
Anonyma : Anonymous Invitation-Only
Registration in Malicious Adversarial Model

Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

Department of Computer Engineering, Koç University, İstanbul, Turkey
{staheri14,akupcu,oozkasap}@ku.edu.tr

In invitation-based systems, a new user can register upon having a certain
number of invitations (i.e., t) issued by the existing members. The newcomer
hands his invitations to the system administrator to be authenticated, who ver-
ifies that the invitations are issued by legitimate members. This causes the ad-
ministrator being aware of who is invited by whom. However, the inviter-invitee
relationship is privacy-sensitive information whose exposure can lead to an in-
ference attack where the invitee’s profile (e.g., political view or location) can
be extracted through the profiles of his inviters. Addressing this problem, we
propose Anonyma, an anonymous invitation-based system where a corrupted
administrator who may even collude with a subset of existing members is not
able to figure out who is invited by whom. We formally define and prove the in-
viter anonymity and unforgeability of invitations against a malicious adversary.
Our design only incurs constant cost to authenticate a new registration. This is
significantly better than the similar works where the generation of invitations
and verification of new registration cause an overhead linear in the total num-
ber of existing members. Besides, Anonyma is efficiently scalable in the sense
that once a user joins the system, the administrator can instantly, and without
re-keying the existing members, issue credential for the newcomer to be able
to act as an inviter. We additionally design AnonymaX , an anonymous cross-
network invitation-based system where the invitations issued by the members of
one system can be used for registering to another system.

Keywords: Invitation-Based System, Anonymity, Unforgeability, Integrity,
Cross-Network Invitation, Malicious Adversary

1 Introduction

Motivation: Invitation-based systems (or invitation-only registration systems,
interchangeably) are services where registration is possible only through getting
invitations from the current members of the system. Many reasons encourage
invitation-only registration policy, e.g., the lack of sufficient resources to cover
arbitrary many users, improving the quality of service by constraining the num-
ber of members, and to protect the system against spammers or undesirable
users1.

1 https://pieregister.com/features/invitation-based-registrations/

2 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

In a nutshell, an invitation-only system is comprised of an administra-
tor/server, a set of members, who act as inviters, and a new user, called the
invitee, who wants to join the system. Figure 1 illustrates the parties and their
interaction. The new user (i.e., invitee) can register to the system by being in-
vited by the existing members. Successful registration relies on having a certain
number (i.e., t) of invitations from distinct members. The invitee collects the
invitations and hands them over to the administrator, who checks whether the
invitations are issued by legitimate members. If so, he accepts the registration
request and allows the invitee in. Additionally, the administrator may issue cre-
dentials for the invitee to be able to start inviting others.

Fig. 1. The sample workflow of an invitation-only registration system. The server issues
credentials to the members to generate invitations. The invitee collects t invitations
and sends them to the server. Then, the server accepts or rejects the invitee’s request
for registration by verifying that each invitation is issued by a valid current member
(resulting in knowing who is invited by whom).

Google initiated this invitation-only policy when deploying services such as
Google Inbox, Orkut, and Google Wave2. Another successful system with an
invitation-only registration is Spotify3. Facebook also has secret groups in which
new users can participate upon getting invitations from other group members4.
Similarly, messengers such as WhatsApp5 and Telegram6 offer private groups
running on the invite-only basis. The similar approach is sought in PIE Regis-
ter7 where it enables users to set up exclusive websites whose contents are only

2 http://www.macworld.com/article/1055383/gmail.html
3 https://community.spotify.com/t5/Accounts/Spotify-Family-Q-amp-A/td-

p/988520
4 https://blog.hootsuite.com/facebook-secret-groups/
5 ttps://faq.whatsapp.com/en/android/26000123/?category=5245251
6 https://telegram.org/tour/groups
7 https://pieregister.com/features/invitation-based-registrations.

Anonyma: Anonymous Invitation-Only Registration 3

Fig. 2. Anonyma overview. The invitee receives the individual invitations and aggre-
gates them into a unified letter to be sent to the server. The server authenticates the
letter without knowing the identity of the inviters.

visible to the visitors invited by the website administrator or authorized mem-
bers. Another closely relevant example is the trustee-based social authentication
deployed by Facebook as a backup authentication method [14, 23, 5]. A backup
authentication method is used when the user fails to pass the primary authen-
tication, e.g., forgetting the password [14]. The account holder determines a set
of trustees and informs the server in advance. When the user loses access to his
account, the server sends recovery codes to the trustees (equivalent to inviters
in the invitation-only registration scenario). Upon collection of enough number
(recovery threshold) of codes from the trustees and handing the codes to the
server, the user regains access to his account.

Apart from the benefits of invitation-only systems, they are prone to inference
attacks as explained next. In invitation-based systems, the administrator receives
all the invitations issued for an invitee to check whether they are originated from
legitimate members. As such, the system administrator knows who is invited
by whom. In some other cases like the Telegram chat service, the situation is
worse and indeed all the members of the group receive a notification of who is
invited by whom. The inviters are mostly among the newcomer’s acquaintances,
e.g., colleagues, home mates, family members, and close friends who usually
have many common features with the invitee. Several studies have shown that
information such as location, religious beliefs, sexual orientation, and political
views can be extracted about an individual by analyzing the common features
among his connections, namely, inviters in our case [22, 7, 13]. This leakage is
known as inference attack. Due to this issue, inviter-invitee relation counts as
privacy-sensitive information.

Related Work: Hiding the inviter-invitee relationship has similarly been ad-
dressed by researchers in the context of electronic voting systems and threshold
ring-based signature schemes. However, those proposals suit their unique set-

4 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

tings and become inefficient when utilized for the invitation-only registration
scenario. The issue in threshold ring-based signature schemes is that the compu-
tation complexity for invitation creation (at the user side) as well as invitation
verification (at the server-side) is O(N) where N is the total number of mem-
bers in the system [6, 24, 21, 4]. A similar issue applies to the e-voting systems
[1, 26] where all the existing members are required to get involved in every single
registration. Added to this is the size of the invitation, which grows with the
number of registered members (more precisely, each invitation contains N group
elements, where N is the total number of members).

In our prior work, Inonymous [3], we address the problem of inference at-
tack in invitation-based systems by proposing a protocol by which an invitee is
able to authenticate herself to the group administrator without disclosing the
identity of her inviters, thus protecting the inviter-invitee relationship (or inviter
anonymity). Additionally, Inonymous ensures that an invitee with an insufficient
number of inviters would not be able to convince the administrator and regis-
ter to the system. This feature is called invitation unforgeability. Inonymous
guarantees the above features under an honest but curious adversarial model,
namely, all the parties shall follow the protocol descriptions honestly. However,
a corrupted administrator, by disregarding the protocol description, can damage
inviter anonymity and learn who is invited by whom. To cope with this attack,
we propose Anonyma, which extends Inonymous to withstand the malicious
adversarial model where parties may deviate from protocols’ descriptions.

Anonyma design challenges: Extension of Inonymous to Anonyma comes
with challenges which we present next. In Inonymous, the general idea is that
each group member receives some private credentials from the administrator,
and then later uses these credentials to generate an invitation for the invitees.
The invitee must aggregate the individual invitations to remove any identifiable
information about the individual inviters. If all the parties follow the protocols
correctly, the final aggregate of invitations that is given to the administrator
would not leak any information regarding the individual inviters; hence inviter
anonymity is preserved. Anonymity holds even if the administrator colludes with
a subset of inviters. However, in a malicious adversarial model, the inviters may
integrate garbage values (instead of valid credentials) in their invitations that
would falsify the result of aggregate. Given the falsified aggregate, the admin-
istrator is able to identify the exact inviters. As such, the invitee must ensure
that each inviter generates the invitation following the exact protocol and using
the correct credentials. At the same time, the correctness of users’ credentials
is defined by the administrator who can also be corrupted (who may issue in-
valid credentials to violate inviter anonymity). Thus, two challenges must be
addressed, firstly, a method to ensure that the administrator is issuing valid
credentials and secondly, providing a way for the invitee to be convinced that
the inviters are using the genuine credentials and follow the designated proto-
col correctly. Furthermore, regarding the unforgeability of invitations, Anonyma
extends the adversarial model of Inonymous where the communication channels
between all the inviters and invitees are considered to be insecure. As such, the

Anonyma: Anonymous Invitation-Only Registration 5

challenge toward providing unforgeability is that an adversary (an invitee with
an insufficient number of inviters), who eavesdrops the channels, must be unable
to craft a valid invitation letter for herself and register to the system successfully.

Anonyma: An overview of Anonyma is depicted in Figure 2. Anonyma consists
of three entities: A server (administrator), existing members (inviters), and a
newcomer (invitee). At the beginning of the system lifetime, the server registers
an initial set of members who shall start inviting outsiders. For instance, in the
Google Inbox example, the employees of Google can be the initial members.
The invitee receives invitations from a subset of existing members, i.e., inviters.
The invitee knows the inviters beforehand via some other means outside the
network to be joined to (e.g., Google employees invite their families/friends).
The invitee combines the invitations into a single invitation letter and submits
it to the server. If the invitation is verified by the server, the invitee’s registration
request is accepted. The verification does not rely on any interaction between
the inviters and the server. Upon successful registration, the server can decide
to issue credentials for the new user to enable him to invite others. In particular,
the ability to make invitations is up to the administrator who can either reserve
this right to himself or share it with the members of his choice. In Anonyma,
the confidentiality of the inviter-invitee relationship (i.e., inviter-anonymity) is
protected against both the server and the other members including inviters of the
same invitee. Together with this confidentiality, Anonyma guarantees invitation
unforgeability where a malicious invitee cannot convince the server unless he has
threshold many legitimate invitations. We provide formal definition for inviter
anonymity and invitation unforgeability in Section 7. Our definitions are slightly
different from Inonymous in the sense that we allow the adversary to spoof
the communication channels between inviters and invitee, hence gaining more
information. A formal game-based proof of security against an active/malicious
adversary (who disregards the protocol instructions and acts arbitrarily) is also
provided.

Anonyma preserves the inviter anonymity, i.e., hides the invitee-inviter rela-
tionship, only for the registration. However, it does not cover the case that the
inviter and invitee may reveal their relation through their interaction inside the
service. For instance, in the Google Inbox example, Bob can get invited to the
service by Alice using an anonymous invitation-only registration (i.e., no one
knows Alice has invited Bob). However, later on, Bob may exchange an email
with Alice, which would imply a relationship between Alice and Bob. We em-
phasize that any interaction of this type that occurs after the registration phase
must be considered out of the scope of this paper.

Anonyma imposes only O(t) overhead on the invitee, and constant num-
ber of group exponentiations on the inviters (for the invitation creation) and
the system administrator (for the authentication of new registration). As such,
Anonyma provides better efficiency compared to prior studies whose compu-
tation overheads for the invitee and the server are linear in the total number
of existing members. Furthermore, in Anonyma, the server is able to efficiently,
and without re-keying the existing members, generate credentials for a newcomer

6 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

to empower him for inviting others. This is significantly better than the prior
proposals where the server has to carry out O(N) communication overhead to
submit some information about the newly registered user to each one of the
current members. Moreover, unlike the related work, the size of the invitation
is O(1) where each invitation embodies only two group elements regardless of
the system size. Additionally, the complexity of communication among all the
parties are also of constant overhead.

Additionally, we propose AnonymaX , an anonymous cross-network
invitation-based system, which can be of independent interest. In the cross-
network design, a user joins one system, e.g., Twitter, by obtaining invitations
from members of another network, e.g., Facebook. The cross-network design is
beneficial especially to bootstrap a system, for example in the case where a re-
search group wants to hire qualified researchers from another group, where a
qualified researcher is the one with enough recommendations (invitations) from
his group. We also prove that AnonymaX preserves inviter anonymity and invi-
tation unforgeability against a malicious adversary.

The summary of our contributions in the present work is as follows:

• Anonyma is the first anonymous invitation-based system that maintains in-
viter anonymity and invitation unforgeability under a malicious adversarial
model. That is, all the involved entities may disregard the protocol descrip-
tions and act as they desire, yet they would be unable to compromise the
mentioned security objectives.

• We provide formal security definitions and proofs for inviter anonymity
and invitation unforgeability. Our security definition for invitation unforge-
ability is the extension of the Inonymous definition [3] and indeed considers a
more powerful adversary. Namely, we additionally consider an insecure net-
work connection among inviters and invitees (while exchanging invitations),
which would allow the adversary to eavesdrop the channels and collect more
information.

• Anonyma is efficiently scalable in terms of the number of inviters. That
is, the server can issue credentials to the new members (without re-keying
other existing members) to be immediately able to invite others.

• Anonyma outperforms its counterparts concerning running time complexity.
Prior studies’ running time depends on the total number of system members,
whereas Anonyma only incurs the overhead of O(t) (t is the required number
of inviters) to the invitee and O(1) to the server and the inviters.

• We propose the first cross-network anonymous invitation-based system
called AnonymaX , where the possibility of inter-network invitation is pro-
vided, with security against malicious adversaries.

