A concrete instantiation of Bulletproof zero-knowledge proof

Andrey Jivsov
crypto@brainhub.org

Abstract

This work provides an instantiation of the Bulletproof zero-knowledge algorithm in modulo prime number fields. The primary motivation for this work is to help readers understand the steps of the Bulletproof protocol.

1 Introduction

This work provides specific steps suitable for an implementation of the work by Bünz et al. [1]. We work around the following difficulties:

- Lack of concise protocol steps. Multiple alternative steps are provided in [1].
- It is difficult to follow the entire algorithm due to its complexity. A cookbook-like steps are desired.
- Some quantities are left unspecified, e.g. they require solving equations.
- Only an interactive version is defined.
- Arithmetic in the composite order of a group \mathbb{G} is undefined, yet the algorithm is defined via exponentiation modulo prime number, a group of composite order.
- Random quantities should be derived via KDF for the benefit of low-entropy environments and easier testing.

This work condenses 45 pages of [1] into an algorithm that should be easier to understand to an implementer and easier to maintain in the future.

2 Notations

We follow notations in [1] with following additional notations.
$\|$ denotes concatenation. $a \leftarrow a \cdot b$ means that after this line the value of a equals to the previous value of a times b. This is a local operation limited to the relevant function, e.g. we don't change the global a.
\mathbb{G}^{+}is used to denote "positive" half of elements in \mathbb{G}, as defined in sec. 3. We use \mathbb{G}^{+} for comparison or for public elements in \mathbb{G}.

3 Group operations in \mathbb{G} modulo safe prime

In this section we clarify details for the operations in \mathbb{G}.
We instantiate \mathbb{G} as operations modulo safe prime q. The p used with $[1]$ is $p=(q-1) / 2$, and is a prime as well.

Many intermediate steps in Bulletproof algorithm are exponentiations of elements in \mathbb{G}. For example, for a $g \in \mathbb{G}$, we might need to calculate $g^{a \cdot b}$. How is the operation $a \cdot b$ performed in this example, given that the group order of \mathbb{G} is $2 p$, a composite number? In general, some operations, such as a multiplicative inverse, are undefined in the group mod $2 p$. Some software libraries, such bn.js [2], and methods, such as Motgomery multiplication [3], are unsuitable for an even modulo arithmetic.

We adopts the following approach, similiar to [4].
All operations on the exponenet are performed modulo p. This reduction of an exponenet, v.s. $2 p$, affects the resulting elelement in G in such a way that it loses the sign of the element in \mathbb{G}, in other words, we lose track of whether the result should have been x or $-x=q-x \in \mathbb{G}$.

To see why, consider that $\forall x, y: x>y(\bmod 2 p)$ we must have $x=p+y$ as the only choice. Observe that $g^{p}=\{1,-1\}(\bmod q) \in \mathbb{G}$, which explains the above reference to the sign.

We next define the subgroup \mathbb{G}^{+}of \mathbb{G} that we will use shortly:

$$
\begin{equation*}
\mathbb{G}^{+}=\{\forall x \in \mathbb{G}: x \leq p\} \tag{1a}
\end{equation*}
$$

We next define the mapping $\mathbb{G} \mapsto \mathbb{G}^{+}$via canonical (\cdot) operation.
A canonical representation of any $x \in \mathbb{G}$, via a mapping $\mathbb{G} \mapsto \mathbb{G}^{+}$, is defined as follows:

$$
\begin{align*}
\forall x & \in \mathbb{G} \\
\text { canonical }(\mathrm{x}) & = \begin{cases}x & \text { if } x \leq(q-1) / 2=p \\
q-x & \text { otherwise }\end{cases} \tag{2a}
\end{align*}
$$

The canonical() operation returns the smallest element of two, which can be naturally encoded in a fewest number of bits. The following properties of canonical() follow from the above definitions. For any $x, a, b, c \in \mathbb{G}$:

$$
\begin{align*}
\text { canonical }(\mathrm{x}) & \in \mathbb{G}^{+} \tag{3a}\\
& \operatorname{canonical}(\mathrm{x}) \tag{3b}
\end{align*}=\operatorname{canonical}(-\mathrm{x})
$$

4 The algorithm

In the following algorithm that is an adaptation of [1] the Prover convinces the Verifier that it knows a public commitment V to a secret value v, and provides a proof that $0 \leq v<2^{n}$. n must be a power of 2 .

