, let x $←− S denote that x is an element
sampled uniformly at random from S.
Inner pairing product notation. We introduce some special notation related to our inner pairing product
argument, some of which is borrowed from the Pedersen inner product introduced in [BBBPWM18]. We write
group operations as multiplication. For a scalar x ∈ F and vectorA ∈ Gn, we letAx = (Ax1 , . . . , A

x
n) ∈ Gn,

and for a vector x = (x0, . . . , xm−1) ∈ Fn we let Ax = (A
x0
0 , . . . , A

xm−1

m−1 ). For a bilinear group
(G1,G2,GT , q, g, h, e) (see Appendix A.1) and pair of source group vectors A ∈ Gn

1 , B ∈ Gn
2 we define

A ∗B =
∏n
i=1 e(Ai, Bi). For two vectorsA,A

′ ∈ Gn we letA ◦A′ = (A0A
′
0, . . . , Am−1A

′
m−1).

LetA‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
m−1) be the concatenation of two vectorsA ∈ Gn andA′ ∈ Gm.

To denote slices of vectors givenA ∈ Gn
· and 0 ≤ ` < n− 1 we write

A[:`] = (A0, . . . , A`−1) ∈ G` and A[`:] = (A`, . . . , An−1) ∈ Gn−` .

Languages and relations. We write {(x) : p(x)} to describe a polynomial-time language L ⊆ {0, 1}∗

decided by the polynomial-time predicate p(·). We write {(x;w) : p(x,w)} to describe a NP relation
R ⊆ {0, 1}∗×{0, 1}∗ between instances x and witnessesw decided by the polynomial-time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable
n, we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function that is negligible in
λ (namely, a function that vanishes faster than the inverse of any polynomial in λ). When a function can be
expressed in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that algorithm A is
an efficient we mean that A is a family {Aλ}λ∈N of non-uniform polynomial-size circuits. If the algorithm
consists of multiple circuit families A1, . . . ,An, then we write A = (A1, . . . ,An).
Arguments of knowledge and Commitments. We use several standard notions in this paper such as
interactive arguments of knowledge and commitments. For completeness, we include their definitions in
Appendix A.

4 Outsourcing inner pairing products

In this section we introduce an interactive, RBR sound inner pairing product (SIPP) proof system that
produces proofs of pairing products. SIPP requires no setup and is public-coin. The verifier trades off
computing the n pairings directly for n exponentiations (or two multi-exponentiations of size n) in the source
groups. The prover computes just 2n pairings and sends 2 log(n) target group proof elements.

7



4.1 Construction

In this section we present our inner pairing product proof SIPP for the membership in the language LSIPP
defined by

LSIPP = {(A ∈ Gm
1 , B ∈ Gm

2 , Z ∈ GT ) : Z = A ∗B} .

Without loss of generality assumem is a power of two. Our proof is defined by a recursive protocol that in
each round “folds” vectors A,B into new vectors A′,B′ of length m′ = m/2 such that e(A′,B′) = Z ′.
Both the prover and verifier independently do this folding using a verifier generated challenge.

First the prover commits to a pair of target group elements ZL, ZR that the verifier uses to scale the Z
from the last round to a new target group element Z ′. In the final round of recursion wherem′ = 1 the verifier
simply checks the pairing equation e(A′, B′) = Z ′.

In more detail, the prover and verifier start with vectors A ∈ Gm
1 and B ∈ Gm

2 and a claimed inner
pairing product Z ∈ GT . The prover wishes convince the verifier that Z = A ∗B by engaging in log(m)
rounds of a recursive protocol. The prover and verifier begin each round by each setting m′ = m/2. The
prover first computes

ZL = A[m
′
:] ∗B[:m

′
] and ZR = A[:m

′
] ∗B[m

′
:] ,

sending them as commitments to the verifier. The verifier samples x $←− F and sends x to the prover. The
prover and the verifier then each set

Z ′ = ZxL · Z · Z
x
−1

R and A′ = Ax
[m
′
:]
◦A[:m

′
] and B′ = Bx

−1

[m
′
:]
◦B[:m

′
] .

The protocol then recurses on (A,B, Z) = (A′,B′, Z ′) until the final round, wherem = 2. In that round
after computing (A′, B′, Z ′) ∈ G1 ×G2 ×GT the verifier accepts the proof if e(A′, B′) = Z ′ and otherwise
rejects it.

Informally, the security of the protocol relies on the fact that in each round if Z ′ = A′ ∗B′, then it holds
with overwhelming probability that Z = A ∗B. This follows from the DeMillo-Lipton-Schwartz–Zippel
lemma: the prover must commit to the coefficients of a polynomial that is then evaluated at a random point;
as elaborated on in the proof of round by round soundness (Theorem 4.2), the probability

Z ′ = A′ ∗B′ ⇔ ZxL · Z · Z
x
−1

R =
(
A[m

′
:] ∗B[:m

′
]

)x
·A ∗B ·

(
A[:m

′
] ∗B[m

′
:]

)x−1

for x $←− F is negligible if ZL, Z, and ZR are not the claimed values. Applying this technique recursively, we
defer the actual pairing check untilm′ = 1 and the verifier need only compute a single pairing.
Pseudocode. We give pseudocode for our protocol in Fig. 3.

4.2 Efficiency

We provide a detailed breakdown of the communication and computation complexity of the protocol in
Table 2. There are log(n) rounds, wherein each the prover sends 2 target group elements ZL, ZR, making the
total proof size 2 log(n) target group elements.

In the first round the prover requires n pairings to compute ZL, ZR. This halves to n/2 in the second
and n/2i in the i-th. Over log(n) rounds the prover computes 2n pairings in total. The verifier computes
just one pairing in the final round. Over log(n) rounds the prover and verifier each compute a total of n
exponentiations in each of the source groups to computeA′ andB′. To compute Z ′ the verifier then computes
a total of 2 log(n) exponentiations in GT .
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Prove(〈group〉,A,B, Z) Verify(〈group〉,A,B, Z)

m′ = m/2 m′ = m/2

ZL = A[m
′
:] ∗B[:m

′
]

ZR = A[:m
′
] ∗B[m

′
:]

ZL, ZR ∈ GT

x
$←− F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m′ ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x ∈ F

A′ = Ax
[m
′
:] ◦A[:m

′
] A′ = Ax

[m
′
:] ◦A[:m

′
]

B′ = Bx
−1

[m
′
:] ◦B[:m

′
] B′ = Bx

−1

[m
′
:] ◦B[:m

′
]

Z ′ = Zx
L · Z · Z

x
−1

R

Recurse on (〈group〉,A′,B′, Z ′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Else m′ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A′ = Ax
1 ·A0

B′ = Bx
−1

1 ·B0

Z ′ = Zx
L · Z · Z

x
−1

R

Return 1 if e(A′, B′) = Z ′, else 0

Figure 3: A RBR sound protocol for outsourcing pairings.

4.3 Security

We prove the following two theorems showing that SIPP satisfies perfect completeness and RBR soundness
in Appendix B.1.

Theorem 4.1 (Perfect completeness of SIPP). The interactive protocol defined by Fig. 3 for the language
LSIPP has perfect completeness (Definition A.7).

Theorem 4.2 (Round-by-round soundness of SIPP). The interactive protocol defined by Fig. 3 for the
language LSIPP has round-by-round soundness (Definition A.8).

4.4 Reducing pairings to a pairing product

SIPP can also be used to outsource n arbitrary pairings checks e(Ai, Bi) = e(Ci, Di) using a random linear
combination. For this verifier samples a random r

$←− Fp and reduces the statement to an inner pairing

product of length 2n:
∏n
i=1 e(A

r
i

i , Bi)e(C
−ri
i , Di) = 1. Using the SIPP protocol to outsource this product

9



the verifier can delay the exponentiation by ri. The verifier cost is still dominated by a multi-exponentiation
in G1 and one in G2. The direct verification would either have to compute the 2n pairings directly or use 2n
exponentiations in G1 and one pairing product.

4.5 Implementation

We implemented the SIPP protocol in Rust, based on efficient elliptic curve and finite field libraries.1 Our
implementation utilizes Pippenger’s fast multi-exponentiation algorithm [Pip80] to speed up the verifier’s
computation. We also implement standard techniques for direct computation of pairing products [MJ16,
Section 11.4.2]. For example we delay the final exponentiation so the pairing cost is dominated by the Miller
loop computations.

We evaluated our implementation on a machine with an Intel Xeon 6136 CPU at 3.0 GHz. Our
experiments relied on the efficient BLS12-377 elliptic curve [BCGMMW20]. As noted in Fig. 1, our
evaluation demonstrates that using the SIPP verifier becomes faster than direct computation the pairing
product at roughly 128 pairings. Our experiments also validate the asymptotic superiority of the verifier: the
gap between direct computation and verification widens as the number of pairings increases. For example, at
220 pairings, our verifier is roughly 8× faster than directly computing the pairing product.

5 Generalized Inner Product Argument

We now generalize the inner product argument (IPA) from [BCCGP16; BBBPWM18] to work for all so
called doubly-homomorphic inner product commitments. The generalized protocol (GIPA) is described in
terms of an inner product commitment. All of the inner pairing product protocols in this paper including
SIPP as well as the IPA from [BCCGP16; BBBPWM18] are variants of GIPA instantiated with different
inner product commitments. The generalized version enables us to simply proof security of the specific
instantiations presented in the rest of the paper.
Protocol intuition. The SIPP protocol gives a good intuition for how GIPA works. The protocol works by
reducing an instance of size 2m to one of sizem. As an intuition we will show how to reduce an instance with
2 expensive multiplications ~ to one with just a single ~. Given a1, a2, b1, b2 a prover wants to convince a
verifier that (a1 ~ b1) + (a2 ~ b2) = c for an expensive bilinear map ~. To do this the prover sends cross
terms l = a1 ~ b2 and r = a2 ~ b1. The verifier then sends a challenge x. Note that for a′ = x · a1 + a2 and
b′ = x−1 · b1 + b2 we have that a′ ~ b′ = x · l + c + x−1 · r. Since the prover has to commit to the cross
terms l and r before knowing x, checking the second instance implies that c = (a1 ~ b1) + (a2 ~ b2).

GIPA extends this idea to work for committed vectors a1,a2, b1, b2. It relies on doubly homomorphic
commitments with a commitment key ck where CM(ck,a) = CM(x−1 · ck, x · a).
Doubly homomorphic commitment. We can apply the generalized inner product argument (GIPA) over
any commitment scheme which is “doubly-homomorphic”. For example consider the Pedersen commitment
scheme

Setup(1λ)→ ck CM(ck,a)→ c

Return (g1, . . . , gm)
$←− G Return ga11 · · · g

am
m

This scheme allows us to commit to elements in the message spaceM = Fmp under commitment keys in the
key space K = Gm for a group G of prime order p. We denote the key space (i.e., the image of the setup
algorithm) by K. The message space is additively homomorphic because for all a, b ∈ M and g ∈ K we

1https://www.github.com/scipr-lab/zexe
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have that ga · gb = ga+b. The key space is also homomorphic because for all g,w ∈ K and a ∈M we have
that ga ·wa = (g ◦w)a. Thus, we consider the Pedersen commitment scheme to be doubly-homomorphic
i.e. homomorphic in both the message space and the key space.

Definition 5.1. A commitment scheme (Setup,CM) (see Definition A.3) is doubly homomorphic if (K,+),
(M,+) and (Image(CM),+) define abelian groups such that for all ck1, ck2 ∈ K andM1,M2 ∈M it holds
that
1. CM(ck1,M1) + CM(ck1,M2) = CM(ck1,M1 +M2)
2. CM(ck1,M1) + CM(ck2,M1) = CM(ck1 + ck2,M1)

Note that if a prime p divides the order ofM and K then for all x ∈ Fp it holds that

CM(x · ck,M1) = CM(ck, x ·M1).

Inner Product. We consider inner products that map two vectors to a group in a manner that satisfies
bilinearity.

Definition 5.2. A map ~ :M1 ×M2 7→ MT from two prime order groups to a third prime order group is
an inner product if for all a, b ∈M1 and c, d ∈M2 we have that

(a+ b) ~ (c+ d) = a~ c+ a~ d+ b~ c+ b~ d

Given an inner product ~ between groups we define the inner product between vector spaces 〈, 〉 :Mm
1 ×

Mm
2 7→ MT to be

〈a, b〉 :=
m∑
i=1

ai ~ bi

We use three different inner products in this paper. For the Pedersen commitment described above we
have that ~ is multiplication between elements in Fp and 〈, 〉 is the dot product. In SIPP and the other
pairing based protocols we have that ~ : G1 ×G2 7→ GT and A~B = e(A,B). In this case we refer to the
resulting protocols as inner pairing product proofs. We will also use the inner product ~ : G1 × F 7→ G1

and A~ b = Ab.
We further define an inner product commitment which consists of three doubly homomorphic commitments

and an inner product that maps the first two message spaces to the third.

