Improving Matsui's Search Algorithm for the Best Differential/Linear Trails and its Applications for DES, DESL and GIFT

Fulei Ji^{1,2}, Wentao Zhang^{1,2}, and Tianyou Ding^{1,2}

¹ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China {jifulei, zhangwentao}@iie.ac.cn

² School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract. Automatic search methods have been widely used for cryptanalysis of block ciphers, especially for the most classic cryptanalysis methods – differential and linear cryptanalysis. However, the automatic search methods, no matter based on MILP, SMT/SAT or CP techniques, can be inefficient when the search space is too large. In this paper, we propose three new methods to improve Matsui's branch-and-bound search algorithm which is known as the first generic algorithm for finding the best differential and linear trails. The three methods, named Reconstructing DDT and LAT According to Weight, Executing Linear Layer Operations in Minimal Cost and Merging Two 4-bit S-boxes into One 8-bit S-box respectively, can efficiently speed up the search process by reducing the search space as much as possible and reducing the cost of executing linear layer operations. We apply our improved algorithm to DESL and GIFT, which are still the hard instances for the automatic search methods. As a result, we find the best differential trails for DESL (up to 14 rounds) and GIFT-128 (up to 19 rounds). The best linear trails for DESL (up to 16 rounds), GIFT-128 (up to 10 rounds) and GIFT-64 (up to 15 rounds) are also found. To the best of our knowledge, these security bounds for DESL and GIFT under single-key scenario are given for the first time. Meanwhile, it is the longest exploitable (differential or linear) trails for DESL and GIFT. Furthermore, benefiting from the efficiency of the improved algorithm, we do experiments to demonstrate that the clustering effect of differential trails for 13-round DES and DESL are both weak.

Keywords: Matsui's search algorithm; Differential trail; Linear trail; Clustering effect; DESL; GIFT-128; GIFT-64; DES

1 Introduction

Differential cryptanalysis [6] and linear cryptanalysis [19] are two of the most fundamental methods for cryptanalysis of block ciphers. The first and the most important step of differential cryptanalysis (or linear cryptanalysis) is to find differential trails (or linear trails) with high probabilities (or large correlations). Therefore, how to find effective differential or linear trails has become a hot issue for cryptographers.

At EUROCRYPT'94 [20], Matsui proposed a branch-and-bound depth-first search algorithm, which presents an efficient automatic search algorithm to find the best differential trails and linear trails of DES. Differential trails with highest probability or linear trails with largest correlation are called the best. However, Matsui's method is not efficient enough for some other block ciphers such as DESL and FEAL. At CRYPTO'95 [22], Moriai et al. improved Matsui's algorithm. They introduced the concept of search patterns to reduce unneccessary search candidates and found the best *n*-round linear trails of FEAL ($n \leq 32$). At FSE'97 [3], Aoki et al. further improved the search algorithm by proposing the pre-search strategy to discard unsatisfiable search patterns. They determined all the best differential trails of FEAL up to 32 rounds. In [5], Bao et al. proposed three strategies to speed up the search algorithm. They got good results on the best differential and linear trails of NOEKEON and SPONGENT. Bao's three strategies can efficiently speed up the search process. However, it needs quite complex programming skills to implement their strategies.

2 Fulei Ji, Wentao Zhang, and Tianyou Ding

The idea of search patterns and the pre-search strategy are hard to implement when the weights of the differential or linear trails of the target cipher are not integers. The definitions of the weight of difference propagation (or linear correlation) and the weight of differential (or linear) trail are given in Sect.2.1. For example, the weights of the difference propagations of S-boxes in DESL are not all integers. It is not convenient for DESL to perform the pre-search phase, since assigning decimal weights to every single round is difficult. In [3], Aoki et al. provided a version of presearch algorithm that specially designed for decimal weights, but this algorithm is complicated to implement.

In recent years, Mixed-Integer Linear Programing (MILP) based method has been very popular in constructing automatic search algorithm in differential and linear cryptanalysis [21,26,24,25,23]. MILP-based method is convenient to programing. But when the block size or the round number of the target cipher is large, the size of the corresponding MILP model will be too large. There are some papers [28,17] using MILP-based method to study the security of GIFT-128. But they can only get differential trails under some limitations and they cannot estimate the best difference propagation probabilities when the round number is large. In [23], Sun et al. applied MILP-based method to search differential trails of DESL, but they can only found a 10-round single-key differential trail of DESL with probability $2^{-52.25}$.

The weights of the difference propagations of the S-boxes in DESL and GIFT and the weights of the linear propagations in DESL are not all integers. As mentioned above, the original Matsui's method and the MILP-based method are both not efficient enough to search the best differential trails of DESL or GIFT-128, and it is really complicated to apply the idea of search patterns to accelerate the search process.

How to find multiple differential or linear distinguishers [8] is another problem that researchers pay attention [2,11,14]. In [2], Abdelraheem et al. presented a time-memory trade-off method to search the multipule linear trails of SIMON. They combined the trails found by constructing multi-round correlation submatrixes and by Mixed Integer Programming model. In [14], Mathias et al. proposed a breadth-first search algorithm. The algorithm represents the problem of searching multiple differential or linear trails as the problem of finding many long paths through a multistage graph.

1.1 Our Contributions

In this paper, we apply three methods to speed up the original Matsui's algorithm. By these three speeding-up methods, we can efficiently prune unsatisfiable candidates and reduce the cost of executing linear layer operations:

- Reconstructing DDT and LAT According to Weight method is very helpful to reduce the complexity of the search process. We apply this method to prune unsatisfiable candidates by sorting the input and output differences according to their weights.
- Executing Linear Layer Operations in Minimal Cost method can be used to reduce the cost of P permutation and E expansion. By constructing linear layer table and executing look-up-table operations by SSE instructions, we can implement linear layer operations of each round with 2 XOR operations of 128-bit variables.
- Merging Two 4-bit S-boxes into One 8-bit S-box method is used to speed up the search process when the number of S-box is large. In the case of GIFT, by merging two consecutive 4×4 S-boxes into one 8×8 S-box, we can further reduce the cost of executing linear layer operations.

We use our improved search algorithm to search the best differential trails and linear trails of DES, DESL, GIFT-64 and GIFT-128. The results are helpful for estimating the security of DESL, GIFT-64 and GIFT-128 against differential and linear cryptanalysis. Besides, we do experiments to estimate the clustering effect of differential trails for 13-round DES and DESL.

We use method 1 and method 2 to accelerate the search process of DES and DESL. Method 1, method 2 and method 3 are all used to accelerate the search process of GIFT-64 and GIFT-128.

3

For DES and DESL, our experimental results presented in Table 3 show that the first two methods bring an acceleration by a factor of 26-173. For GIFT-64 and GIFT-128, our experimental results presented in Table 4 show that the third method brings an acceleration by a factor of 2-4. All of the experiments and results in this paper are obtained and timed on a PC with Intel(R) Core(TM) i7-6700 3.40 GHz CPU, and 16 GB RAM, using single-thread program in C.

Results on DES and DESL:

- For DES. We find the best differential trails for up to 18 rounds³. The best difference probability of 18-round DES is $2^{-69.84}$. The results are summarized in Table 3. We find the best linear trails of DES for up to 22 rounds. The best linear correlation of 22-round DES is $2^{-32.46}$. The results are summarized in Table 5.

We confirm the results on the best difference and linear probability of DES provided in [20,22]. As we can see from Table 3, our new methods can efficiently speed up the search process.

- For DESL. We find the best differential trails for up to 14 rounds. The best difference probability of 14-round DESL is $2^{-68.78}$. The results are summarized in Table 3. We find the best linear trails of DESL for up to 16 rounds. The best linear correlation of 16-round DESL is $2^{-32.98}$. The results are summarized in Table 5.

To the best of our knowledge, we find the longest exploitable best differential and linear trails for DESL. In [24], the authors found a 10-round differential trail with probability $2^{-52.25}$, and there is no previous results on linear trails of DESL.

 Demonstrating the Clustering Effect. In [12], it has been mentioned that the differential and linear clustering effect of DES are both weak. But no experimental result was provided to demonstrate this conclusion.

In this paper, we conduct experiments applying the improved Matsui's algorithm to search the clustering effect of differential trails for 13-round DES and DESL. Through the experiments in Sect.6, we find that the clustering effect of differential trails for 13-round DES and DESL are both weak.

Results on GIFT:

- For GIFT-64. We find the best differential trails for up to 14 rounds. The best difference probability of 14-round GIFT-64 is $2^{-68.000}$. The results are summarized in Table 4. We find the best linear trails of GIFT-64 for up to 15 rounds. The best linear correlation of 13-round GIFT-64 is $2^{34.00}$. The results are summarized in Table 6.