2 Model

Anonyma is composed of three types of entities: a server, a set of existing mem-
bers (inviters), and a new user (invitee) who is willing to join. The server sets
up the system parameters, generates and distributes some secret values among

Anonyma: Anonymous Invitation-Only Registration 7

users, and administers user registrations. For successful registration, each new-
comer needs to obtain a threshold many (denoted by t) invitations from the
existing members. The inviters exchange the invitations with the invitee out
of band, e.g., via a messaging application. After the collection of t invitations,
the invitee removes the identifiable information from the individual invitations
(through aggregation) and submits a final invitation letter to the server. The
server authenticates the letter. Upon successful authentication, the server lets
the new user register and can issue credentials to empower him to act like an
inviter and make invitations. Note that the system shall start by having at least
t initial members who begin inviting outsiders. These initial members are given
credentials directly from the server. In the Google Inbox example, the initial
members (account holders) can be the employees of Google. In our system, we
assume all the entities communicate through a secure and authenticated channel.
Security Objectives: Our security objective is two-fold: Inviter Anonymity
and Invitation Unforgeability, which are explained below. In Anonyma, we aim
to satisfy both objectives in the malicious adversarial model, where the entities
may deviate from protocol specifications.

1. Inviter anonymity: As we discussed in Section 1, due to the inference
attack possibility, the inviter-invitee relationship must be treated as privacy-
sensitive information. Thus, by inviter anonymity, we aim to hide who is
invited by whom. This relation should be protected against both the server
and other inviters of the same invitee (as they might be also curious to learn
the identity of other inviters). Putting these together, we assume that the
adversary against the inviter anonymity may get to control the server and t−
1 inviters of an invitee and aims at determining the identity of the remaining
non-colluding inviter. Please note that the invitee is concerned about his
privacy, and hence has no incentive to expose the identity of his inviters
to others. We formally propose a security definition for inviter anonymity
in Section 7.1. Our definition also implies between-inviter anonymity, which
refers to the fact that the anonymity of the invitee-inviter relationship holds
even against the inviters of the same invitee.

2. Invitation unforgeability: The invitation unforgeability indicates that an
invitee whose number of inviters (t

′
) is less than the threshold t (i.e. t

′
< t)

should not be able to register to the system. Trivially, if the invitee already
has t inviters, i.e. t

′
= t, then he is an eligible person and can make a valid

registration. We propose a security definition for invitation unforgeability in
Section 7.2. That definition embodies the following security properties:

• Non-exchangability: This means that invitations issued for a partic-
ular invitee are not reusable for another user. Otherwise, the current
registered users can exchange their past invitations (by which they got
invited to the system) with others and cause ineligible outsiders to join
the system.

• Preventing double invitation: This feature indicates that an inviter
cannot issue more than one valid invitation for a single invitee. This is
essential since otherwise an invitee with insufficient inviters (i.e., t

′
< t)

8 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

can obtain multiple invitations (e.g., t− t′) from one of her inviters and
successfully register.

3 Notations, Definitions, and Preliminaries

Notation: We refer to a Probabilistic Polynomial Time entity as PPT. x ∈R X
and x← X both mean x is randomly selected from set X. ⊥ indicates an empty
string. ≡c stands for computational indistinguishability. We use DLg(y) to indi-
cate the discrete logarithm of y in base g. TTP stands for Trusted Third Party.
Negligible Function: Function f is negligible if for ∀p(.) where p(.) is polyno-
mial, there exists integer N s.t. for every n > N , f(n) < 1

p(n) .

Computational Indistinguishability: Let X = {(in, λ)}in∈{0,1}∗,λ∈N and
Y = {(a, λ)}in∈{0,1}∗,λ∈N be two series of random variables which are indexed
with in and λ where in is the input and λ is the security parameter. The two
distributions are computationally indistinguishable i.e., X ≡c Y if the following
holds: ∀D (a non-uniform polynomial-time distinguisher), ∃ a negligible function
negl(.) s.t. ∀in ∈ {0, 1}∗ and ∀λ ∈ N [16]:

|Pr[D(X(in, λ)) = 1]− Pr[D(Y (in, λ)) = 1]| ≤ negl(λ) (1)

Secure Multi-Party Computation [12]: Consider function F (in1, ..., inN)
= (f1(in1, ..., inN),· · · ,fN (in1, ..., inN)) that receives inputs ini from ith party
to whom delivers fi(in1, ..., inN). F shall be run by a trusted third party. We
refer to such execution as the IDEAL world. Assume γF is a multi-party protocol
that computes F . The execution of γF by the interaction of parties constitutes
the REAL world. γF is said to securely realize F if the following holds. That is,
for every PPT adversary A in protocol γF with auxiliary input aux ∈ {0, 1}∗
and controlling parties specified in Pc, there exists a PPT simulator Sim for the
ideal functionality F , that ∀ security parameter λ:

{IDEALF,Sim(aux),Pc
(in1, ..., inN , λ)}} ≡c {REALγF ,A(aux),Pc

(in1, ..., inN , λ)}
(2)

IDEALF,Sim(aux),Pc
(in1, ..., inN , λ) represents the output of parties in

interaction with ideal functionality F while Sim is controlling parties specified
in set Pc. Similarly, REALγF ,A(aux),Pc

(in1, ..., inN , λ) asserts the output of the

parties interacting in protocol γF .

Hybrid Model: Assume θ is a multiparty protocol that makes use of a sub-
protocol γF . γF in turn securely realizes the ideal functionality F . The hybrid
model allows proving the security of θ by replacing γF with F . As such, for any
execution of γF in the proof, parties contact a rusted third party running the
ideal functionality F . This would be called F -hybrid model [16].
Sigma protocol: A Σ protocol is a three rounds proof system (P, V) for a
relation R which satisfies the following properties [16]:

Anonyma: Anonymous Invitation-Only Registration 9

– Completeness: An honest prover P holding a private input w, where
(x,w) ∈ R, can always convince an honest verifier V .

– Special soundness: There exists a polynomial time machine A that for
every pair of accepting transcripts (a, e, z) and (a, e′, z′) (where e 6= e′) of
an statement x, A extracts witness w s.t. (x,w) ∈ R

– Special honest verifier zero knowledge: There exists a PPT machine S
which given statement x and e can generate an accepting transcript (a, e, z)
whose distribution is the same as the transcript of the real interaction of P
and V . More formally, ∀(x,w) ∈ R and e ∈ {0, 1}t

{S(x, e)} ≡c {(P (x,w), V (x, e))} (3)

The output of simulator S is denoted by {S(x, e)}. {(P (x,w), V (x, e))} in-
dicates the output transcript of an execution between P (holding inputs x
and w) and V (with inputs x and random tape e).

Pseudo Random Generator [2]: A deterministic polynomial time function
P : {0, 1}m → {0, 1}l(m) (where l(.) is a polynomial) is called Pseudo Ran-
dom Generator (PRG) if m < l(m) and for any probabilistic polynomial-time
distinguisher D there exists a negligible function negl(.) such that:

|Pr[x← {0, 1}m : D(P (x)) = 1]− Pr[y ← {0, 1}l(m) : D(y) = 1]| = negl(m)
(4)

(t,n)-Shamir Secret Sharing Scheme: The (t,n)-Shamir secret sharing
scheme [31] is a tool by which one can split a secret value into n pieces such
that any subset of t shares can reconstruct the secret. The scheme works
based on polynomial evaluations. Let Fq be a finite field of order q. The se-
cret holder/dealer picks a random polynomial f of degree t− 1 with coefficients
from Zq:

f(x) =

t−1∑
i=0

ai · xi (5)

The dealer sets the secret data S as the evaluation of that function at point 0
i.e., f(0) = a0 = S. The share of each participant shall be one point on f e.g.,
f(j) is the share of jth shareholder. As such, a dealer can generate arbitrary
many shares from its secret (i.e., by evaluating function f on a new point).
Since each polynomial of degree t − 1 can be uniquely reconstructed by having
t distinct points of that function, t Shamir shareholders are able to reconstruct
the secret. Given any t shares {(i, si)}ti=1, the secret reconstruction algorithm
works as below.

S = f(0) =

t∑
i=1

si ·Bi (6)

where Bis are Lagrange coefficients defined as

Bi =

t∑
i=1

si

j=1:t∏
j 6=i

j

j − i
(mod q) (7)

10 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Shamir secret sharing scheme satisfies the following properties: 1) Given t or
more than t shares, it can reconstruct the secret S easily; and 2) with knowledge
of fewer than t shares, it cannot reconstruct the secret S. Shamir’s scheme is
information theoretically secure relying on no computational assumption.

Shamir shares are homomorphic under addition operation i.e., let [s1] and
[s2] be shares of S1 and S2 (using (t, n)-Shamir secret sharing scheme), then
[s1] + [s2] constitutes a share of S1 + S2.

Multiplicative Homomorphic Encryption: A public key encryption scheme
π consists of three algorithms key generation, encryption, and decryption, de-
noted by π = (KeyGen,Enc,Dec). Using KeyGen, q pair of keys is generated
called encryption key ek and decryption key dk. π is called multiplicative ho-
momorphic encryption if for every a and b, Encek(a)⊗Encek(b) = Encek(a · b)
where a and b belong to the encryption message space and ⊗ is an operation
over ciphertexts. As an example, in El Gamal encryption [11], ⊗ corresponds to
group multiplication. Additionally, we have Encek(a)c = Encek(ac) where a is a
plain message and c is any integer. Throughout the paper, we consider El Gamal
scheme as our underlying encryption scheme.
Signature Scheme: A signature scheme [28] Sig consists of three algorithms
key generation, sign and verify denoted by Sig = (SGen, Sign, SV rfy). A pair
of keys (sk, vk) is generated via SGen where sk is the signature key and vk
is the verification key. The signer signs a message m using sk by computing
η = Signsk(m). Given the verification key vk, a receiver of signature runs
SV rfyvk(η,m) to verify.

A signature scheme Sig = (SGen, Sign, SV rfy) is said to be existentially
unforgeable under adaptive chosen message attack if ∀ probabilistic polynomial
time adversary A, there exists a negligible function n4lg(.) s.t. the following
holds [18]:

Pr[(sk, vk)← SGen(1λ); (m,σ)← ASignsk(.)(vk)

s.t. m /∈ Q and SV rfyvk(m,σ) = accept] = negl(λ) (8)

ASignsk(.) indicates that adversary has oracle access to the signature algorithm.
Q indicates the set of adversary’s queries to the signature oracle.
Zero-knowledge proof of knowledge from Σ protocols: Following the
method given in [16, 27], it is proven that one can efficiently construct a zero-
knowledge proof of knowledge (ZKPOK) system from any sigma protocol. We
refer to [16] for more details of such construction. Applying this method on a Σ
protocol Π (defined for the relation R) will result in construction that securely
realizes the ideal functionality FRΠ (defined in Equation 9) in the presence of
malicious prover and verifier.

FRΠ ((x,w), x) = (⊥, R(x,w)) (9)

where x refers to the statement whose correctness is to be proven and w indicates
the witness. The ideal functionality FRΠ that is run by a trusted party, receives

Anonyma: Anonymous Invitation-Only Registration 11

a common input x from the prover and the verifier. Also, prover inputs F with
the private input w from the prover. FRΠ outputs to the verifier whether x and
w fit into the relation R.
Zero-knowledge Proof of Knowledge of Discrete Logarithm
(ZKPODL): This proof system was initially introduced by Schnorr [18]
for proving the knowledge of a discrete logarithm in the group G of prime order
q with generator g. That is, for a given ω, g ∈ G, one can prove the knowledge
of x ∈ Zq s.t. x = DLg(ω) (DL stands for discrete logarithm). We apply the
method given in [16] to the Schnorr protocol to convert it to a zero-knowledge
proof system. We refer to the resultant protocol by ZKPODL((G, q, g, ω), r).
Let FRPODL (given in Equation 10) demonstrate the security guarantees of
the ZKPODL protocol over the relation R that is given in Equation 11.
FRPODL shall be run by a trusted third party. X refers to the statement whose
correctness is to be proven i.e., X = (G, q, g, ω) and the witness W = x, which
is only known to the prover. The ideal functionality FRPODL, which is run by a
TTP, receives a common input X from the prover and the verifier as well as
the private input W from the prover. FRPODL outputs to the verifier whether X
and W fit into the relation R.

FRPOIC((X,W), X) = (⊥, R(X,W)) (10)

R = {((G, q, g, ω), x)| gx = ω (mod p)} (11)

Zero-Knowledge Proof of Plaintext Knowledge: This proof system is used
to prove the plaintext knowledge of a given ciphertext. That is, given ciphertext
C that is encrypted under public key pk, a prover proves the knowledge of x
and r s.t. C = Encpk(x, r). r is the randomness used while encryption. We
instantiate such a proof system using the proposal of [15] for the El Gamal
encryption scheme.
Zero-Knowledge Proof of Discrete Logarithm Equality: For a group G
of prime order q and generators g1, g2, h1, h2 ∈ G, the ZKP of discrete logarithm
equality is a protocol to prove that h1 = gα1 and h2 = gα2 where α ∈ Zq [8].
Bilinear Map: Consider G1 and G2 as multiplicative groups of prime order q.
Let g1 be the generator of G1. We employ an efficiently computable bilinear map
e : G1 ×G1 → G2 with the following properties [32]

• Bilinearity: ∀u, v ∈ G1 and ∀a, b ∈ Zq : e(ua, vb) = e(u, v)a·b.
• Non-degeneracy: e(g1, g1) 6= 1.