We are achieving two main properties:

- Homomorthic property. For two pairs of (commitment, secret value), (V_{a}, v_{a}) and (V_{b}, v_{b}), we can generate the commitment to the sum of secret values $v_{a}+v_{b}$ simply as $V_{a} \cdot V_{b}$.
- Protection from negative secret values. The main contribution of [1] and this work is to provide a publicly verifiable statement that a secret value v is non-negative and less than a specified maximum.

4.1 KDFs

We generate multiple pseudo-random values in this algorithm. There are two sets of these values: private and public.
i is the public identifier of the secret, an integer, as shown in the table 1. The size of the field that encodes i, j, and k is 1 byte.

H256 is a cryptographic hash function with 256-bit output, such as SHA2-256 or Keccak256.

The size of the field that encodes any element in \mathbb{Z}_{p} is $\left\lceil\log _{2}(p) / 8\right\rceil$ bytes. The element is stored in the big-endian format.

We use the following helper function to build KDFs.
KDFInternal (s, i, j) :
if $\left(\log _{2}(s)>256\right): s=\mathrm{H} 256(s)$
$K=s \oplus\left(i \cdot 2^{8}\right) \oplus j$
$m=\left\lceil\log _{2}(p) / 256\right\rceil$
$\forall k \in[1, m]: r=\mathrm{H} 256(K \| 1) \| \ldots \mathrm{H} 256(K \| k) \ldots| | \mathrm{H} 256(K \| m) \bmod p$
return r
The lowest bit of $\mathrm{H} 256(K \| m)$ is the lowest bit of the value before reduction $\bmod p$.
The private values are generated from the 256 -bit seed SeedPriv with two KDF functions KDFPriv1 and KDFPrivN, as shown next. These functions return values in the range $r: 0 \leq$ $r<p$.

SeedPriv $\stackrel{\$}{\leftarrow} 1^{256}$
Prover ganerates this seed
$\operatorname{KDFPriv1}(i)=\operatorname{KDFInternal}($ SeedPriv, $i, 0)$
return an integer $\in \mathbb{Z}_{p}$

```
KDFPrivN \((i, n)\) :
    \(\forall j \in[1, n]: r_{i}=\) KDFInternal(SeedPriv, \(\left.i, j\right)\)
```

 return \(\mathbf{r}=\left(r_{1}, r_{2}, \ldots r_{n}\right) \quad\) return a vector \(\in \mathbb{Z}_{p}^{n}\)
 Public values are generated with functions KDFPub1 and KDFPubN as follows. These functions return values r in the range $0<r<p$.

```
KDFPub1 \((s, i)\) :
    \(r=\operatorname{KDFInternal}(s, i, 0)\)
    \(r \leftarrow\lfloor r / 2\rfloor \cdot 2+1 \quad\) eliminate a 0
    return \(r\)
        \(\in \mathbb{Z}_{p}^{* n}\)
\(\operatorname{KDFPubN}(s, i, n):\)
    \(\forall j \in[1, n]: r_{j}=\operatorname{KDFInternal}(s, i, j)\)
    \(\forall j \in[1, n]: r_{j} \leftarrow\left\lfloor r_{j} / 2\right\rfloor \cdot 2+1 \quad\) eliminate a 0
    return \(\mathbf{r}=\left(r_{1}, r_{2}, \ldots r_{n}\right) \quad\) return a vector \(\in \mathbb{Z}_{p}^{* n}\)
```

Table 1. Identifier values for pseudo-random values.

Private ID	Value Use	
BULLETPROOF_ID_H	1	Generator h
BULLETPROOF_ID_U	2	Generator u
BULLETPROOF_ID_VG	3	Generator \mathbf{g}
BULLETPROOF_ID_VH	4	Generator \mathbf{h}
BULLETPROOF_ID_RCPT_GAMMA	5	Pedersen blinding value
BULLETPROOF_ID_RCPT_MASK	6	Secret mask to hide v
BULLETPROOF_ID_ALPHA	7	Blinding value α
BULLETPROOF_ID_SL	8	Exponenent \mathbf{s}_{L}
BULLETPROOF_ID_SR	9	Exponenent \mathbf{s}_{R}
BULLETPROOF_ID_RHO	10	Exponenent ρ
BULLETPROOF_ID_Y	11	Base for vector \mathbf{y}^{n}
BULLETPROOF_ID_Z	12	z to construct $r(X)$
BULLETPROOF_ID_TAU1	13	Blinding for t_{1}
BULLETPROOF_ID_TAU2	14	Blinding for t_{2}
BULLETPROOF_ID_X	15	Sample value x for $l(X), r(X)$
BULLETPROOF_ID_INNER_ARG_XU	16	Exponent challenge for u in InnerProductArgumentProver
BULLETPROOF_ID_INNER_ARG_VX	17	Vector x used as challenges in InnerProductArgumentProver

4.2 Public parameters

We first define public parameters.

