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Abstract
Learning useful representations from unstructured data is one
of the core challenges, as well as a driving force, of modern
data-driven approaches. Deep learning has demonstrated the
broad advantages of learning and harnessing such representa-
tions.

In this paper, we introduce a GAN-based representation
learning approach for password guessing. We show that an
abstract password representation naturally offers compelling
and versatile properties that can be used to open new direc-
tions in the extensively studied, and yet presently active, pass-
word guessing field. These properties can establish novel
password generation techniques that are neither feasible nor
practical with the existing probabilistic and non-probabilistic
approaches. Based on these properties, we introduce: (1) A
framework for password guessing for practical scenarios
where partial knowledge about target passwords is available
and (2) an Expectation Maximization-inspired framework that
can dynamically adapt the estimated password distribution to
match the distribution of the attacked password set, leading
to an optimal guessing strategy.

1 Introduction

Text-based passwords remain the most common form of au-
thentication, as they are both easy to implement and familiar
(to users) . However, text-based passwords are vulnerable to
guessing attacks. These attacks have been extensively stud-
ied, and it is still an active area of research. Modern pass-
word guessing attacks are founded on the observation that
human-chosen passwords are not uniformly distributed in the
password space (i.e., all possible strings). This is due to the
natural preference of choosing (easily-)memorable passwords
that cover only a small fraction of the exponentially large
password space. As a consequence, real-world password dis-
tributions are typically composed by few dense zones that can
be feasibly estimated by an adversary to perform password-
space reduction attacks [59]. Along that line, several proba-
bilistic approaches have been proposed [28, 42, 57]. These
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Figure 1: A small section of the induced latent space around
the latent point for the password “rockyou”.

techniques - under different assumptions - try to directly es-
timate the probability distribution behind a set of observed
passwords. Such estimation is then used to generate suitable
guesses and perform efficient password guessing attacks.
Orthogonal to the current lines of research, we demonstrate
that an adversary can further expand the attack possibilities by
leveraging representation learning techniques [19]. Represen-
tation learning aims at learning useful and explanatory repre-
sentations [19] from a massive collection of unstructured data.
By applying this general approach on a corpus of leaked pass-
words [15], we demonstrate the advantages that an adversary
can gain by learning a suitable representation of the observed
password distribution; rather than directly estimating it. In
this paper, we show that such password representation indeed
permits an attacker to establish novel password guessing tech-
niques that further jeopardize password-based authentication



systems.

Inspired by the recently introduced deep learning-based ap-
proach for password guessing, i.e., PassGAN [35], we choose
to model the representation of passwords in the latent space of
an instance of Generative Adversarial Networks (GAN) [30]
generator. This representation, thanks to its inherent smooth-
ness [19], is able to enforce a semantic organization in
the high-dimensional password space. Such an organization
mainly implies that respective representations of semantically-
related passwords are closer in the latent space of the genera-
tor. As a consequence, geometric relations in the latent space
directly translate to semantic relations in the data space. A rep-
resentative example of this phenomenon is loosely depicted
in Figure |, where we show some latent points (with their
respective plain-text passwords) localized in a small section
of the induced latent space.

We can exploit such geometric relations to perform a pecu-
liar form of conditional password generation. In the study of
such relations, we characterize two main properties, namely,
password strong locality and password weak locality. These
locality principles enforce different forms of passwords or-
ganization that allow us to design two novel password guess-
ing frameworks, Substring Password Guessing (SSPG) and
Dynamic Password Guessing (DPG). We highlight that the
state-of-the-art approaches are either unable or inefficient to
perform such type of advanced attacks. The major contribu-
tions of our work are as follows:

1. We are the first to demonstrate the potential of using
fully unsupervised representation learning in the domain
of password guessing.

2. We introduce a probabilistic and completely unsuper-
vised form of template-based passwords generation. Us-
ing this technique, we build a practical framework that
is able to efficiently perform targeted password guessing
in the presence of partial knowledge. We call this frame-
work SSPG. SSPG can be used: (1) by an adversary to
increase the impact of side channels and similar pass-
word attacks [16, 18, 41, 56]; or (2) by a legitimate user
to recover his/her password. We show the efficiency of
SSPG with respect to its direct competitors via experi-
mental evaluations.

3. We introduce the concept of DPG: DPG is the password
guessing approach that dynamically adapts the guess-
ing strategy based on the feedback received from the
interaction with the attacked passwords set. We build an
Expectation-Maximization inspired DPG implementa-
tion based on the principle of password weak locality.
DPG shows that an attacker can consistently increase the
impact of the attack by leveraging the passwords guessed
during a running attack.

It is important to highlight that these properties, and their
distinctive capabilities, come practically for free with the la-

tent representation learned by the underlying deep generative
model. In addition, the ongoing continuous developments
in the GAN framework would naturally further improve our
approaches.

Organization: Section 2 gives an overview of the funda-
mental concepts related to our work. Here, we also present
our model improvements and the tools upon which our core
work is based. We present password strong locality along with
SSPG in Section 3 and password weak locality along with
DPG in Section 4. The evaluation of our proposed techniques
is presented in their respective sections. Section 5 briefly
discusses relevant previous works. Section 6 concludes the
paper, although supplementary information are provided in
Appendices.

2 Background and preliminaries

In Section 2.1, we explain GAN and related concepts that
are important to understand our work. Section 2.2 briefly
discusses the technical aspects of PassGAN, which is the
closest work to ours. In Section 2.3, we present our model
improvements and the tool that is a fundamental building
block in our approach.

2.1 Generative Adversarial Network (GAN)

GAN is a framework to train a parametric probabilistic
model to perform implicit estimation of an unknown tar-
get data distribution p*(x), for a given observed random
variable x [29, 30].

In contrast to the common prescribed probabilistic mod-
els [25], implicit probabilistic models do not explicitly esti-
mate the probability distribution; they instead approximate
the stochastic procedure that actually generates data [43]. In
other words, we can sample data points from the model as if
they were sampled from a random variable following p(x).
Although, we cannot directly compute the probability of a
given state x; of x.

This class of models is capable of successfully representing
data distribution defined in a very high dimensional space,
such as in the case of images [21]. GAN generators have
established the new state-of-art in several generative tasks [21,
36, 60].

The parametric function used for the estimation is a deep
neural network defined following an adversarial training
approach. The latter process is guided by a second net-
work D (i.e., the critic/discriminator), which gives a density
estimation-by-comparison [43] loss function to the genera-
tive model G (i.e., the generator). The adversarial training by-
passes the necessity of defining an explicit likelihood-function
and allows us to have a good estimation of very sharp distri-
butions [29].

GAN generators are latent variables models. They assume
that each observable data instance can be modeled by a set of k



latent variables. The learned generator acts as a deterministic
mapping function G : Z — X between the latent space and
the data space (i.e., where the observed data is defined). The
assumed latent space is continuous Z : R¥, and its points (that
we refer to as latent points) are distributed following a simple
uninformative prior distribution p(z) that we refer to as prior
latent distribution!, where the semantic aspects of the latent
variables are completely entrusted to the generator that learns
them in an unsupervised way.

The probability distribution represented by the generator
has the following form:

p(x) = p(x;0)p(z), )

where 0 is the set of learnable parameters of the generator
(i.e., primarily the weights of the neural network). Both k
and p(z) can be arbitrary chosen and fixed before the train-
ing. They can be intended as hyper-parameters of the model.
Typical choices for p(z) are A (0,1I) or U0, 1] [29].

Sampling points from the latent space according to p(z)
and then mapping them in the data-space through the genera-
tor, is equivalent to sampling data points from the data space
X according to p(x), where p(x) is the approximation of the
target probability distribution p*(x) estimated by the gener-
ator. During this operation, we can generally also consider
an arbitrary p(z) that can be different> from p(z). In the rest
of this paper, we will refer to the probability density func-
tion p(z) of the latent space with the general term of latent
distribution.