We find the longest exploitable best linear trails of GIFT-64 and we confirm the results on the best difference probability of GIFT-64 provided in [27].

- For GIFT-128. We find the best differential trails for up to 19 rounds. The best difference probability of 19-round GIFT-128 is 2^{-110.830}. The results are summarized in Table 4.

We find the best linear trails of GIFT-128 for up to 10 rounds. The best linear correlation of 10-round GIFT-128 is $2^{-26.00}$. The results are summarized in Table 6.

We find the longest exploitable best differential and linear trails for GIFT-128. The results on the best difference probabilities and best linear correlations provided in this paper are the tightest security bounds of GIFT-128, which are found for the first time.

To illustrate the efficiency of our improved algorithm, we compare our results on the weight of the best differential trails with previous work in Table 1.

We find no result on the best linear trails of DESL or GIFT from previous work. Since the weights of the linear propagations of S-boxes in GIFT are integers, Bao's algorithm can be very suitable to search the best linear trails of GIFT. We compare our results on the weight of the best linear trails with the results of Bao's algorithm in Table 2.

As shown in Table 2, for SPN block ciphers, when the weights are all integers, Bao's algorithm is more efficient than our improved Matsui's algorithm. But we need to state that: The improved

 $^{^{3}}$ The round number of DES is 16.

	DESL GIFT-64			GIFT-128				
\overline{n}	B_n	B_n	n	B_n	B_n	n	B_n	B_n
- 11	(ours)	([23])		(ours)	([27])		(ours)	([17])
7	29.25		7	28.415	28.415	14	79.000	79*
8	37.59		8	38.000	38.000	15	85.415	86*
9	41.76		9	42.000	42.000	16	90.415	91*
10	49.79	52.52^{*}	10	48.000	48.000	17	96.415	97*
11	52.71		11	52.000	52.000	18	103.415	103.415^{*}
12	58.10		12	58.000	58.000	19	110.830	115*
13	60.78		13	62.000	62.000	20	121.415^{*}	121.415*
14	68.78		14	68.000	68.000	21	126.415^{*}	126.415^{*}

Table 1. The weight of the best differential trails

¹ n: the round number. B_n : the weight of the best differential trails of n-round.

 2* : the authors cannot guarantee that it is the best weight.

		GI	FT-64				GIF	T-128	
<i>m</i>	B	t	pre-search	t	20	B_n	t	pre-search	t
n	B_n	(ours)	workload	([5])	n	D_n	(ours)	workload	([5])
9	20	41.47s	1	0.00s	5	7	0.05s	10	47.44s
10	25	0.85h	1	0.23h	6	10	1.77s	6	0.63s
11	29	8.83h	2	36.54h	7	13	19.38s	5	0.01s
12	31	0.73h	2	1.73s	8	17	0.50h	4	24.03s
13	34	3.15h	2	35.45h	9	22	44.09h	3	1.01h
14	37	5.12h	1	0.18s	10	26	20.9d	3	36.72h
15	40	4.59h	1	24.26s					

Table 2. The weight of the best linear trails

¹ n: the round number. B_n : the weight of the best linear trails of n-round. ² t: the search time.

Matsui's algorithm in this paper is easier to implement, and is more convenient to be applied in situations when the weights are not all integers.

In addition, the improved Matsui's algorithm can be used to search the best differential trails and best linear trails for other primitives, estimate the clustering effect and search the multiple differential distinguishers or multi-dimensional linear distinguishers.

1.2 Organization

The paper is organized as follows. Some definitions and symbolic conventions are presented in Sect.2. Meanwhile, we introduce the three block ciphers: DES, DESL and GIFT and Matsui's search algorithm in Sect.2. In Sect.3, we propose our three speeding-up methods. Sect.4 and Sect.5 give the experimental results on the best differential and linear trails of DES, DESL and GIFT, providing justification for the efficiency of the three speeding-up methods. Sect.6 gives experimental results on estimating the clustering effect of differential trails for 13-round DES and DESL. Sect.7 is the conclusion and discussion.

2 Preliminaries

In [20], Matsui illustrated the duality between differential cryptanalysis and linear cryptanalysis. In this paper, we take differential cryptanalysis as an example to explain our speeding-up methods.

2.1 Notations and Definitions

The notations we use are similar to those in [20]. We use the sum of the weights of the round differential trails to characterize the best differential trails.

 X_i, Y_i : the input and the output of the round function F_i X_i^t, Y_i^t : the input and the output of the *t*-th S-box $\Delta X_i, \Delta Y_i, \Delta X_i^t, \Delta Y_i^t$: the differential value of X_i, Y_i, X_i^t and Y_i^t $\Gamma X_i, \Gamma Y_i$: the masking value of X_i and Y_i K_i : the round key of the round function F_i \oplus , •: the bitwise XOR operation and AND operation P(x): P permutation on 0-1 string x $E \circ P(x)$: composition of P permutation and E expansion on 0-1 string x

 $parity(x) \stackrel{def}{=} x_0 \oplus x_1 \oplus \cdots \oplus x_{n-1}$, in which $x = x_0 ||x_1|| \cdots ||x_{n-1}|$ is 0-1 string

Definition 1 ([12]). The correlation C(a', b') between the linear propagation (a', b') over the transformation h is defined as:

$$C(a', b') = 2Prob\{parity(a \bullet a') = parity(h(a) \bullet b')\} - 1$$
(1)

a' is the input mask and b' is the output mask, a traverses all the input values of h.

Definition 2 ([12]). The weight of a difference propagation (a', b') is the negative of the binary logarithm of the difference propagation probability over the transformation h, i.e.,

$$w_r(a', b') = -\log_2^{Prob^h(a', b')}$$
(2)

a' is the input difference and b' is the output difference.

Definition 3 ([12]). The weight of a linear correlation C(a', b') is the negative of the binary logarithm of the absolute value of C(a', b') over the transformation h, i.e.,

$$w_r(a',b') = -\log_2^{|C(a',b')|} \tag{3}$$

 $a^{'}$ is the input mask and $b^{'}$ is the output mask.

Definition 4 ([12]). The weight of a differential (or linear) trail Q over an iterative transformation H is the sum of the weights of its differential (or linear) steps, i.e.,

$$w_r(Q) = \sum_i w_r^{h^{(i)}}(q^{i-1}, q^i)$$
(4)

The iterative transformation H is a sequence of r transformations:

$$H = h^{(r)} \circ \dots \circ h^{(2)} \circ h^{(1)} \tag{5}$$

The differential (or linear) trail Q over H consists of a sequence of r+1 difference (or linear mask) values:

$$Q = (q^{(0)}, q^{(1)}, \cdots, q^{(r-1)}, q^{(r)})$$
(6)

In the case of **differential cryptanalysis**, we calculate the weights of the difference propagation probabilities:

$$\begin{split} & (\Delta X_i, \Delta Y_i) \stackrel{def}{=} -log_2^{Prob}\{F_i(X_i \oplus \Delta X_i, K_i) = F_i(X_i, K_i) \oplus \Delta Y_i\} \\ & [w_1, w_2, \cdots, w_t] \stackrel{def}{=} \Sigma_{i=1}^t w_i \\ & B_n \stackrel{def}{=} min[(\Delta X_1, \Delta Y_1), (\Delta X_2, \Delta Y_2), \cdots, (\Delta X_n, \Delta Y_n)] \\ & \text{Note:} \\ & \Delta X_i = \Delta X_{i-2} \oplus E \circ P(\Delta Y_{i-1}), 3 \leq i \leq n, \text{ in the case of DES and DESL}; \\ & \Delta X_i = P(\Delta Y_{i-1}), 2 \leq i \leq n, \text{ in the case of GIFT.} \\ & \text{In the case of linear cryptanalysis, we calculate the weights of the linear correlations:} \\ & (\Gamma X_i, \Gamma Y_i) \stackrel{def}{=} -1 - log_2^{|Prob\{parity(X_i \bullet \Gamma X_i) = parity(F_i(X_i, K_i) \bullet \Gamma Y_i)\} - 1/2|} \\ & [w_1, w_2, \cdots, w_t] \stackrel{def}{=} \Sigma_{i=1}^t w_i \\ & B_n \stackrel{def}{=} min[(\Gamma X_1, \Gamma Y_1), (\Gamma X_2, \Gamma Y_2), \cdots, (\Gamma X_n, \Gamma Y_n)] \\ & \text{Note:} \\ & \Gamma Y_i = \Gamma Y_{i-2} \oplus E \circ P(\Gamma X_{i-1}), 3 \leq i \leq n, \text{ in the case of DES and DESL}; \\ & \Gamma X_i = P(\Gamma Y_{i-1}), 2 \leq i \leq n, \text{ in the case of GIFT.} \end{split}$$

2.2 Description of Feistel Block Cipher DES and DESL

The Data Encryption Standard [15] (DES) was developed at IBM and adopted by the U.S. National Bureau of Standards as the standard cryptosystem for sensitive but unclassified data. DES is a Feistel structure block cipher whose block size is 64 bits and key size is 56 bits. The round number of DES is 16. We illustrate the Feistel structure and the round function of DES in Fig.1. We refer readers to [15] for more details of DES.