Parameters:

$$
\begin{array}{rlr}
p-\text { prime, such that } q=p \cdot 2+1 \text { is also prime } & \\
g, h, u ; \mathbf{g}, \mathbf{h} & 5 \text { generators of unknown relationship to each other } \in \mathbb{G} ; \mathbb{G}^{n} & \tag{7a}\\
g & =3 & \in \mathbb{G} \\
h & =\text { KDFPub1 }(q, \text { BULLETPROOF_ID_H }) & \in \mathbb{G} \\
u & =\text { KDFPub1 }(q, \text { BULLETPROOF_ID_U }) & \in \mathbb{G}^{n} \\
\mathbf{g} & =\text { KDFPubN }(q, \text { BULLETPROOF_ID_VG }) & \in \mathbb{G}^{n} \\
\mathbf{h}=\text { KDFPubN }(q, \text { BULLETPROOF_ID_VH }) &
\end{array}
$$

p is large subgroup size. q is the prime used for modulo reduction of elements in \mathbb{G}. By construction, 5 generators above or their scalars, as appropriate, are less than p.

4.3 Prover steps

v is low-entropy private value. Prover performs the following steps to produce V, a hiding commitment to it, and a proof that $0 \leq v<2^{n}$.

$$
\begin{align*}
& \gamma=\text { KDFPriv1(BULLETPROOF_ID_GAMMA) } \tag{8a}\\
& V=h^{\gamma} g^{v} \tag{8b}\\
& M=\mathbf{H} 256(p\|g\| h\|\mathbf{g}\| \mathbf{h} \| V) \tag{8c}\\
& \mathbf{a}_{L}:\left\langle\mathbf{a}_{L}, \mathbf{2}^{n}\right\rangle=v \\
& \mathbf{a}_{R}=\mathbf{a}_{L}-\mathbf{1}^{n} \\
& \alpha=\text { KDFPriv1(BULLETPROOF_ID_ALPHA) } \\
& A=h^{\alpha} \mathbf{g}^{\mathbf{a}_{L}} \mathbf{h}^{\mathbf{a}_{R}} \tag{8d}\\
& \mathbf{s}_{L}=\text { KDFPrivN(BULLETPROOF_ID_SL, } n \text {) } \\
& \mathbf{s}_{R}=\text { KDFPrivN(BULLETPROOF_ID_SR, } n \text {) } \\
& \rho=\text { KDFPriv1(BULLETPROOF_ID_RHO) } \\
& S=h^{\rho} \mathbf{g}^{\mathbf{s}_{L}} \mathbf{h}^{\mathbf{s}_{R}} \tag{8e}\\
& t \leftarrow \mathrm{H} 256(M\|A\| S) \\
& y=\operatorname{KDFPub1}(t, \text { BULLETPROOF_ID_Y) } \\
& z=\text { KDFPub1 }(t, \text { BULLETPROOF_ID_Z) } \tag{8~g}\\
& l(X)=\left(\mathbf{a}_{L}-z \cdot \mathbf{1}^{n}\right)+\mathbf{s}_{L} \cdot X \\
& r(X)=\mathbf{y}^{n} \circ\left(\mathbf{a}_{R}+z \cdot \mathbf{1}^{n}+\mathbf{s}_{R} \cdot X\right)+z^{2} \cdot \mathbf{2}^{n} \\
& t(X)=\langle l(X), r(X)\rangle=t_{0}+t_{1} \cdot X+t_{2} \cdot X^{2} \\
& \mathbf{l}_{0}=\mathbf{a}_{L}-z \cdot \mathbf{1}^{n} \\
& \mathbf{l}_{1}=\mathbf{s}_{L} \\
& \text { a secret } \in \mathbb{Z}_{p} \\
& \text { comm. to } v, \in \mathbb{G} \\
& \text { comm. to pub. params and } V \\
& \text { Compose } \mathbf{a}_{L}, \in \mathbb{Z}_{p}^{n} \\
& \in \mathbb{Z}_{p}^{n} \\
& \in \mathbb{Z}_{p} \\
& \text { comm. to } \mathbf{a}_{L} \text { and } \mathbf{a}_{R}, \in \mathbb{G} \\
& \in \mathbb{Z}_{p}^{n} \\
& \in \mathbb{Z}_{p}^{n} \\
& \in \mathbb{Z}_{p} \\
& \text { comm. to } \mathbf{s}_{L}, \mathbf{s}_{R}, \in \mathbb{G} \\
& \text { transcript } \\
& \in \mathbb{Z}_{p}^{*} \tag{8f}\\
& \in \mathbb{Z}_{p}^{*} \\
& \in \mathbb{Z}_{p}^{n}[X] \tag{8h}\\
& \in \mathbb{Z}_{p}^{n}[X] \tag{8i}\\
& \in \mathbb{Z}_{p}[X] \\
& \text { free term, see (} 8 \mathrm{~h} \text {), } \in \mathbb{Z}_{p}^{n} \\
& \text { term at } X \text {, see }(8 \mathrm{~h}), \in \mathbb{Z}_{p}^{n}
\end{align*}
$$