To accomplish the generative task, the latent representation
is modeled to be able to capture the posterior distribution of
the underlying explanatory factors of the observed data [47].
Similar to the feature embedding techniques [31, 37], the la-
tent representations of semantically bounded data points show
strong geometric relations in the latent space [47]. As a result
of these properties, such unsupervised learned representation
is often used for several other external tasks [48-50].

2.2 PassGAN and PassGAN+

Hitaj et al. in their work PassGAN [35] demonstrated the
application of deep generative models as an implicit estima-
tor of password distribution. The capabilities of such models
are a result of: (1) their adversarial training process; and
(2) the high capacity deep neural networks used for func-
tion approximation. These characteristics enable the model
to capture the long-tailed distribution of a real-world pass-
words leak and outperform in expressivity other state-of-the-
art tools [35]. PassGAN harnesses a Wasserstein GAN with
gradient penalty [33] and a residual-block-based architec-
ture [34]. It assumes a latent space that has standard normal

I'The adjective “prior” refers to the fact that we assume the latent vari-
ables are initially distributed as p(z).
2 At a cost of representing a distribution different from p* (x).

distribution as its prior latent distribution and dimensionality
equal to 128. The model is trained using an 80-20% split
of the well known RockYou [15] password leak and only
passwords with 10 or fewer characters are considered. They
obtained their final test-set by removing the duplicate pass-
words and the common passwords occurring in both train-set
and test-set.

PassGAN, due to its inherent training instability, does not
exploit the full potential of the deep generative models in
the context of password guessing. We propose a series of
improvements in Section 2.3 to overcome these limitations.
We will use the improved model (PassGAN+) as the basis for
our encoder.

2.3 Our improvements & tools

In Section 2.3.1, we propose our model improvements that
allows us to outperform PassGAN in the task of password
guessing. In Section 2.3.2, we present our encoder network
that we use as a tool to learn the inverse mapping. Our core
contributions are founded upon these improvements and tools.

2.3.1 Model improvements

The password guessing approach presented in PassGAN suf-
fers from an inherent training instability [35]. Hence, the
generator and the discriminator may not perform a sufficient
number of training iterations. This may lead to a limited
approximation of the target data distribution and reduced ac-
curacy in the password guessing task. Training instability is
a common hurdle for GAN frameworks [17]. The discrete
representation of the strings (i.e., passwords) in the train-set®
introduces strong instability for two main reasons: (1) The
discrete data format is very hard to reproduce for the gener-
ator because of the final softmax activation function, which
can easily cause numeric instability and a low quality gradi-
ent; and (2) The inability of the generator to fully mimic the
discrete nature of the train-set makes it very easy for the critic
to distinguish* between real and generated data. Hence, the
critic can assign the correct “class” easily, leaving no room
for the enhancement of the generator; especially in the final
stages of the training.

To tackle the problems above, we apply a form of stochas-
tic smoothing over the representation of the strings contained
in the train-set. Moreover, Sgnderby et al. [52] showed that
adding noise to the input of the critic causes benefits to the
training process. Hence, in contrast to the work in [48], we
smooth the input of the critic instead of the output prediction.
The smoothing operation consists of applying an additive

3Each string is represented as a binary matrix obtained by the concate-
nation of the one-hot encoded characters.

4We refer to the original GAN formulation, where the critic is intended
to discriminate between the true and the fake data.



noise of small magnitude over the one-hot encoding represen-
tation of each character. The smoothing operation is governed
by a hyper-parameter v, which defines the upper-bound of
the noise’s magnitude. We empirically chose Y= 0.01 and re-
normalize each distribution of characters after the application
of the noise. This smoothing operation has a significant im-
pact on the dynamics of the training allowing us to perform 30
times more training iterations without training collapse [21].
We keep the general GAN framework mostly unchanged be-
cause of the excellent performance of the gradient penalty in
WGAN [33].

With our improvements in the training process, we can
exploit a deeper architecture for both the generator and the
critic. We substitute the plain residual blocks with deeper
residual bottleneck blocks [34] leaving their number intact.
We find the use of batch normalization in the generator to
be essential to increase the number of layers of the networks
successfully. For precise information about the architecture,
please refer to the work [34]. Additionally, we reduced the
dimensionality of the latent space from 128 to 64 inducing an
additional small increment in performance for the password
guessing task®.

The new architecture and training process are collectively
referred to as PassGAN+. With it, we are able to learn a better
approximation of the target password distribution, and conse-
quently, obtain a significant improvement on the number of
guessed passwords in the password guessing scenario. This
observation is supported by the results reported in Table 1,
where PassGAN and our model PassGAN+ (both trained on
80-20% train-test split) are compared over the test-set of Rock-
You dataset.

Table 1: The matched passwords by PassGAN and PassGAN+
over the RockYou test-set

Sample PassGAN PassGAN+

Size (%) (%)
1-107 2.03 243
1-108 6.72 8.81
1-10° 15.09 20.13
1-10'0 26.03 34.76
2.1010 29.54 39.39
31010 31.60 42.09
4.10'0 33.05 43.98
5-1010 34.19 45.43

In this paper, we use all of the improved settings described
in this section for our GAN model.
2.3.2 Learning the inverse mapping

To fully exploit the properties offered by the learned latent rep-
resentation of passwords, we need a way to efficiently explore

SWe speculate that such performance increment is induced by the more
compact and so smarter latent representation.

the latent space. Therefore, our first interest is to understand
the relation between the observed data (i.e., passwords) and
their respective latent representations; in particular, their posi-
tion within the latent space. A direct way to model this relation
is to learn the inverse of the generator function G~ : X — Z.
Actually, GANSs, by default, do not need to learn those func-
tions because that requirement is bypassed by the adversarial
training approach. To do so, framework variations [26, 27] or
additionally training phases [38] are required.

To avoid any source of instability in the original training
procedure, we opt to learn the inverse mapping only after the
training of the generator is complete. This is accomplished
by training a third encoder network E that has an identical
architecture as the critic, except for the size of the output layer.
The network is trained to simultaneously map both the real
(i.e., data coming from the train-set) and generated (i.e., data
coming from G) data to the latent space. Specifically, the loss
function of E is mainly defined as the sum of the two cyclic
reconstruction errors over the data space. This is shown in the
following:

Lo = E[d(G(2),G(E(G:(2))))],

L = E,Jd(x, G(E())). @

In Eq. (2), the function d is the cross-entropy whereas x and z
are sampled from the train-set and the prior latent distribution,
respectively. The variable ¢ in Lo refers to the temperature
of the final softmax layer of the generator. In Eq. (2), we
do not specify temperature on a generator notation when it
is assumed that it does not change during the training. The
combination of these two reconstruction errors aims at forcing
the encoder to learn a general function capable of inverting
both the true and generated data correctly. As discussed in
Section 2.3.1, the discrepancy between the representation of
the true and generated data (i.e., discrete and continuous data)
is potentially harmful for the training process. To deal with
this issue, we anneal the temperature 7 in loss term Lg during
the training. We do that to collapse slowly the continuous
representations of the generated data (i.e., the output of the
generator) towards the same discrete representation of the real
data (i.e., coming from the dataset). Next, an additional loss
term, shown in Eq. 3, is added forcing the encoder to map
the data space in a dense zone of the latent space (dense with
respect to the prior latent distribution).

Ly = E[d(z,E(G(2)))]- 3)

Our final loss function for E is reported in Eq. 4. During the
encoder training, we use the same train-set that we used to
train the generator, but, we consider only the unique pass-
words in this case.

Lg = oL+ BLy +YLs. €]

The information about the hyper-parameters we used is listed
in Table A.1 in Appendix A.