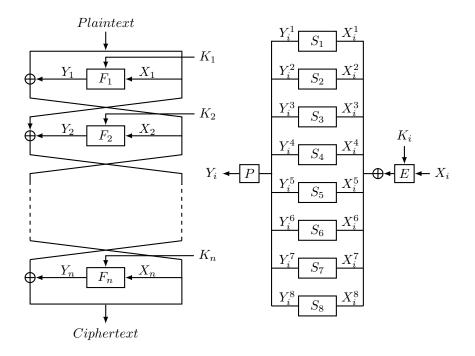


Fig. 1. Round function of DES

- There are 8 different S-boxes in DES. We denote them as $S_i, 1 \le i \le 8$. For each S-box, it takes an input of 6 bits and gives an output of 4 bits.
- E is a bitwise expansion. It takes an input of 32 bits and gives an output of 48 bits. P is a bitwise permutation. It takes an input of 32 bits and gives an output of 32 bits.

DESL [16] is a lightweight variant of DES. DESL is almost the same as DES, except that it uses a single S-box instead of 8 different S-boxes as DES. The designers adapted the DES S-box design criteria and proposed the S-box used in DESL. Using the well designed S-box, DESL is stronger than DES in resisting differential and linear cryptanalysis. We refer readers to [16] for more details of DESL.

2.3 Description of SPN Block Cipher GIFT

GIFT [4] is an SP-network lightweight block cipher. GIFT has two versions named in GIFT-64 and GIFT-128, whose block sizes are 64 and 128 bits respectively, and round numbers are 28 and 40 respectively. The key length of GIFT-64 and GIFT-128 are both 128 bits.

Recently, Banik et al. proposed a lightweight Authenticated Encryption (AE) scheme GIFT-COFB based on GIFT-128, which is one of the Round 1 Candidates of NIST Lightweight Crypto Standardization process [1].

There are 32 same 4×4 S-boxes in GIFT-128 and 16 same 4×4 S-boxes in GIFT-64. The round function of GIFT-128 is shown in Fig.2. We refer readers to [4] for more details of GIFT.

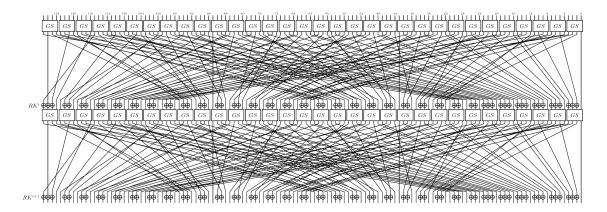


Fig. 2. Two rounds of GIFT-128 [1]

2.4 Matsui's Search Algorithm

Matsui's algorithm works by induction on the number of rounds and derives the best *n*-round weight B_n from the knowledge of all *i*-round best weight B_i $(1 \le i \le n-1)$. The program requires an initial value for B_n , which is represented as Bc_n . It works correctly for any Bc_i as long as $Bc_i \ge B_i$ $(1 \le i \le n-1)$.

The original search algorithm is recursive and targets DES. Alg.1 and Alg.2 show the details of Matsui's search algorithm targets Feistel cipher and SPN cipher respectively.

3 Our New Speeding-up Methods

Overall Strategy In order to speed up Matsui's search algorithm, we need to further study the inner details of Matsui's algorithm and the objective block ciphers: DES, DESL, GIFT.

We speed up the search process in the following two ways:

Algorithm 1 Matsui's Algorithm Targets Feistel Cipher Input: $n \ (\geq 4); B_1, B_2, \cdots, B_{n-1}; Bc_n$ **Output:** $B_n = Bc_n$; the best differential trails of round n 1: **Procedure** Round-1: 16: for each candidate of ΔY_i do for each candidate of ΔX_1 do $\Delta X_i \leftarrow \Delta X_{i-2} \oplus E \circ P(\Delta Y_{i-1})$ 2: 17:3: $w_1 \leftarrow min_{\Delta Y_1}(\Delta X_1, \Delta Y_1)$ 18: $w_i \leftarrow (\Delta X_i, \Delta Y_i)$ 4: if $[w_1, B_{n-1}] \leq Bc_n$ then 19:if $[w_1, \cdots, w_i, B_{n-i}] \leq Bc_n$ then call Round-2 20: call Round-(i+1)5: end if 6: 21:end if 7: end for 22: end for 8: Procedure Round-2: 23: Procedure Round-n: 9: for each candidate of ΔX_2 and ΔY_2 do 24: $\Delta X_n \leftarrow \Delta X_{n-2} \oplus E \circ P(\Delta Y_{n-1})$ $w_2 \leftarrow (\Delta X_2, \Delta Y_2)$ 25: $w_n \leftarrow \min_{\Delta Y_n}(\Delta X_n, \Delta Y_n)$ 10: if $[w_1, w_2, B_{n-2}] \leq Bc_n$ then 26: if $[w_1, w_2, \cdots, w_n] \leq Bc_n$ then 11: 12:call Round-3 27: $Bc_n = [w_1, w_2, \cdots, w_n]$ 13: end if 28: end if 14: end for 29: return to the upper procedure 15: **Procedure** Round- $i, 3 \le i \le n-1$:

- 1 As mentioned in [22], the complexity of the search process for the n-round best trails is dominated by the number of candidates in Procedure Round-1 and Procedure Round-2. We apply the speeding-up method in Sect.3.1 to prune unsatisfiable candidates as soon as we can;
- 2 When we get a new candidate of ΔY_i , we need to calculate $E \circ P(\Delta Y_i)$ or $P(\Delta Y_i)$. We apply the speeding-up methods in Sect.3.2 and Sect.3.3 to reduce the cost of executing linear layer operations.

3.1 Reconstructing DDT and LAT According to Weight

In Sect.3.1, We take Alg.1 and DES as an example to illustrate how to construct new look-up tables. Alg.1 is a branch-and-bound algorithm, pruning unsatisfiable candidates by the inequalities set in each round. In [20], Matsui suggested that we should try ΔX_i^j and ΔY_i^j in order of the magnitude of $(\Delta X_i^j, \Delta Y_i^j)$. In [5], Bao et al. also searched ΔX_i^j and ΔY_i^j in order of their weights. Inspired by their ideas, we reconstruct the difference distribution table in Procedure Round-1, Round-2 and Round-i ($3 \le i \le n-1$) respectively, ranking the input-output difference pairs in order of their weights. With the help of the new look-up tables, we can efficiently search the input-output difference pairs with large weights and throw away input-output difference pairs with small weights as soon as possible. By doing this, we can significantly accelerate the search process.

There are 9 different weights of the difference propagations for each S-box in DES: 5.00, 4.00, 3.42, 3.00, 2.68, 2.42, 2.20, 2.00, 0.00. We use a table to denote this weight set. The elements are sorted in a descending order:

WeightTable[9] = $\{5.00, 4.00, 3.42, 3.00, 2.68, 2.42, 2.20, 2.00, 0.00\}$

In Procedure Round-1 Since the output difference has no effect on the subsequent search process, we only care about the input difference and their weights. We construct one table to classify the input differences of each S-box according to the corresponding weights:

DDTwX[SboxN][WeightN][InN]

Algorithm 2 Matsui's Algorithm Targets SPN Cipher Input: $n \ (\geq 3); B_1, B_2, \cdots, B_{n-1}; Bc_n$ **Output:** $B_n = Bc_n$; the best differential trails of round n 1: **Procedure** Round-1: if $[w_1, \cdots, w_i, B_{n-i}] \leq Bc_n$ then 12:2: for each candidate of ΔY_1 do 13:call Round-(i+1)3: $w_1 \leftarrow min_{\Delta X_1}(\Delta X_1, \Delta Y_1)$ 14: end if 4: if $[w_1, B_{n-1}] \leq Bc_n$ then 15: end for call Round-2 5: end if 16: **Procedure** Round-*n*: 6: 7: end for 17: $\Delta X_n \leftarrow P(\Delta Y_{n-1})$ 18: $w_n \leftarrow min_{\Delta Y_n}(\Delta X_n \Delta Y_n)$ 8: **Procedure** Round- $i, 2 \le i \le n-1$: 19: if $[w_1, w_2, \dots, w_n] \leq Bc_n$ then $Bc_n = [w_1, w_2, \cdots, w_n]$ 9: $\Delta X_i \leftarrow P(\Delta Y_{i-1})$ 20:10: for each candidate of ΔY_i do 21: end if $w_i \leftarrow (\Delta X_i, \Delta Y_i)$ 22: return to the upper procedure 11:

- SboxN represents the index of the S-box. It ranges from 1 to 8. WeightN represents the index of the weights. It ranges from 0 to 8. InN represents the index of the input difference. It ranges from 0 to 63.
- DDTwX[t][j][r] represents the r-th input difference of the t-th S-box with a weight Table[j].