Definition 5.3 (Inner product commitment). Let CMIP be a doubly homomorphic commitment with message
spaceM = (Mm

1 ,M
m
2 ,MT ) and key space K = (Km1 ,K

m
2 ,KT ) defined for allm ∈ [2i]i∈N such thatMi

andKi are groups of prime order p for i ∈ {1, 2, T}. If there is an inner product map~ :M1×M2 →M3

then the commitment is an inner product commitment.

Let CM((ck1, ck2, ck3); (M1,M2, 〈M1,M2〉) be a binding inner product commitment as defined above.
In Fig. 4 we present the generalized inner product argument where we assume that the dimension of the
message spaces is a power of two.

11



Prove(〈group〉, ck = (ck1, ck2, ck3), (a, b)) Verify(〈group〉, ck, C)

m′ = m/2 m′ = m/2

zL = 〈a[m
′
:], b[:m′]〉

zR = 〈a[:m
′
], b[m′:]〉

CL = CM(ck; (a[m
′
:], b[:m′], zL))

CR = CM(ck; (a[:m
′
], b[m′:], zR))

CL, CR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m′ ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
$←− F

x ∈ Fp

a′ = x · a[m
′
:] + a[:m

′
]

b′ = x−1 · b[m′:] + b[:m′]

ck′1 = x−1 · ck1,[:m′] + ck1,[m′:] ck′1 = x−1 · ck1,[:m′] + ck1,[m′:]

ck′2 = x · ck2,[:m′] + ck2,[m′:] ck′2 = x · ck2,[:m′] + ck2,[m′:]

C ′ = x · CL + C + x−1 · CR

ck′ = (ck′1, ck
′
2, ck3) ck′ = (ck′1, ck

′
2, ck3)

Recurse on (〈group〉, ck′, (a′, b′)) Recurse on (〈group〉, ck′, C ′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Else m′ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈M1, b ∈M2

Return 1 if CM(ck; a, b, a~ b) = C

Return 0 otherwise

Figure 4: Generalized inner product argument.
We now show that the protocol is an argument of knowledge given a binding inner product commitment

Theorem 5.4 (Security generalized GIPA). If (Setup,CM) is a binding inner product commitment withM of
size p > 2λ then the protocol presented in Fig. 4 has perfect completeness and computational witness-extended
emulation (Definition A.1) as an argument system for the relation

RIPA =

{
ck ∈ (K1 ×K2 ×K3), C ∈ Image(CM); a ∈Mm

1 , b ∈M
m
2 :

C = CM(ck; (a, b, 〈a, b〉))

}
We prove Theorem 5.4 in Appendix B.2.

Efficiency. The communication complexity of the protocol is 2 log2(m) commitments as GIPA has log2(m)
rounds. Note that in some applications part of the commitment can be computed from the verifier’s input and
don’t need to be transmitted.
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The prover produces commitments for vectors of length m/2,m/4,m/8, . . . . The total length of all
committed vectors is 4 · n. The verifier computes C ′ in each round. In total this costs 2 log2(n) scalar
multiplications in Image(CM). The prover and verifier also both compute ck′ in each round. In total this costs
2 · n scalar multiplications in K. Using a technique introduced in [BBBPWM18] the verifier can use a single
large multi-exponentiation in K to compute the final ck. In Section 6 we show how a structured reference
string can reduce the verification time to something that is just logarithmic in n. As seen in Section 4 the
verifier only performs a single ~ operation. This can be useful in pairing settings where this operation is
significantly more expensive than scalar multiplications in K.
Non-interactive GIPA. Using the Fiat-Shamir heuristic for logarithmic round public coin protocols2 the
GIPA protocol can be made non-interactive and publicly verifiable. To do this the challenge x is generated
from a hash function Hash applied to the transcript instead of from the verifier. The verifier then checks that
all challenges were computed correctly.

5.1 Instantiating GIPA

GIPA can be instantiated with different commitments. In Bulletproofs [BBBPWM18] it is instantiated with
a Pedersen commitment: CM(g,h;a, b) = gahbu〈a,b〉 for g ∈ Gm,h ∈ Gm, u ∈ G and a, b ∈ Fmp for a
group G of prime order p. The commitment is binding if the discrete logarithm assumption holds for G. As a
second example, in LMR [LMR19] GIPA is instantiated with a pairing commitment

CM(v1,v2,w1,w2;A,B) = ((A ∗ v1) · (w1 ∗B), (A ∗ v2) · (w2 ∗B), A ∗B)

As pointed out parts of the commitment may be computable directly from inputs to the verifier. For
efficiency reasons the prover would not have to transmit that part of the commitment. This allows us to
formulate SIPP as an instantiation of GIPA. The commitment is essentially the identity function and is
perfectly binding.
SIPP Commitment. Let (p,G1,G2,GT , e, g, h) be a bilinear group. We denote the inner pairing product
by

∗ : Gm
1 ×Gm

2 → GT , A ∗B =

m∏
i=1

e(Ai, Bi).

We specify a commitment (SIPP.Setup,SIPP.CM) which is an inner product commitment. The message
space is SIPP.M = Gm

1 ×Gm
2 ×GT and homomorphic under (the respective) group multiplication. The key

space is Fm × Fm × F and is homomorphic under addition. The commitment algorithm works as follows:

SIPP.CM((a, b, z), (A,B, Z)) =
(

(A
a0
0 , . . . , A

am−1

m−1 ), (B
b0
0 , . . . , B

m−1
m−1), Zz

)
In our instantiation Setup(1λ) is a deterministic algorithm that simply sets all keys to be the multiplicative
identity 1.

Observe that this commitment scheme is perfectly binding - indeed it is injective and this directly implies
perfect binding. As a direct corollary of Theorem 5.4 and we can reprove that SIPP is an interactive proof.

Corollary 5.5. SIPP is an interactive proof with perfect completeness and statistical witness extended
emulation.

Proof. The commitment scheme (SIPP.Setup, SIPP.CM) is a perfectly binding inner product commitment
scheme. Thus security follows from Theorem 5.4.

2In the random oracle model the heuristic is secure for constant-round protocols and for multi-round protocols satisfying soundness
against restoration attacks functions [FS86; BCS16; CCHLRR18]
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IPP an improvement on [LMR19]. GIPA also directly yields an improvement to the protocol presented
in [LMR19]. Their commitment uses a commitment key of length 4 ·m to commit to 2 vectors of lengthm.
Instead we can use the commitment scheme of [AFGHO16] which is also secure under SXDH but uses only
half of the commitment key. We define the IPP commitment scheme with respect toM = Gm

1 ×Gm
2 ×GT ,

K = Gm
2 ×Gm

1 × F, and Image(CM) = G3
T as follows:

IPPSetup(1λ) 7→ ck

〈group〉 $←− SampleGrp3(1
λ)

w,v
$←− Gm

1 ×Gm
2

return (〈group〉,v,w, 1)

IPPCM(ck; A,B, Z) 7→ c

return (A ∗ v,w ∗B, Z)

We see that the message space and the key space and the commitment space are all doubly homomorphic.
Thus this commitment is an inner product commitment. Using the commitment to instantiate GIPA we get
an inner pairing product proof or IPP. This protocol has the same proof size [LMR19] and the smaller
commitment key reduces the prover and verifier time. In Section 6 we show how a structured setup can further
reduces the verifier time to be only logarithmic in the length of the committed vectors.

6 Efficienctly verifiable TIPP argument with an SRS

We present a protocol for showing that two committed vectors of group elementsA ∈ Gm
1 andB ∈ Gm

2 have
a certain pairing product C = A ∗B ∈ GT . This is done using an inner pairing product argument which
uses significantly less communication than communicatingA,B. First, the prover and verifier reduce the
m equations to one using a random linear combination. The prover commits to all Ai, Bi and the verifier
generates a challenge r ← F. The prover then convinces the verifier that

∏m
i=1 e(A

r
2i

i , Bi) = Z. This can be
done efficiently using an instantiation of GIPA, called trusted inner pairing product (TIPP). We construct
TIPP using an updatable reference string [GKMMM18] and a recent observation by Bowe et al.[BGH19] we
obtain a verifier that can efficiently check that ckfinal was computed correctly. We show in Section 8 how TIPP
can be applied to aggregate pairing based SNARKs such as the super-efficient Groth16 [Gro16] SNARKs.

6.1 A doubly homomorphic commitment with a structured key

We design a commitment scheme for our aggregation argument that makes use of structured generators. This
commitment scheme can be seen as an extension of the pairing based commitment scheme introduced in
[AFGHO16]. We commit to one vector of group elements inG1 and one vector of group elements inG2. The
commitment is simply the pairing product of the group elements with a vector of structured group elements in
the other source group (i.e., T ← A ∗ v and U ← w ∗B for w ∈ Gm

1 ,v ∈ Gm
2 defined in the SRS). The

structure of these SRS elements is carefully chosen to conserve the binding property of the commitment
scheme.

The setup algorithm samples pair and α, β ∈ F and returns the commitment key

ck = (pair, w =
[
gα

2i]m−1

i=0
and v ←

[
hβ

2i]m−1

i=0
).

The commitment algorithm CM : Gm
1 ×Gm

2 7→ G2
T behaves as follows

CM(v,w; A,B) := (A ∗ v,w ∗B) = (T,U) .
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The proving SRS contains additional values

gβ, hα, {gα
i

, hβ
i

}2m−2
i=0 .

It follows directly from the q-ASDBP assumption (Assumption 2) that these commitments are binding
with respect to both the commitment key and the proving SRS. Observe that we do not use odd powers of
α in G1, i.e. g

α
2i+1

. This is to prevent the value hα given in the SRS being used to find collisions in the
commitment (note that e(g, hα) · e(gα, h−1) = 1T).

6.2 Construction

The TIPP relation. The TIPP protocol allows a prover to show that for T,U, Z ∈ GT they know A ∈ G1

andB ∈ G2 such that T and U are commitments toA andB, and Z is the inner pairing product Z = Ar ∗B
with respect to some public vector of field elements r. More formally, the relationRpair is defined by{ (

〈group〉, w ∈ Gm
1 , v ∈ Gm

2 , T, U, Z ∈ GT , r ∈ F ; A ∈ Gm
1 , B ∈ Gm

2

)
:

T = A ∗ v ∧ U = w ∗B ∧ {A′i = Ar
2i

i }
m−1
i=0 ∧ Z = A′ ∗B

}
,

where 〈group〉 is the group description and v,w form the reference string. Looking ahead, the inclusion of
the r into the relation facilitates more simple use of our argument as a subroutine when building aggregators.
In such constructions (e.g., the SNARK proof aggregator we build in Section 8) many pairing equations must
be collapsed into one, and r is set to the vector of exponents chosen by the verifier to do so. Observe that
if T = A ∗ v is a commitment to A, then T = Ar ∗ vr

−1

is a commitment to Ar under the commitment
key vr

−1

. When using our arguments to build aggregators as we are describing, the aggregator first sends
T,U , then the verifier chooses r, and then the aggregator and verifier engage in the rest of the protocol using
v′ = vr

−1

.
Below we describe our algorithm for proving TIPP. Soundness follows for algebraic adversaries from the

q-ASDBP and the q-SDH assumptions and the algorithm is proven secure in Theorem 6.1.

Setup: The TIPP setup algorithm takes as input α, β ∈ F and outputs the proving key

srs.p←
(

pair, gα, gα
2

, . . . , gα
2m−2

, hβ, . . . , hβ
2m−2

)
and the verifying key srs.v← (pair, gβ, hα).

Initialise: The prover and verifier set the TIPP instance to be T = A ∗ v, U = w ∗B, Z = Ar ∗B, r for
r = (1, r2, . . . , r2m−2). The prover and verifier rescale the commitment key v′ = vr

−1

such that v′i = vr
−1

i .
The prover now aims to convince the verifier that they know an openingA′,B to T,U under the commitment
key (v′,w) such that Z = A′ ∗B.

Recurse: The prover and verifier run the GIPA protocol from Fig. 4 with respect to the doubly homomorphic
commitment

CM((v′,w, 1), (A′,B, Z)) = (A′ ∗ v′, w ∗B, Z) = (T,U, Z).
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We explain in more detain below. For ease of exposition we resetA′ = A and v′ = v. In each round we “fold”
our input vectorsA,B and our commitment keys v,w into a new vectorsA,B,v,w of lengthm′ = m/2
such that T ′ = A′ ∗ v′, U ′ = w′ ∗B′ and Z ′ = A′ ∗B′. The prover first computes

TL = (A[m
′
:] ∗ v[m

′
:]), UL = w[m

′
:] ∗B[:m

′
], ZL = A[m

′
:] ∗B[:m

′
]

and
TR = (A[:m

′
] ∗ v[:m

′
]), UR = w[:m

′
] ∗B[m

′
:], ZR = A[:m

′
] ∗B[m

′
:]

sending them as commitments to the verifier. The verifier samples x $←− F and sends x to the prover. The
prover and the verifier then each set

Z ′ = ZxL · Z · Z
x
−1

R .

and the prover sets

A′ = Ax
[m
′
:]
◦A[:m

′
], B

′ = Bx
−1

[m
′
:]
◦B[:m

′
],v
′ = vx

−1

[m
′
:]
◦ v[:m

′
], w

′ = wx
[m
′
:]
◦w[:m

′
]

The protocol then recurses on (A,B, Z) = (A′,B′, Z ′) until the final round, wherem = 1.