3 Passwords strong locality and SubString
Password Guessing (SSPG)

In this Section, we present the first major contribution of
our paper, i.e., the password strong locality concept and its
possible applications for password guessing. In Section 3.1,
we introduce the concept of password strong locality with
the help of different practical examples. In Section 3.2, we
demonstrate the practical application of strong locality by
introducing a technique that we call “password template in-
version” for closely-related passwords generation. Finally, we
propose a possible attack scenario using strong locality and
password template inversion, i.e., SSPG, in Section 3.3.

3.1 Password strong locality

As we briefly introduced in Section 2.1, the latent represen-
tation learned by the generator enforces geometric relation
among latent points that share semantic relations in the data
space. As a consequence, the latent representation maintains
“similar” instances closer® each other in the latent space.

In general, the concept of similarity harnessed in the la-
tent space of a deep generative model solely depends on the
modeled data domain (e.g., images, text). In the case of our
passwords latent representation, this concept of similarity
mainly relies on a few key factors such as the structure of the
password, the occurrence of common substrings, and the class
of characters. Figure 2 (obtained by t-SNE [40]) depicts this
observation by showing a 2D representation of small portions
around three latent points (corresponding to three sample pass-
words “7immy91”, “abcl23abc”, and “1234567) in the latent
space. Looking at the area with password “jimmy91” as the
center, we can observe how the surrounding passwords share
the same general structure (SL2D i.e., 5 letters followed by 2
digits) and tend to maintain the substring “jimmy”” with minor
variations. Likewise, the area with the string “abc123abc”
exhibits a similar phenomenon; where such string was not
present in the selected train-set and does not represent a com-
mon password template.

As this property of the latent space forces passwords in the
vicinity to share very specific characteristics, such as identical
substrings, we refer to it as passwords strong locality. The
passwords strong locality property asserts that latent repre-
sentation of passwords that share specific characteristics are
organized close to each other in the latent space.

One of the direct consequences of the geometric ordering
imposed by strong locality is that it provides a natural way to
generate a specific class of passwords. Hence, if our aim is to
generate passwords strictly related to a chosen prototype pass-
word x, then we simply have to fetch latent points around the
latent representation z of x (i.e., x = G(z)). By strong locality,

SFor any given metrics; neural-based representations tend to be scale-
invariant and typically measured using the cosine distance.
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Figure 2: 2D representation of small portions around three
latent points corresponding to three sample passwords
“Jimmy91”, “abcl23abc”, and “123456” in the latent space
learned from RockYou train-set. Note: for the sake of better
illustration, the image has been cropped.

the obtained latent points should be valid latent representa-
tions of passwords with an arbitrary strong relation with x.
In this context, we refer the chosen x (or its corresponding
latent representation z) with the term pivot. The three dark
red boxes in Figure 2 are the pivot points in the latent space
for their corresponding passwords. However, exploiting this
property of the latent space for password guessing requires
us to solve two non-trivial challenges:

1. For a chosen pivot x, we must efficiently obtain its corre-
sponding latent representation i.e., z = G~ ! (x).

2. We have to define a technique to explore the latent space
surrounding the obtained latent point z.

As described in Section 2.3.2, we solve the first challenge
by exploiting an additional network E that is trained to ap-
proximate the inverse function G~'. The second challenge of
exploring the latent space is solved by restricting the genera-
tor to sample from a confined area of the latent space (loosely
represented by the small dashed circles in Figure 2). To that
purpose, we consider a new latent distribution for the genera-
tor. The new distribution has the latent representation of the
pivot password as its center and an arbitrary small scale. To
remain coherent with prior latent distribution and partially
avoid distribution mismatch for the sampled points [58], we
chose a Gaussian distribution: A/(z, 6I), where the latent rep-
resentation z of x is obtained through E.



According to the concept of password strong locality, the
strength of the semantic relation between a sampled latent
point and its pivot should be proportional to the spatial dis-
tance between them. As a consequence, the chosen value of
o (i.e., standard deviation) offers us a direct way to control
the level of semantic bounding present in the generated pass-
words. This intuition is better explained by Table 2, where
passwords obtained with different values of ¢ for the same
pivot password are reported.

Table 2: The first-ten passwords obtained with different values
of ¢ starting from the pivot string “jimmy91”

6=0.05 6=0.08 6=0.10 0=0.15
jimmy91  jimmy99 mnmm988  jimmy91992
jimmyll  micmy91  tbmmy98 jrm6998
jimmy21 jimsy91 jismyol5 sirsy91
jimmy88 mimmyol  jizmyon jrz4988
jimmy81  jbmmy88  j144988 Rimky28
jimmy98  simmy98  jbmm998 missyl1
mimmy98  dijmy9l timsy91 jimmy119
jimmy28  jimmy98  jrm4985 sikjy91
simmy91 timsy91 jhmmy88 licky916
mimmy91  jnmm988  jhmm988 gimjyon

Lower values of ¢ produce highly aligned passwords while
larger values of ¢ permit to explore far from the pivot and to
produce a different type of “similar” passwords. As shown
in Table 2, all the passwords generated with ¢ = 0.05 re-
tained not only the structure of the pivot (i.e., SL2D), but
also observed minor variations coherent with underlying pass-
word distribution. On another side, passwords generated with
6 =0.15 tend to escape the password template imposed by the
pivot and reaching related-but-dissimilar password structures
(e.g., “jimmy91992” and “144988™).

3.2 Proximity passwords generation with
password template inversion

As briefly discussed in Section 3.1, the password strong lo-
cality property offers a natural way to generate a very speci-
fic/confined class of passwords for a chosen pivot, a task
accomplished by exploiting an encoder network E. This en-
coder is trained to approximate the inverse function G~!, and
it is the only tool we have to explore the latent space mean-
ingfully. The default behavior of the encoder is to take as an
input a string s and precisely localize the corresponding latent
representation in the latent space. As showed in Table 2, sam-
pling from a distribution centered on the obtained latent point,
allows us to generate a set of related passwords. However, this
approach alone does not find wide possibilities of application
on its own in the password guessing scenario.

In this Section, we show that it is possible to “trick” the
encoder network to further localize general classes of pass-
words in the latent space. The users can arbitrarily define
these classes via a minimal template, which expresses the

fine-/coarse-grained definition of the target password. This
general approach offers straightforward applications in a real-
world scenario. Some of those scenarios will be discussed
and empirically evaluated in the next sections.

The encoder network can be forced to work around a spe-
cific password definition by introducing a wildcard character
into its alphabet. The wildcard character - represented with
the symbol ‘x’ in this paper - can be used as a placeholder to
express the presence of an unspecified character. For instance,
the template “jimmys*+" expresses a class of passwords start-
ing with the string “jimmy” followed by two undefined char-
acters. When the encoder inverts this string, the obtained
latent point represents the center of the cluster of passwords
in the latent space with a total length of 8 characters and a
prefix “jimmy”. Therefore, sampling around this latent point
allows us to generate good realizations (according to p(x)) of
the input template. Column A of Table 3 shows a specimen
of such obtained passwords for the template “jimmys*x". In
practice, we implement this behavior by mapping a wildcard
character to an empty one-hot encoded vector when the matrix
corresponding to the input string is given to the encoder. The
wildcard characters can be placed at any position or in any
quantity to define an arbitrary complex passwords template;
some examples are reported in the second row of Table 3.

An intuitive and interesting aspect of this approach is that
the wildcards are substituted with the most probable char-
acters following the distribution p(x) (i.e., the probability
distribution modeled by the generator). This phenomenon
can be observed in the generated samples (Column A of Ta-
ble 3): wildcards in most of the generated passwords have
been substituted with digits to potentially reproduce the very
common password pattern ‘lower_case_string+digits’ [55].
On the contrary, passwords from the template “*xx*%91” are
reported in Column E of Table 3. In this example, we are ask-
ing the generator to find 7 characters long passwords with the
last two characters as digits. Here, the generated passwords
tend to lie towards two most likely password classes for this
case, i.e., ‘lower_case_string+digits’ and all_digits. On the
other hand, templates with more observable digits (e.g., Col-
umn F of Table 3) end-up generating all_digits passwords
with higher probability.

