
A concrete instantiation of Bulletproof zero-knowledge

proof

Andrey Jivsov
crypto@brainhub.org

Abstract. This work provides an instantiation of the Bulletproof zero-knowledge algorithm in modulo
prime number fields. The primary motivation for this work is to help readers understand the steps of
the Bulletproof protocol.

1 Introduction

This work provides specific steps suitable for an implementation of the work by Bünz et al.
[1]. We work around the following difficulties:

– Lack of concise protocol steps. Multiple alternative steps are provided in [1].

– It is difficult to follow the entire algorithm due to its complexity. A cookbook-like steps
are desired.

– Some quantities are left unspecified, e.g. they require solving equations.

– Only an interactive version is defined.

– Arithmetic in the composite order of a group G is undefined, yet the algorithm is defined
via exponentiation modulo prime number, a group of composite order.

– Random quantities should be derived via KDF for the benefit of low-entropy environments
and easier testing.

This work condenses 45 pages of [1] into an algorithm that should be easier to understand
to an implementer and easier to maintain in the future.

2 Notations

We follow notations in [1] with following additional notations.

|| denotes concatenation. a← a · b means that after this line the value of a equals to the
previous value of a times b. This is a local operation limited to the relevant function, e.g. we
don’t change the global a.

G+ is used to denote ”positive” half of elements in G, as defined in sec. 3. We use G+

for comparison or for public elements in G.

2

3 Group operations in G modulo safe prime

In this section we clarify details for the operations in G.
We instantiate G as operations modulo safe prime q. The p used with [1] is p = (q−1)/2,

and is a prime as well.
Many intermediate steps in Bulletproof algorithm are exponentiations of elements in

G. For example, for a g ∈ G, we might need to calculate ga·b. How is the operation a · b
performed in this example, given that the group order of G is 2p, a composite number? In
general, some operations, such as a multiplicative inverse, are undefined in the group mod
2p. Some software libraries, such bn.js [2], and methods, such as Motgomery multiplication
[3], are unsuitable for an even modulo arithmetic.

We adopts the following approach, similiar to [4].
All operations on the exponenet are performed modulo p. This reduction of an exponenet,

v.s. 2p, affects the resulting elelement inG in such a way that it loses the sign of the element in
G, in other words, we lose track of whether the result should have been x or −x = q−x ∈ G.

To see why, consider that ∀x, y : x > y (mod 2p) we must have x = p + y as the only
choice. Observe that gp = {1,−1} (mod q) ∈ G, which explains the above reference to the
sign.

We next define the subgroup G+ of G that we will use shortly:

G+ = {∀x ∈ G : x ≤ p} (1a)

We next define the mapping G 7→ G+ via canonical(·) operation.
A canonical representation of any x ∈ G, via a mapping G 7→ G+, is defined as follows:

∀x ∈ G

canonical(x) =

{
x if x ≤ (q − 1)/2 = p
q − x otherwise

(2a)

The canonical() operation returns the smallest element of two, which can be naturally
encoded in a fewest number of bits. The following properties of canonical() follow from the
above definitions. For any x, a, b, c ∈ G:

canonical(x) ∈ G+ (3a)

canonical(x) = canonical(−x) (3b)

canonical(x) ≤ x ≤ p < q (3c)

∀x < p : canonical(x) = x (3d)

canonical(canonical(a) · canonical(b)) = canonical(a · b) (3e)

canonical(canonical(a) · canonical(b) · canonical(c)) = canonical(a · b · c) =

= canonical(canonical(a · b) · c)) (3f)

3

4 The algorithm

In the following algorithm that is an adaptation of [1] the Prover convinces the Verifier that
it knows a public commitment V to a secret value v, and provides a proof that 0 ≤ v < 2n.
n must be a power of 2.

We are achieving two main properties:

– Homomorthic property. For two pairs of (commitment, secret value), (Va, va) and
(Vb, vb), we can generate the commitment to the sum of secret values va + vb simply as
Va · Vb.

– Protection from negative secret values. The main contribution of [1] and this work
is to provide a publicly verifiable statement that a secret value v is non-negative and less
than a specified maximum.

4.1 KDFs

We generate multiple pseudo-random values in this algorithm. There are two sets of these
values: private and public.

i is the public identifier of the secret, an integer, as shown in the table 1. The size of the
field that encodes i, j, and k is 1 byte.

H256 is a cryptographic hash function with 256-bit output, such as SHA2-256 or Kec-
cak256.