Final Round: In that round the prover sends an opening A ∈ G1, B ∈ G2, the final commitment keys
w ∈ G1, v ∈ G2 and proves to the verifier using the protocol in Fig. 5 that (w, v) have been computed
correctly. The verifier accepts the proof if it is convinced that w, v are well formed and if

T = e(A, v), U = e(w,B), Z = e(A,B)

and otherwise rejects it.

6.2.1 Final Commitment Keys

Having run the recursive argument for TIPP, we next require a proving system for the relation

Rck =

(srs, r, (w, v),x; ·) :
w = gfw(α) for fw(X) =

∏`
j=0

(
x`−j +X2

j+1)
,

v = hfv(β) for fv(X) =
∏`
j=0

(
x−1
`−j + r−1X

2
j+1
) 

For this, we make direct use of the polynomial commitment scheme of Kate et al. [KZG10]. Our protocol for
proving Rck is given in Fig. 5. There are three rounds: (1) the prover sends the claimed evaluations w and v;
(2) the verifier sends a random challenge z; and (3) the prover sends an argument that should convince the
verifier if and only if w and v are correct.

We introduce the polynomials

fw(X) =
∏̀
j=0

(
x`−j +X2

j+1)
and fv(X) =

∏̀
j=0

(
x−1
`−j + r−1X

2
j+1
)

.

We show in Proposition B.1 that when w and v are computed correctly we have that w = gfw(α) and
v = hfv(βr

−1
). Our outsourcing argument can thus be seen as a form of polynomial commitment in which we

open w, v at a random point and check that the evaluation is as expected.
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Setup((pair,m);α, β)

srs.p←
(
pair, {gα

i

, hβ
i

}2m−2
i=0

)
srs.v← (pair, gβ, hα)
return (srs.p, srs.v)

ComputeFinal(srs.p, r,x)

w ← g
∏k
j=0(xj+α

2
j+1

)

v ← h
∏k
j=0(x

−1
j +(r

−1
β)

2
j+1

)

return (w, v)

Prove(srs.p, r,x, z)

fw(X)←
∏`
j=0(x`−j +X2

j+1

)

fv(X)←
∏`
j=0(x−1

`−j + (r−1X)2
j+1

)

P ← g(fw(α)−fw(z))/(α−z)

Q← h(fv(β)−fv(z))/(β−z)

return (P,Q)

Verify(srs.v, (r,x, w, v), z, (P,Q))

check e(wg−fw(z)P z, h) = e(P, hα)

check e(g, vh−fv(z)) = e(gβ−z, Q)
return 1 if all checks pass, else return 0

Figure 5: The arguments required by the outsourcing protocol for the relation Rck which determines that the
format of the final commitment keys in the verifier’s IPP protocol have been computed correctly. First the prover
runs ComputeFinal(srs.p, r,x) where x consists of the verifier’s challenges in the IPP protocol. On input of
(w, v) the verifier sends a random challenge z. The prover runs Prove to get a proof of correctness (P,Q). Finally,
the verifier checks that (P,Q) is a verifying proof for (w, v) with respect to the challenge z.

Below we describe our protocol forRck which is given formally in Fig. 5. We formally prove the security
of this argument system in Lemma B.2 in the algebraic group model.

Step 1. The prover sends the claimed evaluations w ∈ G1, v ∈ G2. The verifier responds with a random
challenge z ∈ F.

Step 2. The prover sets

φw(X) =
fw(X)− fw(z)

X − z
φv(X) =

fv(X)− fv(z)
X − z

and returns P = gφw(α) and Q = hφv(β) to the verifier.
Step 3. The verification algorithm accepts if and only if

e
(
w · g−fw(z)P z, h

)
= e (hα, P ) ∧ e

(
g, v · h−fv(z)

)
= e

(
gβ−z, Q

)
.

6.3 Efficiency

We provide a detailed breakdown of the communication and computation complexity of the protocol in Table 2.
The provers SRS consists of 2m elements inG1 and 2m elements inG2. The SRS consists only of monomials
and therefore is updatable. The verifier’s SRS consists of the group description, 1 elements in G1 and 1
elements in G2.

We calculate the prover computation. Our recursive argument requires log(m) rounds. The TL, TR,
UL, UR, ZL, ZR values require a total of 6m pairings to compute: 3m in the first round, 3m

2 in the second
round, and 3m

2
j−1 in the j-th. The new v′,w′ requirem exponentiations in G1 andm in G2. The new A′,B′
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values require an additionalm exponentiations in each source group. The prover computes P using 2m group
exponentiations in G1 and Q using 2m group exponentiations in G2. In total this sums to 6m pairings, 4m
G1 exponentiations and 4m G2 exponentiations.

Regarding proof size, we have 6 log(m) GT elements from the recusive argument, and 2 G1 elements and
2 G2 elements from the final-generator argument (including w, v, and their proofs of correctness).

The verifier computes 7 pairings: 3 from the recursive argument and 4 from the final commitment key
argument. Computing the T ′, U ′, Z ′ values in the recursive argument requires 6 log(m) exponentiations in
GT . They also compute fw(z) and fv(z) in the final commitment key argument which costs ` = log2(m)
field multiplications and additions.

Theorem 6.1 (Computational witness-extended emulation of TIPP). The protocol defined in Section 6.2
for the NP relationRpair has computational witness-extended emulation (Definition A.1) against algebraic
adversaries underm-ASDBP and 2m-SDH.

Proof. The commitment scheme

CM((v′,w, 1), (A′,B, Z)) = (A′ ∗ v′, w ∗B, Z) = (T,U, Z).

is doubly homomorphic: the key space Gm
2 × Gm

1 × F is homomorphic under G2 multiplication, G1

multiplication, and F addition. The message space Gm
1 ×Gm

2 ×GT is homomorphic under the respective
group multiplications. The commitment spaceGT ×GT ×GT is homomorphic underGT multiplication. All
groups have prime order p for p > 2λ. The commitment scheme is also binding by them-ASDBP assumption.
This means that the commitment scheme is an inner product commitment. Thus either the adversary convinces
the verifier of incorrect w, v, or by Theorem 5.4 an adversary that breaks witness-extended emulation can
extract a validm-ASDBP instance.

An algebraic adversary that convinces a verifier of incorrect w, v can extract a valid 2m-SDH instance by
Lemma B.2.

7 Pairing-based polynomial commitment schemes

In this section we introduce a polynomial commitment scheme that is built using a combination of generalized
inner product arguments. We discuss how to instantiate our scheme both with a transparent setup and
with a structured setup. We also, in Section 7.6, demonstrate how to make the commitments hiding
for zero-knowledge applications. Our polynomial commitment scheme supports univariate and bivariate
polynomials.

We first describe the two-tiered commitment scheme of Groth [Gro11]. Second we describe how to
evaluate the first tier of the commitment using a multiexponentiation inner pairing product argument. Third
we describe how to evaluate the second tier of the commitment using a discrete-log inner product argument.
Finally we put the two tiers together and provide the full evaluation algorithm in Section 7.4. At each step we
first describe our transparent variant and we second describe our structured setup variant.

In Section 7.6 we discuss how to extend our scheme to achieve a hiding commitment with a zero-knowledge
evaluation.
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7.1 Commitment algorithm

7.1.1 Transparent variant

In Figure 6 we describe our polynomial commitment scheme, which is derived from the generalized two-tiered
commitment scheme from Groth [Gro11]. Let f(X,Y ) be a polynomial of degree m − 1 in X and ` − 1
in Y . Our commitment key then consists of ` randomly chosen generators in G1 and m randomly chosen
generators in G2.

ck = (g0, . . . , g`−1) ∈ G`
1 , (v0, . . . , vm−1) ∈ G2

m .

To commit to a polynomial f(X,Y ) =
∑m−1

i=0 fi(Y )Xi the committer first computesm generalized Pedersen
commitments A0, ..., Am−1 to f0(Y ), . . . , f`−1(Y ). We set

Ai = PedersenCommit(ai,0, . . . , ai,`−1) = g
ai,0
0 . . . g

ai,`−1

`−1 .

where fi(Y ) =
∑`−1

j=0 ai,jY
j . The committer then computes the pairing commitment to the Pedersen

commitments

T = PairingCommit(A0, . . . , Am−1) =

m−1∏
i=0

e(Ai, vi).

Thus
T = e(g

a0,0
0 . . . g

a0,`−1

`−1 , v0) · · · e(gam−1,0

0 . . . g
am−1,`−1

` , vm−1)

and this commitment is binding under the q-DBP assumption and the DL assumption.

PC.Setup(1λ, `,m) :

〈group〉 ← SampleGrp3(1
λ)

g0, . . . , g`
$←− G1

v0, . . . , vm−1
$←− G2

ck← (〈group〉, g,v, h)
Return ck

PC.CM(ck, f(X,Y )) :

for 0 ≤ i ≤ m− 1:
Ai ←

∏`−1
j=0 g

ai,j
j

T ←
∏m−1
i=0 e(Ai, vi)

Return T

Figure 6: A polynomial commitment scheme with a transparent setup.

7.1.2 Structured setup variant

Our structured variation of the commitment scheme in Figure 7 runs identically to the transparent variation,
except that the commitment key is structured. We set

ck =
(g0, . . . , g`−1) = (g, gα, . . . , gα

`−1

) ∈ G`
1

(v0, . . . , vm−1) = (h, hβ
2

, . . . , hβ
2m−2

) ∈ G2
m.

To commit to a polynomial f(X,Y ) =
∑m−1

i=0 fi(Y )Xi the committer computes m KZG polynomial
commitments A0, ..., Am−1 to f0(Y ), . . . , fm−1(Y ):

Ai = KZGCommit(ai`, . . . , a(i+1)`−1) = g
ai`
0 . . . g

a(i+1)`−1

`−1 = g
∑`−1
j=0 ai`+jα

j

.
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The committer then computes the pairing commitment to the KZG commitments

T = PairingCommit(A0, . . . , Am−1) =
m−1∏
i=0

e(Ai, vi) =
m−1∏
i=0

e(Ai, h
β
2i

)

Thus
T = e(g, h)

∑m−1,`−1
i,j=0 ai,jα

j
β
2i

and this commitment is binding under the q-ASDBP assumption and the q-SDH assumption.

PC.Setup(1λ, `,m) :

〈group〉 ← SampleGrp3(1
λ)

α, β
$←− F

g0, . . . , g` ← g, gα, . . . , gα
`−1

v0, . . . , vm−1 ← h, hβ
2

, . . . , hβ
2m−2

ck← (〈group〉, g,v)
Return ck

PC.CM(ck, f(X,Y )) :

for 0 ≤ i ≤ m− 1:
Ai ←

∏`−1
j=0 g

ai,j
j

T ←
∏m−1
i=0 e(Ai, vi)

Return T

Figure 7: A polynomial commitment scheme with a structured setup.

7.2 Tier 1 evaluation from a multiexponentiation IPP argument

In the first layer of our evaluation algorithm the prover is required to demonstrate that given a commitment T ,
a group element A ∈ G1, and an evaluation point x, the prover knowsA such that T is a pairing commitment
to A and A =

∏m−1
i=0 Ax

i

i . To do this we make use of a more generalized multiexponentiation IPP algorithm
(MIPP): for any given commitment

T = A ∗ v = e(A0, v0) · · · e(Am−1, vm−1)

and vector of field elements b ∈ Fm , the multiexponentiation argument demonstrates that

A = 〈A, b〉 = A
b0
0 · · ·A

bm−1

m−1

has been correctly computed.

RMIPP =

{ (
〈group〉,v ∈ Gm+1

2 , (T ∈ GT , A ∈ G1, b ∈ Fm) ; A ∈ Gm
1

)
:

T = A ∗ v ∧ A = 〈A, b〉

}

7.2.1 Transparent variant

Below we describe our algorithm for provingMIPPtrans. Soundness follows from the q-DBP assumption and
is proven in Lemma B.3.
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Setup: The transparent MIPP setup outputs the commitment key v as well as a random value ĥ ∈ G2.

Initialize: The verifier sends a random challenge c. The prover and verifier set Z = T · e(A, ĥc). The prover
now aims to convince the verifier that they know an openingA‖A to Z under the commitment key v‖ĥc such
that A = Ab.

Recurse: The prover and verifier run the GIPA protocol from Figure 4 with respect to the commitment

CM((v,1, ĥc), (A, b, A)) = ((A||A) ∗ (v||ĥc), b) = (Z, b).

We explain in more detain below. For ease of exposition we reset ĥ = ĥc. In each round we “fold” our
input vectors A, b and our commitment key v into a new vectors A′, b′,v′ of length m′ = m/2 such that
Z ′ = (A′ ∗ v′) · e(A′, ĥ) for A′ = 〈A, b〉. The prover first computes

ZL = (A[m
′
:] ∗ v[m

′
:]) · e(〈A[m

′
:], b[m

′
:]〉, ĥ)

ZR = (A[m
′
:] ∗ v[:m

′
]) · e(〈A[:m

′
], b[:m

′
]〉, ĥ) ,

sending them as commitments to the verifier. The verifier samples x $←− F and sends x to the prover. The
prover and the verifier then each set

Z ′ = ZxL · Z · Z
x
−1

R and b′ = x−1b[m
′
:] + b[:m

′
] and v′ = vx

−1

[m
′
:]
◦ v[:m

′
] .

and the prover sets
A′ = Ax

[m
′
:]
◦A[:m

′
]

The protocol then recurses on (A, b, Z) = (A′, b′, Z ′) until the final round, wherem = 1.