Template-based passwords generation with state-of-the-
art tools: To the best of our knowledge, state-of-the-art tools
cannot perform this type of password generation. The proba-
bilistic approaches such as Markov Model (MM)-based and
RNN-based (e.g., FLA [42]) are unable to match the expres-
siveness offered by our wildcard-based approach. In the case
of MM, the assumed n-Markov property limits the prediction
of characters based on substrings of size n or less only, but
not more. More importantly, the forward-directionality of the
process eliminates the possibility of a efficient estimation of
wildcards occurring prior to a given substring (e.g., the case
in Column C of Table 3).The issue of forward-directionality
also affects the character level RNN used by FLA, where



the probability of an exponential number of passwords must
be computed before using the characters in the template to
prune the passwords tree. This is the case of the template
reported in column E where the required computational cost
for FLA is not very far from computing all the passwords into
the chosen probability threshold and filter the ones coherent
with the template. On the contrary, the generation of a pass-
word for every template costs a single network inference’
following our approach. Additionally, this issue persists even
in the case of a bi-directional RNN [51], where the model
would fail to efficiently model the “occasionally-punctured”
(i.e., plain characters between wildcards) templates such as
the ones reported in the Column D and Column F of Table 3.

The tools that potentially can match the efficiency of our
approach are the non-probabilistic ones. In particular, such
approaches can take as an input a single string and derive
millions of passwords by applying the mangling rules. Usu-
ally, the language used to write these rules is very expressive
and can match the expressivity of our approach. However,
such state-of-the-art tools use human-crafted rules whereas
our approach is totally unsupervised. Moreover, the man-
gling rules are fixed before the password generation process
and are plainly applied over every dictionary entry. In other
words, there is no relation between the input string and the
applied rule®. Our approach eventually overcomes this lim-
itation; the generated passwords are dependent and univo-
cally induced from the used template. This means that only
passwords coherent with the template and the approximate
password distribution are eventually generated.

3.3 SubString Password Guessing (SSPG)

An interesting scenario in the domain of password guessing
is when the target-password is partially known. There are,
at least, two practical situations when the target-password is
indeed partially available: (1) targeted-attacks by which an
adversary targets a particular user(s) via side-channels [16,

"Two, if we also count the template inversion, which is performed once.
8Intuitively, not every mangling rules have equal reason to be applied
on all the dictionary entries.

18, 41, 56] and other similar approaches to infer the pass-
word of the victim. Such attacks often reveal only part of
the password/text correctly because of attacks’ accuracy [22];
and (2) when the user forgets her/his own password but re-
members it partially, a pretty common situation due to the
characteristics of human memory.

Formally, we consider a scenario where an attacker pos-
sesses a non-empty set of arbitrary small substrings § =
{s0,...,8,} of an unknown target password x. The attacker
does not have any knowledge about the correct position of the
substring(s) in x as well as about the length of x. But, we con-
sider that the available substring(s) is error-free. The attacker
aims at recovering the full password x using the information
offered by S. We refer to this scenario by the name of Sub-
String Password Guessing (SSPG). Thanks to the attributes of
strong locality, SSPG can also be intuitively performed with
erroneous/noisy substrings. We will discuss the performance
of SSPG with noisy substrings in Appendix B.

As discussed in Section 3.2, the strong locality property
enforces a geometric relation among passwords having com-
mon substrings. Consequently, passwords sharing at least one
substring are likely to be located in a few specific clusters in
latent space. A natural solution to perform a smart SSPG is
to localize these clusters and sample latent points from them.
By mapping the sampled latent points in the data space, we
would indeed be able to generate good candidate passwords
that contain the required substrings with high probability. The
first obstacle in this procedure arises due to the way these
clusters are distributed in the latent space. Passwords of dif-
ferent lengths tend to be organized in different sections of the
latent space’. The reason for such an organization is that the
length of a password is modeled as one of the core explana-
tory factors [19] by the latent representation. Consequently,
passwords with different lengths are distributed far from each
other. For instance, the password “123456” will be sufficiently
far from the password “123456789” even if these two pass-
words share a significantly large substring “123456”10. Next,

9We will exploit this property in Section 4.1 for a different type of
password guessing.
101n other words, it is unlikely that we can reach to the latent representa-

Table 3: A representative example of exploiting strong locality property over a generator trained on RockYou train-set for samples
password templates with o = 0.15. Note: results that are coherent with the corresponding template and are in no particular order.

A B C D E F G H I
jimmysec  jimmysooex segimmy  ermmx91 seokkx91 12591 Aok Hokok Askokox Rax**xx91
jimmy6s  jimmy2285 Tujimmy pumma9l 8688691 1228091 ALMYEN mlqAI25 Rade7891
jimmy65  jimmy8tkm  b3jimmy dgmmr9l  rmujO91 128591 AIA655 ROOAGRN  Rani7091
jimmymj jimmy8yg6 grjimmy summi9l  jukjs9l 1204791 A@IN74  AENAYN7  Rajum691
jimmy55  jimmy7t54  Imjimmy djmmm9l tgk7791 1235691  AIYN66 SENALL6 Rajemr91
jimmy84  jimmy8576  4jjimmy  ymmmr91 gmbt591 1286891  AqAk62 4ENA128 Raidak91
jimmy20  jimmy5565 egjimmy mgmms91 tujke9l 1256291 ADMSN4  1DgqAg45 Rajj8591
jimmyce jimmy8jj4  djjimmy  timma9l 1618591 1250m91 A@ADSk MOGAEN3 Ranej691
jimmy2j  jimmyka76 jijimmy djmmy91  mjug791 1205091  A.b474 HANAY49  Rasej891
jimmyl4  jimmymj65 jgjimmy  jamma9l tgg7691 1280791  AqIm66 llgArej Ratul991
jimmyl5  jimmy2276  6jjimmy  kumm291 1315891 128ik91  AISr28 JOPA127 Rame6791




a similar hindrance results from the latent representation of
a substring position inside the password. For instance, the
latent representations of “jimmy91” will be far from the one
of “91jimmy”.

In other words, passwords containing a given substring
are distributed in more than one cluster in the latent space.
Therefore, to correctly assess every possible password, we
have to cover all such clusters during the password genera-
tion process. Accordingly, the challenge is to localize those
clusters in the latent space correctly. Nevertheless, we al-
ready know an efficient way to localize those clusters; that
is, using our template inversion (discussed in Section 3.2).
Consider the following example: if we want to localize the
clusters of passwords of length 8 that starts with “jimmy”, we
have to invert the template “jimmys*+x”. Likewise, we have
to use “jimmysskkkx” for passwords of length 10 that starts
with “jimmy”. Next, the same can be done for the position
of the substring, e.g., “*xjimmy”, “xjimmy=*", and “jimmys*’
for passwords of length 7 containing “jimmy” somewhere.
Therefore, for any substring, we can easily spot all the valid
zones of the latent space by enumerating all the possible pass-
word templates containing that substring. As a representative
example, we obtain all the possible 20 templates (shown in Ta-
ble A.2 in Appendix A) for passwords with maximum length
10 that contain the substring “jimmy”. The same operation
can be performed for multiple disjointed substrings just by
computing the possible valid templates. The pseudo-code for
our SSPG approach is shown in Algorithm 1. The symbols
E and G refer to the Encoder and the Generator, respectively
whereas the routine enumerateTemplates is a function that re-
turns a list of the valid templates for a given set of substrings S
and a maximum password length. The operation x; |- ¢ means
that the generated password x; complies with the template 7.

3

Algorithm 1 SubString Password Guessing (SSPG)

Input: Substrings set: S, Int: n, Real: ¢
Output: Passwords set: X

1. X= {}

2: T = enumerateTemplates(S)

3: foreacht € T do

4 7 =E@r)

5. fori:=1tondo

6: zi ~ N(Z',0l)
7: xi =G(z)

8: if x; - ¢ then

9: X =XU{x;}
10: end if

11:  end for

12: end for

13: return X

tions of password “123456789” using string “123456” as pivot.