Computational Diffie-Hellman Assumption [10]: Given a cyclic group G
of prime order q with a generator g, and two randomly selected group elements
h1 = gr1 , h2 = gr2 , the Computational Diffie-Hellman (CDH) assumption is hard
relative to G if for every PPT adversary A there exists a negligible function
negl(λ) where λ is the security parameter, such that:

Pr[A(G, q, g, h1, h2) = gr1·r2]=negl(λ)

12 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

4 Construction

Anonyma is comprised of three main entities, namely a server, a set of ex-
isting members who shall act as inviters, and newcomers/invitees wishing to
become a member of the system. The general interaction between the parties is
illustrated in Figure 3. Anonyma consists of six algorithms: SetUp, Token gen-
eration (Tgen), Invitation generation (Igen), Invitation collection (Icoll), Invi-
tation Verification (Ivrfy) and Registration (Reg). The summary of each algo-
rithm is explained in Section 4.1 followed by the full construction in Section 4.2.
Throughout the paper, we assume that all the parties communicate via secure
and authenticated channels.

Invitee(j)Server S: master value Member(i)

!"#$%$& = ()*+, 1.
#/012324) ,$%$&

567)8 = 59)8 !7, ; 567)8
567)8

<8=" = <9)8(567)8, !", #$%$&)

<8=@)* = <3611(<8=" AB"BC, #$%$&)

2D(E%DF(<8=@)*, 567)8, #$%$&, G7))
!H = I)9(;)

<8=@)*, 567)8

!H

I)J/)!*
D6% 567)8

<8="
KL#M<N

=)%2DF !ℎ$%) !H /!289 #$%$&

Fig. 3. Parties’ interaction in Anonyma.

4.1 Construction Overview:

• SetUp: The server invokes the SetUp algorithm with the input of the security
parameter 1λ to initialize the system parameters: a cyclic group G, a master
value S ∈R G, as well as key pairs for a signature scheme (denoted by
sk, vk) and ElGamal encryption (denoted by ek, dk). At the beginning of
the system lifetime, the server needs to register at least t initial users so that
they can start inviting others. These initial members are given credentials
by the server to be able to make invitations. Each credential is indeed a
share si of the server’s master value S that is generated using (t, n)-Shamir
secret sharing scheme. For the shares to be verifiable (the member can verify
whether or not his piece is valid), the server publicizes the commitment to
the selected polynomial function.

Anonyma: Anonymous Invitation-Only Registration 13

• Tgen: Each newcomer (i.e., invitee) contacts the server to get a token. The
server runs the Tgen algorithm to generate a Token and hands it to the
invitee. The Token is a server signed certificate that embodies the index
of the newcomer (each user is associated with a unique index) as well as a
random element from the group G. Tokens shall be used by the inviters to
issue an invitation for their intended invitee. Invitations issued for a par-
ticular token cannot be used for another token. This way, we guarantee the
non-exchangeability of the invitations.

• Igen: The Invitee contacts each of his t inviters (this communication can-
not be observed by the server/administrator) and communicates his Token
with them. Provided a valid token, each inviter generates an invitation by
executing Igen. The invitation consists of two parts: a masked version of the
inviter’s share si, and the masking value encrypted using the server’s ek. The
token is integrated into both parts of the invitation. As a part of Igen, the in-
viter has to prove in zero-knowledge that his invitation is well structured. For
this sake, we devise a zero-knowledge proof protocol (i.e., Zero-Knowledge
Proof of Invitation Correctness (ZKPOIC)). This proof helps in protecting
between-inviter anonymity, i.e., inviters who collude with the server do not
learn the identity of other inviters. Next, the inviter hands his invitation
Invi to the invitee.

• Icoll: Upon the receipt of t invitations {Invi}ti=1, the invitee invokes the
Icoll algorithm through which he aggregates and blinds the invitations into
a unified invitation letter InvLet. Aggregation and blinding remove any iden-
tifiable information about the identity of the inviters and helps in provid-
ing inviter anonymity (especially against a corrupted server). Additionally,
through aggregation, the masking version of the master value S homomor-
phically gets reconstructed. We utilize the homomorphic property of both
Shamir shares and the ElGamal encryption scheme to enable aggregation.
At last, the invitee submits the final invitation letter InvLet together with
his Token to the server.

• Ivrfy : The server authenticates the invitation letter by running Ivrfy and
accepts or rejects accordingly. In a nutshell, the InvLet is valid if and only
if it contains the master value S.

• Reg : If the verification passes successfully (i.e., Ivrfy outputs accept), the
server runs the Reg algorithm to issue credentials for the newcomer to enable
him to act as an inviter. This credential is a Shamir share of the server’s
master value S. The newcomer verifies the validity of his share using the
parameters output by the server in the SetUp phase, and then stores his
share for inviting others.

4.2 Full Construction:

SetUp: This algorithm is run by the server who inputs the security parameter
1λ and generates system parameters Param as follows.

– Two primes p and q of length λ such that q|p− 1.

14 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

– g is a generator of a cyclic subgroup G of order q in Z∗p .
– ElGamal encryption scheme π = (EGen,Enc,Dec) with the key pair (ek =
h = ga, dk = a) denoting encryption key and decryption key, respectively.
dk remains at the server while ek is publicized.

– A signature scheme Sig = (SGen, Sign, SV rfy). The signature and verifi-
cation keys (sk, vk) are generated according to SGen. vk is publicized.

– A pseudo random generator PRG:{0, 1}λ → Zq
– A master value S ← Zq
– A randomly chosen polynomial function f(y) = at−1y

t−1 + ...+ a1y + a0 of
degree t− 1 whose coefficients a1, ..., at−1 belong to Zq and a0 = S.

– The server initially registers t users into the system so that they can start
inviting outsiders. Each user is associated with a unique index i and shall
receive the evaluation of function f on that index, i.e. si = f(i). We refer to
si as the master share of the ith user.

– The server publicizes F0 = ga0 , F1 = ga1 , · · · , Ft−1 = gat−1 as the com-
mitment to the selected function f . Given F0, · · · , Ft−1, the computation of
commitment on f(i) for any i is immediate as given in Equation 12. We will
use γi to indicate gsi .

γi =

t−1∏
j=0

F i
j

j = ga0 · ga1·i · · · gat−1·it−1

= ga0+a1·i+···+at−1·it−1

= gf(i) = gsi

(12)
– The server publicizes Param = (G, p, q, g, ek, vk, (F0, · · · , Ft−1)).

Token Generation: Users wishing to register to the system first need to con-
tact the server and obtain a token. The server generates a token through the
token generation algorithm shown in Algorithm 4.1. In this procedure, the server
initially assigns the user a unique index j. Indices can simply be assigned based
on the arrival order of users, as long as no two users are assigned the same index.
Hence, the jth coming user receives the index value of j. Next, the server gen-
erates a random group element ω (lines 1-2) and certifies j||ω using his signing
key sk (line 3). Let η be the signature outcome. The tuple (η, j, ω) constitutes
the Token (line 4). We remark that the server is not required to record any in-
formation regarding the issued tokens. Thus, the generated tokens can simply
be discarded and only the last value of j (the number of token requests) needs
to be remembered. Therefore, we do not incur any storage load on the server
per token.

Invitation Generation: Invitation generation is run by the inviter to generate
an invitation for a token given by the invitee. The procedure is shown in Algo-
rithm 4.2. We assume that invitee and inviter communicate out of band (cannot
be observed by the server/administrator), e.g., using a messaging application.
Firstly, the inviter checks the authenticity of the token against the server verifi-
cation key vk (line 1). Then, he samples a random value δi from Zq by applying

Anonyma: Anonymous Invitation-Only Registration 15

Algorithm 4.1: Tgen [Server]

Input: sk, j
Output: Token

1 r ← Zq
2 ω = gr

3 η = Signsk(j||ω)
4 Token = (η, j, ω)

PRG on the random seed v (lines 2-3). Then, he blinds his master share using
δi, i.e., si+ δi, and then ties this value to the provided token as τi = ωsi+δi (line
4). He also encrypts the masking value ωδi as eδi using the server’s encryption
ek (line 5). To ensure that the inviter is acting honestly (i.e., generating the
invitation as instructed in the algorithm), the inviter must prove the correctness
of the invitation in zero-knowledge. To enable this, we propose a zero-knowledge
proof system for the Proof Of Invitation Correctness, or for short ZKPOIC.
The inviter and invitee engage in ZKPOIC (line 7) through which the inviter
proves the correctness of his invitation Invi = (τi, eδi) to the invitee in zero-
knowledge. In the followings, we explain our proposed proof system. We first
draw a Σ protocol for POIC and prove its security. Then, the zero-knowledge
variant is immediate using the method proposed in [16, 27].

Algorithm 4.2: Igen [Inviter]

Input: Token = (η, j, ω), si, Param
Output: Invi/ ⊥

1 if Svrfyvk(η, j||ω)=accept then

2 v ← {0, 1}λ
3 δi = PRG(v)

4 τi = ωsi+δi

5 eδi = Encek(ωδi)
6 Invi = (τi, eδi)
7 return invi //‘Inviter authenticates Invi through ZKPOIC

8 return ⊥

Σ Protocol for Proof Of Invitation Correctness (POIC): The invita-
tion is constructed correctly if the inviter proves the following statements:

1. The inviter possesses a valid share of the master value S. That is, the inviter
holding index i must prove the knowledge of the discrete log of γi, i.e.,
si. Note that γi = gsi can be computed from F0, ..., Ft−1 as explained in
Equation 12.

2. The inviter knows the plaintext of eδi, i.e., the knowledge of ωδi and r such
that eδi = (eδi,1 = ωδi · hr, eδi,2 = gr).

16 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

3. The randomness δi used in the creation of τi is correctly encrypted in eδi.
This can be captured by proving that τi · eδ−1i,1 ·hr (= ωsi) and γi = gsi have
the same discrete logarithm si. The former is true due to Equation 13.

τi · eδ−1i,1 · h
r = ωδi+si · ω−δi · h−r · hr = ωsi (13)

To enable zero-knowledge proof of the aforementioned statements, we devise a Σ-
protocol (P, V) as depicted in Figure 4. We refer to this proof system by Proof
of Invitation Correctness, or POIC. POIC captures the relation R indicated
in Equation 14. In our protocol, we incorporate the Shnorr protocol [18] for
the proof of discrete logarithm knowledge (first anf third statement), proof of
plaintext knowledge as proposed in [15] (for the second statement), and the proof
of discrete logarithm equality [8] (for the fourth statement).

R = {((τi, eδi = (eδi,1, eδi,2), γi, ω), (si, r, δi))|
DLg(γi) = si ∧
eδi,1 = ωδi · hr ∧
DLg(eδi,2) = r ∧
DLω(τi · eδ−1i,1 · h

r) = DLg(γi) = si} (14)

Prover (si, r, δi) Verifier

s′, r′, δ′ ← Zq

A = gs
′

B1 = ωδ
′
· hr

′

B2 = gr
′

C = ωs
′+δ′ A,B=(B1,B2),C−−−−−−−−−−−→

e←−−−−−−−−−−−
Z1 = s′ + e · si
Z2 = δ′ + e · δi
Z3 = r′ + e · r

Z1,Z2,Z3−−−−−−−−−−−→
if (A · γei == gZ1

∧B1 · eδei,1 == ωZ2 · hZ3

∧B2 · eδei,2 == gZ3

∧ C · τei ·B−1 · eδ−ei,1 · h
Z3 == ωZ1)

Accept

Fig. 4. Σ protocol of Proof of Invitation Correctness for the common input τi, eδi =
(eδi,1, eδi,2), γi, ω. The prover has the private input (si, r, δi).

Anonyma: Anonymous Invitation-Only Registration 17

Completeness: To prove that completeness holds, observe that if the prover
P follows the protocol honestly, then due to the Equations 15, 16, 17, and 18,
the verifier V accepts.

A · γei = gs
′
· (gsi)e = gs

′+e·si = gZ1 (15)

B1 · eδei,1 = (ωδ
′
· hr

′
) · (ωδ · hr)e = ωδ

′+e·δi · hr
′+e·r = ωZ2 · hZ3 (16)

B2 · eδei,2 = (gr
′
) · (gr)e = gr

′+e·r = gZ3 (17)

C · τei ·B−1 · eδ−ei,1 · h
Z3 =

(ωs
′+δ′) · (ωe·si+e·δi) · (ω−δ

′
· h−r

′
) · (ω−e·δi · h−e·r) · hr

′+e·r =

ω(s′+e·si) = ωZ1 (18)

We prove the special soundness and special honest verifier zero knowledge
properties in Section A. We additionally present the security properties of a
zero-knowledge proof system for POIC that is achieved using the method given
in [16, 27].