In Procedure Round-2 We care about the input-output difference pairs and their weights. We construct two tables:

DDTXorder[SboxN][WeightN][InN] DDTYorder[SboxN][WeightN][OutN]

- InN represents the index of the input difference. OutN represents the index of the output difference. The range of these two values depends on the choice of the S-box. For DES, InN and OutN range from 0 to 267 respectively.
- DDTXorder[t][j][r] represents the r-th input difference of the t-th S-box with a weight WeightTable[j]. Its corresponding output difference is DDTYorder[t][j][r].

In Procedure Round-*i*, $3 \le i \le n-1$ Since the input difference is fixed, we care about the corresponding output differences and their weights. We construct two tables:

$\begin{array}{l} DDTY[SboxN][InV][OutN] \\ DDTYw[SboxN][InV][OutN] \end{array}$

- InV represents the value of the input difference. It ranges from 0 to 63. OutN represents the index of the output difference. It ranges from 0 to 15.
- DDTY[t][j][r] represents the *r*-th output difference of the *t*-th S-box whose input difference is *j*. Its corresponding weight is DDTYw[t][j][r].
- We rank the output differences of each input difference in order of their weights: if $r_1 < r_2$, then $DDTYw[t][j][r_1] \leq DDTYw[t][j][r_2]$.

The accelerated Procedure Round-i, $1 \le i \le n-1$ using new look-up tables is shown in Alg.3. We omit the constraints between the the input differences of adjacent S-boxes in Alg.3.

In Procedure Round-1. For the *t*-th S-box, we traverse the weights of its difference propagations from WeightTable[8] to WeightTable[0]. If WeightTable[j] does not satisfy the inequality:

$$[w_1, B_{n-1}] \le Bc_n \tag{7}$$

9

Algorithm 3 Our Search Approach for $\overline{\text{DES}}$ and $\overline{\text{DESL}}$

Input: $n \ (\geq 4); B_1, B_2, \cdots, B_{n-1}; Bc_n; Weight Table[9]$

```
Output: B_n = Bc_n; the best differential trails of n-round
```

```
1: Generate Tables :
                                                                39:
                                                                                 call Sbox-2(t+1, \alpha)
 2: DDTwX[SboxN][WeightN][InN]
                                                                40:
                                                                              else
 3: DDTXoder[SboxN][WeightN][InN]
                                                                41:
                                                                                  w_2 \leftarrow \alpha
 4: DDTYoder[SboxN][WeightN][OutN]
                                                                42:
                                                                                 call Round-3
 5: DDTY[SboxN][InV][OutN]
                                                                              end if
                                                                43:
 6: DDTYw[SboxN][InV][OutN]
                                                                           end for
                                                                44:
 7: EPtable[SboxN][OutV][LocN]
                                                                45:
                                                                        end if
                                                                46: end for
 8: Procedure Round-1:
 9: w_1 \leftarrow 0, \Delta X_1 \leftarrow 0, t \leftarrow 1
                                                                47: Procedure Round-i, 3 \le i \le n-1:
10: Function Sbox-1(t, w_1):
                                                                48: \Delta X_i \leftarrow \Delta X_{i-2} \oplus E \circ P(\Delta Y_{i-1}), t \leftarrow 1
                                                                              \leftarrow
11: for j = 8 to 0 do
                                                                49: w_i
                                                                                      DDTYw[1][\Delta X_i^1][0] + \cdots +
        \alpha \leftarrow w_1 + \text{WeightTable}[j]
                                                                     DDTYw[8][\Delta X_i^8][0]
12:
                                                                50: \Delta Y_i^1 \leftarrow \text{DDTY}[1][\Delta X_i^1][0]
13:
        if [\alpha, B_{n-1}] \ge Bc_n then
           break
                                                                51: \cdots
14:
                                                                52: \Delta Y_i^8 \leftarrow \text{DDTY}[8][\Delta X_i^8][0]
        else
15:
                                                                53: Function Sbox(i, t, w_i):
           for each DDTwX[t][j][r] do
16:
17:
              \Delta X_1^t \leftarrow \text{DDTwX}[t][j][r]
                                                                54: w_i \leftarrow w_i - \text{DDTYw}[t][\Delta X_i^t][0]
              if t < 8 then
                                                                55: for each DDTYw[t][\Delta X_i^t][r] do
18:
                 call Sbox-1(t+1, \alpha)
                                                                        \alpha_i \leftarrow w_i + \text{DDTYw}[t][\Delta X_i^t][r]
19:
                                                                56:
                                                                        if [w_1, w_2, \dots, w_{i-1}, \alpha_i, B_{n-i}] \ge Bc_n then
20:
              else
                                                                57:
21:
                 w_1 \leftarrow \alpha
                                                                58:
                                                                           break
22:
                 call Round-2
                                                                59:
                                                                        else
                                                                           \Delta Y_i^t \leftarrow \text{DDTY}[t][\Delta X_i^t][r]
23:
              end if
                                                                60:
                                                                           if t < 8 then
24:
           end for
                                                                61:
25:
        end if
                                                                62:
                                                                              call Sbox(i, t+1, \alpha_i)
26: end for
                                                                63:
                                                                           else
                                                                64:
                                                                              w_i \leftarrow \alpha_i
27: Procedure Round-2:
                                                                              call Round-(i+1)
                                                                65:
28: w_2 \leftarrow 0, \Delta X_2 \leftarrow 0, \Delta Y_2 \leftarrow 0, t \leftarrow 1
                                                                66:
                                                                           end if
29: Function Sbox-2(t, w_2):
                                                                67:
                                                                        end if
                                                                68: end for
30: for j = 8 to 0 do
31:
        \alpha \leftarrow w_2 + \text{WeightTable}[j]
32:
        if [w_1, \alpha, B_{n-2}] \geq Bc_n then
                                                                69: Procedure Round-n:
33:
           break
                                                                70: \Delta X_n \leftarrow \Delta X_{n-2} \oplus E \circ P(\Delta Y_{n-1})
34:
        else
                                                                71: w_n \leftarrow \min_{\Delta Y_n}(\Delta X_n, \Delta Y_n)
           for each DDTXoder[t][j][r] do
                                                                72: if [w_1, w_2, \cdots, w_n] \leq Bc_n then
35:
              \varDelta X_2^t \leftarrow \text{DDTXoder}[t][j][r]
                                                                        Bc_n = [w_1, w_2, \cdots, w_n]
36:
                                                                73:
              \Delta Y_2^t \leftarrow \text{DDTYoder}[t][j][r]
                                                                74: end if
37:
              if t < 8 then
38:
                                                                75: return to the upper procedure
```

then we can prune the input differences with weights range from WeightTable[j] to WeightTable[0].

In Procedure Round-2. For the t-th S-box, we traverse its weights from WeightTable[8] to WeightTable[0]. For each satisfiable WeightTable[j], we traverse the corresponding input differences and output differences.

In Procedure Round-*i*, $3 \le i \le n-1$. For the *t*-th S-box, its input difference is ΔX_i^t . We traverse its weights in the order: DDTYw[*t*][ΔX_i^t][0], DDTYw[*t*][ΔX_i^t][1], \cdots and the corresponding output differences. If DDTYw[*t*][ΔX_i^t][j] does not satisfy the inequality:

$$[w_1, w_2, \cdots, w_i, B_{n-i}] \le Bc_n \tag{8}$$

then we don't need to traverse DDTYw $[t][\Delta X_i^t][m] \ (m \ge j)$.

3.2 Executing Linear Layer Operations in Minimal Cost

In Sect.3.2, We take Alg.3 and DES as an example. The implementation of P and E operations is one of the most costly parts of the search process and it is efficient to execute linear layer operations by looking up tables. In [5], Bao et al. proposed a speeding-up method named *Trailing in Minimal Changes Order Strategy*. They constructed one table to implement nonlinear layer and linear layer operations at once.

Inspired by Bao's method, we construct one table to execute the P permutation and the E expansion at once. According to Alg.3, we find that when we traverse the output differences of the *t*-th S-box of the *i*-th round, the only difference between the new output difference value ΔY_{inew} and the old output difference value ΔY_{iold} is ΔY_i^t . So we build the linear-layer table according to each single output difference of each S-box. Further more, in order to use the SSE instructions, we split the 32-bit output of $E \circ P(\cdot)$ into eight 4-bit values.