The size of the field that encodes any element in Zp is dlog2(p)/8e bytes. The element is
stored in the big-endian format.

We use the following helper function to build KDFs.

KDFInternal(s, i, j) :

if(log2(s) > 256) : s = H256(s)

K = s⊕ (i · 28)⊕ j
m = dlog2(p)/256e
∀k ∈ [1,m] : r = H256(K||1)||...H256(K||k)...||H256(K||m) mod p

return r

The lowest bit of H256(K||m) is the lowest bit of the value before reduction mod p.
The private values are generated from the 256-bit seed SeedPriv with two KDF functions

KDFPriv1 and KDFPrivN, as shown next. These functions return values in the range r : 0 ≤
r < p.

SeedPriv
$←− 1256 Prover ganerates this seed

KDFPriv1(i) = KDFInternal(SeedPriv, i, 0) return an integer ∈ Zp

4

KDFPrivN(i, n) :

∀j ∈ [1, n] : ri = KDFInternal(SeedPriv, i, j)

return r = (r1, r2, ...rn) return a vector ∈ Znp

Public values are generated with functions KDFPub1 and KDFPubN as follows. These
functions return values r in the range 0 < r < p.

KDFPub1(s, i) :

r = KDFInternal(s, i, 0)

r ← br/2c · 2 + 1 eliminate a 0

return r ∈ Z∗np

KDFPubN(s, i, n) :

∀j ∈ [1, n] : rj = KDFInternal(s, i, j)

∀j ∈ [1, n] : rj ← brj/2c · 2 + 1 eliminate a 0

return r = (r1, r2, ...rn) return a vector ∈ Z∗np

Table 1. Identifier values for pseudo-random values.

Private ID Value Use

BULLETPROOF ID H 1 Generator h
BULLETPROOF ID U 2 Generator u
BULLETPROOF ID VG 3 Generator g
BULLETPROOF ID VH 4 Generator h
BULLETPROOF ID RCPT GAMMA 5 Pedersen blinding value
BULLETPROOF ID RCPT MASK 6 Secret mask to hide v
BULLETPROOF ID ALPHA 7 Blinding value α
BULLETPROOF ID SL 8 Exponenent sL
BULLETPROOF ID SR 9 Exponenent sR
BULLETPROOF ID RHO 10 Exponenent ρ
BULLETPROOF ID Y 11 Base for vector yn

BULLETPROOF ID Z 12 z to construct r(X)
BULLETPROOF ID TAU1 13 Blinding for t1
BULLETPROOF ID TAU2 14 Blinding for t2
BULLETPROOF ID X 15 Sample value x for l(X), r(X)
BULLETPROOF ID INNER ARG XU 16 Exponent challenge for u in InnerProductArgumentProver
BULLETPROOF ID INNER ARG VX 17 Vector x used as challenges in InnerProductArgumentProver

4.2 Public parameters

We first define public parameters.

5

Parameters:

p− prime, such that q = p · 2 + 1 is also prime

g, h, u; g,h 5 generators of unknown relationship to each other ∈ G;Gn (7a)

g = 3

h = KDFPub1(q, BULLETPROOF ID H) ∈ G
u = KDFPub1(q, BULLETPROOF ID U) ∈ G
g = KDFPubN(q, BULLETPROOF ID VG) ∈ Gn

h = KDFPubN(q, BULLETPROOF ID VH) ∈ Gn

p is large subgroup size. q is the prime used for modulo reduction of elements in G. By
construction, 5 generators above or their scalars, as appropriate, are less than p.

4.3 Prover steps

v is low-entropy private value. Prover performs the following steps to produce V , a hiding
commitment to it, and a proof that 0 ≤ v < 2n.

γ = KDFPriv1(BULLETPROOF ID GAMMA) a secret ∈ Zp (8a)

V = hγgv comm. to v,∈ G (8b)