Invitation Collection: Upon receipt of t invitations, the invitee runs the In-
vitation Collection (Icoll) procedure as indicated in Algorithm 4.3. The invitee
aggregates τi values as

∏t
i=1 τ

Bi
i (line 3). He operates similarly for eδi values

as
∏t
i=1 eδ

Bi
i (line 4). Bi values are the Lagrange coefficients (as defined in

Equation 7) used for the reconstruction of the master value S from the Shamir
shares. Next, the invitee randomizes both aggregates T and e∆ by adding a ran-
dom value of his own choice, i.e., δ∗. The randomization cancels out the effect of
the Lagrange coefficients and makes the final aggregates, i.e., T and e∆, inde-
pendent of the Bi values. Recall that the Lagrange coefficients are dependent on
the inviters’ indices and by hiding them we aim at protecting inviter anonymity.
The final invitation letter InvLet shall be the pair (T, e∆). The invitee submits
the invitation letter and the token to the server.

In Equations 19 and 20, we expand the result of T and e∆, which leads to
the following observations.

T = ωδ
∗
·
t∏
i=1

τBi
i = ωδ

∗
·
t∏
i=1

ωBi·si+Bi·δi =ωδ
∗+

∑t
i=1 Bi·si+

∑t
i=1 Bi·δi

= ωS+δ
∗+

∑t
i=1 Bi·δi = ωS+∆

(19)

e∆ = Encek(ωδ
∗
).

t∏
i=1

eδBi
i = Encek(ωδ

∗
).

t∏
i=1

Encek(ωBi·δi)

= Encek(ωδ
∗+

∑t
i=1 Bi·δi) = Encek(ω∆)

(20)

18 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

The first observation is that T has the master value S embedded in its exponent.
Intuitively, the presence of S in the exponent is a proof that the invitee has t
distinct invitations. Since otherwise, the reconstruction of S would be impossible
(we elaborate on this in Section 7 and formally prove the unforgability of invita-
tions). Another observation is that the computation of both T and e∆ depends
on the token ω. Hence, as desired, the resultant InvLet is now bound to the
given token. This would help for the non-exchangeability of the invitations. At
last, T contains a masked version of master value, i.e., S + ∆, in the exponent
whereas e∆ embodies the corresponding masking value ∆. The encryption e∆
of the masking value shall be used at the server for the verification purpose (see
invitation verification below).

Algorithm 4.3: Icoll [Invitee]

Input: {Invi = (τi, eδi)|1 ≤ i ≤ t}, Param
Output: InvLet

1 r ← {0, 1}λ
2 δ∗ = PRG(r)

3 T = ωδ
∗
·
∏t
i=1 τ

Bi
i

4 e∆ = Encek(ωδ
∗
) ·

∏t
i=1 eδ

Bi
i

5 InvLet = (T, e∆)

Invitation Verification: Once the invitee hands his invitation letter InvLet
together with the corresponding token Token to the server, the server executes
the invitation verification procedure shown in Algorithm 4.4. As the first step, the
server authenticates the Token, i.e., whether it is signed under server’s signature
key sk (line 1). Next, the validity of the invitation letter InvLet must be checked.
For that, the server decrypts e∆ using its decryption key dk and obtains ω∆ (line
2). Recall that ∆ was used to mask the master value S in T = ωS+∆. Thus, if
T and e∆ are constructed correctly, we expect that ωS · ω∆ = T (line 3). If all
the verification steps are passed successfully, then the server accepts the user’s
membership request.

Algorithm 4.4: Ivrfy [Server]

Input: InvLet = (T, e∆), T oken = (η, j, ω), Param, dk
Output: reject/accept

1 if Svrfyvk(η, j||ω)=accept then
2 ω∆ = Decdk(e∆)

3 if ωS · ω∆ = T then
4 return accept

Anonyma: Anonymous Invitation-Only Registration 19

Registration: The server invokes the registration procedure (Algorithm 4.5) for
users who pass the verification phase (Algorithm 4.4). The input to Algorithm
4.5 is the index j of the newcomer, and the output is a Shamir share sj of the
master value S, where sj is the evaluation of polynomial f at point j (line 1).
Note that the index j is the index included in the user’s Token = (η, j, ω). The
server delivers sj to the user who can then start making invitations as an inviter.
The user authenticates his share by comparing the commitment γj (as given in
Equation 12) against its own share, i.e., gsj . If they are equal, the user accepts
and stores the share.

Algorithm 4.5: Reg [Server]

Input: j
Output: sj

1 sj = f(j)

5 AnonymaX : Anonymous Cross-Network
Invitation-Based System

Consider the situation where one system, e.g. Twitter, offers a special service for
the users of another system, e.g. Facebook. We name Twitter as the registration
network, i.e. the network serving a special service, whereas Facebook is called
the inviter network whose users will benefit from the services offered by the
registration network. A user of the inviter network is served by the registration
network upon convincing the registration server on being invited by an adequate
number of inviters from the inviter network.

Failed Approaches: One simple but cumbersome solution to empower a
cross-network invitation-based system is to follow the regular invitation-based
system, i.e. each time a inviter user wants to join the registration network, the
inviter server authenticates that particular user and communicates the authen-
tication result to the registration server. However, this solution requires the two
servers to keep in contact with each other and imposes unnecessary overhead on
the inviter server.

An alternative approach proposed by Inonymous [3] (our prior work), is that
the inviter server would publicize the commitment over the master value S as gS

to the registration servers. Subsequently, registration servers would follow a dif-
ferent verification method (relying on bilinear maps) to authenticate invitations
on their own. While this solution works for the honest but curious adversarial
model, it fails in providing invitation unforgeability against a malicious adver-
sary, which is explained next. Consider registration1 and registration2 as two
registration servers. The corrupted registration1 wants to join registration2 as an
invitee without enough inviters. registration1 receives a token with the random

20 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

value ω from registration2 and then issues the same token to the users who want
to join its own service. As such, registration1 can reuse the invitation letters of his
own users to craft a valid invitation letter to join registration2. We address this
issue in AnonymaX by making the registration servers prove in zero-knowledge
(using an interactive proof) that they know the discrete logarithm DL(w) of
their issued tokens during the Tgen protocol. As such, no registration server can
issue tokens that are not generated by itself.

AnonymaX Overview: The inviter network with the master value S publi-
cizes gS as a part of its set of parameters Paramguest. Note that the description
of group G is only generated by the inviter server and is used by other reg-
istration servers. On the other side, the registration networks denoted by Sj ,
1 ≤ j ≤ N , announce their ParamSj

to be the pair of encryption keys ekSj
and

signature verification keys vkSj
, i.e. ParamSj

= (ekSj
, vkSj

). The correspond-
ing decryption key dkSj as well as the signature signing key skSj remain private
at the server side. Each invitee willing to join Sj shall obtain a token from Sj .
During the token generation, the registration server follows Algorithm 4.1 and
additionally must prove in zero-knowledge that it knows the discrete logarithm
of the ω embodied in the token. As such, after the issuance of a token, the reg-
istration server runs an instance of ZKPODL protocol (given in section 3) with
the invitee. The modified procedure is provided in Algorithm 5.1.

Algorithm 5.1: XTgen [registration Server Sj]

Input: Paramguest = (G, q, g, ekguest, vkguest, (F0, · · · , Ft−1)), skSj , i
Output: Token

1 r ← Zq
2 ω = gr

3 η = SignskSj
(i||ω)

4 Token = (η, i, ω)
5 Run ZKPODL((G, q, g, ω), r)

Upon a successful proof, the invitee accepts the token. The invitee needs to
collect invitations from the members of the inviter network to be used in the
registration of a particular registration network. Inviters issue invitation as in the
regular invitation procedure given in Algorithm 4.2. However, the inviters should
verify the tokens against the registration server verification key who has issued
it. Also, the inviters shall use the encryption key of the registration network to
encrypt their masking values. Indeed, in Algorithms 4.2 and 4.3, the inviter uses
ekj and vkSj

, i.e. ParamSj
as input. Therefore, the invitation letters received

by the Sj are of the form InvLet = (T, e∆) where e∆ is an encrypted masking
value under ekj . The registration server runs a different verification routine,
which is given in Algorithm 5.2. We assume the existence of a bilinear map e:
G×G→ G2 where G and G2 are multiplicative groups of prime order q. The only
difference between Algorithm 5.2 and Algorithm 4.4 is at the second verification

Anonyma: Anonymous Invitation-Only Registration 21

step i.e., line 3. The correctness holds by the bilinearity of the bilinear map e,
as in Equation 21.

e(ω, gS) · e(ω∆, g) = e(ω, g)S · e(ω, g)∆ = e(w, g)S+∆ = e(wS+∆, g)

= e(T, g)
(21)

Algorithm 5.2: XIVerify [registration Server Sj]

Input: InvLet = (T, e∆), T oken = (η, j, ω), Paraminviter, ParamSj , dkSj

Output: reject/accept

1 if SvrfyvkSj
(η, j||ω)=accept then

2 ω∆ = DecdkSj
(e∆)

3 if e(ω, gS) · e(ω∆, g) = e(T, g) then
4 return accept

6 Performance

6.1 Running Time

In this section, we analyze the running time of each algorithm of Anonyma.
Simulation setting: The running time is measured on a standard laptop with
8 GB 1600 MHz DDR3 memory and 1.6 GHz Intel Core i5 CPU. The simulation
setup consists of 100 registered members and 100 invitees. Each invitee collects
threshold many invitations from randomly chosen inviters, i.e., the 100 initially
registered members. The running time of all the algorithms is recorded over
threshold values 1-10. The DSA signature scheme [20] is instantiated with the
key length of 1024 bits.

Under the aforementioned setting, the running time of the parties are as
follows, and the results are summarized in Table 1.

Server: The server spends 1.6 seconds in order to run the SetUp phase.
This phase should be executed only once for the entire system lifetime. The To-
ken Generation algorithm requires 4.24 milliseconds. The Invitation Verification
procedure incurs 6.5 milliseconds. The Registration of each newcomer requires
0.08 milliseconds.

Invitee: The invitee performs Invitation Collection (Icoll) procedure, whose
running time is linearly dependent on the number of required invitations, i.e., t.
As such, the invitee’s running time for Icoll is shown in Figure 5 for the thresh-
old values of 1-9. In this diagram, we included the time for the verification of
invitations’ correctness proof as part of the Icoll procedure as well. In particular,
the running time of Icoll is dominated by t · tPOICverify

+ (t − 1) · tagg, where
t is the threshold, tPOICverify

the time to authenticate each invitation, and tagg
is the time required for homomorphic aggregation of two individual invitations.

22 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Inviter: The inviter is only involved in the execution of the Invitation Gen-
eration algorithm for which he spends 27.5 milliseconds.

SetUp Tgen Igen Ivrfy Reg

Server 1.6 s 4.24 ms - 6.5 ms 0.08 ms

Inviter - - 27.5 ms - -

Table 1. Running time of the server and the inviter. (s: seconds, ms: milliseconds)

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
ill

ise
co

nd
s

Threshold

Token Generation
Invitation Generation
Invitation Collection
Invitation Verification

Fig. 5. The invitee’s running time.

6.2 Communication Complexity

The asymptotic communication complexity among the parties is constant in
the security parameter. However, we additionally measure the concrete com-
munication complexity as the number of bits exchanged between parties. The
communication complexity for the Tgen protocol to transfer a Token with two
group elements of size 2048 bits is 4096 bits (= 0.512 KB). For the invitation
generation protocol, the inviter exchanges the invitation (consisting of 3 group
elements) together with the ZKPOIC (with 8 group elements). Hence the total
communication complexity of Igen is 22528 bits (= 2.81 KB). The invitee sub-
mits the invitation letter (with 3 group elements) together with the token (of
size 4096 bits) to the server for the sake of registration which results in 10240
bits (= 1.28 KB) communication complexity.

Anonyma: Anonymous Invitation-Only Registration 23

6.3 Storage

The storage requirement of each entity is measured based on the number of bits
that the party needs to retain locally. The server holds a signature and encryption
key pairs, hence requires 20896 bits (2.612 KB) of storage. Moreover, the server
saves the description of the polynomial of degree t − 1 with t coefficients and
their corresponding commitments which approximately results in 2t · 2048 bits
of storage requirement at the server. The invitee only needs to keep its share of
the master value which is of size 2046 bits (0.25 KB). For the invitee, no local
storage is required.

7 Security

In this section, we provide security definitions for inviter anonymity and invita-
tion unforgeability, and then prove the security of Anonyma (Sections 7.1 and
7.2). In Section 7.3, we prove the security of AnonymaX for which we supply a
new security definition capturing invitation unforgeability in the cross-network
invitation based systems. The formal proof of special soundness and honest ver-
ifier zero-knowledge property of our proposed Σ protocol for proof of invitation
correctness (POIC), as well as the ideal functionality FRPOIC corresponding to
the zero-knowledge version of POIC are provided in the Appendix, section A.

7.1 Inviter Anonymity

An invitation-based system protects inviter anonymity if an invitee with t in-
viters can authenticate himself to the server without disclosing the identity of
his inviters to the server. In the extreme situation where a corrupted server also
manages to control t−1 inviters of an invitee, the inviter anonymity should guar-
antee that the identity of the remaining non-colluding inviter remains protected
against the server and other inviters. The coalition of the server and t−1 inviters
is the most powerful adversary against inviter anonymity. In the following, we
present the formal definition of inviter anonymity as well as a formal security
proof of inviter anonymity of Anonyma.