The new table is:

EPtable[SboxN][OutV][LocN]

- SboxN represents the index of the S-box. It ranges from 1 to 8. OutV represents the value of the output difference. It ranges from 0 to 15. LocN represents the index of the output after executing P and E operations. It ranges from 0 to 7.
- EPtable[t][j][r] represents that: for the t-th S-box whose output difference is j, after executing the P permutation and the E expansion, the r-th value of the output is EPtable[t][j][r].

With the help of EPtable[SboxN][OutV][LocN] table and SSE instructions, the cost of executing linear layer operations can be reduced in two sides:

- 1 The cost of executing P and E operations can be reduced from 7 XOR operations to 2 XOR operations
 - In general, we look up the EPtable[SboxN][OutV][LocN] table to determine the value of $E \circ P(\Delta Y_i)$ when we generate a new value of ΔY_i . We use the SSE instructions to execute the look-up-table operations. To generate the value of $E \circ P(\Delta Y_i)$, we need to perform **7 XOR operations of 128-bit variables**.
 - When we traverse the output difference of the *t*-th S-box of the *i*-th round, the only difference between the new output difference value ΔY_{inew} and the old output difference value ΔY_{iold} is ΔY_i^t . So we can calculate $E \circ P(\Delta Y_{inew})$ using $E \circ P(\Delta Y_{iold})$ and EPtable[SboxN][OutV][LocN]. Then we only need to perform **2 XOR operations of 128-bit** variables to generate the value of $E \circ P(\Delta Y_{inew})$.

For example When we traverse the fourth S-box of round-i, if the output difference changes from

$$\Delta Y_{iold} := 0x1, 0x3, 0xe, 0x5, 0xf, 0x2, 0x1, 0x3 \tag{9}$$

to

$$\Delta Y_{inew} := 0x1, 0x3, 0xe, 0x7, 0xf, 0x2, 0x1, 0x3 \tag{10}$$

12Fulei Ji, Wentao Zhang, and Tianyou Ding

then we can calculate $E \circ P(\Delta Y_{inew})$ as follows:

$$E \circ P(\Delta Y_{inew}) = E \circ P(\Delta Y_{iold}) \oplus EPtable[4][0x5]^* \oplus EPtable[4][0x7]^*$$
(11)

$$EPtable[i][j]^* := *((_m128i*)EPtable[i][j]$$

$$(12)$$

2 The cost of calculating ΔX_i^t $(1 \le t \le 8)$ from ΔX_i $(3 \le i \le n)$ can be reduced to only one memory copy operation.

In Procedure Round-i $(3 \le i \le n)$, once we get $\Delta X_i \leftarrow \Delta X_{i-2} \oplus E \circ P(\Delta Y_{i-1})$, we need to determine the value of each ΔX_i^t $(1 \le t \le 8)$.

- In the original look-up-table method, when we get the value of ΔX_i , we need to perform
- 7 bitwise shifting operations and 8 bitwise AND operations to get each ΔX_i^t $(1 \le t \le 8)$. In our method, we define ΔX_i as a 128-bit variable and define $\Delta X_i^1, \Delta X_i^2, \dots, \Delta X_i^8$ as an array. The length of each ΔX_i^t $(1 \le t \le 8)$ in the array is 16-bit. Then using the SSE instructions, we can get the values of eight ΔX_i^t $(1 \le t \le 8)$ by only 1 memory copy operation.

The speeding-up methods presented in Sect.3.1 and Sect.3.2 are also applied in the search process of GIFT. The improved search approach is shown in Alg.4⁴.

Compared with Alg.³, there are two new tables in Alg.⁴:

DDTwY[SboxN][WeightN][OutN] Ptable[SboxN][OutV][LocN]

- DDTwY[t][j][r] represents the r-th output difference of the t-th S-box with a weight WeightTable[j].
- We split the output of $P(\cdot)$ into sixteen 8-bit values. LocN represents the index of the output after executing the P permutation. It ranges from 0 to 15.
- Ptable[t][j][r] represents that: for the t-th S-box whose output difference is j, after executing the P permutation, the r-th value of the output is Ptable[t][j][r].

$\mathbf{3.3}$ Merging Two 4-bit S-boxes into One 8-bit S-box

In Sect.3.3, We take GIFT-128 as an example. There are 32.4×4 S-boxes in GIFT-128. To minimize the cost of linear layer operations, we merge the two consecutive 4×4 S-boxes into one 8×8 S-box. The original 32 S-boxes of GIFT-128 is as follows:

$$S_1, S_2, S_3, \cdots, S_{31}, S_{32}$$
 (13)

We mark the original version of GIFT-128 as the **old-version GIFT-128**. There are 16 8×8 S-boxes in the **new-version GIFT-128**:

$$SS_1, SS_2, SS_3, \cdots, SS_{15}, SS_{16}$$
 (14)

The relationship between S_1, S_2, \dots, S_{32} and $SS_1, SS_2, \dots, SS_{16}$ is that, if we have:

$$Y^{2 \cdot i - 1} = S_{2 \cdot i - 1}[X^{2 \cdot i - 1}] \tag{15}$$

$$Y^{2 \cdot i} = S_{2 \cdot i}[X^{2 \cdot i}], \tag{16}$$

then we have:

$$Y^{2 \cdot i-1} || Y^{2 \cdot i} = SS_i [X^{2 \cdot i-1} || X^{2 \cdot i}]$$
(17)

in which $1 \leq i \leq 16$.

Using this speeding-up method, we can efficiently speed up the search process of GIFT-128. There are two advantages of applying this speeding-up method:

- 1 There are 16 8-bit S-boxes in the new-version GIFT-128. It is very convenient to store 16 8-bit values with a 128-bit variable, so we can easily use the SSE instructions just as in Alg.3;
- 2 We combine the difference traversal of two 4-bit S-boxes into one 8-bit S-box. When we generate a new output difference of SS_r , the cost of executing the P permutation can be reduced.

ns represents the number of the S-boxes. For GIFT-128, ns = 16; for GIFT-64, ns = 8.

Algorithm 4 Our Search Approach for GIFT

Input: $n (\geq 3); B_1, B_2, \dots, B_{n-1}; Bc_n;$ WeightTable[10]; ns : the number of the S-boxes **Output:** $B_n = Bc_n$; the best differential trails of *n*-round

28: +DDTYw[ns][ΔX_i^{ns}][0] 1: Generate Tables : 2: DDTwY[SboxN][WeightN][OutN] 29: $\Delta Y_i^1 \leftarrow \text{DDTY}[1][\Delta X_i^1][0]$ 3: DDTY[SboxN][InV][OutN] 30: ••• 31: $\Delta Y_i^{\text{ns}} \leftarrow \text{DDTY}[\text{ns}][\Delta X_i^{\text{ns}}][0]$ 4: DDTYw[SboxN][InV][OutN] 5: Ptable[SboxN][OutV][LocN] 32: Function $Sbox(i, t, w_i)$: 33: $w_i \leftarrow w_i - \text{DDTYw}[t][\Delta X_i^t][0]$ 6: Procedure Round-1: 34: for each DDTYw[t][ΔX_i^t][r] do 7: $w_1 \leftarrow 0, \Delta Y_1 \leftarrow 0, t \leftarrow 1$ 35: $\alpha_i \leftarrow w_i + \text{DDTYw}[t][\Delta X_i^t][r]$ 8: Function Sbox-1 (t, w_1) : if $[w_1, \cdots, w_{i-1}, \alpha_i, B_{n-i}] \geq Bc_n$ then 36: 9: for j = 9 to 0 do 37: break $\alpha \leftarrow w_1 + \text{WeightTable}[j]$ else 10: 38: $\Delta Y_i^t \leftarrow \text{DDTY}[t][\Delta X_i^t][r]$ if $[\alpha, B_{n-1}] \geq Bc_n$ then 39: 11: 12:break 40: if t < ns then 13: else call $Sbox(i, t+1, \alpha_i)$ 41: for each DDTwY[t][j][r] do else 14: 42: $\Delta Y_1^t \leftarrow \text{DDTwY}[t][j][r]$ 43: 15: $w_i \leftarrow \alpha_i$ if t < ns then call Round-(i+1)16:44: 17:call Sbox-1 $(t+1, \alpha)$ 45: end if 18:else 46: end if 47: end for 19: $w_1 \leftarrow \alpha$ call Round-2 20:end if 48: **Procedure** Round-*n*: 21:22:end for 49: $\Delta X_n \leftarrow P(\Delta Y_{n-1})$ 50: $w_n \leftarrow \min_{\Delta Y_n}(\Delta X_n, \Delta Y_n)$ 23:end if 24: end for 51: **if** $[w_1, w_2, \cdots, w_n] \leq Bc_n$ **then** 52: $Bc_n = [w_1, w_2, \cdots, w_n]$ 25: **Procedure** Round- $i, 2 \le i \le n-1$: 53: end if 26: $\Delta X_i \leftarrow P(\Delta Y_{i-1}), t \leftarrow 1$ 54: return to the upper procedure 27: $w_i \leftarrow \text{DDTYw}[1][\Delta X_i^1][0] + \cdots$

For example If the output difference of SS_r changes from 0x12 to 0x35, then we only need 2 XOR operations $(0x12 \rightarrow 0x35)$ of 128-bit variables to generate $P(\Delta Y)$. While in the search of the old-version GIFT-128, we need 4 XOR operations $(0x1 \rightarrow 0x3, 0x2 \rightarrow 0x5$ respectively) of 128-bit variables.