$$
\begin{align*}
& \mathbf{r}_{0}=\mathbf{y}^{n} \circ\left(\mathbf{a}_{R}+z \cdot \mathbf{1}^{n}\right)+z^{2} \cdot \mathbf{2}^{n} \quad \text { free term, see }(8 \mathrm{i}), \in \mathbb{Z}_{p}^{n} \\
& \mathbf{r}_{1}=\mathbf{y}^{n} \circ \mathbf{s}_{R} \quad \text { term at } X \text {, see }(8 \mathrm{i}), \in \mathbb{Z}_{p}^{n} \\
& t_{0}=\left\langle\mathbf{l}_{0}, \mathbf{r}_{0}\right\rangle \\
& t_{1}=\left\langle\mathbf{l}_{1}, \mathbf{r}_{0}\right\rangle+\left\langle\mathbf{l}_{0}, \mathbf{r}_{1}\right\rangle \\
& t_{2}=\left\langle\mathbf{l}_{1}, \mathbf{r}_{1}\right\rangle \\
& \tau_{1}=\text { KDFPriv1(BULLETPROOF_ID_TAU1) } \\
& \tau_{2}=\text { KDFPriv1(BULLETPROOF_ID_TAU2) } \\
& T_{1}=g^{t_{1}} h^{\tau_{1}} \tag{8j}\\
& T_{2}=g^{t_{2}} h^{\tau_{2}} \tag{8k}\\
& t \leftarrow \mathrm{H} 256\left(M||A|| S\left|\mid T_{1} \| T_{2}\right)\right. \\
& x=\operatorname{KDFPub1}(t, \text { BULLETPROOF_ID_X }) \tag{81}\\
& \mathbf{l}=l(X=x)=\mathbf{l}_{0}+\mathbf{s}_{L} \cdot x \\
& \mathbf{r}=r(X=x)=\mathbf{r}_{0}+\mathbf{r}_{1} \cdot x \\
& \hat{t}=\langle\mathbf{l}, \mathbf{r}\rangle \tag{8m}\\
& \tau_{x}=\tau_{2} \cdot x^{2}+\tau_{1} \cdot x+z^{2} \cdot \gamma \\
& \mu=\alpha+\rho \cdot x \\
& h^{\prime}=h^{y^{-i+1}}, \forall i \in[1, n] \text {, } \\
& \mathbf{h}^{\prime}=\left(h_{1}, h_{2}^{y^{-1}}, h_{3}^{y^{-2}}, \ldots, h_{n}^{y^{-n+1}}\right)=\mathbf{h}^{\left(\mathbf{y}^{-n}\right)} \\
& P^{\prime}=\mathbf{g}^{\mathbf{l}} \cdot\left(\mathbf{h}^{\prime}\right)^{\mathbf{r}} \\
& \text { Seed }=t \leftarrow \mathrm{H} 256\left(M\|A\| S\left\|T_{1}\right\| T_{2}\|\hat{t}\| \tau_{x} \| \mu\right) \tag{80}\\
& \in \mathbb{Z}_{p} \\
& \text { Pedersen comm. to } t_{1}, \in \mathbb{G} \\
& \text { Pedersen comm. to } t_{2}, \in \mathbb{G} \\
& \text { transcript } \\
& \in \mathbb{Z}_{p}^{*} \\
& \text { Evaluate (8h) at } x, \in \mathbb{Z}_{p}^{n} \\
& \text { Evaluate (8i) at } x, \in \mathbb{Z}_{p}^{n} \\
& \in \mathbb{Z}_{p} \\
& \text { blinding for } \hat{t} \text {; see (} 8 \mathrm{a} \text {) }, \in \mathbb{Z}_{p} \\
& \alpha, \rho \text { blind } A, S ;(8 \mathrm{~d}),(8 \mathrm{e}), \in \mathbb{Z}_{p} \tag{8n}\\
& \in \mathbb{G} \\
& \in \mathbb{G}^{n} \\
& \in \mathbb{G} \\
& \text { compete transcript and Seed } \\
& a, b, L_{1}, \ldots, L_{\log _{2}(n)}, R_{1}, \ldots, R_{\log _{2}(n)}= \\
& a, b \in \mathbb{Z}_{p}, \text { rest } \in \mathbb{G} \\
& \text { InnerProductArgumentProver }\left(\mathbf{g}, \mathbf{h}^{\prime}, u, P^{\prime}, \hat{t}, \mathbf{l}, \mathbf{r}, \text { Seed }\right) \tag{9a}
\end{align*}
$$