Security Definition: We model inviter anonymity as a game denoted by
InvAnonymA(λ) played between a challenger and an adversary. The challenger
acts as the invitee as well as the uncorrupted members of the system. On the
other hand, the adversary plays as the server as well as arbitrary many cor-
rupted members. The challenger is to register the invitee into the system while
t − 1 inviters of the invitee are controlled by the adversary and the remaining
inviter is under the control of the challenger. As such, the adversary issues t− 1
invitations on behalf of the corrupted inviters. Then, the adversary selects two
indexes u0, u1 corresponding to two uncorrupted members. The challenger se-
lects one of them randomly as ub, where b ∈ {0, 1}, to be the other inviter. The
challenger issues an invitation from ub for the invitee and combines it with the

24 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

t− 1 invitations issued by the adversary. The final invitation letter is submitted
to the adversary (who also plays the role of the server). The challenge of the
adversary is to guess a bit b indicating the index of the uncorrupted inviter. If
the adversary cannot guess that index with more than a negligible advantage,
then the system provides inviter anonymity. The formal definition follows.

Inviter Anonymity Experiment InvAnonymA(λ)

1. The adversary is given the security parameter 1λ. It acts as the server
and hands over Param to the challenger.

2. The adversary registers arbitrary many users to the system. The ad-
versary instructs the challenger to register honest users through the
Reg protocol. Uh and Uc contain the indices of the honest and cor-
rupted members, respectively.

3. (a) The adversary outputs the index of two honest inviters u0, u1 ∈
Uh.

(b) The adversary, acting as the server, generates a token Token for
the invitee with index j∗ ∈ Uh.

(c) The adversary specifies a set of t − 1 indices Ic ⊂ Uc to be the
corrupted inviters. For every i ∈ Ic, the adversary engages with
the challenger in the execution of the Igen protocol using Token
as the input. As the result, the invitee (i.e., the challenger) obtains
a set of t− 1 invitations denoted by {Invi}i∈Ic .

4. (a) The challenger selects a bit value b← {0, 1}. The challenger runs
the Igen protocol over Token to issue an invitation from ub for
the invitee. Let Invb be the result.

(b) The challenger runs Icoll using {Invi}i∈Ic∪Invb and Param and
generates an invitation letter InvLet. The challenger attempts to
register to the system by sending InvLet to the adversary.

5. The adversary guesses a bit b
′
.

6. The output of the game is 1 if b == b
′
, 0 otherwise.

Definition 1. An invitation-based system has inviter anonymity if for every
probabilistic polynomial time adversary A there exists a negligible function
negl(.) such that:

Pr[InvAnonymA(λ) = 1] = 1
2 + negl(λ)

At a high level, in Anonyma, the anonymity of the inviter holds due to
the soundness of the proposed ZKPOIC (zero-knowledge proof of invitation cor-
rectness) and the security of the pseudo-random number generator (i.e., PRG).
Below, to give an insight into how ZKPOIC can protect inviter anonymity, we
draw a situation where the lack of ZKPOIC would immediately break inviter
anonymity. Then, by relying on the FRPOIC hybrid model for our proof, we relate
the inviter anonymity of Anonyma to the security of the deployed PRG.

Anonyma: Anonymous Invitation-Only Registration 25

Recall that, as defined in the game, the adversary controls the server and
t−1 inviters of the invitee. Due to the employed ZKPOIC, the invitee is assured
that the inviters are not able to deviate from the protocol descriptions and hence
would have to use their real master shares for the invitation generation. This
implies that the master value S shall be reconstructed correctly as the output
of Icoll. Therefore, as the result of the registration of the invitee (step 4.b from
InvAnonymA(λ) experiment), the server obtains InvLet = (T = ωS+∆, e∆)
out of which the adversary can learn S and ∆. According to the Shamir secret
sharing scheme, although the adversary knows t− 1 shares that are used for the
reconstruction of S, the remaining contributing shareholder can be any of the
existing members, and hence the inviter anonymity is guaranteed. Now, consider
that the inviters are not required to prove the correctness of their invitations.
The t − 1 corrupted inviters use zeros instead of their real master shares for

invitation generation, i.e., si = 0 for i ∈ Ic. Then, the server obtains wS
′

with the
following value: S

′
=

∑
i∈Ic si.Bi+sub

.Bub
= sub

.Bub
. The adversary can simply

try the combinations of master shares su0
and su1

with B0 and B1, respectively
and figure out the remaining inviter’s index (in practice, the possible number of
values is linear in the number of non-colluding inviters, which is the number of
registered users). This trivially breaks inviter anonymity, which follows from the
lack of ZKPOIC.

As we discussed before, due to ZKPOIC all the invitations issued for the
invitee are guaranteed to be well-structured (and their correctness are proven
during Igen). Thus, the execution of Icoll by the invitee would lead to a valid
invitation letter of the form InvLet = (ωS+∆, e∆) where S is the server’s master
value, e∆ is the encryption of ω∆ and ∆ = δ∗ +

∑
i∈Ic Bi · δi + Bub

· δ′ (δ∗ is
the masking value added by the invitee, δ′ is the non-colluding inviter’s mask-
ing value resulted from a PRG and Bub

is the Lagrange coefficient computed
based on the index of the non-colluding inviter). The adversary may get some
idea about the identity of the non-colluding inviter by extracting the Lagrange
coefficients from the ∆ value (Lagrange coefficients are the function of inviters’
indices). Two cases may occur. If the random values δ′ and δ∗ are selected truly
at random, then we know that ∆ is also a random value and conveys nothing
about the Lagrange coefficient Bub

. Though, if δ′ and δ∗ are the output of a
PRG then the adversary may have advantages to extract the Lagrange coeffi-
cients. We denote the adversary’s advantage by ε. If ε is non-negligible, it implies
that we can distinguish between a PRG and a random number generator hence
we break the security of the PRG. In the following, we provide a formal proof.

Theorem 1. Anonyma provides inviter anonymity in FRPOIC hybrid model (as
defined in Equation 36), assuming that PRG is a secure pseudo-random number
generator.

Proof: We reduce the inviter anonymity of Anonyma to the security of the em-
ployed PRG. If there exists a PPT adversary A who breaks the inviter anonymity
of Anonyma with non-negligible advantage, then we can construct a PPT ad-
versary B who distinguishes between a random number generator and a pseudo-
random number generator with the same advantage of A. Assume A’s success

26 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

probability is

Pr[InvAnonymA(λ) = 1] =
1

2
+ ε(λ) (22)

B runs A as its subroutine to distinguish the pseudo-random number generator
from the truly random number generator. B is given a vector of values in Zq

denoted by
→
δ = (δ

′
, δ
′′
) and aims at specifying whether

→
δ is selected truly at

random or is the output of a PRG. B invokes A as its subroutine and emulates
the game of inviter anonymity for A as follows. If A succeeds then B realizes

that
→
δ is pseudo-random, otherwise random.

1. B is given the security parameter 1λ and a vector of two values denoted by
→
δ = {δ′ , δ′′} s.t. δ′, δ′′ ∈ Zq. Adversary A outputs Param including ek, vk,
and (F0, · · · , Ft−1).

2. A registers its own users. Uc contains the indices of corrupted members.
Also, A instructs B to register users into the system. Let Uh indicate the set
of indices registered by B. For each user i ∈ Uh, B obtains a share si and
verifies its correctness by checking whether gsi is equal to

∏t−1
j=0 F

ij

j .
3. (a) A outputs two indices u0, u1 ∈ Uh.

(b) A outputs a token Token = (η, j∗, ω). j∗ is the index of the invitee in
Uh.

(c) A specifies a set of t − 1 incides Ic ⊂ Uc to be the corrupted in-
viters. For every i ∈ Ic, and Token, A engages in Igen with the cal-
lenger. A outputs Invi = (τi, eδi) and contacts FRPOIC with the input of
(τi, eδi, γi, ω)(si, ri, δi). B acting as FRPOIC , accepts or rejects A’s proof
by verifying whether (τi, eδi, γi, ω) and (si, ri, δi) fit into the relation R
as defined in Equation 14. Note that at this step B can learn all the t−1
master shares of corrupted inviters, i.e., {si} for i ∈ Ic.

4. (a) B selects a random bit b. B uses the Token and runs Igen to create an

invitation letter from ub as Invub
= (τub

, eδub
) = (ωsub

+δ
′

, Encek(ωδ
′

))
(δ′ is given from the distinguish-ability game of PRG)).

(b) B runs Icoll over {Invi}i∈Ic ∪ Invb, sets δ∗ = δ
′′

and computes

T = ωδ
∗ · τBub

ub ·
∏
i∈Ic τ

Bi
i

and
e∆ = Encek(ωδ

∗
) · Encek(ωδ

′

)Bub ·
∏
i∈Ic eδ

Bi
i .

The value of e∆ will be equal to Encek(ωδ
∗+δ

′
·Bub

+
∑

i∈Ic δi·Bi). Bi and
Bub

denote the Lagrange coefficients as defined in Equation 7. B submits
InvLet = (T, e∆) to the adversary A.

5. A outputs a bit b
′
.

6. If b = b
′

then B outputs 0, otherwise 1.

Note that B follows all the steps as indicated in the InvAnonymA(λ) game
and hence is indistinguishable from a real challenger. This means that B also runs
in polynomial time (as there is no rewind). B ties the InvAnonymA(λ) game to
the security of PRG by embedding δ′ and δ

′′
(the challenge of PRG game) as the

randomness δub
(used by the non-colluding inviter for the invitation generation),

Anonyma: Anonymous Invitation-Only Registration 27

and the value of δ∗ (used by the invitee in Icoll execution), respectively. Below
is the success probability analysis of the reduction.

Let
→
δ be a truly random vector. Once the adversary decrypts e∆ he obtains

ωδ
′′
+Γ

where

Γ = δ
′ ·Bub

+
∑t−1
i=1 δi ·Bi

Γ is a function of inviters indices due to the presence of Lagrange coefficients

whereas δ
′′

is a random value completely independent of inviters’ indices. If
→
δ is

a random vector then δ
′′

is also a random value from Zq. Therefore, in ωδ
′′
+Γ ,

Γ is indeed masked with δ
′′

(δ
′′

+ Γ mod q is a completely random element
of Zq). By this masking, ∆ (i.e., δ

′′
+ Γ) becomes completely independent of

the Lagrange coefficients and A has no advantage to infer the identity of the
uncorrupted inviter. Thus, A’s advantage is exactly 1

2 i.e.,

Pr[B(
→
δ ← Zq) = 1] = Pr[b = b

′
] =

1

2
(23)

but if
→
δ is the output of a PRG then

Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1] = Pr[b = b

′
] =

1

2
+ ε(λ) (24)

where 1
2+ε(λ) is the success probability of A (as assumed in our proof in Equation

22). By combining Equations 23 and 24 we have

|Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1]− Pr[B(

→
δ ← Zq) = 1]| = ε(λ) (25)

Equation 25 corresponds to the security definition of PRG (see Equation 4).
Thus, if ε(λ) is non-negligible, then the distinguisher B can distinguish a PRG
from a random generator. This contradicts with the security definition of
PRG. Therefore, ε(λ) must be negligible according to the PRG definition. This
concludes the security proof of inviter anonymity of Anonyma. �

7.2 Invitation Unforgeability

In an invitation-based system, the invitation unforgeability indicates that people
who do not have enough inviters (less than t) should not be able to join the
system. Hence, no adversary can forge invitations on his own. Next, we present
a formal definition for invitation unforgeability together with a formal security
proof of Anonyma.

28 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Security Definition: We define the following game denoted by
InvUnforgeA(λ) running between a challenger and an adversary. The
adversary controls a set of t − 1 members. The rest of the users denoted by
Ih are controlled by the challenger. Also, the adversary has oracle access to
the token generation Tgen(sk, j), invitation generation Igen(., si, Param) for
i ∈ Ih, and invitation verification Ivrfy(., ., Param, dk) algorithms. Finally, the
adversary wins the game if it manages to register to the system successfully,
using a token that was not queried from the invitation generation oracle. The
success of the adversary asserts that the invitations are forgeable. Otherwise,
the system provides invitation unforgeability. We remark that by giving the
adversary oracle access to the invitation generation algorithm we aim to capture
the non-exchangability of invitations. This oracle access is equivalent to having
an adversary who eavesdrops the communication of other invitees and inviters
and wishes to forge an invitation over its token.

Anonyma: Anonymous Invitation-Only Registration 29

Invitation Unforgeability experiment InvUnforgeA(λ) :

1. The adversary specifies a set Ic consisting of the index of t− 1 users
to be controlled by the adversary.

2. The challenger runs the setup algorithm and outputs Param to the
adversary.
The next steps (3-6) are the learning phase of the adversary and can
be run in an arbitrary order.

3. (a) The adversary registers a corrupted user i ∈ Ic to the system.
The adversary can repeat this part for every user i ∈ Ic.

(b) The adversary instructs the challenger to register an honest user
to the system. Ih shall contain the index of honest members.

4. The adversary asks the challenger to issue a token. The challenger
generates a token for the next available index j. This step may
be repeated polynomially many times upon the adversary’s request.
QToken holds the set of tokens queried by the adversary.

5. The adversary queries invitation verification function on the invita-
tions of his own choice. The challenger runs the Ivrfy algorithm and
responds accordingly.