M = H256(p||g||h||g||h||V) comm. to pub. params and V (8c)

aL :〈aL,2n〉 = v Compose aL,∈ Znp
aR = aL − 1n ∈ Znp
α = KDFPriv1(BULLETPROOF ID ALPHA) ∈ Zp
A = hαgaLhaR comm. to aL and aR,∈ G (8d)

sL = KDFPrivN(BULLETPROOF ID SL, n) ∈ Znp
sR = KDFPrivN(BULLETPROOF ID SR, n) ∈ Znp
ρ = KDFPriv1(BULLETPROOF ID RHO) ∈ Zp
S = hρgsLhsR comm. to sL, sR,∈ G (8e)

t← H256(M ||A||S) transcript

y = KDFPub1(t, BULLETPROOF ID Y) ∈ Z∗p (8f)

z = KDFPub1(t, BULLETPROOF ID Z) ∈ Z∗p (8g)

l(X) = (aL − z · 1n) + sL ·X ∈ Znp [X] (8h)

r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n ∈ Znp [X] (8i)

t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2 ∈ Zp[X]

l0 = aL − z · 1n free term, see (8h),∈ Znp
l1 = sL term at X, see (8h),∈ Znp

6

r0 = yn ◦ (aR + z · 1n) + z2 · 2n free term, see (8i),∈ Znp
r1 = yn ◦ sR term at X, see (8i),∈ Znp
t0 = 〈l0, r0〉 ∈ Zp
t1 = 〈l1, r0〉+ 〈l0, r1〉 ∈ Zp
t2 = 〈l1, r1〉 ∈ Zp
τ1 = KDFPriv1(BULLETPROOF ID TAU1) ∈ Zp
τ2 = KDFPriv1(BULLETPROOF ID TAU2) ∈ Zp
T1 = gt1hτ1 Pedersen comm. to t1,∈ G (8j)

T2 = gt2hτ2 Pedersen comm. to t2,∈ G (8k)

t← H256(M ||A||S||T1||T2) transcript

x = KDFPub1(t, BULLETPROOF ID X) ∈ Z∗p (8l)

l = l(X = x) = l0 + sL · x Evaluate (8h) at x,∈ Znp
r = r(X = x) = r0 + r1 · x Evaluate (8i) at x,∈ Znp
t̂ = 〈l, r〉 ∈ Zp (8m)

τx = τ2 · x2 + τ1 · x+ z2 · γ blinding for t̂; see (8a),∈ Zp
µ = α + ρ · x α, ρ blind A, S; (8d), (8e),∈ Zp (8n)

h′ = hy
−i+1

,∀i ∈ [1, n], ∈ G

h′ = (h1, h
y−1

2 , hy
−2

3 , ..., hy
−n+1

n) = h(y−n) ∈ Gn

P ′ = gl · (h′)r ∈ G
Seed = t← H256(M ||A||S||T1||T2||t̂||τx||µ) compete transcript and Seed (8o)

a, b, L1, ..., Llog2(n), R1, ..., Rlog2(n) = a, b ∈ Zp, rest ∈ G
InnerProductArgumentProver(g,h′, u, P ′, t̂, l, r, Seed) (9a)

Finally, Prover sends the following quantities to the Verifier:

V see (8b),∈ G
A, S, see (8d), (8e),∈ Zp
T1, T2, see (8j), (8k),∈ G
t̂, τx, µ see (8m) - (8n) ,∈ Zp

a, b, L1, ..., Llog2(n),R1, ..., Rlog2(n) see (9a)

7

4.4 Verifier steps

Verifier starts with the input received from the Prover, as specified at the end of the sec. 4.3,
copied immediately below.

V

A, S,

T1, T2,

t̂, τx, µ

a, b, L1, ..., Llog2(n), R1, ..., Rlog2(n)

Verifier calculates the following pseudo-random values from the above public values:

x, as (8l)

y, z, as (8f), (8g)

Seed, as (8o)

xu, x1, ..., xlog2(n) as (15a), (15b)

Verifier performs the following steps:

δ(y, z) = (z − z2) · 〈1n,yn〉 − z3〈1n,2n〉 = (z − z2)
n−1∑
i=0

yi − z3(2n − 1)

g−t̂+δ(y,z)h−τxV z2T x1 T
x2

2
?
= 1 equiv. to (14a) (13a)

b(i, j) =

{
1 if the (log2(n)− j)th bit of i− 1 is 1
−1 otherwise

∀i ∈ [1, n] do :

si =

log2(n)∏
j=1

x
b(i,j)
j ∈ Zp

li = si · a+ z ∈ Zp
ri = y1−i(s−1i · b− z2 · 2i−1)− z ∈ Zp

done

l = (l1, ..., ln) ∈ Znp
r = (r1, ..., rn) ∈ Znp

glhruxu·(ab−t̂)hµA−1S−x

(
log2(n)∏
j=1

L
x2j
j R

x−2
j

j

)−1
?
= 1 (13b)

For higher performance (13a) and (13b) should be be combined and then the calculation
performed via multi-exponentiation.