Final Round: In that round the prover sends an evaluation A ∈ G1 the verifier accepts the proof if
Z = e(A, v)e(Ab, ĥ) = e(A, vĥb) and otherwise rejects it.

Efficiency The prover must compute the ZL, ZR values requiring a total of 2m pairings. The new generators
v′ requirem G2 exponentiations. The newA′ values require an additionalm G1 exponentiations. Regarding
proof size, we have 2 log(m) GT elements from the recusive argument. The verifier computes 1 pairing in
the recursive protocol. Computing the Z ′ values in the recursive argument requires 2 log(m) exponentiations
in GT . Computing the rescaled generators v′ costsm G2 exponentiations.

7.2.2 Structured setup variant

Our algorithm for the structured setup variant ofMIPPsrs is proven secure against algebraic adversaries in
Lemma B.4. The protocol uses the same techniques as described in Section 6: first we run the transparent
version of theMIPP argument with respect to structured generators; second the prover provides the verifier with
the final commitment keys; and third the prover provides a correctness argument for the final commitment keys.

Setup: The structuredMIPP setup takes as input β and outputs

(gβ, {hβ
i

}2m−2
i=0 , ĥ).
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Of these values the verifier only requires gβ, ĥ.

Initialize: The initialisation process is the same as for the transparentMIPP. The verifier sends a random
challenge c. The prover and verifier set Z = T · e(A, ĥc). The prover now aims to convince the verifier that
they know an opening A‖A to Z under the commitment key v‖ĥc such that A = 〈A, b〉.

Recurse: The prover and verifier run the GIPA protocol from Figure 4 with respect to the commitment

CM((v,1, ĥc), (A, b, A)) = ((A||A) ∗ (v||ĥc), b) = (Z, b).

This structured recursion process for computing the final (A, b, Z) values run the same as for our transparent
argument except that the verifier does not rescale the generators v.

Final Round: In the final round the prover sends

v = hfv(β) for fv(Y ) :=
∏̀
j=0

(
x−1
`−j + Y 2

j+1)
and by Proposition B.1 we have that v is equal to the final commitment key in the recursion. The verifier
checks that Z ′ = e(A, v)e(Ab, ĥ). The prover then shows that v is computed correctly using our argument
for Rck given in Section 6. Specifically verifier then sends the prover a random challenge z. The prover sets
fv(Y ) =

∏`
j=0

(
x−1
`−j + Y 2

j+1)
and sends a KZG proof

Q = hq(β) for q(X) =
fv(X)− fv(z)

X − z
that v has been computed correctly. The verifier then checks that

e(g, vh−fv(z)) = e(gβ−z, Q)

and returns true if both the recursion and this check verifies. By Theorem B.2 we have that an algebraic
adversary that convinces the verifier of a false v breaks the q-SDH assumption.

Efficiency Our setup consists of 2mG2 values and 1 G1 value (and the group description). In terms of prover
computation, our recursive argument requires 2m pairings,m G1 exponentiations andm G2 exponentiations.
Our proof that the final commitment key is correctly formed requires 2m G2 exponentiations. Regarding
proof size, we have 2 log(m) GT elements from the recusive argument and 2 G2 elements for setting the final
commitment key (including v). The verifier computes 1 pairing in the recursive protocol. Computing the Z ′

values in the recursive argument requires 2 log(m) exponentiations inGT . Verifying the final commitment key
v costs 2 pairings, and 1 G1 and 1 G2 exponentiations. Computing the final b′ values costsm Fmultiplications
(in our evaluation proofs we will show that for some values of b this value can be computed in logarithmic
time).

7.3 Tier 2 evaluation from univariate polynomial commitment schemes

In our evaluation proofs we are given a commitment T to f(X,Y ). Evaluating this commitment at (x, y)
requires two steps: in Section 7.2 we discussed our first tier for evaluating T at x to a commitment A to
f(x, Y ); in this section we discuss our second tier for evaluating the commitment A to f(x, y) at y.
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7.3.1 Tranparent variant

In our transparent variant we have that our polynomial commitment A to f(x, Y ) =
∑`−1

j=0 ajY
j is given by

A = g
a0
0 . . . g

a`−1

`−1

i.e., a generalized Pedersen commitment. To evaluate this commitment we thus have prover and verifier
run (minor modification of) the discrete-log inner product argument from [BBBPWM18] for proving the
following relation.

RDL =

{ (
〈group〉, g ∈ G`

1, (A ∈ G1, b, eval ∈ F`+1); a,∈ F`
)

:

A = ga ∧ eval = 〈a, b〉

}
We now describe our argument forRDL which is proven secure in Lemma B.5.

Setup: The transparent univariate polynomial commitment setup outputs the commitment key g and an
additional random value u ∈ G1.

Initialize: The prover sends eval to the verifier. The verifier sends a random challenge c. The prover and
verifier set P = A · uc·eval. The prover now aims to convince the verifier that they know a vector a such that
(a, eval) is an evaluation to P under the commitment key (g, uc) such that eval = 〈a, b〉.

Recurse: The prover and verifier run the GIPA protocol from Figure 4 with respect to the commitment

CM((g,1, uc), (a, b, y)) = (gauy, b) = (P, b).

We explain in more detail below. For ease of notation we reset u = uc. In each round “fold” the input vectors
a, b and commitment key g into a new vectors a′, b′, g′ of lengthm′ = m/2 such that P ′ = g′

a
′

ueval
′
for

eval′ = 〈a′, b′〉. The prover first computes

PL = g
a
[:m
′
]

[m
′
:]
· u〈a[:m

′
]
,b

[m
′
:]
〉 and PR = g

a
[m
′
:]

[:m
′
]
· u〈a[m

′
:]
,b

[:m
′
]
〉
,

sending them as commitments to the verifier. The verifier samples x $←− F and sends x to the prover. The
prover and the verifier then each set

P ′ = P xL · P · P
x
−1

R and b′ = x−1b[m
′
:] + b[:m

′
] and g′ = gx

−1

[m
′
:]
◦ g[:m

′
] .

and the prover sets
a′ = xa[m

′
:] + a[:m

′
].

The protocol then recurses on (a, b, P ) = (a′, b′, P ′) until the final round, wherem = 1.

Final Round: In the final round the prover sends an evaluation a. The verifier accepts the proof if P = gaua·b

and otherwise rejects it.

Efficiency The prover must compute the PL, PR values requiring a total of 2`G1 exponentiations. Computing
the new generators g′ require ` G1 exponentiations. In total this sums to 3` G1 exponentiations. Regarding
proof size, we have 2 log(`) G1 elements from the recusive argument. The verifier computes the rescaled
generators g′ using ` G1 exponentiations.
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7.3.2 Structured setup variant

In our structured setup variant we have that our polynomial commitment A to f(x, Y ) =
∑`−1

j=0 ajY
j is given

by
A = g

a0
0 . . . g

a`−1

`−1 = g
∑`−1
j=0 ajα

j

i.e., a KZG polynomial commitment. To evaluate this commitment we thus have prover and verifier run the
KZG algorithm for proving the following relation.

RKZG =

{ (
〈group〉, {gα

i

}`−1
i=0 ∈ G`

1, y, eval ∈ F2; a ∈ F`
)

:

A = ga ∧ eval =
∑`−1

j=0 ajy
j

}

The KZG polynomial commitment scheme is extractable by Proposition B.1. Here we quickly recap the
prover and verifier algorithms.

Prove: For the KZG evaluation argument, the prover computes Ω(Y ) = f(Y )−f(y)
Y−y and sendsW = gΩ(y) to

the verifier.

Verify: On input (A, y, eval) and proofW the verifier checks that

e(Ag−evalW y, h) = e(W,hα) ,

and returns 1 if and only if this check passes.

7.4 Evaluation algorithm

We now demonstrate how to put together a multiexponentiation argument and a univariate polynomial
commitment scheme from Sections 7.2 and 7.3 in order to evaluate our commitments

T =

m−1∏
i=0

e

`−1∏
j=0

g
ai,j
j , vi

 .

to polynomials

f(X,Y ) =

m−1,`−1∑
i,j=0

ai,jX
iY j =

m−1∑
i=0

fi(Y )Xi .

We prove the following Theorem in Appendix B.4

Theorem 7.1 (Transparent Polynomial Commitment is Extractable). If there exists a bilinear group sampler
SampleGrp that satisfies the q-DBP assumption in G2 and the DL assumption, then the scheme in Figure 8 is
a polynomial commitment scheme that achieves extractability.

Theorem 7.2 (Structured Polynomial Commitment is Extractable). If there exists a bilinear group sampler
SampleGrp that satisfies the q-DBP assumption inG2 and the q-SDH assumption, then the scheme in Figure 9
is a polynomial commitment scheme that achieves extractability against algebraic adversaries.
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EvalSetup(ck) :

u
$←− G`+1

1

ĥ
$←− Gm+1

2

return crs = (ck, u, ĥ)

EvalProve(crs, (T, (x, y), eval), (f(X,Y ),A) :

A←
∏m−1
i=0 Ax

i

i

a′ ← (
∑m−1

i=0 ai,0x
i, . . . ,

∑m−1
i=0 ai,`−1x

i)

RunMIPPtrans(〈group〉, (v, ĥ), (T,A,x); A) with the verifier.
Run DL(〈group〉, (g, u), (A,y, eval); a′) with the verifier.

EvalVerify(crs, (T, (x,y), eval)) :

RunMIPPtrans(〈group〉, (v, ĥ), (T,A,x)) with the prover
Run DL(〈group〉, (g, u), (A,y, eval)) with the prover
Return 1 if both inner products verify; else 0.

Figure 8: A PC evaluation scheme with a transparent setup. The EvalProve and EvalVerify algorithms are
ran with the input x = (1, x, . . . , xm−1) and y = (1, y, . . . , y`−1). Evaluating costs do not include the cost to
compute the polynomial evaluation.

7.4.1 Transparent Variant

We show how our transparent prover evaluates polynomial commitments in Figure 8. To evaluate a polynomial
commitment T to eval = f(X,Y ), the prover first computes a value A =

∏m−1
i=0 Ax

i

i ∈ G1, which is sent to
the verifier. To convince the verifier that they have correctly computed A, the prover uses theMIPP argument
from Section 7.2.1. The prover then computes a polynomial f(x, Y ) =

∑`−1
i=0 x

ifi(Y ) and uses the univariate
polynomial commmitment argument from Section 7.3.1 to evaluate A to f(x, y) at y. We then have that
eval = f(x, y) by the soundness of theMIPP argument and the univariate polynomial evaluation argument.
Efficiency results are presented in Table 3.

Communication Complexity

|CRS| |π| |CM|

Transparent (`+ 1)G1, (m+ 1)G2 (2 log(`) + 1)G1, 2 log(m)GT 1 GT

Structured (`+ 1)G1, (2m+ 2)G2 2G1, 2G2, 2 log(m)GT 1GT

Time Complexity

CM Eval Check

Transparent m`G1,mP (m+ 3`)G1,mG2, 2mP `G1,mG2, 2 log(m)GT , 1P

Structured m`G1,mP (m+ 2`)G1, 3mG2, 2mP 3G1, 2G2, 2 log(m)GT , 5P

Table 3: Computational and communication complexity for the transparent polynomial commitment scheme
in Figure 8 and for the structured setup polynomial commitment scheme in Figure 9. Here CRS includes the
combined size of the commitment key and the common/structured reference strings. Here (m, `) are the degrees
of X and Y respectively. For univariate polynomials,m ≈ ` ≈

√
n. Opening computation does not include the

cost to compute the polynomial evaluation.
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7.4.2 Structured setup variant

EvalSetup(ck; α, β) :

ĥ
$←− G2

srs.p←

(
pair, ck, {gα

j

}`−1
j=0,

ĥ, {hβ
i

}2m−2
i=0

)
srs.v← (pair, gβ, hα, ĥ)
return (srs.p, srs.v)

EvalProve(srs.p, (T, (x, y), eval), (f(X,Y ),A) :

A←
∏m−1
i=0 Ax

i

i

a′ ← (
∑m−1

i=0 ai,0x
i, . . . ,

∑m−1
i=0 ai,`−1x

i)

RunMIPPsrs(〈group〉, (v, {h
β
i

}2m−2
i=0 , ĥ), (T,A, y); A) with the verifier.

Run KZG(〈group〉, g, (A, y, eval); a′) with the verifier.

EvalVerify(crs, (T, (x, y), eval)) :

RunMIPPsrs(〈group〉, (g
β, ĥ), (T,A, x)) with the prover

Run KZG(〈group〉, hα, (A, y, eval)) with the prover
Return 1 if both inner products verify; else 0.

Figure 9: A PC opening scheme with a structured setup.