The idea of merging S-boxes is a time-memory trade-off method. In [13], Daemen et al. introduced the structure of the (AES) super box. They combined four 8-bit S-boxes into one 32-bit S-box. In Sect.3.3, we combine two 4-bit S-boxes into one 8-bit S-box. Both of the two methods are aimed at reducing the cost of linear layer operations over the search process.

4 Experimental Results on Best Differential Trails

4.1 DES and DESL

We have searched the best differential trails and the weights of the best differential trails of DES and DESL with Alg.3. Table 3 summarizes our experimental results. Table 14 in Appendix A shows one of the best 12-round differential trails of DESL.

			DES					DESL	
\overline{n}	Bc_n	B_n	t0~(s)	t1(s)	t2(s)	Bc_n	B_n	t1	t2
4	10	9.61	4.83	0.23	0.04	10	9.02	0.14s	0.06s
5	14	13.22	57.34	2.91	0.88	15	14.05	12.44s	4.80s
6	20	19.96	303.26	20.68	2.63	23	22.19	0.67h	569.55s
7	24	23.61	338.31	20.61	1.96	30	29.25	11.00h	2.96h
8	31	30.48	436.82	45.00	6.31	38	37.59	15.35h	6.66h
9	32	31.48	3.66	0.16	0.03	42	41.76	812.45s	293.78s
10	39	38.35	7.80	0.90	0.30	50	49.79	2.99h	1.55h
11	40	39.35	3.72	0.16	0.03	53	52.71	326.29s	96.70s
12	47	46.22	7.61	0.90	0.16	59	58.10	148.37s	72.81s
13	48	47.22	3.75	0.15	0.04	61	60.78	0.73s	0.30s
14	55	54.10	7.61	0.90	0.16	69	68.78	40.49s	11.15s
15	56	55.10	3.81	0.14	0.04				
16	62	61.97	7.55	0.88	0.12				
17	63	62.97	3.83	0.16	0.03				
18	70	69.84	7.65	0.91	0.15				

Table 3. The weights of the best differential trails of DES and DESL

¹ n: the round number. B_n : the weight of the best differential trails of n-round. Bc_n : the initial value of B_n .

 $^{2} t_{0}$: the search time of the original Matsui's method (Alg.1).

 $^{3}t_{1}$: the search time of applying the speeding-up method in Sect.3.1.

 ${}^{4}t_{2}$: the search time of applying the speeding-up methods in Sect.3.1 and Sect.3.2.

4.2 GIFT

We have searched the best differential trails and the weights of the best differential trails of GIFT-64 and GIFT-128 with Alg.4. Table 4 summarizes our experimental results. Table 15 in Appendix A shows one of the best 19-round differential trails of GIFT-128. Table 16 in Appendix A shows one of the best 14-round differential trails of GIFT-64.

5 Experimental Results on Best Linear Trails

5.1 DES and DESL

We have searched the best linear trails and the weights of the best linear trails of DES and DESL with the variant of Alg.³⁵. Table 5 summarizes our experimental results. Table 14 in Appendix A shows one of the best 16-round linear trails of DESL.

5.2 GIFT

We have searched the best linear trails and the weights of the best linear trails of GIFT-64 and GIFT-128 with the variant of Alg.4. Table 6 summarizes our experimental results. Table 15 in Appendix A shows one of the best 10-round linear trails of GIFT-128. Table 16 in Appendix A shows one of the best 13-round linear trails of GIFT-64.

⁵ We refer readers to [20] to get the transformation method.

		GIFT-64	4	GIFT-128			
n	Bc_n	B_n	t2~(s)	Bc_n	B_n	t1	t2
3	7.0	7.000	0.01	7.0	7.000	0.02s	0.00s
4	11.5	11.415	0.00	11.5	11.415	0.05s	0.02s
5	17.0	17.000	0.02	17.0	17.000	0.60s	0.21s
6	22.5	22.415	0.09	22.5	22.415	1.65s	0.62s
7	28.5	28.415	0.64	28.5	28.415	9.93s	3.74s
8	39.0	38.000	66.01	39.0	39.000	7.58h	2.23h
9	43.0	42.000	26.75	45.5	45.415	1.88h	0.66h
10	49.0	48.000	71.85	49.5	49.415	0.39h	0.13h
11	53.0	52.000	23.22	54.5	54.415	0.50h	0.17h
12	59.0	58.000	31.62	60.5	60.415	1.11h	0.38h
13	63.0	62.000	5.15	68.0	67.830	6.67h	2.24h
14	69.0	68.000	6.99	79.0	79.000	-	257.13h
15				86.0	85.415	435.72h	144.80h
16				90.5	90.415	24.42h	8.39h
17				97.0	96.415	66.74h	21.93h
18				103.5	103.415	-	102.48h
19				111.0	110.830	-	363.90h
20				121.5	≤ 121.415	-	-
21				126.5	≤ 126.415	-	-

Table 4. the weights of the best differential trails of GIFT

 $^{1}t_{1}$: the search time of applying the speeding-up methods in Sect.3.1 and Sect.3.2.

 $^{2} t_{2}$: the search time of applying the speeding-up methods in Sect.3.1, Sect.3.2 and Sect.3.2.

 3 - : the values that we have not got.

6 Experimental Results on Estimating the Differential Clustering Effect of DES and DESL

Let PD denote the plaintext difference and CD denote the ciphertext difference. Let Bu_n denote the upper bound of B_n . In all the experiments of Sect.⁶, we try to find all the differential trails with weights B_n satisfying $B_n \leq Bu_n$.

6.1 DES

In [7], Biham et al. proposed a key recovery attack on 16-round DES using a 13-round differential trail with weight 47.22. In Sect.6.1, we estimate the clustering effect of differential trails for 13-round DES based on Alg.3. We focus on PD, CD and the weights of the differential trails.

Experiment 1 The 13-round differential trail used in [7] is as follows⁶:

$$PD = 19600000\ 00000000,\ CD = 19600000\ 00000000 \tag{18}$$

First of all, we try to find different differential trails satisfying equation (12). Table 7 summarizes the experimental results.

We set $Bu_{13} = 65$, but there is still only one differential trail satisfying equation (18). Therefore, the clustering effect of differential trail satisfying equation (18) is weak.

⁶ All the plaintext differences and ciphertext differences given below are in hexadecimal form.

		DES			DESL	
n	Bc_n	B_n	t(s)	Bc_n	B_n	t
4	4	3.03	0.003	5	4.02	0.01s
5	5	4.71	0.010	6	5.22	0.00s
6	8	7.03	0.043	10	9.05	6.37s
7	9	8.03	0.020	13	12.57	0.39h
8	10	9.71	0.004	16	15.53	6.66h
9	13	12.07	0.083	17	16.49	3.22s
10	14	13.39	0.009	20	19.32	10.30s
11	15	14.07	0.003	22	21.32	10.92s
12	16	15.75	0.002	25	24.15	37.74s
13	18	17.42	0.019	25	24.74	0.01s
14	20	19.75	0.030	28	27.57	0.29s
15	21	20.75	0.006	30	29.57	0.54s
16	23	22.42	0.008	33	32.98	72.55s
17	25	24.78	0.045			
18	27	26.10	0.011			
19	27	26.78	0.001			
20	29	28.46	0.003			
21	31	30.14	0.037			
22	33	32.46	0.038			

Table 5. The weights of the best linear trails of DES and DESL

¹ n: the round number. B_n : the weight of the best linear trails of n-round. Bc_n : the initial value of B_n . ² t: the search time of applying the speeding-up meth-

ods in Sect.3.1 and Sect.3.2.