8

4.5 Verifier steps for a given {l, r}. Debug only.

This section exists for implementation testing. It offers an easier method to check that
0 ≤ v < 2n based on l, r directly, without InnerProductArgumentProver.

δ(y, z) = (z − z2) · 〈1n,yn〉 − z3〈1n,2n〉 = (z − z2)
n−1∑
i=0

yi − z3(2n − 1),∈ Zp

gt̂hτx
?
= V x2 · gδ(y,z) · T x1 · T x

2

2 check that t̂ = t(x) = t0 + t1x+ t2x
2 (14a)

P = A · Sx · g−z · (h′)z·yn+z2·2n

compute a commitment to l(x), r(x),∈ G

P
?
= hµ · gl · (h′)r check that l(x), r(x) are correct

t̂
?
= 〈l, r〉 check that t̂ is correct,∈ Zp

5 Inner-Product Argument for the Prover

This section defines a subroutine used in the main algorithm in sec. 4.
The following InnerProductArgumentProver is an adaptation of Protocol 1 and Protocol

2 from [1], limited to the prover. We removed recursion, merged two protocols, removed
steps not used by the prover, made the protocol non-inteactive, and introduced additional
quantities to improve readability, such as (15d) - (15e).

n ≥ 2, which is also a power of 2, is required. The parameters have following membership:
g,h ∈ Gn, P ∈ G, c ∈ Zp, a,b ∈ Znp .

InnerProductArgumentProver(g,h, u, P, c, a,b, Seed) :

xu = KDFPub1(Seed, BULLETPROOF ID INNER ARG XU) ∈ Z∗p (15a)

P ← P · uxu·c reassign

u← uxu reassign

x = KDFPubN(Seed, BULLETPROOF ID INNER ARG VX) ∈ Z∗np (15b)

∀i ∈ [1, log2(n)] do :

n′ = n/2i {n/2, n/4, ...1} (15c)

(aL, aR) = a = (a[:n′], a[n′:]) split in half (15d)

(bL,bR) = b = (b[:n′],b[n′:]) split in half

(gL,gR) = g = (g[:n′],g[n′:]) split in half

(hL,hR) = h = (h[:n′],h[n′:]) split in half (15e)

cL = 〈aL,bR〉 ∈ Zp
cR = 〈aR,bL〉 ∈ Zp

9

Li = gaL
R hbR

L ucL ∈ G
Ri = gaR

L hbL
R ucR ∈ G

g← g
x−1
i
L ◦ gxiR reassign; size is halved

h← hxiL ◦ h
x−1
i
R reassign; size is halved

a← aL · xi + aR · x−1i ∈ Zp reassign; size is halved

b← bL · x−1i + bR · xi ∈ Zp reassign; size is halved

done

Return :

a, b single element in a,b,∈ Zp
L1, ..., Llog2(n) ∈ G
R1, ..., Rlog2(n) ∈ G

Internal consistency check: gahbuab = P
∏log2(n)

j=1 L
x2j
j R

x−2
j

j , immediately before the Return
statement.

6 Remaining work

– Describe the algorithm in the elliptic curve group with prime group order (beneficial for
storage efficiency and simpler).

– Expand to aggregation of proofs and verifies (sec 4.3 and 6.2 of [1]).
– Add multi-exponentiation (sec. 3.1 of [1]).
– Add multi-exponentiation to aggregated proofs (sec 6.2 of [1]).

References

1. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short Proofs for Confidential
Transactions and More. Cryptology ePrint Archive, Report 2017/1066 (2017) https://eprint.iacr.org/2017/

1066.
2. Indutny, F.: BigNum in pure javascript. GitHub source code (2019) https://github.com/indutny/bn.js/.
3. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44, 519-521 (1985) https://doi.

org/10.1090/S0025-5718-1985-0777282-X.
4. Jivsov, A.: Compact representation of an elliptic curve point. Internet draft (2014) https://tools.ietf.org/

id/draft-jivsov-ecc-compact-05.html.

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://github.com/indutny/bn.js/
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html
https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html

	Introduction
	Notations
	Group operations in G modulo safe prime
	The algorithm
	KDFs
	Public parameters
	Prover steps
	Verifier steps
	Verifier steps for a given {l, r}. Debug only.

	Inner-Product Argument for the Prover
	Remaining work