We show how our structured setup prover evaluates polynomial commitments in Figure 9. To evaluate
a polynomial commitment T to eval = f(X,Y ), the prover first computes a value A =

∏m−1
i=0 Ax

i

i ∈ G1,
which is sent to the verifier. To convince the verifier that they have correctly computed A, the prover uses the
MIPP argument from Section 7.2.2. The prover then computes a polynomial f(x, Y ) =

∑`−1
i=0 x

ifi(Y ) and
uses the KZG univariate polynomial commmitment argument from Section 7.3.2 to evaluate A to f(x, y) at
y. We then have that eval = f(x, y) by the soundness of theMIPP argument and the univariate polynomial
evaluation argument.

Remark 7.3. In theMIPP argument as described, the verifier is required to recursively rescale compute a
quantity b = (1, x, . . . , xm−1) by the verifiers challenges. For efficiency purposes, one can instead delay
computing the final value b until the end of the recursion. The final value b has the form

b =
k∏
j=0

(x−1
k−j + b2

j

)

where xk−j is the (k − j)th verifier challenge. We can see this from Lemma B.1 since in each round
b′ = x−1b[:m

′
] + b[m

′
:] is scaled by the same quantities as v. This quantity can thus be computed in

logarithmic time.

7.5 Univariate Polynomials

If we have a univariate polynomial, then we set `m = d for d the degree of f(X) and

fi(Y ) = ai` + ai`+1Y + . . .+ a(i+1)`−1Y
`−1 =

`−1∑
j=0

ai`+jY
j .

Observe now that

p(X,Y ) =
m−1∑
i=0

fi(Y )Xi
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is such that
p(X`, X) = f(X)

Thus we commit to f(X) by committing to p(X,Y ). To evaluate f(X) at x the prover evaluates the first tier
at x` and the second at x. If ` ≈ m then we have squareroot values fi(X) which each have degree squareroot
in d. Hence our IPP arguments are ran over a squareroot number of commitments, which is what makes our
verifier complexity squareroot in the transparent setting.

7.6 A hiding polynomial commitment scheme

The inner product arguments we have described thus far are, by default, not hiding. An attacker can
easily distinguish one polynomial from another, for example by computing the commitment themselves
(our commitment algorithm is deterministic). When instantiating zero-knowledge arguments that use
polynomial commitments, this is potentially problematic. For example, Marlin [CHMMVW20] only achieves
zero-knowledge when it is instantiated using a hiding polynomial commitment scheme.

Fortunately there exists a simple generic approach to transforming homomorphic polynomial commitment
schemes from non-hiding to hiding [BFS19]. First the initial commitment T to the polynomial f(X,Y )
needs to be randomised so as to make it hiding. Upon evaluation, the prover sends: the evaluation f(x, y); a
commitment R to a fully random polynomial r(X,Y ) (with the same degree as f(X,Y )); and the evaluation
r(x, y) to the verifier. The verifier returns a challenge c. The prover then proves that T cR evaluates to
c · f(x, y) + r(x, y). Hoffmann et al. [HKR19] optimise this method for the prover by observing that it
suffices for r(X,Y ) to have only a logarithmic number of non-zero coefficients.

We specify the hiding variation on our polynomial commitment schemes in Figure 10 and prove security
in Lemma B.6.

Hiding Commitment: Our commitment key contains an additional value vm ∈ G2. Our prover commits to
f(X,Y ) by sampling τ $←− F and setting

T = PC.CM(ck, f(X,Y )) · e(gτ0 , vm) = e(gτ0 , vm)

m−1∏
i=0

e

`−1∏
j=0

g
ai,j
j , vi

 .

Observe that this commitment is perfectly hiding because there is one group element and one randomiser.

Zero-Knowledge Evaluation Argument: Upon receiving an evaluation instance (x, y) for the commitment
T , the prover samples

r(X,Y ) =

m−1,`−1∑
i,j=0

ri,jX
iY j

for ri,j sampled randomly from F and computes

R = PC.CM(ck, r(X,Y )).

The prover sends (R, r(x, y)) to the verifier. The verifier returns c $←− F. The prover sends ρ′ = cτ + ρ to
the verifier. The prover now demonstrates to the verifier thatT c ·R·e(g−ρ

′

0 , vm) evaluates to c·f(x, y)+r(x, y).
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HidingPC.Setup(1λ, `,m)

return PC.Setup(1λ, `,m+ 1)

ZKEvalSetup(ck; α, β)

return EvalSetup(ck; α, β)

HidingPC.CM(ck, v, f(X,Y ))

τ
$←− F

T ← PC.CM(ck, f(X,Y ))
T ← T · e(gτ0 , vm)
return T

ZKEvalProve(crs, (T, (x, y), eval), (f(X,Y ),A, τ))

sample r(X,Y )
$←− F[X,Y ]

sample ρ $←− F
R← HidingPC.CM(ck, r(X,Y ); ρ)

send (R, r(x, y)) to the verifier
receive challenge c ∈ F
send ρ′ = τc+ ρ to the verifier

T ′ ← T c ·R · e(g−ρ
′

0 , vm)

eval′ ← c · f(x, y) + r(x, y)

f ′(X,Y ) = c · f(X,Y ) + r(X,Y )

A′ ← Ac ◦R
run EvalProve(crs, (T ′, (x, y), eval′), (f ′(X,Y ),A′))

ZKEvalVerify(crs, (T, (x, y), eval))

receive (R, r) from the prover
send challenge c ∈ F
receive ρ′ from the prover

T ′ ← T c ·R · e(gρ
′

0 , vm)

eval′ ← c · eval + r

run EvalProve(crs, (T ′, (x, y), eval′))

Figure 10: Our hiding extension to our polynomial commitment schemes. Here ck and crs are taken to be the
commitment keys and common reference strings from either the transparent or the structured setup polynomial
commitment schemes. Additionally the prover inputs A and R are commitments to f0(Y ), . . . , fm−1(Y ) and
r0(Y ), . . . , rm−1(Y ) respectively.

Optimisation. We specify an optimisation by Hoffmann et al. [HKR19] for reducing the number of non-zero
coefficients in r(X,Y ). This optimisation is important because otherwise computing the commitment R
would requirem` G1 operations, increasing our prover time not only practically but also asymptotically. Let
Mm = {0}∪{2k, 2k + 1}m−1

k=0 andM` = {0}∪{2k, 2k + 1}`−1
k=0 and observe that these sets have logarithmic

size. Rather than sampling r(X,Y ) from the full polynomial space, instead sample

ri,j =


r

$←− F for (i, j) ∈ {(0, 1), (0, 2), (0, 3)}
r

$←− F for i ∈Mm and j = 6

r
$←− F for i = 6 and j ∈M`

0 otherwise

and set r(X,Y ) =
∑

i,j ri,jX
iY j . We have chosen ri,6 because 6 is the first value not inM` (and similarly

for r6,j).
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8 Aggregating Groth16 proofs

We now discuss how the inner pairing product can be used to verify that n independently generated SNARK
proofs on independent instances can be aggregated to a O(log(n)) sized proof. While zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zkSNARKs) have constant-sized proofs and verifiers, in
many settings such as blockchains a verifier needs to read and verify many proofs created by independent
provers. We show how the TIPP protocol run by an untrusted aggregator can be used to aggregate these proofs
into a small logarithmic sized proof. The verifiers only need to check the aggregated proof to be convinced
of the existence of the underlying pairing-based SNARKs. The protocol can be made non-interactive and
publicly verifiable using the Fiat-Shamir transform. This results in a logarithmic sized aggregation of n
SNARKs without the need for expensive pairing-friendly cycles of elliptic curves.

To date the most efficient zkSNARK is due to Groth [Gro16] and consists of 3 group elements and 1
verification equation that requires three pairings to check. We thus choose to describe our methods with
respect to Groth16, but note that they apply more generally to pairing based SNARKs that do not use random
oracles. We present only the Groth16 verifier and not the prover, for it is the verification equations that we
aim to prove are satisfied.

The verifiers SRS is given by

e(gρ, hτ ), [Si = g(βui(x)+αvi(x)−wi(x))/γ ]`i=0, h
γ , hδ

for secret ρ, τ, γ, δ, x ∈ F and ui(X), vi(X), wi(X) public polynomials that define the relation. Here we
differ slightly from the notation in Groth16 to avoid overloading our TIPP notation.

Given an instance x = (a0, . . . , a`) and a proof π = (A,B,C), the Groth16 verifier checks that

e(A,B) = e(gρ, hτ ) · e(
∏̀
i=0

S
ai
i , h

γ) · e(C, hδ)

and returns 1 if and only if the check passes. Given n instances [[ai,j ]
`
i=0]n−1

j=0 and proofs [(Aj , Bj , Cj)]
n−1
j=0 ,

checking each equation separately requires performing 3n pairings and exponentiations. To reduce this
computation to a single verification, the verifier can take a random linear combination between all equations.
That is, the verifier samples r $←− F, sets r = (1, r2, . . . , r2n−2) and then checks whether

A−r ∗B = e(gρ
∑n−1
j r

2j

, hτ ) · e(
∏̀
i=0

S
∑n−1
j=0 ai,jr

2j

i , hγ) · e(
n−1∏
j=0

Cr
2j

j , hδ) , (1)

If this equation holds then with overwhelming probability each individual verification holds. It therefore
suffices to check this one pairing product instead of checking all SNARKs individually.

Our aggregation protocol thus works as follows:

Step 1. The setup algorithm from Figure 5 outputs srs.P and srs.V where srs.P includes the commitment
keys

wi = gα
2j

and vj = hβ
2j

for 0 ≤ j ≤ n− 1
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Step 2. The prover computes commitments T = A ∗ v and U = w ∗ B and V = C ∗ v and sends
(T,U, V ) to the verifier. The verifier responds with a challenge r. The prover sends back Z = Ar ∗B and
C =

∏n−1
j=0 C

r
2j

j (where r = (1, r2, . . . , r2n−2)).

Step 3. The prover and the verifier engage in TIPP for proving that (T,U, Z) is a valid instance of Rpair

by running the TIPP protocol in Section 6. The prover and the verifier engage inMIPPsrs for proving that
(V,C, r) is a valid instance of RMIPP by running the MIPPsrs protocol in Section 7.2.2. If either of these
protocols fail then the verifier returns 0.

Step 4. The verifier checks that

Z = e(gρ
∑n−1
j r

2j

, hτ ) · e(
∏̀
i=0

S
∑n−1
j=0 ai,jr

2j

i , hγ) · e(V, hδ)

and returns 1 if the check passes and 0 otherwise.

9 An aggregate signature scheme based on BLS

Boneh, Lynn, and Shacham introduced the BLS signature scheme in [BLS01]. Boneh, Gentry, Lynn, and
Shacham later extended this scheme by showing how to accomplish offline aggregation of signatures and
keys in [BGLS03]. This is different from aggregate Schnorr signatures [BR93], which require signers to
remain online throughout the signing process. In this section we describe an alternative aggregate signature
scheme based on BLS, where the verifier is required to compute just one pairing for any number of signatures.
Previous aggregate signature schemes based on BLS including [BGLS03; RY07; BDN18] have constant-sized
(Oλ(1)) aggregate signatures and require computing n+ 1 pairings to verifying an aggregate signature over
n distinct messages. Our scheme trades off space for time, requiring the verifier compute just 1 pairing and
one n-sized multi-exponentiation in each of the source groups at the cost of a logarithmic-sized signature.

The basic BLS signature scheme is given in Fig. 11. Our description is given over Type III bilinear groups
as opposed to the original scheme which was described only over the less efficient Type II bilinear groups.

Setup(1λ)

return 〈group〉 ← SampleGrp3(1
λ)

KeyGen(〈group〉)
sk

$←− F
pk← gsk

return (pk, sk)

Sign(〈group〉, sk,M) :

h ∈ G2 ← RO2(M)

return σ ← hsk

Verify(〈group〉, pk,M, σ)

h ∈ G2 ← RO2(M)
return e(g, σ) = e(pk, h)

Figure 11: The BLS signature scheme where RO2 : {0, 1}∗ → G2 is a random oracle.
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9.1 Construction

We introduce a pair of algorithms (AggSign,VerifyAgg) that extends the BLS signature scheme into a
aggregate signature scheme. These algorithms make use SIPP.Prove and SIPP.Verify, respectively, as
subroutines. The aggregator AggSign is given a group description 〈group〉, a list of public keys [pki]

n
i=1,

a set of distinct messages {Mi}
n
i=1, and a list of signatures [σi]

n
i=1. The aggregator begins by computing

σA =
∏
i σi. Next, they use SIPP.Prove to produce a proof π that

e(g−1, σA) ·
n∏
i=1

e(apki,RO2(Mi)) = 1 .

The aggregator returns Σ← (σA, π).
The verifier running VerifyAgg is given group description 〈group〉, public keys [pki]

n
i=1, distinct messages

{Mi}
n
i=1, and aggregate signature Σ. The verifier then has the full inputs it needs to run SIPP.Verify, and

outputs the result of checking the inner pairing product proof.
Pseudocode. We present pseudocode for our BLS aggregation protocol in Fig. 12.