3.3.1 Evaluation

In this Section, we evaluate our approach against the state-of-
the-art mangling rules-based approaches, i.e., JTR [8], Hash-
Cat [4], and PCFG [57] for the SSPG scenario. We have
already discussed in Section 3.2 that due to their inefficiency,
MM-based and RNN-based tools are not a practical choice
for this type of attack. We are aware that the state-of-the-art
tools are not fully suitable or designed to perform SSPG. For
a fair comparison, we limit our approach to generate the
same number of valid passwords as the most performing
competitor tool and focus on the qualitative comparison
of the generated passwords. To further increase the fairness,
we choose the most suitable SSPG scenario for the competitor
tools: i.e., by considering the substring set S = {so,...,5,}
containing just one single entry s.

Datasets

We use the LinkedIn password leak [11] as the base dataset for
the performance evaluation of different tools. This password
leak is composed of over 6 - 107 unique passwords. From
this set, we keep passwords with length 10 or less obtaining
4.5-107 unique passwords, which is ~ 5 times the Rock You
train-set used to train our model (details in Section 2.3.1). For
a holistic evaluation, we created two sub-datasets from this
filtered LinkedIn dataset. These sub-datasets are created by
selecting passwords that contain peculiar substrings. In other
words, these substrings model two different level of attacker’s
knowledge and attack-scenarios:

1. The substrings used to create the first sub-dataset is a list
of ~ 5K English first names [3]. The aim of this evalua-
tion set is to model a scenario where an attacker knows
the first name of the target. The first names are usually
public and commonly used as part of the passwords. As a
representative example, the LinkedIn leak has ~ 12M pass-
words containing English first names [3]. Moreover, the
first names are also frequently used as part of common/-
classic password templates that can be easily reproduced
by mangling rules. To create the sub-dataset, we proceed
as follows: for each name s in the list, we take all the pass-
words X, in the filtered-LinkedIn dataset that have s as a
proper substring in it: i.e., Xy = {x | Vx € X : séx}. Here, €
is the substring operator (i.e., “is a substring in”) and X is
the filtered-LinkedIn dataset. Next, we further retain only
those passwords in X; that have a minimum cardinality of
5000 in the filtered-LinkedIn dataset. This filtering gave us
the final set Xpames = {Xj, ;. .., X, } containing ~ 4- 100
passwords and m = 359. The average length of these 359
selected substrings is 4.22 and are composed of lower-case
characters only.

2. The second sub-dataset represents a more general case, and
it also better fulfills the preconditions discussed in Sec-
tion 3.3. In this case, we select k-most common substrings



with minimum-length of 3 that are present in the passwords
of the LinkedIn leak. Similar to the previous sub-dataset
of ~ 5K English first names, we select k = 5000. However,
we select passwords in a set X; with minimum cardinality
of 100000 in the filtered-LinkedIn dataset as the average
length of selected substrings is 3.02. The final sub-dataset
Xjss 1s composed of ~ 3 - 107 passwords and m = 237. A
small sample of the selected substrings shown in Table 4.

Table 4: A small sample of the selected substrings used in the
second sub-dataset

199 202 777 987 al9 a20 ate ati
cat era eri her ink man min oma
ree res ria san  sta 1234 2011 love

Evaluation setup

Given an evaluation set (i.e., Xjames O Xjss), We evaluate
each tool in the task of password guessing over each subset
of passwords (i.e., X;) separately. In the process, every tool is
exposed to the substring s, which is exploited for generating
guesses. Then, the intersection between the set of generated
password/guesses and X; is computed, i.e., the number of
generated passwords that match the passwords in X;. Finally,
the overall cardinality of the matched passwords for the entire
evaluation set (i.e., Xpames Or Xjgs) against the total number of
generated passwords for the entire evaluation set (i.e., Xpames
or Xg) is used as the evaluation criterium for each tool.

We generate guesses by using the Algorithm | for our
approach. In particular, we use S = {s} and o = 0.35 (chosen
empirically) in the algorithm for each X;. Next, the value of n
has been chosen to match the maximum number of passwords
produced by one of the state-of-the-art tools.

For mangling rules-based tools (i.e., HashCat and JTR),
we implement SSPG by keeping the substring s as the only
entry in the dictionaries and applying the rules on this single-
entry-dictionary to generate passwords. For each of these two
tools, we chose the largest set of rules available (to the best of
our knowledge). These rules are KoreLogic [10] for JTR and
Dive [2] for HashCat, which are respectively composed of
over 5K and 99K rules. We generate every possible password
using the rule-sets and only consider those passwords as valid
passwords that contain the substring s as a proper substring.

For PCFG, we train/learn its grammar by using the same
dataset (i.e., RockYou train-set) used to train our generator,
and by using the default parameters [13]. During the password
generation process, we use s as the only valid entry for the
Alpha variables of PCFG [57] whereas the entries for other
types of variable (e.g., Capitalization and Digits) are kept
unaltered. We can evaluate PCFG only with X,mes because
it can not model variables that represent strings composed of
mixed character classes (such as “al9” and “a20” reported
in Table 4 for Xy ). Here, we generate 107 passwords with

each s and retain only the unique passwords containing the
given substring s.

Results

Figure 3 (a) and Figure 3 (b) show the results for different
tools over the evaluation sets Xpames and Xigs, respectively. As
mentioned in Section 3.3.1, each line depicts the sum of the
matched passwords against the total number of generated valid
passwords for the entire evaluation set. HashCat, JTR, and
PCFG (when applicable) generate a heterogeneous number of
valid passwords. For HashCat and JTR, that value is directly
influenced by the number and types of word-mangling rules.
JTR with KoreLogic rule-set produces the highest number (~
109) of valid passwords. Therefore, we tune the variable » in
our Algorithm | to produce passwords in the same magnitude.
At the bottom, PCFG is able to produce just ~ 2- 107 valid
passwords despite the higher limits of requested passwords.
The reason for such a low number of passwords is the small
size of grammars produced after the training, whose number
cannot be increased.

[— Our GAN [SSPG]  +++++ Hashcat [Dive]  —-- JTR [KoreLogic] —-- PCFG
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Figure 3: Matched passwords against generated valid pass-
words by different tools over evaluation sets Xpames and Xig

In case of X5, HashCat generates the least number of
valid passwords. PCFG generates more passwords than Hash-
Cat but matches slightly fewer passwords than HashCat. On
the other side, JTR generates the highest number of valid



passwords and matches more passwords than both HashCat
and PCFG. In this experiment, our GAN model matches over
240% more passwords than JTR for equal number of guesses.
It is important to highlight that in contrast to other tools, our
GAN model can continue to generate (depending on 7 in
Algorithm 1) and efficiently match more passwords.

In case of X5, HashCat again generates the least number of
valid passwords whereas JTR again generates the highest num-
ber of valid passwords. Nevertheless, both these tools match
a significantly smaller number of passwords as compared to
our GAN model in SSPG mode. Our approach matches over
900% and 400% more passwords than HashCat and JTR, re-
spectively. The reason why both HashCat and JTR perform
poorly is that the mangling rule-sets are designed to match
most probable passwords and are not intended to work with
random strings. Hence, in such a complex situation, our ap-
proach - that is not biased to a specific scenario - can perform
significantly better than the other state-of-the-art tools.

For the interested readers, Figure A.1 in Appendix A shows
distribution of matched passwords over each substring for
both evaluation sets X;ames and Xgs.

4 Passwords weak locality and Dynamic Pass-
word Guessing (DPG)

In this Section, we present our second major contribution,
i.e., the password weak locality concept and its possible ap-
plications in the field of password guessing. In Section 4.1,
we introduce the concept of password weak locality with
the help of different practical examples. Section 4.2 presents
DPG from theoretical (Section 4.2.1) as well as practical
(Section 4.2.2) point of view. Finally, we mention potential
applications of DPG.