		GIFT-6	4	0	HFT-12	28
n	Bc_n	B_n	t1	Bc_n	B_n	t1
3	3.00	3.00	0.00s	3.00	3.00	0.00s
4	5.00	5.00	0.00s	5.00	5.00	0.01s
5	7.00	7.00	0.00s	7.00	7.00	0.05s
6	10.00	10.00	0.01s	10.00	10.00	1.77s
7	13.00	13.00	0.11s	13.00	13.00	19.38s
8	16.00	16.00	1.48s	17.00	17.00	0.50h
9	20.00	20.00	41.47s	22.00	22.00	44.09h
10	25.00	25.00	0.85h	26.00	26.00	20.9d
11	29.00	29.00	8.83h			
12	31.00	31.00	0.73h			
13	34.00	34.00	3.15h			
14	37.00	37.00	5.12h			
15	40.00	40.00	4.59h			

Table 6. The weights of the best linear trails of GIFT

 1 t1 : the search time of applying the speeding-up methods in Sect.3.1, Sect.3.2 and Sect.3.2.

 Table 7. Results of Experiment 1

	paramet	result	s	
Bu_{13}	PD	CD	number of trails	search time
65	$19600000 \ 00000000$	19600000 00000000	1	2.81h

Experiment 2 We try to find other 13-round differential trails with small weight and strong clustering effect, and we hope to find 13-round differential hulls with weight smaller than 47.22.

We increase the value of Bu_{13} and count the number of differential trails with weight satisfying $B_{13} \leq Bu_{13}$. Table 8 summarizes the experimental results.

parameters		results	
Bu_{13}	number of trails	number of trails with the same plaintext and ciphertext difference	search time
51	55	0	2.17m
52	203	0	11.69m
53	531	0	81.17m

Table 8. Results of Experiment 2

As we can see from Table 8, setting $Bu_{13} = 53$, we get 531 differential trails, but there is still no two trails sharing the same PD and CD.

Experiment 3 In Experiment 2, setting $Bu_{13} = 51$, we get 55 differential trails. Among the 55 trails, there are four trails with weights smaller than 50. The *PD* and *CD* of these four trails are shown in Table 9.

Table 9. Four differential trails with the smallest weights of 13-round DES

number	PD	CD	weight
1	19600000 00000000	19600000 00000000	47.22
2	1b600000 00000000	1b600000 00000000	47.22
3	00196000 00000000	00196000 00000000	48.00
4	$000003d4 \ 00000000$	$000003d4 \ 00000000$	48.56

 Table 10. Results of Experiment 3

	paramet	results		
Bu_{13}	PD	CD	number of trails	search time
56	$1b600000 \ 00000000$	1b600000 00000000	1	8.53s
56	00196000 00000000	00196000 00000000	1	10.03s
56	$000003d4 \ 00000000$	$000003d4 \ 00000000$	1	7.28s

Similar to Experiment 1, we explore the clustering effect of the differential trail No.2 to No.4. Table 10 summarizes the experimental results. Setting $Bu_{13} = 56$, we still cannot find new differential trails sharing the same PD and CD with differential trail No.2, No.3 or No.4 in Table 9.

The experimental results of Experiment 1 to 3 show that the clustering effect of differential trails for 13-round DES is weak.

6.2 DESL

As we can see from Table 3, the weight of 12-round best differential trails of DESL is 58.10, which is larger than the key size 56. In order to construct 16-round key recovery attack on DESL, we estimate the differential clustering effect of 13-round DESL.

18 Fulei Ji, Wentao Zhang, and Tianyou Ding

Experiment 4 We try to find 13-round differential trails with small propagation weight and strong clustering effect. Hopefully, we want to find 13-round differential hulls with weight smaller than 56.

We increase the value of Bu_{13} and count the number of differential trails with weight satisfying $B_{13} \leq Bu_{13}$. Table 11 summarizes the experimental results.

parameters	results			
Bata	number of trails	number of trails with the same	search time	
Bu_{13}	number of trans	plaintext and ciphertext difference	search time	
62	52	0	16.78s	
63	214	0	73.40s	
65	1137	0	1277.17s	

Table 11. Results of Experiment 4

Through Experiment 4, we cannot find two trails having the same PD and CD. We get two trails with weight 60.78 and 16 trails with weight 61.37. 61.37 is the second smallest weight of 13-round DESL differential trails. The PD and CD of these trails are shown in Table 12. Considering the symmetry of encryption and decryption process of DESL, there are actually one trail with weight 60.78 and eight trails with weight 61.37.

Table 12. Nine differential trails with the smallest weights of 13-round DESL

B_{13}	number	PD	CD
60.78	1	$027c0400 \ 00000040$	$027a0400 \ 00000040$
61.37	2	$027a0401 \ 00000040$	$027c0400 \ 00000040$
61.37	3	$027c0400 \ 00000040$	$026a0400 \ 00000040$
61.37	4	$027c0400 \ 00000040$	007a0400 00000040
61.37	5	$027c0400 \ 00000040$	$007a0401 \ 00000040$
61.37	6	$027a0400 \ 00000040$	$026c0400 \ 00000040$
61.37	7	$027a0400 \ 00000040$	007c0401 00000040
61.37	8	027a0400 00000040	027c0401 00000040
61.37	9	$007c0400 \ 00000040$	$027a0400 \ 00000040$

Experiment 5 We explore the clustering effect of differential trails in Table 12. Table 13 summarizes the experimental results.

We set $Bu_{13} = 70$, and set the value of PD and CD same as the No.1 trail in Table 12:

$$PD = 027c0400\ 00000040,\ CD = 027a0400\ 00000040 \tag{19}$$

We find three trails satisfying equation (19). The weight of these three trails are: 65.17, 67.56 and 60.78.

As we can see from Table 13, we get one differential hull with weight 60.70 and eight differential hulls with weight 61.29. These differential hulls are useless for 16-round key recovery attack of DESL.

The experimental results of Experiment 4 and 5 show that the clustering effect of differential trails for 13-round DESL is weak.

7 Conclusion and Future Work

In this paper, we improve Matsui's search algorithm of searching the best differential and linear trails by applying three new speeding-up methods. The key idea of our speeding-up methods is to

parameters		results				
Bu_{13}	number in Table 12	number of trails	sum of weights	search time		
70	1	3	60.70	1141.01s		
70	2	3	61.29	333.46s		
70	3	3	61.29	1142.66s		
70	4	3	61.29	1144.72s		
70	5	3	61.29	1139.02s		
70	6	3	61.29	601.44s		
70	7	3	61.29	594.18s		
70	8	3	61.29	602.26s		
70	9	3	61.29	624.57s		

Table 13. Results of Experiment 5

¹ Set the value of PD and CD according to Table 12.

prune unsatisfiable candidates as soon as we can and to decrease the cost of linear layer operations. With the help of the improved algorithm, we find the best differential and linear trails of Feistel block cipher DESL and SPN block cipher GIFT-128 and GIFT-64. We also estimate that the clustering effect of differential trails for 13-round DES and DESL are both weak.

In the end, we would like to propose some problems deserving further investigation.

- As shown in Table 4, our improved search algorithm is not efficient enough to find the best differential trails for GIFT-128 when $n \ge 19$. It is because that when the value of $Bc_n B_{n-1}$ is large, there would be too many candidates. We hope to find some ways to prune unsatisfiable candidates more efficiently.
- Since the speeding-up methods proposed in this paper can help to prune unsatisfiable candidates quickly and decrease the cost of linear layer operations, they can also be used to speed up the search of related-key differential distinguishers.

In [24,25,10,9,18], some related-key differential distinguishers of GIFT, PRESENT, DESL and LBlock have been found utilizing MILP-based or SMT-based methods. In the following work, we are going to adjust Alg.3 and Alg.4 to adapt for the related-key scenario. We will research whether we can find better related-key differential distinguishers for GIFT, PRESENT, DESL, LBlock and other lightweight block ciphers.