AggSign(〈group〉, [pki]
n
i=1, {Mi}

n
i=1, [σi]

n
i=1) :

(h1, . . . , hn)← (RO2(Mi), . . . ,RO2(Mn))
σA ←

∏n
i=1 σi

π ← SIPP.Prove(〈group〉, g−1‖apk, σA‖h, 1)
Σ← (σA, π)
return Σ

VerifyAgg(〈group〉, [pki]
n
i=1, {Mi}

n
i=1,Σ) :

(σA, π)← Σ
(h1, . . . , hn)← (RO2(Mi), . . . ,RO2(Mn))

return SIPP.Verify(〈group〉, g−1‖apk, σA‖h, 1, π)

Figure 12: Aggregation and verification algorithms for an aggregate signature scheme.

9.2 Efficiency

Verifying n signatures on n different messages using VerifyAgg requires computing n hashes and then
running SIPP.Verify. Running AggSign requires n hash evaluations and a call to SIPP.Prove. Ignoring small
constant terms, the prover computes a total of 2n pairings, n exponentiations in each source group, and n
hashes. The verifier computes a single pairing, n exponentiations in each source group, 2 log(n) target group
exponentiations, and n hashes. The aggregate signatures consists of 2 log(n) elements in GT and 1 element
in G2.
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Beginning of Supplementary Material

A Preliminaries

A.1 Bilinear groups

The cryptographic primitives that we construct in this paper rely on cryptographic assumptions about bilinear
groups. We formalize these via a bilinear group sampler, which is an efficient algorithm SampleGrp that
given a security parameter λ (represented in unary), outputs a tuple 〈group〉 = (G1,G2,GT , q, g, h, e) where
G1,G2,GT are groups with order divisible by the prime q ∈ N, g generates G1, h generates G2, and
e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

Galbraith et al. distinguish between three types of bilinear group samplers in [GPS08]. Type I groups
have G1 = G2 and are known as symmetric bilinear groups. Types II and III are asymmetric bilinear groups,
where G1 6= G2. Type II groups have an efficiently computable homomorphism ψ : G2 → G1, while Type
III groups do not have an efficiently computable homomorphism in either direction. Certain assumptions
are provably false w.r.t. certain group types (e.g., SXDH only holds for Type III groups), and in general in
this work we assume we are working with working with a Type III groups. We will write SampleGrp3 to
explicitly denote a bilinear group sampler that outputs Type III groups.

A.1.1 Arguments of knowledge

We define interactive arguments of knowledge (Setup,Prove,Verify) for NP relations, following Bootle et
al. [BCCGP16]. Our definitions are identical except that we additionally define a probabilistic setup algorithm

Setup(R; τ) 7→ crs

that on input of a relation output by a relation generator RGen(1λ) outputs a common reference string used as
input by the prover and verifier. We denote Setup(R)

$−→ crs to mean that the setup algorithm first samples τ
randomly and then computes Setup(R; τ). The crs includes a description of the relation.

In the arguments we consider a prover Prove and a verifier Verify, both of which are probabilistic
polynomial time interactive algorithms. The transcript produced by Prove and Verify when interacting on
inputs s and t is denoted by tr← 〈Prove(s),Verify(t)〉. We write 〈P (s), V (t)〉 = b depending on whether
the verifier rejects, b = 0, or accepts, b = 1.

Perfect completeness means the honest prover can always convince a verifer to accept x ∈ L(R) provided
they know a witness w such that (x,w) ∈ R.
Knowledge-Soundness. Bootle et al.’s notion of knowledge soundness is called computational witness-
extended emulation. The idea is that for all efficient provers there exists an emulator that with overwhelming
probability produces the same argument, and when that argument is accepting, the emulator also extracts a
valid witness (again, with overwhelming probability).

Definition A.1 (Computational witness-extended emulation). The argument system (Setup,Prove,Verify)

for a relation generator RGen(1λ) has witness-extended emulation if for all deterministic, efficient provers
P∗ there exists an efficient emulator E such that for all pairs of efficient interactive adversaries A1,A2 it
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holds that∣∣∣∣∣∣∣∣Pr

 A1(tr) = 1

∣∣∣∣∣∣∣
R $←− RGen(1λ), crs← Setup(R)

(x, st)← A2(crs)
tr← 〈P∗(st), Verify〉(crs,x)



− Pr

 A1(tr) = 1
∧

(tr is accepting⇒ (x,w) ∈ R)

∣∣∣∣∣∣∣
R $←− RGen(1λ), crs← Setup(R)

(x, st)← A2(crs)

(tr,w)← EO(crs,x)


∣∣∣∣∣∣∣∣ ≤ negl(λ) ,

where tr is the transcript of communication between P∗ and Verify, the transcript oracle is given by
O = 〈P∗(st), V〉(crs,x), and permits rewinding to a specific point and resuming with fresh randomness for
the verifier from this point onwards.

In the definition st can be interpreted as the state of P∗, including its randomness. Whenever P∗ creates a
valid argument in state st, then with all but negligible probability E can extract a witness. This makes IPP an
argument of knowledge.

By resuming with fresh randomness we mean that the local random tape of the verifier is replaced
by a string of some prescribed length chosen uniformly at random. Therefore, it is possible that after
rewinding a verifier issues the same challenge. This happens with negligible probability and in our proof
of witness-extended emulation for IPP we do not deal with this case. Instead, we construct an extractor
that on input a statement and a (n1, . . . , nk)-tree of accepting transcripts (see Appendix A.4), outputs a
corresponding witness with overwhelming probability, and then we apply Lemma A.9.
Zero-Knowledge. Bootle et al. define an argument as honest verifier zero-knowledge (HVZK) if there
exists an efficient simulator that can simulate transcripts generated between an honest prover and an honest
verifier. The Fiat-Shamir transform turns an interactive public-coin HVZK argument into a non-interactive
argument with zero-knowledge even against malicious verifier. The simulator is modelled as having access to
the verifier’s challenges in advance.

Definition A.2 (Perfect honest verifier zero-knowledge). An argument (Setup,Prove,Verify) for RGen has
honest verifier zero-knowledge (HVZK) if there exists a probabilistic polynomial time simulator S such
that for all interactive non-uniform polynomial time adversaries (A0,A1) and for allR $←− RGen(1λ) and
crs

$←− Setup(R)

Pr

 (x,w) ∈ R
∧

A1(tr) = 1

∣∣∣∣∣∣ (x,w, ρ)
$←− A0(crs);

tr← 〈Prove(crs,x,w),Verify(crs,x; ρ)〉


= Pr

 (x,w) ∈ R
∧

A1(tr) = 1

∣∣∣∣∣∣ (x,w, ρ)
$←− A0(crs);

tr← S(crs,x, ρ)〉


where ρ is the public coin randomness used by the verifier.

A.2 Commitment Scheme

A commitment scheme for a message spaceM consists of a 2-tuple of efficient algorithms (Setup,CM) that
behave as follows:
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• Setup(1λ, aux) $−→ ck : a set-up algorithm that, given a security parameter λ (represented in unary) and an
auxiliary input aux, outputs a commitment key ck.

• CM(ck,M ; r) 7→ c : a commitment algorithm that, given a commitment key ck and a messageM ∈M,
outputs a commitment c.

When the commitment scheme is deterministic we write CM(ck,M). We denote CM(ck,M)
$−→ c to mean

that the commitment algorithm first samples r randomly and then computes CM(ck,M ; r).
We require that a commitment scheme satisfies binding i.e. no adversary can open the same commitment

to two different messages.

Definition A.3 (Binding commitment). A commitment scheme (Setup,CM) is binding if for all polynomial
time adversaries A the following probability is negligible in λ

Pr

 M0,M1 ∈M∧M0 6= M1

∧
CM(ck,M0; r0) = CM(ck,M1; r1)

∣∣∣∣∣∣ (ck,M)
$←− Setup(1λ, aux)

(M0, r0,M1, r1)
$←− A(ck,M)


We say the commitment is perfectly binding if the above probability is exactly 0.

Some of our commitment schemes must also satisfy hiding i.e. the commitment scheme is randomised
such that no adversary can distinguish which of two messages a commitment contains.

Definition A.4 (Hiding commitment). A commitment scheme (Setup,CM) is perfectly hiding if for all
polynomial time adversaries (A0,A1)

Pr

 M0,M1 ∈M
∧

b = b′

∣∣∣∣∣∣∣∣
b

$←− {0, 1}, (ck,M)
$←− Setup(1λ, aux),

(M0,M1)
$←− A0(ck,M), c

$←− CM(ck,Mb),

b′
$←− A2(c)

 =
1

2

We say the commitment is perfectly binding if the above probability is exactly 0.

A.3 Polynomial Commitment Scheme

We define a polynomial commitment scheme following the definition of [BFS19], as a commitment scheme
with message space F≤d[X], i.e. polynomials over F of degree bounded by d which is polynomial in λ. The
commitment additionally has an interactive argument of knowledge (EvalSetup,EvalProve,EvalVerify) for
showing that the committed polynomial was correctly evaluated at a point.

A polynomial commitment scheme of a 5-tuple of efficient algorithms PC.Setup, PC.CM, EvalSetup,
EvalProve, EvalVerify) such that:

• PC.Setup(F, d)
$−→ (ck) : a set-up algorithm that, given a field and a maximum degree, outputs a

commitment key and a proving key.
• PC.CM(ck, f(X); r)← c : a commitment algorithm that, given a commitment key ck and a polynomial
f(X) ∈ F[X] of maximum degree d, outputs a commitment c.

• (EvalSetup,EvalProve,EvalVerify) is an interactive argument of knowledge with respect to the relation set

Reval =

 (ck, c, x, eval; r, f(X) ∈ F[X]) :
c = PC.CM(ck, f(X); r)
∧ deg(f(X)) ≤ d
∧ f(x) = eval
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When the polynomial commitment scheme is deterministic we write PC.CM(ck, f(X)). We denote
PC.CM(ck, f(X))

$−→ c to mean that the commitment algorithm first samples r randomly and then computes
CM(ck, f(X); r). If the polynomial is multivariate then we say that the degree of the polynomial in each
variable must be less than d, and we require that dµ for µ variables is polynomial in the security parameter.

Definition A.5 (Extractable). A polynomial commitment PC = ( PC.Setup, PC.CM, EvalSetup, EvalProve,
EvalVerify) is extractable if (PC.Setup,PC.CM) is a binding commitment scheme and if (EvalSetup,
EvalProve, EvalVerify) satisfies witness extended emulation.

Definition A.6 (Hiding). A polynomial commitment PC = ( PC.Setup, PC.CM, EvalSetup, EvalProve,
EvalVerify) is hiding if (PC.Setup,PC.CM) is a hiding commitment scheme and if (EvalSetup, EvalProve,
EvalVerify) satisfies honest verifier zero-knowledge.

A.3.1 Round-by-round sound proofs

We first define interactive proof systems (Prove,Verify) for polynomial-time languages. In general proof
systems must satisfy two properties: completeness and soundness. Perfect completeness means that for every
x ∈ L, the honest prover will always convince the honest verifier to accept. For SIPP we prove a notion of
soundness called round-by-round (RBR) soundness, introduced by Canetti et al. in [CCHLRR18]. We say an
interactive proof system is RBR sound if there is a well-defined state (depending on the transcript so far), and
that some of these states are “doomed.” RBR soundness requires that once a partial transcript results in a
doomed state, then for any possible next prover message, with overwhelming probability over the verifier’s
next message, the state of this more complete transcript will still be doomed. We can then use Theorem 5.8
from [CCHLRR18], which states that if you replacing the verifier challenges in a RBR sound proof with a
suitable choice of hash function RBR , then the resulting proof system is an adaptively sound non-interactive
proof system in the plain model.

Definition A.7 (Perfect completeness). The proof system (Prove,Verify) for a language L has perfect
completeness if for all instances x ∈ L it holds that

Pr
[
〈Verify,Prove〉(1λ,x) = 1

]
= 1 .

Our definition of RBR soundness comes from [CCHLRR18, Definition 5.3].

Definition A.8 (Round-by-round (RBR) soundness). Let Π = (Prove,Verify) be a 2r-message public coin
interactive proof system for a language L. Denote by tr the protocol transcript so far. For any x ∈ {0, 1}∗

and prefix tr, let Verify(x, tr) denote the distribution of the next message (or output) in the transcript.
We say that Π has is round-by-round sound if there exists a deterministic (not necessarily efficiently

computable) function st that takes as input an instance x and a transcript prefix tr and outputs either 1 or 0
such that the following properties hold:
1. If x 6∈ L then st(x, ∅) = 0, where ∅ is the empty transcript.
2. If st(x, tr) = 0 for a transcript prefix tr, then for every PPT adversary A it holds that

Pr
[
st(x, tr‖α‖β) = 1

∣∣∣ α $←− A(x, tr);β ← Verify(x, tr‖α)
]
≤ negl(1λ)

3. For any full transcript (i.e., a transcript for which the verifier halts) tr, if st(x, tr) = 0, then Verify(x, tr) =
0.
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A.4 Forking lemma

Suppose that we have a (2k + 1)-move public-coin argument with k challenges x1, . . . , xk is sequence. Let
ni ≥ 1 for 1 ≤ i ≤ k. Consider

∏k
i=1 ni accepting transcripts with challenges in the following tree format.