Finally, Prover sends the following quantities to the Verifier:

$$
\begin{gathered}
V \text { see }(8 \mathrm{~b}), \in \mathbb{G} \\
A, S, \text { see }(8 \mathrm{~d}),(8 \mathrm{e}), \in \mathbb{Z}_{p} \\
T_{1}, T_{2}, \text { see }(8 \mathrm{j}),(8 \mathrm{k}), \in \mathbb{G} \\
\hat{t}, \tau_{x}, \mu \text { see }(8 \mathrm{~m})-(8 \mathrm{n}), \in \mathbb{Z}_{p} \\
a, b, L_{1}, \ldots, L_{\log _{2}(n)}, R_{1}, \ldots, R_{\log _{2}(n)} \text { see }(9 \mathrm{a})
\end{gathered}
$$

4.4 Verifier steps

Verifier starts with the input received from the Prover, as specified at the end of the sec. 4.3, copied immediately below.

$$
\begin{aligned}
& V \\
& A, S \\
& T_{1}, T_{2} \\
& \hat{t}, \tau_{x}, \mu \\
& a, b, L_{1}, \ldots, L_{l o g_{2}(n)}, R_{1}, \ldots, R_{\log _{2}(n)}
\end{aligned}
$$

Verifier calculates the following pseudo-random values from the above public values:

$$
\begin{gathered}
x, \text { as (81) } \\
y, z, \text { as (8f), (8g) } \\
\text { Seed, as (8o) } \\
x_{u}, x_{1}, \ldots, x_{\log _{2}(n)} \text { as (15a), (15b) }
\end{gathered}
$$

Verifier performs the following steps:

$$
\begin{align*}
& \delta(y, z)=\left(z-z^{2}\right) \cdot\left\langle\mathbf{1}^{n}, \mathbf{y}^{n}\right\rangle-z^{3}\left\langle\mathbf{1}^{n}, \mathbf{2}^{n}\right\rangle \quad=\left(z-z^{2}\right) \sum_{i=0}^{n-1} y^{i}-z^{3}\left(2^{n}-1\right) \\
& g^{-\hat{t}+\delta(y, z)} h^{-\tau_{x}} V^{z^{2}} T_{1}^{x} T_{2}^{x^{2}} \stackrel{?}{=} 1 \\
& b(i, j)= \begin{cases}1 & \text { if the }\left(\log _{2}(n)-j\right) \text { th bit of } i-1 \text { is } 1 \\
-1 & \text { otherwise }\end{cases} \\
& \forall i \in[1, n] \text { do } \\
& s_{i}=\prod_{j=1}^{\log _{2}(n)} x_{j}^{b(i, j)} \\
& \in \mathbb{Z}_{p} \\
& l_{i}=s_{i} \cdot a+z \\
& \in \mathbb{Z}_{p} \\
& r_{i}=y^{1-i}\left(s_{i}^{-1} \cdot b-z^{2} \cdot 2^{i-1}\right)-z \quad \in \mathbb{Z}_{p} \\
& \text { done } \\
& \mathbf{l}=\left(l_{1}, \ldots, l_{n}\right) \\
& \in \mathbb{Z}_{p}^{n} \\
& \mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \\
& \in \mathbb{Z}_{p}^{n} \\
& \mathbf{g}^{\mathbf{1}} \mathbf{h}^{\mathbf{r}} u^{x_{u} \cdot(a b-\hat{t})} h^{\mu} A^{-1} S^{-x}\left(\prod_{j=1}^{\log _{2}(n)} L_{j}^{x_{j}^{2}} R_{j}^{x_{j}^{-2}}\right)^{-1} \stackrel{?}{=} 1 \tag{13b}
\end{align*}
$$