References

- 1. https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates. Last accessed 10 May 2019: NIST Homepage
- Abdelraheem, M.A., Alizadeh, J., AlKhzaimi, H.A., Aref, M.R., Bagheri, N., Gauravaram, P.: Improved linear cryptanalysis of reduced-round SIMON-32 and SIMON-48. In: Progress in Cryptology INDOCRYPT 2015 16th International Conference on Cryptology in India, Bangalore, India, 6-9 December. pp. 153–179. Springer, Heidelberg (2015)
- Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL. In: Fast Software Encryption, 4th International Workshop, FSE '97, Haifa, Israel, 20-22 January. pp. 41–53. Springer, Heidelberg (1997)
- Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present towards reaching the limit of lightweight encryption. In: Cryptographic Hardware and Embedded Systems -CHES 2017 - 19th International Conference, Taipei, Taiwan, R.O.C., 25-28 September. pp. 321–345. Springer, Heidelberg (2017)
- Bao, Z., Zhang, W., Lin, D.: Speeding up the search algorithm for the best differential and best linear trails. In: Information Security and Cryptology - 10th International Conference, Inscrypt 2014, Beijing, China, 13-15 December. pp. 259–285. Springer, Heidelberg (2014)
- Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: CRYPTO 1990, Santa Barbara, California, USA, 11-15 August. pp. 2–21. Springer, Heidelberg (1990)

- 20 Fulei Ji, Wentao Zhang, and Tianyou Ding
- 7. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)
- Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: Theory and practice. In: Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, 13-16 February. pp. 35–54. Springer, Heidelberg (2011)
- Cao, M., Zhang, W.: Related-key differential cryptanalysis of the reduced-round block cipher GIFT. IEEE Access 7, 175769–175778 (2019)
- Chen, L., Wang, G., Zhang, G.: Milp-based related-key rectangle attack and its application to GIFT, khudra, MIBS. Comput. J. 62(12), 1805–1821 (2019)
- 11. Chen, S., Liu, R., Cui, T., Wang, M.: Automatic search method for multiple differentials and its application on MANTIS. SCIENCE CHINA Information Sciences **62**(3), 32111:1–32111:15 (2019)
- Daemen, J., Rijmen, V.: The Design of Rijndael: AES The Advanced Encryption Standard. Information Security and Cryptography, Springer, Heidelberg (2002)
- Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: Security and Cryptography for Networks, 5th International Conference, SCN 2006, Maiori, Italy, 6-8 September. pp. 78–94. Springer, Heidelberg (2006)
- Hall-Andersen, M., Vejre, P.S.: Generating graphs packed with paths estimation of linear approximations and differentials. IACR Trans. Symmetric Cryptol. 2018(3), 265–289 (2018)
- Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Information Security and Cryptography, Springer, Heidelberg (2011)
- Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Fast Software Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg, 26-28 March. pp. 196–210. Springer, Heidelberg (2007)
- Li, L., Wu, W., Zheng, Y., Zhang, L.: The relationship between the construction and solution of the MILP models and applications. IACR Cryptology ePrint Archive 2019, 49 (2019)
- Liu, Y., Sasaki, Y.: Related-key boomerang attacks on GIFT with automated trail search including BCT effect. In: Information Security and Privacy - 24th Australasian Conference, ACISP 2019, Christchurch, New Zealand, 3-5 July. pp. 555–572. Springer, Heidelberg (2019)
- Matsui, M.: Linear cryptanalysis method for DES cipher. In: EUROCRYPT 1993, Lofthus, Norway, 23-27 May. pp. 386–397. Springer, Heidelberg (1993)
- Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: EUROCRYPT 1994, Perugia, Italy, 9-12 May. pp. 366–375. Springer, Heidelberg (1994)
- Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Information Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China, 30 November - 3 December. pp. 57–76. Springer, Heidelberg (2011)
- Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear expression. In: CRYPTO 1995, Santa Barbara, California, USA, 27-31 August. pp. 157–170. Springer, Heidelberg (1995)
- Sun, S., Hu, L., Qiao, K., Ma, X., Shan, J., Song, L.: Improvement on the method for automatic differential analysis and its application to two lightweight block ciphers DESL and LBlock-s. In: Advances in Information and Computer Security - 10th International Workshop on Security, IWSEC 2015, Nara, Japan, 26-28 August. pp. 97–111. Springer, Heidelberg (2015)
- Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block ciphers with S-bP structures against related-key differential attacks. In: Information Security and Cryptology - 9th International Conference, Inscrypt 2013, Guangzhou, China, 27-30 November. pp. 39–51. Springer, Heidelberg (2013)
- Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (relatedkey) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: ASIACRYPT 2014, Kaoshiung, Taiwan, R.O.C., 7-11 December. pp. 158–178. Springer, Heidelberg (2014)
- Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block cipher structures. IACR Cryptology ePrint Archive 2011, 551 (2011)
- Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security evaluation algorithms against differential cryptanalysis using divide-and-conquer approach. IACR Cryptology ePrint Archive 2019, 19 (2019)
- Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced GIFT. In: Topics in Cryptology - CT-RSA 2019 - The Cryptographers' Track at the RSA Conference 2019, San Francisco, CA, USA, 4-8 March. pp. 372–390. Springer, Heidelberg (2019)

A Examples of the Best Trails

12-round differential trail			16-round linear trail				
r	ΔX_r	ΔY_r	w_r	r	ΓX_r	ΓY_r	w_r
1	00000000200	00000070	2.42	1	44000000011	f000000f	2.83
2	000358000000	00080000	4.68	2	000000004000	00000 <i>c</i> 00	2.00
3	000000000000	00000000	0.00	3	88000000012	d000000f	3.42
4	000358000000	00080000	4.68	4	000000000000	00000000	0.00
5	000000000200	00000060	3.00	5	88000000012	d000000f	3.42
6	0003f8008000	00a40500	9.61	6	000000004000	00000 <i>c</i> 00	2.00
7	0000001a2a58	00004002	11.83	7	48000000011	f000000f	2.83
8	0003f4008000	00a40500	9.42	8	000000000000	00000000	0.00
9	00000000200	00000060	3.00	9	48000000011	f000000f	2.83
10	000354000000	00080000	4.87	10	000000004000	00000 <i>c</i> 00	2.00
11	000000000000	00000000	0.00	11	88000000012	d000000f	3.42
12	000354000000	00480000	4.61	12	000000000000	00000000	0.00
				13	88000000012	d000000f	3.42
				14	000000004000	00000c00	2.00
				15	48000000011	f000000f	2.83
				16	000000000000	00000000	0.00

Table 14. A best 12-round differential trail with propagation probability $2^{-58.10}$ and a best 16-round linear trail with linear correlation $2^{-32.98}$ of DESL

Table 15. A best 19-round differential trail with propagation probability $2^{-110.830}$ a	and a best 10-round
linear trail with linear correlation $2^{-26.00}$ of GIFT-128	

19-round differential trail			10-round linear trail			
r	ΔX_r	w_r	r	ΓX_r	w_r	
1	0a00000600c0000000000000000000000000000	6.000	1	0000000000001600000000000000160	4.00	
2	000000010600000000000000000000000000000	5.000	2	00000000000000000000000000000000000000	2.00	
3	00000000000000000000000000000000000000	2.000	3	000000000000000000000000000000000000000	3.00	
4	000001000000000000000000000000000000000	3.000	4	000000000000000000000000000000000000	1.00	
5	000000008000000000000000000000000000000	2.000	5	000000000000000000000000000000000000000	1.00	
6	0014000000a0000000000000000000000000000	5.000	6	000000000000000000000000000000000000000	3.00	
7	0000000000000004040000020200000	8.000	7	000000000000000000008080000000	2.00	
8	000050500000000000000505000000000	12.000	8	000000000000500000000000000500	4.00	
9	00000000000000000000000000000000000000	4.000	9	000000000000000000000000000000000000000	2.00	
10	000000000000011000000000000000000000000	6.000	10	0000000000000440000002200000000	4.00	
11	0008000000 <i>c</i> 00000000000000000000000	4.000				
12	000000000000000202000001000000	8.000				
13	000050400000a020000000000000000000000000	9.000				
14	0501000000000000505000000000000	12.000				
15	a000a000000000000000000000000000000000	4.000				
16	000000000000000110000000000000000000000	6.000				
17	00006000000000000000000000000000000000	4.000				
18	000000002000020000000000000000000000000	4.000				
19	00200000004000000200000400000	6.830				

Table 16. A best 14-round differential trail with propagation probability $2^{-68.00}$ and a best 13-round linear trail with linear correlation $2^{-34.00}$ of GIFT-64

14-round differential trail				13-round linear trail			
r	ΔX_r	w_r	r	ΓX_r	w_r		
1	0000600000006000	4.00	1	0c0c00000000000000000000000000000000000	2.00		
2	0000500000005000	6.00	2	0000100000001000	2.00		
3	0000020200000000	4.00	3	000000000000808	2.00		
4	0000050000000500	6.00	4	0000000500000005	2.00		
$\overline{5}$	020200000000000000000000000000000000000	4.00	5	0808000002020000	4.00		
6	0000500000005000	6.00	6	0000505000005050	4.00		
7	0000020200000000	4.00	7	00000a0a00000a0a	6.00		
8	0000050000000500	6.00	8	0000000000a0a00000	3.00		
9	020200000000000000	4.00	9	0000000000a00000	1.00		
10	0000500000005000	6.00	10	00000000000000020	2.00		
11	0000020200000000	4.00	11	00000080000000	1.00		
12	0000050000000500	6.00	12	0000040000000100	2.00		
13	0202000000000000000000	4.00	13	020000000080400	3.00		
14	0000500000005000	4.00					