The tree has depth k and
∏k
i=1 ni leaves. The root of the tree is labeled with the statement. Each node of

depth i < k has exactly nk children, each labeled with a distinct value for the ith challenge xi. This can
be referred to as a (n1, . . . , nk)-tree of accepting transcripts. In the following lemma it is assumed each
challenge x1, . . . , xk is uniformly sampled from a super-polynomial space in the security parameter λ.

The following forking lemma is used in our proof that IPP has computational witness-extended emulation.
It is a slightly modified version of the forking lemma from [BCCGP16, Lemma 1], which requires that the
malicious prover used to produce the transcripts is computationally bounded, and allows the extractor to fail
with negligible probability. This modified statement is directly implied by the proof in [BCCGP16].

LemmaA.9 (Forking lemma). Let (Setup,Prove,Verify) be a (2k+1)-move, public-coin interactive protocol.
Let E be an efficient witness extraction algorithm that succeeds with overwhelming probability in extracting
a witness from an (n1, . . . , nk)-tree of accepting transcripts produced by an efficient malicious prover
interacting with an honest verifier. Assume that

∏k
i=1 ni is bounded above by a polynomial in the security

parameter λ. Then (Setup,Prove,Verify) has computational witness-extended emulation.

A.5 Cryptographic assumptions

We use the q-DBP Assumption of Abe et al., which is secure uder the SXDH assumption [AFGHO16]:
Assumption 1 (q-Double pairing assumption (q-DBP)). We say the q-double pairing assumption holds in G2

relative to SampleGrp3 if for any efficient A and for all q > 2 ∈ N:

Pr

 (A1, . . . , Aq) 6= 1G1

∧
1GT =

∏q
i=1 e(Ai, hi)

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

(h1, . . . , hq)
$←− G2

(A1, . . . , Aq)
$←− A(〈group〉, h1, . . . , hq)

 ≤ negl(λ) .

In our TIPP protocol we use a commitment scheme with structured parameters. Our commitment scheme
with structured parameters is secure under an assumption which we dub the computational q-Auxiliary
Structured Double Pairing assumption.
Assumption 2 (q-Auxiliary Structured Double Pairing assumption (q-ASDBP)). We say the q-ASDBP
assumption holds relative to SampleGrp3 if for any efficient algorithm A

Pr

 (A0, . . . , Aq−1) 6= 1G1

∧
1GT =

∏q−1
i=1 e(Ai, h

β
2i

)

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

β
$←− F

(A0, . . . , Aq−1)
$←− A(〈group〉, g, gβ, h, hβ, . . . , hβ

q−1

)


is negligible.

More specifically, we refer to this as the q-ASDBPG2
assumption and also define its dual, the q-ASDBPG1

assumption, by swapping G1 and G2 in the definition above. Observe that in this assumption it is essential
that the adversary does not see gβ

2

.

Lemma A.10. The q-ASDBP assumption holds in the generic group model.
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Proof. Suppose A is an adversary that on input g, gβ, h, hβ, . . . , hβ
q−1

, outputs A0, . . . , Aq−1 such that

q−1∏
i=0

e(Ai, h
β
2i

) = 1.

Then it’s GGM extractor outputs {a2i, a2i+1} such that Ai = ga2i+a2i+1β and

q−1∑
i=0

(a2i + a2i+1X)X2i = 0.

Thus
a0 + a1X + a2X

2 + a3X
3 + · · ·+ a2q−2X

2q−2 + a2q−1X
2q−1 = 0.

As a result, ai = 0 for all 0 ≤ i ≤ 2q − 1 and Ai = g0 = 1G1
.

We use Boneh and Boyen’s q-SDH assumption [BB08] when proving the security of our TIPP scheme.
Assumption 3 (q-Strong Diffie-Hellman assumption (q-SDH)). We say the q-Strong Diffie-Hellman assumption
holds relative to SampleGrp3 if for any efficient algorithm A

Pr

 A = h
1

β−a

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

γ
$←− F

(a,A)← A(〈group〉, g, h, gβ, hβ, · · · , gβ
q

, hβ
q

)

 ≤ negl(λ) .

B Deferred proofs

In this section we present various proofs promised in the main body of this work.

B.1 Proofs of Theorems 4.1 and 4.2

First, we show that SIPP has perfect completeness (Theorem 4.1).

Proof. We prove perfect completeness by showing that in each round if Z = A ∗B then Z ′ = A′ ∗B′. We
show this by simply rewriting Z ′ as follows:

Z ′ = ZxLZZ
x
−1

R

=
(
A[m

′
:] ∗B[:m

′
]

)x
·A[:m

′
] ∗B[:m

′
] ·A[m

′
:] ∗B[m

′
:] ·
(
A[:m

′
] ∗B[m

′
:]

)x−1

=
(
Ax

[m
′
:]
◦A[:m

′
]

)
∗B[:m

′
] ·
(
Ax
−1

[:m
′
]
◦A[m

′
:]

)
∗B[m

′
:]

=
(
Ax

[m
′
:]
◦A[:m

′
]

)
∗B[:m

′
] ·
(
A[:m

′
] ◦A

x
[m
′
:]

)
∗Bx

−1

[m
′
:]

=
(
Ax

[m
′
:]
◦A[:m

′
]

)
∗
(
Bx

−1

[m
′
:]
◦B[:m

′
]

)
= A′ ∗B′

Next, we prove that SIPP is RBR sound (Theorem 4.2).
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Proof. We begin by defining a state function st that takes an instance x := (A,B, Z) and a (possibly empty
or partial) transcript tr, and uses the transcript, up to the last verifier message βi = xi, to computeA′,B′ and
Z ′ just as the verifier would. IfA′ ∗B′ = Z ′, then st(x, tr) outputs 1, else 0. Property (1) of RBR soundness
follows from the fact that when tr = ∅ then st checks whether x ∈ L directly, i.e., if x 6∈ L then st(x, ∅) = 0.
Property (3) holds because when tr is a complete transcript the state function carries out the exact same
decision procedure as the verifier, i.e., st(x, tr) = V(x, tr). Now it is just left to show property (2) holds.

Recall that property (2) requires that if st(x, tr) = 0 for a transcript prefix tr where the adversarial prover
A is about to move, it holds that

Pr
[
st(x, tr‖α‖β) = 1

∣∣∣ α $←− A(x, tr);β ← Verify(x, tr‖α)
]
≤ negl(1λ)

If st(x, tr) = 0 for some partial transcript, then by definition of st for the A,B, and Z the protocol recursed
on in the latest round it holds thatA ∗B 6= Z.

Suppose that A outputs the next message α = (ZL, ZR). Denote by zL, z, zR,a, and b the discrete
logarithms of ZL, Z, ZR,A, andB, respectively. Consider the Laurent polynomial

f(X) = zLX + z + zRX
−1 −

m
′∑

i=1

(
am′+ibiX

−1 + aibi + am′+ibm′+i + aibm′+iX
)
.

Evaluated at a point x $←− F it holds that f(X) = 0with probability at most 2/|F|, regardless of prover message
α = (zL, zR). This probability follows from the observation that f(X) ∈ F[X,Y −1] ∼= F[X,Y ]/(XY − 1).
Using the isomorphism that maps f(X) to f(X,Y ) our claim then follows from the DeMillo-Lipton-
Schwartz–Zippel Lemma. Evaluated f(X) at x corresponds exactly to the check done in the exponent when
checking ZxL · Z · Z

x
−1

R = A′ ∗B′, where as observed in the completeness proof it holds that

A′ ∗B′ =
(
A[m

′
:] ∗B[:m

′
]

)x
·A ∗B ·

(
A[:m

′
] ∗B[m

′
:]

)x−1

.

Then we have that

Pr
[
st(x, tr‖α‖β) = 1

∣∣∣ α $←− A(x, tr);β ← Verify(x, tr‖α)
]

= Pr
[
A ∗B 6= Z ∧ f(β) = 0

∣∣∣ (ZL, ZR)
$←− A(x, tr);β

$←− F
]
≤ 2
|F|

,

whereA,B, and Z are the scalings of the instance elements in latest round as defined by tr. We conclude
that the RBR soundness error of SIPP is at most 2

|F| . Thus the probability that an adversary breaks RBR

soundness is bounded by 2 log(m)
|F| .

B.2 Proof of Theorem 5.4

We proof that GIPA has perfect completeness and witness extended emulation of CM is a binding inner
product commitment.

Proof. Completeness. Completeness follows directly from the doubly-homomorphic properties of CM(ck;).
The double homomorphism implies a distributive property between keys and messages. For ease of notation
we set

cki = CM((cki,[:m′]; , ) and ck
′
i = CM((cki,[m′:]; , )
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for i = 1, 2, 3 and
M1 = a[:m

′
], M

′
1 = a[m

′
:], M2 = b[:m

′
], M

′
2 = b[m

′
:]

First observe that

x−1 · CL = x−1 · CM(ck1, ck
′
2, ck3; M ′1,M2, 〈M

′
1,M2〉)

= CM(x−1ck1, ck
′
2, ck3; M ′1, x

−1M2, 〈M
′
1, x
−1M2〉)

C = CM((ck1‖ck
′
1), (ck2‖ck

′
2), (ck3‖ck

′
3); (M1‖M

′
1), (M2‖M

′
2), 〈M1,M2〉+ 〈M ′1,M

′
2〉)

= CM(x−1ck1, xck2, ck3;xM1, x
−1M2, 〈xM1, x

−1M2〉) + CM(ck′1, ck
′
2, ck

′
3;M ′1,M

′
2, 〈M

′
1,M

′
2〉)

= C ′L + C ′R

x · CR = x · CM(ck′1, ck2, ck3; M1,M
′
2, 〈M1,M

′
2〉)

= CM(ck′1, xck2, ck3; xM1,M
′
2, 〈xM1,M

′
2〉)

Second observe that

x−1 · CL + C ′L = CM(x−1ck1, ck
′
2, ck3; M ′1, x

−1M2, 〈M
′
1, x
−1M2〉)

+ CM(x−1ck1, xck2, ck3;xM1, x
−1M2, 〈xM1, x

−1M2〉)

x · CR + C ′R = CM(ck′1, xck2, ck3; xM1,M
′
2, 〈xM1,M

′
2〉) + CM(ck′1, ck

′
2, ck

′
3;M ′1,M

′
2, 〈M

′
1,M

′
2〉)

Hence

x−1 · CL + C + x · CR
= CM

(
x−1ck1 + ck′1, xck2 + ck′2, ck3; xM1 +M ′1, x

−1M2 +M ′2, 〈xM1 +M ′1, x
−1M2 +M ′2〉

)
= CM(ck′, (a′, b′, 〈a, b〉))

Extraction. We will show that given a tree of valid transcripts for different challenges as described by
Lemma A.9 we can build an efficient extractor that extracts either a wittiness or a break of CM(ck;)’s binding
property. The extractor reads a, b from the transcript and then runs the following extraction recursively for
each round of the protocol.

Formally given a′ ∈ Mm
′

1 , b′ ∈ Mm
′

2 and Z ′ = CM(ck3, 〈a
′, b′〉) = x−1 · CL + C + x · CR the

extractor computes openings to CL, C and CR. Given three transcripts in each for different challenges
x1, x2, x3 the extractor receives transcripts (CL, C, CR ∈ T,a(i) ∈Mm

′

1 , b(i) ∈Mm
′

2 ) and corresponding
keys ck(1)

A = x−1
i · ck1,[:m

′
] + ck1,[m

′
:], ck

(i)
2 = xi · ck2,[:m

′
] + ck2,[m

′
:] such that

CM(ck
(i)
1 , ck

(i)
2 , ck3;a(i), b(i), 〈a(i), b(i)〉))

= CM(ck1, ck2, ck3; (x−1
i a(i)||a(i)), (xib

(i)||b(i)), 〈ai, b
(i)〉)

= x−1
i · CL + C + xi · CR ∀i ∈ {1, 2, 3}

(2)

The extractor now finds a linear combination of x1, x2, x3 such that using this combination we can
compute (aL,aC ,aR ∈ Gm

1 , bL, bC , bR ∈ Gm
2 ) and zL, zC , zR such that

CL = CM(ck1, ck2, ck3;aL, bL, zL)
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and similarly C = CM(ck1, ck2, ck3;aC , bC , zC) and CR = CM(ck1, ck2, ck3;aR, bR, zR) Now given 4
total transcripts we have that for each transcript

CM(ck
(i)
1 , ck

(i)
2 , ck3;a(i), b(i), 〈a(i), b(i)〉) = x−1 · CL + C + x · CR

Given the extracted values for xi this implies that either

x−1
i · aL,[:m′] + aC,[:m′] + xi · aR,[:m′] = x−1 · a(i)

x−1
i · aL,[m′:] + aC,[m′:] + xi · aR,[m′:] = a(i)

x−1
i · bL,[:m′] + bC,[:m′] + xi · bR,[:m′] = x · b(i)

x−1
i · bL,[m′:] + bC,[m′:] + xi · bR,[m′:] = b(i)

x−1
i · zL + zC + xi · zR = 〈a(i), b(i)〉

or we can directly compute a break of the binding property of the commitment scheme. By assumption this
happens with at most negligible probability. These equations imply that

x−1
i · aL,[m′:] + (aL,[:m′] − aC,[m′:]) + xi · (aC,[:m′] − aR,[m′:]) + x2

i · aR,[:m′] = 0

x−2
i · bL,[:m′] + x−1

i · (bC,[:m′] − bL,[m′:]) + (aR,[:m′] − bC,[m′:]) + xi · bR,[m′:] = 0

We can view the left hand side as a polynomials in xi. Since the equality holds for 4 different xi we know
that the polynomials must be the zero polynomials. This then implies that

aL,[m′:] = aR,[:m′] = bL,[:m′] = bR,[m′:] = 0

aC,[:m′] = aR,[m′:]
aC,[m′:] = aL,[:m′]
bC,[:m′] = bL,[m′:]
bC,[m′:] = bR,[:m′]

So aC = aR,[m′:]||aL,[:m′] and bC = bL,[m′:]||bR,[:m′]. Finally this means that for all 4 xi

〈a(i), b(i)〉 = 〈xi · aC,[:m′] + aC,[m′:], x
−1
i · bC,[:m′] + bC,[m′:]〉

= x−1
i · zL + zC + xi · zR =⇒

x−1
i (〈aC,[m′:], bC,[:m′]〉 − zL) + (〈aC , bC〉 − zC) + xi · (〈aC,[:m′], bC,[m′:]〉 − zC) = 0

The last equality implies that zC = 〈aC , bC〉 which in turn shows that C = CM(ck1||ck2;aC , bC , zC) is in
fact an inner product commitment for which the extractor has computed a witness.