For higher performance (13a) and (13b) should be be combined and then the calculation performed via multi-exponentiation.

4.5 Verifier steps for a given $\{1, r\}$. Debug only.

This section exists for implementation testing. It offers an easier method to check that $0 \leq v<2^{n}$ based on \mathbf{l}, \mathbf{r} directly, without InnerProductArgumentProver.

$$
\begin{array}{rlr}
\delta(y, z) & =\left(z-z^{2}\right) \cdot\left\langle\mathbf{1}^{n}, \mathbf{y}^{n}\right\rangle-z^{3}\left\langle\mathbf{1}^{n}, \mathbf{2}^{n}\right\rangle & =\left(z-z^{2}\right) \sum_{i=0}^{n-1} y^{i}-z^{3}\left(2^{n}-1\right), \in \mathbb{Z}_{p} \\
g^{\hat{t}} h^{\tau_{x}} & \stackrel{?}{=} V^{x^{2}} \cdot g^{\delta(y, z)} \cdot T_{1}^{x} \cdot T_{2}^{x^{2}} & \text { check that } \hat{t}=t(x)=t_{0}+t_{1} x+t_{2} x^{2} \tag{14a}\\
P & =A \cdot S^{x} \cdot \mathbf{g}^{-z} \cdot\left(\mathbf{h}^{\prime}\right)^{z \cdot \mathbf{y}^{n}+z^{2} \cdot \mathbf{2}^{n}} & \text { compute a commitment to } l(x), r(x), \in \mathbb{G} \\
P \stackrel{?}{=} h^{\mu} \cdot \mathbf{g}^{\mathbf{l}} \cdot\left(\mathbf{h}^{\prime}\right)^{\mathbf{r}} & \text { check that } l(x), r(x) \text { are correct } \\
\hat{t} \stackrel{?}{=}\langle\mathbf{l}, \mathbf{r}\rangle & \text { check that } \hat{t} \text { is correct, } \in \mathbb{Z}_{p}
\end{array}
$$

5 Inner-Product Argument for the Prover

This section defines a subroutine used in the main algorithm in sec. 4.
The following InnerProductArgumentProver is an adaptation of Protocol 1 and Protocol 2 from [1], limited to the prover. We removed recursion, merged two protocols, removed steps not used by the prover, made the protocol non-inteactive, and introduced additional quantities to improve readability, such as (15d) - (15e).
$n \geq 2$, which is also a power of 2 , is required. The parameters have following membership: $\mathbf{g}, \mathbf{h} \in \mathbb{G}^{n}, P \in \mathbb{G}, c \in \mathbb{Z}_{p}, \mathbf{a}, \mathbf{b} \in \mathbb{Z}_{p}^{n}$.

InnerProductArgumentProver($\mathbf{g}, \mathbf{h}, u, P, c, \mathbf{a}, \mathbf{b}$, Seed) :