6. The adversary has oracle access to the Igen algorithm. That is, the
adversary asks the challenger to use a particular token and gener-
ate an invitation from an honest member. As such, the adversary
specifies the index i ∈ Ih of an honest member together with a valid
Tokenj ∈ QToken. Then, the challenger issues an individual invitation
by running Invi,j = Igen(Tokenj , si, Param) and gives the output
to the adversary. Let QInv = {(Tokenj , Invi,j)} be the set of tokens
together with the individual invitations queried by the adversary.

7. The adversary outputs an invitation letter InvLet for a valid token
Token

′ ∈ QToken for which no query exists in QInv.
8. If the output of Ivrfy(InvLet, Token

′
, Param, dk) is accepted then

the game’s output is 1 indicating the adversary’s success, 0 otherwise.

Definition 2. An invitation-based system has invitation unforgeability if for ev-
ery probabilistic polynomial time adversary A there exists a negligible function
negl(.) such that:

Pr[InvUnforgeA(λ) = 1] = negl(λ)

At a high level, in order for the adversary to be able to win the game, it has to
compute ω∗S for some token Token′ = (τ, j, ω∗) where Token′ does not belong
to QInv. Through the oracle accesses, the adversary learns a set of individual

invitations QInv = {(Tokenj , Invi,j)} where Invi,j = (τi,j = ω
si+δi,j
j , eδi,j =

Encek(ω
δi,j
j)). The Invi,j carries no useful information regarding the master

value S to the adversary as the master share si is masked through a random
value δi,j . There is no way for the adversary to get to learn δi,j unless with

30 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

decryption of eδi,j which is not possible as the adversary lacks the decryption
key dk. Alternatively, the adversary may attempt to combine invitations issued
under different tokens to obtain a valid invitation under a new token Token′.
This is impossible due to the CDH problem. That is, given τi,j (= ω

si+δi,j
j) and

ω∗(= gx), the adversary must compute τxi,j which corresponds to a solution to the

CDH problem. Similarly, the knowledge of ω∗ and F0 = gS (from Param) does
not help in making a valid invitation letter since computing ω∗S is equivalent to
solving the CDH problem. That is, given ω∗ = gx and F0 = gS , the adversary
shall compute gx·S = ωS . In the theorem and proof given below, we reduce
InvUnforgeA(λ) game to the CDH problem.

Theorem 2. Anonyma satisfies invitation unforgeability as defined in Defini-
tion 2, in FRPOIC hybrid model, given that the signature scheme Sig is exis-
tentially unforgeable under chosen message attack, and Computational Diffie-
Hellman problem is hard relative to group G.

Proof: If there exists a PPT adversary A who breaks the invitation unforgeabil-
ity with the non-negligible advantage then we can construct a PPT adversary B
who solves the CDH problem with non-negligible advantage.

Let ε denote the probability of success of A. B interacts with the CDH
challenger and also runs A as its subroutine. B is given G, q, g,X = gx, Y =
gy ∈ G for which B is supposed to compute Z = gx·y.

1. A outputs a set of t − 1 indices as Ic to be the index of members under its
control.

2. B runs the setup algorithm and generates the encryption and signature key
pairs (ek, dk) (sk, vk) as normal. To set up Shamir secret sharing scheme,
B performs as follows. B sets F0 = Y (recall that F0 is the commitment to
master value S thus F0 = gf(0) = gS ; this implies that B does not know
the master value S since it is the discrete logarithm of Y (i.e., y), which is
selected by the CDH challenger). B selects t−1 random values si∈Ic ← Zq to
be the master shares of the corrupted members. Also, B computes γi = gsi

for i ∈ Ic. Recall that the share of the master value for the ith user is f(i),
thus by setting the master shares of corrupted parties, B fixes t − 1 points
of polynomial f as f(i) = si for i ∈ Ic. These t − 1 points together with
F0, which is indeed gf(0), will fix polynomial f since the degree of f is
t − 1. Next, B interpolates Y i.e., (gf(0)) and {(i, γi)}i∈Ic , and computes
the commitments F1, · · · , Ft−1 (where F1 = ga1 , · · · , Ft−1 = gat−1) over the
coefficients of polynomial f [30] (where f = S + a1 · x+ ...+ at−1 · xt−1).

Note that B does not obtain the exact coefficients of the polynomial f (i.e.,
ai values) but only computes the commitments Fi = gai . This is sufficient
for B to simulate the role of the server since it only needs to publicize the
commitments of the polynomial and not the exact coefficients.

B outputs param = (G, q, g, ek, vk, (F0, ..., Ft−1)), as well as the security pa-
rameter 1λ. Note that B also records the master shares of corrupted members
i.e., {(i, f(i))}i∈Ic to use in the registration phase.

Anonyma: Anonymous Invitation-Only Registration 31

3. (a) A registers a corrupted user to the system (a user with the index i ∈ Ic).
As such, B sends f(i) (which was computed during the setup protocol)
to A.

(b) A instructs B to register an honest user to the system. Note that B
cannot generate the master shares of honest users since it does not know
the coefficients of the function f . However, since it is a local calculation
for B, this shortage remains unnoticed to A. B records the index of
honest user inside Ih.

4. A has oracle access to the token generation Tgen. Initially, B draws a random
value j∗ ∈ [1, P (λ)] where P (λ) is the upper-bound on the number of adver-
sary’s queries to Tgen.B answers the queries of A for Tgen as follows. For the
j∗th query, B sets Tokenj∗ = (Signsk(j∗||X), j∗, X) (X was given to B from
the CDH game) and inserts (j,X,⊥) into QToken. Otherwise, B selects a ran-
dom rj ∈R Zq, sets ωj = grj and outputs Tokenj = (Signsk(j||ωj), j, ωj). B
records (j, ωj , rj) inside QToken.

5. The adversary queries the invitation verification function on the invitation
letters and tokens of his own choice i.e., InvLet = (T, e∆) and Token =
(η, j, ωj). B first authenticates the token against the signature verification
key. If not verified, B outputs reject to A. Also, if ωj = X, then B aborts.
Otherwise,
• If Token == Token∗, then B aborts the expriment.
• If Token 6= Token∗, B proceeds as follows. Due to the lack of master

value S, B has to run different than the normal Ivrfy algorithm. B de-
crypts e∆ as ω∆j = Decdk(e∆). Next, B retrieves the record of (j, ωj , rj)

corresponding to ωj from QToken and checks whether F
rj
0 · ω∆j

?
= T and

responds to A accordingly. The right side of this equality check is the
same as line 3 of Ivrfy Algorithm (Algorithm 4.4) since

F
rj
0 · ω∆j = gS·rj · ω∆j = grj ·S · ω∆j = ωSj · ω∆j (26)

6. A has oracle access to Igen algorithm. A outputs an index i of an honest
member together with a Tokenj = (η, j, ωj). B first authenticates the token
against the signature verification key. If successful, then, it attempts issuing
an invitation. Notice that B cannot generate the invitation by following
Igen since it does not have the master share of honest users i.e., si for
i ∈ Ih. B performs differently to compute a valid invitation as explained
next. B retrieves the record (j, ωj , rj) from QToken (if the token is valid and
has a correct signature from the server then it must be already queried by
the adversary and hence should exist in QToken, otherwise, the signature
forgery happens which is not possible due to the security of the underlying
signature scheme). B computes γi =

∏t
j=0 F

ij

j as well as selects a random

value δi ∈R Zq. Then, B constructs τi,j = γ
rj
i · gδi·rj where rj is the discrete

logarithm of ωj in base g. It is immediate that τi,j is well-structured since

τi,j = γ
rj
i ·g

δi·rj = (gsi)rj ·(gδi)·rj = (grj)si ·(grj)δi = ωsij ·ω
δi
j = ωsi+δij (27)

B constructs eδi,j as Encek(ωδij) and outputs Invi,j = (τi,j , eδi,j) to A.

32 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Finally, B acts as FRPOIC and waits for A’s message asking verifica-
tion of (τi,j , eδi,j , γi, ωj) for which B responds accept to A. B keeps the
set of individual invitations and their tokens queried by A in QInv =
{(Tokenj , Invi,j)}.

7. The adversary outputs an invitation letter InvLet = (T, e∆) for a token
Token

′
for which no query has been made from Igen i.e., Token

′
/∈ QInv.

8. B verifies whether the Token
′

is correctly signed under sk. If not, B outputs
⊥ to CDH challenger. Otherwise:
• If Token

′ 6= Token∗, B outputs ⊥ to the CDH game.
• If Token

′
== Token∗, B outputs T · Decdk(e∆)−1 to the CDH chal-

lenger. In fact, if A constructs InvLet correctly, we expect that T =
ω∗S+∆ and e∆ = Enc(ω∗∆). Given that X = gx = ω∗ and Y = gy = gS ,
we have

T ·Decdk(e∆)−1 = (ω∗)
S+∆ · (ω∗)∆

−1
= (ω∗)

S
= (gx)y = gxy (28)

gx.y is the solution to the given CDH problem.

This is immediate that B runs in polynomial time. The index j∗ chosen by B
at step 4 represents a guess as to which Tgen oracle query of A will correspond
to the token of eventual invitation letter forgery output by A. If this guess is
correct, then A’s view while running with B is identical to InvUnforgeA(λ)
game.

When B guesses correctly and A outputs a forgery, then B can solve the
given instance of CDH. Assume that A’s advantage in InvUnforgeA(λ) game
is ε. The probability that B wins is

Pr[B wins] = Pr[B(G, q, g,X = gx, Y = gy) = gx·y] (29)

= Pr[A wins ∧ (Token
′

= Token∗)]

= Pr[A wins |Token
′

= Token∗] · Pr[Token
′

= Token∗]

≥ ε · 1

Poly(λ)

The last equality holds since the number of queries made by A is at most P (λ)
(P is polynomial in 1λ), hence, the probability Token∗ = Token

′
is 1
Poly(λ) . Note

that due to the signature unforgeability, A cannot create a valid token outside
of the set of queried tokens i.e., /∈ QToken.

Assuming that ε is non-negligible, B also wins with non-negligible probability.
This contradicts with the hardness of the CDH problem. Hence A’s success
probability in InvUnforgeA(λ) must be negligible. This concludes the proof.
�

7.3 Security of AnonymaX

Inviter Anonymity: The inviter anonymity of AnonymaX can be defined iden-
tically to the experiment of InvAnonymA(λ) . The challenger shall control the

Anonyma: Anonymous Invitation-Only Registration 33

honest members, i.e. Uh and invitee whereas the adversary will have the control
of Sinviter and all the registration servers Sj together with the corrupted mem-
bers Ic which shall constitute t − 1 inviters of the invitee. AnonymaX meets
inviter anonymity due to the similar proof supplied for Anonyma. Without loss
of generality and for the sake of simplicity, we consider only one registration
server to exist, though the extension of proof for multiple registration servers is
straightforward. In particular, the following theorem holds for AnonymaX with
one inviter server and one registration server.

Theorem 3. AnonymaX provides inviter anonymity in FRPOIC hybrid model (as
defined in Equation 36), assuming that PRG is a secure pseudo-random number
generator.

Proof Sketch: Given that a PPT adversary A′ can break the inviter anonymity
game for AnonymaX with non-negligible advantage, we can construct an adver-
sary B′ to distinguish between a PRG and a truly random number generator.
The internal code of adversary B′ shall be identical to the simulator B in proof
of Theorem 1. The only difference is in the SetUp phase where the challenger
outputs two pair of encryption keys (ekreg, ekinviter) among which only ekreg will
be used throughout the experiment.
Invitation Unforgeability: Recall that invitation unforgeability guarantees
that a corrupted invitee with an insufficient number of inviters would not be
able to join the system. In a cross-network invitation-based system, the invita-
tion unforgeability should additionally hold for the registration service. That is,
if Alice does not have enough inviters from the inviter system, she should not
be able to successfully register to the registration service.

Note that in a cross-network invitation-based system, invitation unforgeabil-
ity cannot be defined for the case that Sinviter acts against Sreg, i.e. Sinviter

wants to generate valid invitations for the invitee of its choice to join the reg-
istration service. This is trivial since Sinviter is able to register arbitrary many
users into its own system (i.e., inviter system). Then, every subset of t regis-
tered users of inviter service will consequently be able to issue invitations and
register arbitrary many users into the registration service. Note that this is not
a limitation imposed by our design and rather is implicit in any cross-network
invitation-based system.

In the invitation unforgeability game as defined in XInvUnforgeA(λ) , we
consider N registration servers which all accept invitations from the members
of one inviter server. The adversary plays on behalf of t − 1 corrupted users of
the guest service and a subset of registration servers. The challenger controls
the honest users, i.e. Ih of the inviter service together with Sinviter and some
of the uncorrupted registration servers. At the end of the game, the mission of
adversary as a corrupted invitee with an insufficient number of inviters is to
successfully register to one of the honest registration servers Sj∗ controlled by
the challenger.

In XInvUnforgeA(λ) , we index registration servers as Sj , where 1 ≤ j ≤ N ,
and the inviter server as S0. The set of servers controlled by the adversary are
denoted as set C. We assume H indicates the set of un-corrupted registration

34 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

servers. The set of members of inviter service is denoted by Uinviter. Ic represents
the set of t − 1 corrupted members in the inviter service whereas Ih contains
the indices of the honest members. We have Uinviter = Ih ∪ Ic. We prefix the
algorithms with its executing entity, e.g. we write Sj .T gen to show the invocation
of the token generation algorithm at the server j.