4.1 Password weak locality

The embedding properties of the latent representation map
passwords with similar characteristics close to each other in
the latent space. We called this property strong locality, and
we exploited it intending to generate variations of a chosen
pivot password or template (discussed in Section 3.1). In that
case, the adjective “strong” highlights the strict semantic re-
lation among the generated set of passwords. However, the
same dynamics that enables the strong locality also allows a
more generic and broad form of semantic bounding among
passwords. This latter property seems to be able to partially
capture the general features of the whole passwords distri-
bution. Such features could be very abstract properties of
the distribution, such as the average passwords length and
character distribution due to password policies. We refer to
this observed property as password weak locality in contrast
with the strong locality.

As a representative example, Figure 4 depicts the 2D repre-
sentation of passwords from myspace [12], hotmail [ 7], and
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phpbb [14] on the latent space learned by a generator on
the RockYou train-set'!. We can observe that the passwords
coming from the same (within one) dataset tend to be concen-
trated in the latent space and do not spread abruptly all over
the spectrum. This can be traced back to the fact that pass-
words sharing very general features (e.g., like those coming
from the same passwords distribution) are mapped close to
each other in wide but bounded zones of the latent space.

The dimensionality of the fraction of latent space covered
by an entire passwords set (the red parts in Figures 4 (a), (b),
and (c) clearly depends on the heterogeneity of its passwords.
Passwords from smaller sets (e.g., myspace) are concentrated
in restricted and dense zone of the latent space, whereas pass-
words from larger sets (e.g., as phpbb) tend to cover a bigger
section while they are still closely knitted.

In the following sections, we will present evidence of the
strong locality property, and we will show how to exploit this
property of the latent space to improve password guessing.

4.2 DPG for covariate shift reduction

First, we present the theoretical motivation behind DPG in
Section 4.2.1 followed by its possible implementation in Sec-

4.2.1 Theoretical motivations

Probabilistic password guessing tools implicitly or explic-
itly attempt to capture the data distribution behind a set of
observed passwords, i.e., the train-set. This modeled distri-
bution is then used to generate new and coherent guesses
during a password guessing attack. A train-set is usually com-
posed of passwords that were previously leaked. By assump-
tion, every password-set leak is characterized by a specific
password distribution p*(x). When we train the probabilis-
tic model, we implicitly assume p*(x) to be general enough
to well-represent the entire class of password distributions.
This generality is essentially due to the fact that the real-word
password guessing attacks are indeed performed over sets
of passwords that potentially come from completely differ-
ent password distributions. As a matter of fact, we typically
do not have any information about the distribution of the
attacked-set. This can indeed be completely different from
the one used for model training. As a representative example,
different password policies or users’ predominant languages
can cause the test-set’s distribution to drastically differ from
the train-set’s distribution. This discrepancy in the distribu-
tion of the train-set and test-set is a well-known issue in the
domain of machine learning, and it is referred to as covariate
shift [53].

!t is important to emphasize that these graphical depictions are obtained
by a dimension reduction algorithm. Hence, they do not depict latent space
accurately. So, they merely serve as a representative illustration. We will
verify our assumption empirically later in the paper.



As stated above, typically, we do not know anything about
the distribution of the attacked-set. However, once we crack
the first password, we can start to observe and model the
attacked distribution. Every new successful-guess provides
valuable information that we can leverage to improve the
quality of the attack, i.e., to reduce the covariate shift. This it-
erative procedure recalls a Bayesian-like approach since there
is continuous feedback between observations and probability
distribution. However, we highlight that in our case we do not
use neither a prior nor a posterior probability distribution.

For fully data-driven approaches - a naive solution to in-
corporate such new information - is to fine-tune the model
so as to change the learned password distribution. However,
prescribed probabilistic models such as FLA directly estimate
the password distribution using a parametric function:

p(x) = p(x;0), Q)

where 0 is the set of weights of a neural network. In this
case, the only chance to modify the distribution p(x) in a
meaningful way is to act on 8 harnessing a learning process.
However, this is not an easy/attractive solution. Mainly be-
cause the new guessed passwords are potentially not enough
representative!? to force the model to generalize over the new
information. Additionally, the computational cost of applying
fine-tuning on the network is considerable, and sound results
cannot be ensured due to the sensitivity of the process.

Similar to FLA, our generative model also exploits a neural
network as an estimator. However, the modeled distribution
is a joint probability distribution, shown in Eq. 6:

p(x) = p(x,z) = p(x;0)p(z), (6)

where p(z) is referred to as the latent distribution.

As introduced in Section 2.1, when p(z) = p(z) (i.e., prior
latent distribution), p(x; 8)p(z) is provable to be a good ap-
proximation of the target data distribution (i.e., the distribu-

12A very few cracked passwords against a dataset of millions of un-
cracked passwords.

tion followed by the train-set). Nevertheless, p(z) can be ar-
bitrarily chosen and used to indirectly change the probability
distribution modeled by the generator. The RHS of the Eq. 6
clearly shows that 0 is not the only free parameter affecting
the final passwords distribution. Indeed, p(z) is completely in-
dependent of the generator, and so can be modified arbitrarily
without acting on the parameters of the neural network.

This possibility, along with the passwords weak locality of
the latent space, allows us to correctly and efficiently general-
ize over the new guessed passwords, leading the pre-trained
network to model a password distribution closer to the at-
tacked one. It is noteworthy that this capability of general-
izing over the new points is achieved via the weak locality
and not from the neural network itself. The intuition here is
that when we change p(z) to assign more density to a spe-
cific guessed password x, we are also increasing the prob-
ability of its neighboring passwords that, due to the weak
locality property, are the passwords with similar charac-
teristics. This, in turn, makes possible to highlight the general
features of the guessed passwords (e.g., structure, length, char-
acter set, etc.), instead of focusing on its more ﬁne-grained13
and specific aspects.

So, by controlling the latent distribution, we can choose to
increase the probabilities of the zones that are potentially cov-
ered by the passwords coming from the attacked distribution.
We call this technique Dynamic Password Guessing (DPG).
In the case of homogeneous distribution (e.g., myspace), we
can narrow down the solution space around the dense zones,
and avoid exploring the whole latent-space. On the other side,
for passwords sets sampled from distributions far from the
one modeled by the generator, we can focus on zones of the
latent space which, otherwise, would have been poorly ex-
plored. In both cases, we can reduce the covariate shift and
improve the performance of the password guessing attack.

13Features that do not give us hints on the attacked password distribution.

(a) myspace

(b) hotmail

(c) phpbb

Figure 4: Password Weak Locality: 2D visualization of the latent points for three different passwords sets for a generator trained
on the RockYou train-set. The red points represent the latent points corresponding to the passwords in the respective password set
whereas the blue points loosely represent the dense part of the latent space. Please refer to the color version for better illustration.
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4.2.2 Practical implementation

In this Section, we explain DPG from a practical point of
view. Algorithm 2 briefly describes the DPG.