$$
\begin{array}{lr}
x_{u}=\text { KDFPub1(Seed, BULLETPROOF_ID_INNER_ARG_XU) } & \in \mathbb{Z}_{p}^{*}(15 \mathrm{a}) \\
P \leftarrow P \cdot u^{x_{u} \cdot c} & \text { reassign } \\
u \leftarrow u^{x_{u}} & \text { reassign } \\
\mathbf{x}=\text { KDFPubN(Seed, BULLETPROOF_ID_INNER_ARG_VX) } & \in \mathbb{Z}_{p}^{* n}(15 \mathrm{~b}) \tag{15b}\\
& \\
\forall i \in\left[1, l_{0} g_{2}(n)\right] \text { do } & : \\
n^{\prime}=n / 2^{i} & \{n / 2, n / 4, \ldots 1\}(15 \mathrm{c}) \\
\left(\mathbf{a}_{L}, \mathbf{a}_{R}\right)=\mathbf{a}=\left(\mathbf{a}_{\left[: \mathbf{n}^{\prime}\right]}, \mathbf{a}_{\left[\mathbf{n}^{\prime}:\right]}\right) & \text { split in half }(15 \mathrm{~d}) \\
\left(\mathbf{b}_{L}, \mathbf{b}_{R}\right)=\mathbf{b}=\left(\mathbf{b}_{\left[: \mathbf{n}^{\prime}\right]}, \mathbf{b}_{\left[\mathbf{n}^{\prime}:\right]}\right) & \text { split in half } \\
\left(\mathbf{g}_{L}, \mathbf{g}_{R}\right)=\mathbf{g}=\left(\mathbf{g}_{\left[: \mathbf{n}^{\prime}\right]}, \mathbf{g}_{\left[\mathbf{n}^{\prime}:\right]}\right) & \text { split in half } \\
\left(\mathbf{h}_{L}, \mathbf{h}_{R}\right)=\mathbf{h}=\left(\mathbf{h}_{\left[: \mathbf{n}^{\prime}\right]}, \mathbf{h}_{\left[\mathbf{n}^{\prime}:\right]}\right) & \text { split in half }(15 \mathrm{e}) \\
c_{L}=\left\langle\mathbf{a}_{L}, \mathbf{b}_{R}\right\rangle & \in \mathbb{Z}_{p} \\
c_{R}=\left\langle\mathbf{a}_{R}, \mathbf{b}_{L}\right\rangle & \in \mathbb{Z}_{p}
\end{array}
$$

$$
\begin{array}{lr}
L_{i}=\mathbf{g}_{R}^{\mathbf{a}_{L}} \mathbf{h}_{L}^{\mathbf{b}_{R}} u^{c_{L}} & \in \mathbb{G} \\
R_{i}=\mathbf{g}_{L}^{\mathbf{a}_{R}} \mathbf{h}_{R}^{\mathbf{b}_{L}} u^{c_{R}} & \in \mathbb{G} \\
\mathbf{g} \leftarrow \mathbf{g}_{L}^{x_{i}^{-1}} \circ \mathbf{g}_{R}^{x_{i}} & \text { reassign; size is halved } \\
\mathbf{h} \leftarrow \mathbf{h}_{L}^{x_{i}} \circ \mathbf{h}_{R}^{x_{i}^{-1}} & \text { reassign; size is halved } \\
\mathbf{a} \leftarrow \mathbf{a}_{L} \cdot x_{i}+\mathbf{a}_{R} \cdot x_{i}^{-1} \in \mathbb{Z}_{p} & \text { reassign; size is halved } \\
\mathbf{b} \leftarrow \mathbf{b}_{L} \cdot x_{i}^{-1}+\mathbf{b}_{R} \cdot x_{i} \in \mathbb{Z}_{p} & \text { reassign; size is halved } \\
\text { done } & \\
\text { Return } & \\
\begin{array}{ll}
a, b & \text { single element in } \mathbf{a}, \mathbf{b},
\end{array} & \in \mathbb{Z} \\
L_{1}, \ldots, L_{l o g_{l o g}(n)} \\
R_{1}, \ldots, R_{l o g_{2}(n)} &
\end{array}
$$

Internal consistency check: $g^{a} h^{b} u^{a b}=P \prod_{j=1}^{\log _{2}(n)} L_{j}^{x_{j}^{2}} R_{j}^{x_{j}^{-2}}$, immediately before the Return statement.

6 Remaining work

- Describe the algorithm in the elliptic curve group with prime group order (beneficial for storage efficiency and simpler).
- Expand to aggregation of proofs and verifies (sec 4.3 and 6.2 of [1]).
- Add multi-exponentiation (sec. 3.1 of [1]).
- Add multi-exponentiation to aggregated proofs ($\sec 6.2$ of [1]).

References

1. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short Proofs for Confidential Transactions and More. Cryptology ePrint Archive, Report 2017/1066 (2017) https://eprint.iacr.org/2017/ 1066.
2. Indutny, F.: BigNum in pure javascript. GitHub source code (2019) https://github.com/indutny/bn.js/.
3. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44, 519-521 (1985) https://doi. org/10.1090/S0025-5718-1985-0777282-X.
4. Jivsov, A.: Compact representation of an elliptic curve point. Internet draft (2014) https://tools.ietf.org/ id/draft-jivsov-ecc-compact-05.html.