Invitation Unforgeability experiment XInvUnforgeA(λ) for
cross-network invitation based system:

1. The adversary specifies a set Ic ⊂ Uinviter consisting of the index of
t− 1 users to be under his control.

2. The challenger runs Setup for all Sj ∈ H and outputs Paramj to
the adversary. The adversary outputs Paramj for j ∈ C. The next
steps (3-6) are the learning phase of the adversary and can be run in
an arbitrary order.

3. (a) The adversary registers a corrupted user i ∈ Ic to the inviter
system. The adversary repeats this part for every user i ∈ Ic.

(b) The adversary instructs the challenger to register an honest user
i to the inviter system where i ∈ Ih.

4. The adversary has Oracle access to the Sj .T gen for j ∈ H. Also, the
adversary generates a Token for a user i ∈ Ih from Sj where j ∈ C
and hands over to the challenger.

5. The adversary has oracle access to Sj .XIvrfy for j ∈ H.
6. The adversary has oracle access to the Igen algorithm. That is, the

adversary specifies the index l of an honest member i.e., l ∈ Ih and a
server index j ∈ H ∪ C together with a Token issued by Sj .
The challenger generates an individual invitation by running Invl =
Igen(Token, sl, Paramj) and gives the output Invl to the adversary.
Let QInvj = {(Token, Invl)} be the set of tokens together with the
individual invitations queried by the adversary to be generated by
the lth user for the jth service.

7. The adversary outputs an invitation letter InvLet together with to-
ken Token

′
for the registration in the j∗th server where j∗ ∈ H. There

should not be any issued invitation using Token
′

in QInvj∗ .

8. If the output ofXIvrfy(InvLet, Token
′
, Paraminviter, ParamSj∗ , dkSj∗)

is accepted, then the game’s output is 1 indicating the adversary’s
success, 0 otherwise.

Definition 3. An cross-netwrok invitation-based system has invitation unforge-
ability if for every probabilistic polynomial time adversary A there exists a neg-
ligible function negl(.) such that:

Pr[XInvUnforgeA(λ) = 1] = negl(λ)

Theorem 4. AnonymaX satisfies invitation unforgeability as defined in Defi-
nition 3, in FRPOIC and FRPODL hybrid model, given that the signature scheme

Anonyma: Anonymous Invitation-Only Registration 35

Sig is existentially unforgeable under chosen message attack, and Computational
Diffie-Hellman problem is hard relative to group G.

At a high level, The reduction idea between CDH problem and
XInvUnforgeA(λ) of AnonymaX is similar to InvUnforgeA(λ) . However,
in AnonymaX , the simulator B additionally is able to extract the CDH solution
during the Tgen and XIvrfy which we explain below. B is given X = gx and
Y = gy from the CDH challenger and sets Y as the commitment to the master
value S. B also guesses at which query of Tgen A will succeed to forge a valid
InvLet. B sets the value ω of that token to X. B can solve the CDH challenge
if

– A creates a token with the value of X for which A must prove the knowledge
of the discrete logarithm x. Then B outputs Y x as the CDH solution.

– The adversary A queries XIvrfy with a valid invitation letter InvLet over
the token with ω = X, then B extracts the CDH solution. The InvLet is of
the form ωS = gxy which is the solution to the CDH problem.

– A submits a valid invitation letter using the token X. That is of the form
ωS = gxy which is the solution to the CDH problem.

A may also win by forging a token (i.e., a signature) on behalf of an honest regis-
tration server ∈ H. However, since the signature scheme is secure, the probability
of signature forgery is negligible.

Proof: If there exists a PPT adversary A who breaks the invitation unforge-
ability of AnonymaX with non-negligible advantage, then we can construct a
PPT adversary B who solves the CDH problem with non-negligible advantage.

Let ε denote the probability of success of A. B interacts with the CDH
challenger and also runs A as its subroutine. B is given the security parameter
1λ, G, q, g,X = gx, Y = gy ∈ G for which B is supposed to compute Z s.t.
Z = gx·y.

1. A outputs a set of t − 1 indices as Ic to be the index of members under its
control.

2. For every Sj j ∈ H, B runs the setup algorithm and generates the encryption
and signature key pairs (ekSj

, dkSj
) (skSj

, vkSj
) as normal. ParamSj

will
be (ekskj , vkSj).
Similarly, B sets up an encryption and signature key pairs for Sinviter as
(ekinviter, dkinviter) and
(skinviter, vkinviter), respectively. As for the initialization of Shamir secret
sharing scheme, B performs as follows. B sets F0 = Y (recall that F0 is the
commitment to master value S thus F0 = gf(0) = gS ; this implies that B
does not know the master value S since it is the discrete logarithm of Y
(i.e., y), which is selected by the CDH challenger). B selects t − 1 random
values si∈Ic ← Zq to be the master shares of the corrupted members. Also, B
computes γi = gsi for i ∈ Ic. Recall that the share of the master value for the
ith user is f(i), thus by setting the master shares of corrupted parties, B fixes
t−1 points of polynomial f as f(i) = si for i ∈ Ic. These t−1 points together

36 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

with F0, which is indeed gf(0), will fix polynomial f since the degree of f
is t− 1. Next, B interpolates Y i.e., (gf(0)) and {(i, γi)}i∈Ic , and computes
the commitments F1, · · · , Ft−1 (where F1 = ga1 , · · · , Ft−1 = gat−1) over the
coefficients of polynomial f [30] (where f = S+a1 ·x+ ...+at−1 ·xt−1). Note
that B does not obtain the exact coefficients of the polynomial f (i.e., ai
values) but only computes the commitments Fi = gai . This is sufficient for
B to simulate the role of the inviter server since it only needs to publicize
the commitments of the polynomial and not the exact coefficients.
B outputs param = (G, q, g, ekinviter, vkinviter, (F0, ..., Ft−1)), as well as the
security parameter 1λ to the adversary. Note that B also records the master
shares of corrupted members i.e., {(i, f(i))}i∈Ic to use in the registration
phase.

3. (a) A registers a corrupted user to the system (a user with the index i ∈ Ic).
As such, B sends f(i) (which was computed during the SetUp protocol)
to A.

(b) A instructs B to register an honest user to the system. Note that B
cannot generate the master shares of honest users since it does not know
the coefficients of the function f . However, since it is a local calculation
for B, this shortage remains unnoticed to A. B records the index of the
honest user inside Ih.

4. A has oracle access to token generation i.e., Sinviter.T gen and Sj .T gen for
all j ∈ H. B keeps the set of tokens queried by A for each server Sj inside
QTokenj . Initially, B draws two random values j∗ ∈ [1, N] (to be the guess
over the index of the honest registration server for which the adversary comes
up with the invitation letter forgery) and l∗ ∈ [1, P (λ)] where P (λ) is the
upper-bound on the number of adversary’s queries to Tgen for each of the
servers.

– If j is equal to j∗, and if this is the l∗ query to Sj∗ .T gen then B returns
Token∗ = (SignskSj∗

(l∗||X), l∗, X)

X was given to B from the CDH game. B plays the role of FRPODL,
receives the verification request of (G, q, g,X) from the adversary and
outputs accept to the adversary. B inserts (X,⊥) into QTokenj∗ .

– If j 6= j∗, and assuming this is the lth query of adversary to Sj .T gen,
B selects a random r ∈R Zq, sets ω = gr and outputs Token =
(SignskSj

(l||ω), l, ω). B plays the role of FRPODL, receives the verifica-

tion request of (G, q, g, ω) from the adversary and outputs accept to the
adversary. B inserts (ω, r) to QTokenj .

The adversary may generate a token Token = (η, l, ω) for a user l ∈ Ih
from Sj where j ∈ C and hands over to the challenger. The adversary con-
tacts FRPODL i.e., the challenger B and hands over ((G, q, g, ω), r). B checks
whether gr = ω and accepts or rejects the token accordingly. Also, B verifies
the signature η against the verification key of Sj and accepts or rejects the
token accordingly. If the verification passed successfully, B stores (ω, r) in
QTokenj . If ω == X (the CDH challenge), and the token is accepted, then B
outputs Y r to the CDH challenger.

Anonyma: Anonymous Invitation-Only Registration 37

5. The adversary queries Sj .XIvrfy(InvLet, Token, Paraminviter, dkSj) for
j ∈ H on the invitation letters and tokens of his own choice i.e., InvLet =
(T, e∆) and Token = (η, l, ω). B runs XIvrfy algorithm and responds
accordingly. If the output of XIvrfy is not reject and if j = j∗ and
Token = Token∗ (i.e., ω = X), then B outputs T · DecdkSj∗

(e∆)−1 to

the CDH game.

T ·DecdkSj∗
(e∆)−1 = XS+∆ ·X−∆ = XS = gxS = gxy (30)

6. A has oracle access to Igen algorithm. A asks the challenger to generate
an invitation from the honest member i for the registration server j ∈ H ∪
C using a Token = (η, l, ω). B first authenticates the token against the
signature verification key of Sj . If not verified, B outputs reject to A. Also,
if ω = X, then B aborts. Otherwise, B attempts issuing an invitation. Notice
that B cannot generate the invitation by following Igen since it does not have
the master share of honest users i.e., si for i ∈ Ih. B performs differently to
compute a valid invitation as explained next. B computes γi =

∏t
v=0 F

iv

v =
gsi (the second equality holds due to Equation 12) as well as selects a random
value δi ∈R Zq. Then, B constructs τi = γri · gδi·r where r is the discrete
logarithm of ω in base g. It is immediate that τi (to be the first component
of the invitation letter) is well-structured since

τi = γri · gδi·r = (gsi)r · (gδi)·r = (gr)si · (gr)δi = ωsi · ωδi = ωsi+δi (31)

B constructs eδi as Encek(ωδi) and outputs Invi = (τi, eδi) to A.
Finally, B acts as FRPOIC and waits for A’s message asking verification of
(τi, eδi, γi, ω) for which B responds accept to A. B keeps the set of individual
invitations and their tokens queried by A for each server Sj in QInvj =
{(Invi, T oken)}.

7. The adversary outputs an invitation letter InvLet = (T, e∆) for a valid
token Token

′
issued by Sj′∈H i.e., Token

′ ∈ QToken
j′

for which no query has

been made from Sj′ .Igen i.e., Token
′
/∈ QInv

j′
.

8. B verifies whether the Token
′
is correctly signed under skj′ . If not,B outputs

⊥ to CDH challenger. Otherwise:
• If j′ 6= j∗ or Token

′ 6= Token∗ B outputs ⊥ to the CDH game.
• If j′ = j∗ and Token

′
= Token∗, B outputs T ·DecdkSj∗

(e∆)−1 to the

CDH challenger. In fact, if A constructs InvLet correctly, we expect
that T = XS+∆ and e∆ = Encek)Sj∗ (X∆). Given that X = gx and

Y = gy = gS , we have

T ·DecdkSj∗
(e∆)−1 = (X)

S+∆ · (X)
∆−1

= (X)
S

= (gx)y = gxy (32)

gx.y is the solution to the given CDH problem.

This is immediate that B runs in polynomial time. The index j∗ and l∗

chosen by B at step 4 represents a guess as for which server Sj∗ and to which

38 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Sj∗ .T gen oracle query of A will correspond to the token of eventual invitation
letter forgery output by A. If this guess is correct, then A’s view while running
with B is identical to XInvUnforgeA(λ) game.

When B guesses correctly and A outputs a forgery, then B can solve the given
instance of CDH. Assume that A’s advantage in XInvUnforgeA(λ) game is ε.
The probability that B wins is

Pr[B wins] = Pr[B(G, q, g,X = gx, Y = gy) = gx·y] (33)

= Pr[A wins ∧ (Token
′

= Token∗ AND j′ = j∗)]

= Pr[A wins |Token
′

= Token∗ AND j′ = j∗] · Pr[Token
′

= Token∗ AND j′ = j∗]

≥ ε · 1

Poly(λ)
· 1

N

The last equality holds since the number of queries made by A is at most
Poly(λ) (i.e., polynomial in λ), and there are N registration servers (honest
and corrupted), hence, the probability Token∗ = Token

′
and j′ = j∗ is at least

1
Poly(λ) ·

1
N .

A may attempt to forge a token on behalf of Sj′ for which it has obtained
an individual invitation from an honest user for the registration in one of the
corrupted registration servers. However, due to the signature unforgeability, A
cannot create a valid token outside of the set of queried tokens i.e., /∈ QTokenj for
all j ∈ H. Also, all the queries to Igen(Token = (η, i, ω), sl, ParamSj

) where
l ∈ Ih and j ∈ C are answered if the given Token is generated by the corrupted
server Sj correctly i.e., Token ∈ QTgenj which means that the adversary has
passed ZKPODL successfully (knows the DL of the ω). The presence of zero-
knowledge proof will prevent the adversary from using a token of an honest
server since the adversary does not know the DL of ω due to the hardness of
discrete logarithm assumption. Without ZKPODL, the adversary can win the
XInvUnforgeA(λ) 8.