Algorithm 2 DPG to reduce covariate shift
Input: Set: O, Int: o0

1:i=0

2! Platent = p(X)

3 Z={}

4: foreach z ~ pieen do

5 x= G(Z)
6: ifx € O then
7: i++
8 Zi=Z=2ZU{z}
9: if i > o then
10: PDlatent = makeLatentDistribution(Z;)
11: end if
12:  endif
13: end for

Here, O represents the target set of passwords, Z is the col-
lection of all the passwords guessed by the generator, and o is
defined as the hot-start parameter of the attack, an ingredient
that we describe later in this section. The variable pjatent in
the pseudo-code, represents the latent distribution from which
we sample latent points. For simplicity, we use the notation
Z ~ Dlatent to directly express the sampling operation of a la-
tent point z from the latent space according to the distribution
Platent- The procedure makeLatentDistribution returns the la-
tent distribution induced from the group of guessed passwords
Z; at step i. Leveraging the maximum-likelihood framework,
we choose such distribution to maximize the probability of
the set of observed passwords X; = {G(z) | z € Z;} according
to Eq. 7 by using the latent distribution p(z) as the only free
parameter.

p(Xi) = / p(Xi;0)p(z) dz. ©)
This is accomplished by considering a latent distribution
p(z | Z;) conditioned to the set of passwords guessed at each
step i. The final password distribution represented by the
generator during the DPG is reported in Eq. 8.

p(x) = p(x:0)p(z | Z). ®)

As a natural extension of the proximity password genera-
tion harnessed in Section 3.2, we choose to represent p(z | Z;)
as a finite mixture of isotropic Gaussians. In particular, the
mixture is composed by n Gaussians, where: (1) n is the
number of the latent points in Z;; and (2) for each z; € Z;, a
Gaussian is defined as A((z;, oI) with center as z; and a fixed
standard deviation G.

When the probability of a password, i.e., x; = G(z;), is
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known!#4, we weight the importance of the j” distribution

as P(x j); otherwise a uniform distribution among the Gaus-
sians is assumed. Equation 9 defines the probability density
function of the latent space.

n

p(z|Z) =} P(G(z))) N(z|zj,00).

Jj=0

©))

Every new guessed password x introduces a new Gaussian
centered at z to the mixture. As a consequence, every new
guessed password contributes to changes in the latent distri-
bution p(z | Z;) by moving the density of the distribution in
the zone of the latent space where it lies. Figure 5 visualizes
this phenomenon.

Figure 6 depicts the performance comparison between a
static attack (e.g., PassGAN) and the DPG over the three
passwords sets. Adaptively changing the latent distribution al-
lows us to boost the number of guessed passwords per unit of
time. In the phpbb set, we match ~ 5% additional passwords
with respect to the static attack technique. Importantly, this
improvement comes without any additional information or
assumption over the attacked passwords set. In addition, the
computational overhead due to the new sampling technique
is negligible. The steep improvement in the performance ob-
tained with the DPG gives additional support to our assump-
tion made on the weak locality of the latent space. Further-
more, it confirms that reducing the covariate shift has a direct
and concrete impact on the number of guessed passwords.

The sudden growth in the guessed passwords in the DPG
(shown in Figure 6) is due to the hot-start or o parameter.
In other words, we use the prior latent distribution until a
predetermined number (o) of passwords have been guessed.
After that, we start to use the conditional latent distribution
p(z | Z;). The reason is that if the DPG starts with the very
first guessed password, then the latent distribution can be
stuck in a small area of the latent space. However, launching
DPG after guessing a sufficient number of passwords (i.e., af-
ter finding a set of unbiased latent points in the latent space)
gives us the possibility to match a heterogeneous set of pass-
words, which correctly localize the dense zones of the latent
space where the attacked passwords are likely to lie. These
observations are also evident with our empirical results shown
in Figure 7, which depicts a comparison among the static at-
tack, a DPG with o0 = 15%, and a DPG with o« = 0% (i.e., no
hot-start). These results confirm that the absence of hot-start
indeed affects and eventually degrades the performance of the
DPG.

14We known its frequency in the attacked set of passwords. In a off-line
attack, this is usually the case.



£ 400 is beneficial. This observation is perfectly coherent with the
3 concept of weak locality, giving further support to the specu-
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The final hyper-parameter of our attack is the standard de- Generated passwords (unique) ~ 1e8
viation (o) assigned to every Gaussian in the mixture. This
value defines how far we want to sample from the clusters of Figure 8: The impact of ¢ on the performance of DPG for
observed passwords. A larger value of ¢ allows us to be less bi- phpbb test-set
ased and explore a wider zone around the guessed passwords;
whereas a smaller value permits a more focused inspection Applications and conclusions: We demonstrated that the
of the latter. Therefore, the value of G can be interpreted as DPG framework offers a direct way to deal with the covariate
thel};s)arameter controlling the exploration-exploitation trade- shift phenomenon that naturally occurs in real-world pass-
off > in the attack. Figure & depicts the effect of different word guessing scenarios. Furthermore, the potential of DPG
values of G on the performance of DPG. Smaller values of is not limited to this specific phenomenon. Following are a
o yields better overall results. This outcome suggests that it few potential applications of DPG:
is not necessary to sample too far from the dense zones im-
posed by Z;, and rather a focused exploration of those zones * DPG can be easily extended to support a form of “boot-
strapping” for the password guessing attack. As an example,
I5 A trade-off often occurring in reinforcement learning. consider a situation in which the attacker knows a small set

(a) Actual attacked set (b) 10* generation (c) 10° generation (d) 10° generation (e) 107 generation

Figure 5: 2D visualization of: (a) the entire hotmail dataset (red-part) mapped on the latent space learned from the RockYou
train-set and (b-e) the latent space in four progressive attack steps for DPG on the hotmail test-set. The red markers portray the
guessed passwords at each step (i.e., the Z;), whereas the color intensity of the blue regions depicts the probability assigned from
the used latent distribution (i.e., mixture of Gaussians) to the latent space. Please refer to the color version for better illustration.
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Figure 6: The performance gain obtained by DPG (with a0 = 0.15) with respect to static attack for three different test-sets
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of passwords from the targeted password set. The attacker
can utilize this additional information to create a bias in the
password guessing attack and boost its performance even
before the attack. More precisely, these known passwords
can be modeled in the latent distribution of the generator
by moving the density around the new latent points that
are obtained with the encoder network. In practice, this can
be easily achieved by initializing the set Z (Algorithm 2)
with these known passwords. Moreover, these latent points
could also be obtained using the template inversion tech-
nique presented in Section 3.2. This is the case in which the
attacker retrieves, somehow, only partial information and
not the entire passwords.

* Hitaj et al. demonstrated [35] that GAN-based models are
able to produce a class of passwords that is significantly
different (disjoint) from the passwords obtained using other
state-of-the-art tools. Therefore, combining such different
password guessing approaches allows us to improve the fi-
nal outcome [35]. Our DPG technique offers a direct way to
enhance the performance of such combinations further. As a
matter of fact, DPG allows us to focus on the zones of latent
space that were not covered (due to its design/bias) by the
first tool in the pipeline. Consequently, DPG technique can
significantly increase the probability of generating guesses
that were not generated by the previous tool.

In conclusion, the building blocks of the DPG, i.e., the
malleable latent density and dynamic approximation of the
attacked password distribution, are generalized approaches
that can be used to increase the attack’s performance under
various assumptions. These concepts can be easily extended
and are naturally open to various applications.

5 Related Works

Password guessing is a classical attack, by which an attacker
tries to guess the right password by repeatedly testing var-
ious candidate passwords. Systematic studies on password
guessing dates back to 1979 [44], and probably, password
guessing attacks exist since the inception of the concept of
passwords [20]. Since a vast number of works have been pro-
posed in this active area of research, we limit the discussion
to state-of-the art tools and techniques used for password
cracking in this section.

Narayanan et al. [45] proposed to use standard Markov
modeling techniques from natural language processing to
generate password guesses. Their approach requires man-
ual intervention for defining password rules that describe
the structure of the generated passwords. Weir et al. [57]
extended this technique via Probabilistic Context-Free Gram-
mars (PCFGs). In particular, Weir et al. [57] showed a tech-
nique to “learn” the password rules from a given set of pass-
words. Durmuth et al. [28] and Ma et al. [39] have also pro-
posed enhancements in this direction of password guessing.
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John The Ripper (JTR) [8] and HashCat [4] are the
two most widely used password guessing tools. Both JTR
and HashCat have demonstrated their effectiveness at guess-
ing/recovering the passwords from several leaked password
dataset [1]. Both the tools support a number of password
guessing strategies including: (1) classical brute-force attacks;
(2) dictionary-based attacks; (3) rule-based (also called man-
gled wordlist) attacks [6, 10], which is one of the most ex-
ploited technique; and (4) Markov model-based attacks [5, 9].