The extractor uses at most 4log2(m) = m2 transcripts and thus runs in polynomial time. If extraction of a
witness fails then it will extract a break of the binding property of the commitment. This, however happens
with at most negligible probability. This shows that the protocol has witness extended emulation for the
relationRIPA

B.3 Deferred proofs from Section 6

In Theorem Theorem 6.1 we prove that TIPP satisfies computational witness-extended emulation. In the
proof we use the facts that: (1) the structure of our honestly generated final commitment keys is correct; (2)
an algebraic adversary that convinces a verifier of ill-formed final commitment keys can break q-SDH. We
prove these two facts in this section in Proposition B.1 and Lemma B.2.

The following proposition demonstrates the correctness of the format of our final commitment keys.
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Proposition B.1. In the TIPP protocol, the final commitment key has the structure

w = g
∏`
j=0(xj+α

2
j+1

)

v = h
∏`
j=0(x

−1
j +(r

−2
β)

2
j+1

)

where xj is the (`− j)th verifier challenge and ` = log2(m).

Proof. Recall that in each round of IPP, the prover and the verifier compute the new commitment key to equal

w′ = wx
[:m
′
]
◦w[m

′
:] and v

′ = vx
−1

[:m
′
]
◦ v[m

′
:].

We provide an inductive argument.
First observe that if there is only one round, i.e. if ` = 0, then abusing notation to relabel v = vr

−2

, we
see that

w = w
x0
0 w1 = gx0+α

2

= g
∏0
j=0(x`−j+α

2
j+1

)

v = v
x
−1
0

0 v1 = hx
−1
0 +(r

−1
β)

2

= h
∏0
j=0(x

−1
`−j+(r

−1
β)

2
j+1

)

and thus the statement holds in the base case.
Next suppose the statement is true for `− 1. We show that the statement is true for `. On the first round

we rescale the commitment key to

w′ = w
x`

[:2
`
]
◦w

[2
`
:]

=

(
w
x`
0 w

α
2
`+1

0 , . . . , w
x`

2
`−1

wα
2
`+1

2
`−1

)
v′ = v

x
−1
`

[:2
`
]
◦ v

[2
`
:]

=

(
v
x
−1
`

0 v
(r
−1
β)

2
`+1

0 , . . . , v
x
−1
`

2
`−1

v
(r
−1
β)

2
`+1

2
`−1

)

We then run the IPP protocol with respect to ` and the generators

w′ = w
x`+α

2
`+1

[:2
`
]

and v′ = v
x
−1
` +β

2
`+1

[:2
`
]

.

From our inductive assumption we have that running TIPP on w
[:2
`
]
and v

[:2
`
]
yields

w = g
∏`−1
j=0(x`−j+α

2
j+1

) and v = h
∏`−1
j=0(x

−1
`−j+β

2
j+1

).

where we have used that the challenges indexes are shift by 1. Hence the final commitment key has the form

w′ = wx`+α
2
`+1

= g(x`+α
2
`+1

)
∏`−1
j=0(x`−j+α

2
j+1

) = g
∏`
j=0(x`−j+α

2
j+1

)

v′ = vx
−1
` +β

2
`+1

= h(x
−1
` +β

2
`+1

)
∏`−1
j=0(x

−1
`−j+β

2
j+1

) = h
∏k
j=0(x

−1
`−j+β

2
j+1

)

as required.

We show the soundness of our final commitment key argument i.e. we show that an adversarial prover
cannot convince an honest verifier.
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Lemma B.2. The protocol defined by Fig. 5 for the language Lck is sound in the algebraic group model
under the q-SDH assumption.

Proof. We prove this lemma for w and note that by symmetry we have that soundness also holds for v
(the elements in the SRS included for proving v are independent from those used to prove w and thus
provide no advantage to an adversary). Let A = (A0,A1) be a pair of algorithms that share state. On
input (srs.p, r,x) the adversary A0 returns w and on input z the adversary A1 returns (P,Q) such that
Verify(srs.v, (r,x, w, v), z, (P,Q)) = 1.

Let B be an algorithm against q-SDH. Then B, on input of pair, (gα, . . . , gα
m

, hα, . . . , hα
m

), behaves as
follows.

1. Choose β $←− F and run A0 on the input

pair, gβ, hα, {gα
i

, hβ
i

}2m−2
i=0 .

2. When A0 returns w extract f0, f1 such that w = gf0(α)+f1(β). Set s(X) = f0(X) + f1(β).

3. Run A1 on input z $←− F to obtain verifying (P,Q).

4. Compute P ′ = g
s(α)−s(z)
α−z .

5. Return
(
z, (P ′P−1)

1
s(z)−fw(z)

)
.

We now argue that if (A0,A1) succeeds then either w has been computed correctly with overwhelming
probability or B succeeds. First observe that due to the verifiers equation

e(wg−fw(z)P z, h) = e(P, hα).

Also observe that by design
e(wg−s(z), h) = e(P ′, hα−z).

Thus
e(gfw(z)−s(z), h) = e(P ′P−1, hα−z)

and either fw(z) = s(z) or
(P ′P−1)

1
s(z)−fw(z) = g

1
α−z

and B succeeds.
If fw(z) = s(z) then with overwhelming probability fw(X) = s(X). Hence w = gs(α) = gfw(α) and w

has been computed correctly.

B.4 Proof of Theorems 7.1 and 7.2

Proof. Let A be an adversary that succeeds at convincing a verifier with non-negligible probability for
random evaluation challenges (x, y). By Lemma B.3 (or by Lemma B.4) there exists an extractor that outputs
A such that T = A ∗ v and A = Ax. By Lemma B.5 (or by Lemma B.2) there exists an extractor that
outputs a′ such that eval = a′ · y and A = ga

′
.
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The extractor runs A on max(m, `) parallel instances of (x, y). They compute a Vandermonde
matrix to find M̂ ∈ Fm,` which relates the exponents of Ai to the exponents of g. With overwhelming
probability this matrix is invertible, so they learn ai,0, . . . , ai,`−1 such that Ai =

∏`−1
j=0 g

ai,j
j . They return

f(X,Y ) =
∑

i,j ai,jX
iY j . Observe that eval =

∑m−1
i=0 (

∑`
j=0 ai,jy

j)xi is the correct evaluation of
f(X,Y ).

B.5 Deferred proofs from Section 7

In Theorems Theorem 7.1&Theorem 7.2 we prove that our polynomial commitments schemes are extractable.
In this section we prove two Lemma’s showing that theMIPP arguments used as subprotocols are extractable,
which are used in the proof of our main theorems. We also prove that our hiding variation on the polynomial
commitment schemes satisfies honest verifier zero-knowledge i.e. there exists a simulator who can program
the verifier queries that is indistinguishable from an honest prover.

Lemma B.3 (Transparent MIPP is Extractable). If there exists a bilinear group sampler SampleGrp that
satisfies the q-DBP assumption in G2 then the MIPP argument from Section 7.2.1 achieves extractability.

Proof. We first observe that

CM((v,1, ĥ), (A, b, C)) = ((A||C) ∗ (v||ĥ), b)

is a doubly homomorphic binding commitment under the q-DBP assumption. Thus by Theorem 5.4, there
exists an extractor that outputsA such that Z = (A ∗ v) · e(Ab, ĥc).

LetA be an adversary that convinces an honest verifier for T . Our extractor for T works as follows: when
the adversary sends A, return random c1. The adversary then runs convinces the generlized IPA verifier for
the commitment key ck = (v,1, ĥc1). Run the IPA extractor to obtainA1 such that

e(A, ĥc1) · T = (A1 ∗ v) · e(Ab
1, ĥ

c1).

Repeat the process under a different random c2 to obtain A2 such that

e(A, ĥc2) · T = (A2 ∗ v) · e(Ab
2, ĥ

c2).

By the binding property of the commitment scheme we have that

A1 = A2 and (Ab
1A
−1)c1 = (Ab

1A
−1)c2 .

HenceAb
1A
−1 = 1 and T = A1 ∗ v. Further, we get that A = Ab

1.

Lemma B.4 (Structured setup MIPP is Extractable). If there exists a bilinear group sampler SampleGrp
that satisfies the q-ASDBP assumption in G2 and the q-SDH assumption then the MIPP argument from
Section 7.2.2 achieves extractability against algebraic adversaries.

Proof. Following the argument from Lemma B.3 we see that if the final commitment key v is correctly
computed then by the q-ASDBP assumption there exists an extractor that returnsA such that T = A ∗ v
and A = Ab. By Lemma B.2 we see that an algebraic adversary that convinces the verifier of incorrect v can
be used to build an adversary against SDH. Putting the two together we see that the scheme is extractable
against algebraic adversaries.
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Lemma B.5 (Transparent univariate polynomial commitment scheme is Extractable). If there exists a bilinear
group sampler SampleGrp that satisfies theDLR assumption inG1 then the univariate polynomial commitment
argument from Section 7.3.1 achieves extractability.

Proof. We first observe that

CM((g,1, u), (a, b, eval)) = (gaueval, b)

is a doubly homomorphic binding commitment under the DLR assumption. Thus by Theorem 5.4, there exists
an extractor that outputs a such that P = gau〈a,b〉.

Let A be an adversary that convinces an honest verifier for A, eval. Our extractor for A works as follows:
when the adversary sends A, return random c1. The adversary then runs convinces the generlized IPA verifier
for the commitment key ck = (g,1, uc1). Run the IPA extractor to obtain a1 such that

uc1·eval ·A = ga1 · uc1〈a1,b〉

Repeat the process under a different random c2 to obtain a2 such that

uc2·eval ·A = ga2 · uc2〈a2,b〉

By the binding property of the commitment scheme we have that

a1 = a2 and c1((a1 · b)− eval) = c2((a1 · b)− eval).

Hence a1 · b− eval = 1 and A = ga1 . Further, we get that eval = 〈a, b〉.

Lemma B.6. The polynomial commitment scheme in Fig. 10 is special honest verifier zero-knowledge.

Proof. First observe that both the prover samples T from a uniformly random distribution and thus the
commitment scheme is hiding.

Consider a simulator that knows the verifier responses in advance:

• To simulate a commitment, return T $←− GT .

• To simulate an evaluation of T to eval with respect to the challenge c $←− F

1. Choose ρ′ $←− F and r(X,Y ) a random polynomial that evaluates at (x, y) to eval.

2. Set R′ = PC.CM(ck, r(X,Y )) and R = T−c ·R′ · e(gρ
′

0 , h
m). Send (R, r(x, y)) to the verifier.

3. When the verifier sends c, respond with ρ′.

4. Run the provers evaluation algorithm on T ′ = T c ·R · e(g−ρ
′

0 , vm) = R′.

The provers evaluations (R, r(x, y)) is masked by r1,2, r1,3 and thus is indistinguishable from the verifiers
random evaluation. By Lemma 4.6 of Hoffmann et al. [HKR19], Mm and M` are masking sets for MIPP
and DL-IP respectively. Thus the provers recursive arguments ZL, ZR, PL, PR are distributed uniformly
at random and are indistinguishable from the simulators uniformly random recursive arguments. The
provers evaluation A = CM(ck, f(x, Y )) is masked by r1,1 and thus is indistinguishable from the simulators
random evaluationA. Hence (PC.Setup, PC.CM, EvalSetup, EvalProve, EvalVerify) satisfies honest verifier
zero-knowledge.
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