Ciaramella et al. [23] introduced neural networks for pass-
word guessing in their seminal work. In the same line of
development, Melicher et al. [42] proposed FLA (Fast, Lean,
and Accurate) that uses recurrent neural networks [32, 54]
to estimate the password distribution, which is then used to
guess the strength of a password. Hitaj et al. [35] presented
PassGAN that uses a GAN to autonomously learn the distri-
bution of real passwords from actual password leaks, and to
generate password guesses.

Similarly to our SSPG framework, different works have
focused on creating password variations for a given starting
password [24, 46], primarily with the aim of modeling creden-
tial tweaking attacks. Credential tweaking is a targeted attack
where the adversary knows the targeted user’s credentials for
one or more services and aims to compromise accounts of the
same user on other services. Different from credential stuffing,
here user’s passwords are suppose to be “tweaked” versions'®
of the known ones. In this direction, Pal [46] et al. proposed
novel attack/defense techniques for credential tweaking. Both
the attack and the defense techniques are built on top of a
password similarity concept. They model a specific form of
semantic similarity by using a supervised dataset of user-
password pairs. They assume the distributional hypothesis
for passwords to be true, and define two passwords to be
‘similar’ if they are often chosen together by users. The pro-
posed attack technique is founded on a probabilistic neural
model, and it aims to produce tweaked variations of an input
password. The produced variations are then used as suitable
guesses for the targeted tweaking attack. More interestingly,
their defensive technique firstly glances the application of su-
pervised representation learning in password guessing. Their
technique is based on constructing an embedding space that
is learned using the out-of-the-shelf word embedding tool. In
such space, the geometric relation between passwords is used
to estimate the similarity between chosen passwords. This
similarity measure is then used to build a “Personalized Pass-
word Strength Meter” that aims to spot the use of tweaked
password by the user at password creation time. In contrast
to our password representation, their embedding space does
not allow sampling operation and so passwords generation as
well.

16The user can create such password variations to accommodate pass-
words composition policies of different services.



6 Conclusion and future works

Orthogonal to the current research directions, we propose a
complete paradigm shift in the task of password guessing.
We demonstrate that locality principles imposed by the latent
representation of a GAN generator can open new practical
and theoretical possibilities in this field. Based on these prop-
erties, we propose two new password guessing frameworks,
i.e., SSPG and DPG. SSPG, along with its underlying founda-
tion, i.e., the template-based password generation, is useful in
several real-world scenarios. We empirically demonstrated its
efficiency over its potential competitors. DPG demonstrates
that the knowledge from freshly guessed passwords can be
successfully generalized and used to reduce the covariate
shift phenomenon. We believe that these properties can also
be used to do an efficient estimation of password guessability.
We will explore this possibility in our future efforts.

Availability

The code, pre-trained models, validation sets, and other ma-
terials related to our work are publicly available at: https:
//tinyurl.com/yygbvin2
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Appendix A Supplementary tables & figures

Table A.1 lists the value of hyper-parameters used to train
the encoder network. Table A.2 shows the templates for pass-
words with maximum length of 10 that contain a substring
“jimmy”. Figure A.l shows the distribution of matched pass-
words over each substring for our approach against the most
performing competitor tool in the task of error-free SSPG.

Table A.1: Hyper-parameters used to train our encoder net-
work

Hyper-parameter Value
a 0.2

B 0.2

Y 0.6
Batch size 64
Learning rate 0.001
Optimizer Adam
Temperature decay step 250000
Temperature limit 0.1
Temperature scheduler  polynomial
Train iteration 3.10°

Table A.2: Templates for passwords with maximum length of
10 that contain a substring “jimmy”’

woookimmy  eookimmys  kjimmysx ekjimmysex kjimmysoess
Jimmyssssx eckkjimmy skkjimmy* sxjimmysek *jimmy sk
Jimmy sk skkjimmy Hkjimmy* *jimmys Jimmysksk
*kjimmy *jimmys Jjimmyss *jimmy jimmys

Appendix B SSPG with noisy substring

SSPG comes handy naturally in scenarios where partial in-
formation - a substring - of the target-password is known.
SSPG assumes that the known substring is correct. But, what
if the known substring is not completely accurate? In other
words, how SSPG performs if the the substring is erroneous
(e.g., “min” instead of “man”)? This situation can arise due
to the following reasons for the two cases that we mentioned
in Section 3.3: (1) inaccuracy of the side-channel attack; and
(2) incorrect remembrance of the password by the user. For-
mally, we now consider an attack scenario where the available
substring s’ is a noisy version of the true substring s that is
actually present in the target password x.
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Figure A.1: The distribution of matched passwords over each
substring for our approach against the most performing com-
petitor tool using evaluation sets Xpames and Xigs

The password strong locality property offers us a way to
deal with this kind of scenarios as well. As shown in Sec-
tion 3.1, it allows us to explore passwords with common
substrings as well as the passwords with variations of the
substrings. The samples reported in Table 2, present some
such cases. Single character variations e.g., ‘s’ in “simmy91”
or ‘m’ in “mimmy91”, are reachable from “jimmy91” with a
lower value of G (i.e., 0.05). On the other side, reaching higher-
character variations requires a higher value of 6, e.g., “sirsy91”
from “jimmy91” needs ¢ = 0.15.

As shown in our results (Section 3.3.1), the state-of-the-
art tools do not work at all or, at most, perform inefficiently
SSPG with error-free substring (Section 3.3) whereas none
of the state-of-the-art tools is designed to model SSPG with
noisy substring. To be specific, enumerating passwords con-
taining s’ with character level RNN [42] does not provide
any information about the passwords containing s. Likewise,
applying word mangling rules on s’ is unlikely to produce
passwords with s as substring. On the contrary, our approach
with strong locality will map passwords containing s’ or s
closer in the latent space, given that s’ and s are similar to
each other (e.g., “man” and “min” against “abc” and “9$t”).
Therefore, sampling around the pivots induced by s’ can also
cover the passwords related to s depending on the similarity
of ' and s as well as chosen value of ¢. Furthermore, the
chosen value of ¢ can be used to reflect the confidence that



an attacker has in the eavesdropped s’. The only modification
required in our Algorithm 1 to perform this SSPG with noisy
substring is to remove the if clause at line number 8.

To give empirical support to our claim, we repeat the SSPG
experiment with Xjg (Section 3.3.1), but, now with a noisy
version of the substrings. In particular, we compute the noisy
substring s’ for each s (in other words, for each X;) by applying
a distortion function on s. This distortion function selects a
random character in s and substitutes it with another random
character of the same character-class. Then, we apply the
SSPG algorithm (Algorithm 1) with S = {5’} and the same
value of n. We chose two different values of ¢: 0.35 and
0.50. The passwords obtained from these new experiments are
evaluated against the results with the exact substring, i.e., we
take matched-passwords with s as the ground truth instead
of the entire set X;. Figure B.1 depicts the proportion of
matched passwords with respect to the experiment with exact
substrings for the two new experiments.
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Figure B.1: Effect of 6 on SSPG with noisy substring s’
against SSPG with error-free s
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To present a clear picture, we report only 25 random entries.
With 6 = 0.35 (the same value used for the experiment with
the exact substring), we are able to cover part of the previous
results. Hence, for the dynamics mentioned above, we can
match passwords even if the substring used to localize the
zones of the latent space is partially erroneous. However, the
obtained results are heterogeneous; in few cases we match
high number of passwords while we match less in others. We
believe that this is intrinsically related to the organization
of the latent space where not all perturbations are treated
equally. Nevertheless, increasing the value of ¢ enables us
to explore far from the pivots induced by the noisy string,
which increases the probability to cover the areas of latent
space dedicated to the clean string s. As evident in our results,
increasing the value of ¢ uniformly improves the overall
performance.
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