Assuming that ε is non-negligible, B also wins with non-negligible probability.
This contradicts with the hardness of the CDH problem. Hence A’s success
probability in InvUnforgeA(λ) must be negligible. This concludes the proof.
�

8 A takes ω from one of the tokens Token = (η, l, ω) in QTgenj∗ and then generates
a valid token Token′′ = (Signskj (ω), i, ω) at step 4 from a corrupted server Sj∈C .
Next, A queries Igen(Token′′, sl, ParamSj) for l ∈ Ih and obtains a valid invitation

Invl = (τl, eδl). Given Invl and dkskj , the adversary would be able to open eδl to ωδl

hence can construct its tth valid individual invitation as Invt = (τl, EncekSj∗
(ωδl))

for a Token = (η, l, ω) ∈ QTgenj∗ . The adversary combines Invt with t− 1 invitations
issued by the t − 1 corrupted inviters under its control and hands over an intact
InvLet to B.

Anonyma: Anonymous Invitation-Only Registration 39

8 Related Works

In this section, we investigate related studies under two main categories: Elec-
tronic Voting (e-voting) systems and Ring-based signature schemes. These two
topics show the most similarity to the invitation-only registration systems and
address the confidentiality of the inviter-invitee relationship. However, the re-
search done in both categories suit their unique settings and suffer from the ef-
ficiency issues when deployed for the invitation-only registration scenario. More
details are provided below.

8.1 Electronic Voting (e-voting)

Electronic voting systems consist of a set of voters, some candidates to be voted,
and one/multiple authorities which handle tallying. An e-voting system must
ensure that only the authorized users participate in the voting, and each voter
casts only one vote. More importantly, the content of the individual votes must
be kept private, i.e., no vote can be traced back to its voter. In the literature,
this property is known as vote privacy, anonymity, and untraceability. E-voting
techniques are similar to the anonymous invitation-only systems in many as-
pects. The role of voters is analogous to the inviters. Each round of the election
with the Yes/No votes for a candidate can be treated as inviters casting their
invitations for the registration of a newcomer. A Yes vote indicates inviting the
candidate/newcomer and a No vote implies not inviting. Preserving the privacy
of the vote is equivalent to the inviter anonymity. Likewise, the prevention of
double-voting resembles the invitation unforgeability.

Despite the aforementioned similarities, e-voting proposals fall short in satis-
fying inviter anonymity, invitation unforgeability, and scalability simultaneously.
To illustrate this incompatibility, we first classify the e-voting techniques into
two main categories: 1- explicit vote casting, 2-anonymous vote casting. Under
each category, we identify the subtleties to transplant the e-voting solution into
the invitation-only systems.

1. Explicit vote casting: The voter authenticates himself to the authorities ex-
plicitly and immediately casts his private ballot. The ballot is shielded using
either a threshold encryption scheme whose decryption key is divided be-
tween multiple authorities [19, 29], or secret sharing schemes where multiple
authorities obtain one share of the ballot [25]. Before tallying the votes, the
identifiable information shall be removed from the individual votes either by
shuffling them through mix-net [9] or by homomorphically aggregating them
[25]. In the context of the invitation-only system, this type of proposal has
performance problems. That is, to preserve the inviter’s anonymity (namely,
hiding the identity of voters with the Yes vote), all the members should par-
ticipate in the voting (including those who will cast a No vote). Otherwise,
the real inviters will be revealed to the voting authorities. This imposes an
unnecessary load to the non-inviters (voters with the No votes). In contrast,
in Anonyma, the entire invitation procedure is carried out only by the invitee
and his inviters.

40 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

2. Anonymous vote casting: This technique relies on one-time pseudonyms to-
gether with an anonymous communication channel. A voter hands over its
credential (e.g., social security number – SSN) to the voting authority. Then,
through a blind signature scheme, the voting authority issues a signature on
the voter’s pseudonym (that is also bond to the voter’s SSN). The pseudonym
is a one-time value and untraceable to the real identity, i.e., SSN. Later on, a
voter casts a vote under his pseudonym and via an anonymous communica-
tion channel to the voting authority. Voters attempting voting twice will have
to risk the disclosure of their real identities (i.e., SSN) [1, 26]. When we inte-
grate this solution to the invitation-only system, the main problem is that the
pseudonyms are one-time hence a user cannot use the same pseudonym for
multiple elections (i.e., to invite different users). Otherwise, his identity and
will be disclosed. To cope with this issue, upon the arrival of each newcomer,
the authority has to issue new pseudonyms for all the existing members to
enable them to act as the inviter for the newcomer (regardless of being the
inviters of the newcomer or not). This is certainly not an efficient solution
as the load of the authority scales linearly with the number of joining mem-
bers. Moreover, all the existing members also have to work linearly in the
number of joining users. Alternatively, the authority should issue multiple
pseudonyms (instead of one) for each member. However, this is not clear how
to ensure that an inviter will only be able to use one pseudonym for each
newcomer. In other words, the inviter should not be able to use all of his
pseudonyms to make t valid invitations for just a single invitee since other-
wise it would violate the invitation unforgeability (in which the invitations
must be issued by t distinct inviters).

8.2 (t,N) Threshold Ring Signature

A ring signature specifies a group of N signers together with a proof that shall
convince any verifier that a message is signed by t members of the group [17]. A
ring signature scheme must satisfy three properties: 1-correctness which denotes
that every group of t signers must be able to create a valid signature and proof, 2-
unforgeability that means making valid signature is not feasible for non-signers,
and 3-anonymity which indicates that given a signature and its proof, the identity
of the signers should not be predictable with probability negligibly better than
1
N .

An invitation-based system can be instantiated from a threshold ring signa-
ture, assuming that the signers are the inviters and a valid signature constitutes
a valid invitation for a newcomer. The important shortcoming of such schemes is
that their running time complexity for the generation of an invitation is at least
linearly dependent on the size of the system, i.e., the total number of existing
members [6, 24, 21, 4]. In some other cases, the dependency is exponential [17].
The same issue applies to the length of the signature (invitation letter) as it
is comprised of O(N) group elements where N is the total number of existing
members. This considerably degrades the system’s performance. In contrast, the

Anonyma: Anonymous Invitation-Only Registration 41

performance of Anonyma is only influenced by the threshold of t and is indepen-
dent of the size of the system. That is, the invitation generation complexity is
O(t), and the invitation verification is done in O(1). Also, the invitation length
is O(1).

9 Conclusion

In Anonyma, we proposed an anonymous invitation-only system satisfying
inviter anonymity and invitation unforgeability simultaneously. The inviter
anonymity guarantees that the knowledge of who is invited by whom remains
confidential against the system administrator as well as the inviters of the same
invitee. By the invitation unforgeability, the system administrator is guaran-
teed that invitees without a sufficient number of inviters would not be able to
successfully authenticate themselves to the system. Both security objectives are
formally defined and proved in a malicious adversarial model. The anonymity
of inviter relies on the security of the employed pseudo-random generator and
the invitation unforgeability relies on the hardness of the computational Diffie-
Hellman assumption. Unlike the prior studies whose running time depends on
the total number of system members, in Anonyma, the running time complex-
ity of invitation generation was o(t) (t is the required number of inviters) and
the verification of invitation required constant many operations at the server.
Additionally, we devised an anonymous cross-network invitation-based system,
AnonymaX which is a slightly modified variant of Anonyma. AnonymaX em-
powered users of one network to act as inviters for another network. AnonymaX
achieves provable inviter anonymity the same way as Anonyma does. The proof
of invitation unforgeability of AnonymaX is provided basing on the hardness of
the computational Diffie-Hellman assumption.

Acknowledgements

We acknowledge the support of the Turkish Academy of Sciences, the Royal
Society of UK Newton Advanced Fellowship NA140464, and European Union
COST Action IC1306.

References

1. Benaloh, J., and Tuinstra, D. Receipt-free secret-ballot elections. In Proceed-
ings of the twenty-sixth annual ACM symposium on Theory of computing (1994),
ACM, pp. 544–553.

2. Blum, M., and Micali, S. How to generate cryptographically strong sequences
of pseudorandom bits. SIAM journal on Computing 13, 4 (1984), 850–864.

3. Boshrooyeh, S. T., and Küpçü, A. Inonymous: anonymous invitation-based
system. In Data Privacy Management, Cryptocurrencies and Blockchain Technol-
ogy. Springer, 2017, pp. 219–235.

42 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

4. Boyen, X. Mesh signatures. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques (2007), Springer, pp. 210–227.

5. Brainard, J., Juels, A., Rivest, R. L., Szydlo, M., and Yung, M. Fourth-
factor authentication: somebody you know. In Proceedings of the 13th ACM con-
ference on Computer and communications security (2006), ACM, pp. 168–178.

6. Bresson, E., Stern, J., and Szydlo, M. Threshold ring signatures and appli-
cations to ad-hoc groups. In Annual International Cryptology Conference (2002),
Springer, pp. 465–480.

7. Chaabane, A., Acs, G., Kaafar, M. A., et al. You are what you like! informa-
tion leakage through users’ interests. In Proceedings of the 19th Annual Network
& Distributed System Security Symposium (NDSS) (2012).

8. Chaum, D., and Pedersen, T. P. Wallet databases with observers. In Annual
International Cryptology Conference (1992), Springer, pp. 89–105.

9. Chaum, D. L. Untraceable electronic mail, return addresses, and digital
pseudonyms. In Communications of the ACM (1981), vol. 24, ACM, pp. 84–90.

10. Diffie, W., and Hellman, M. New directions in cryptography. IEEE transac-
tions on Information Theory 22, 6 (1976), 644–654.

11. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31, 4 (1985), 469–472.

12. Goldreich, O., Micali, S., and Wigderson, A. How to play any mental game.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing
(1987), ACM, pp. 218–229.

13. Gong, N. Z., and Liu, B. Attribute inference attacks in online social networks.
In ACM Transactions on Privacy and Security (TOPS) (2018), vol. 21, ACM, p. 3.

14. Gong, N. Z., and Wang, D. On the security of trustee-based social authentica-
tions. In IEEE transactions on information forensics and security (2014), vol. 9,
IEEE, pp. 1251–1263.

15. Groth, J. Non-interactive zero-knowledge arguments for voting. In Interna-
tional Conference on Applied Cryptography and Network Security (2005), Springer,
pp. 467–482.

16. Hazay, C., and Lindell, Y. Efficient secure two-party protocols: Techniques and
constructions. Springer Science & Business Media, 2010.

17. Isshiki, T., and Tanaka, K. An (n–t)-out-of-n threshold ring signature scheme.
In Australasian Conference on Information Security and Privacy (2005), Springer,
pp. 406–416.

18. Katz, J., and Lindell, Y. Introduction to modern cryptography. CRC press,
2014.

19. Kiayias, A., and Yung, M. The vector-ballot e-voting approach. In International
Conference on Financial Cryptography (2004), Springer, pp. 72–89.

20. Kravitz, D. W. Digital signature algorithm, July 27 1993. US Patent 5,231,668.
21. Liu, J. K., Wei, V. K., and Wong, D. S. A separable threshold ring signa-

ture scheme. In International Conference on Information Security and Cryptology
(2003), Springer, pp. 12–26.

22. Mahmood, S. Online social networks: Privacy threats and defenses. In Security
and Privacy Preserving in Social Networks. Springer, 2013, pp. 47–71.

23. Malar, G. P., and Shyni, C. E. Facebookfs trustee based social authentication.
In Int. J. Emerg. Technol. Comput. Sci. Electron (2015), vol. 12, pp. 224–230.

24. Melchor, C. A., Cayrel, P.-L., Gaborit, P., and Laguillaumie, F. A new
efficient threshold ring signature scheme based on coding theory. In IEEE Trans-
actions on Information Theory (2011), vol. 57, IEEE, pp. 4833–4842.

Anonyma: Anonymous Invitation-Only Registration 43

25. Nair, D. G., Binu, V., and Kumar, G. S. An improved e-voting scheme
using secret sharing based secure multi-party computation. In arXiv preprint
arXiv:1502.07469 (2015).

26. Radwin, M. J., and Klein, P. An untraceable, universally verifiable voting
scheme. In Seminar in Cryptology (1995), pp. 829–834.

27. Rosen, A. A note on constant-round zero-knowledge proofs for np. In Theory of
Cryptography Conference (2004), Springer, pp. 191–202.

28. Roy, A., and Karforma, S. A survey on digital signatures and its applications.
In Journal of Computer and Information Technology (2012), vol. 3, pp. 45–69.

29. Schneider, A., Meter, C., and Hagemeister, P. Survey on remote electronic
voting. In arXiv preprint arXiv:1702.02798 (2017).

30. Schoenmakers, B. A simple publicly verifiable secret sharing scheme and its
application to electronic voting. In Annual International Cryptology Conference
(1999), Springer, pp. 148–164.

31. Shamir, A. How to share a secret. Communications of the ACM 22, 11 (1979),
612–613.

32. Yu, J., Kong, F., Cheng, X., Hao, R., and Li, G. One forward-secure signature
scheme using bilinear maps and its applications. In Information Sciences (2014),
vol. 279, Elsevier, pp. 60–76.

A Proof of Invitation Correctness

A.1 Soundness:

Consider two valid transcripts (A,B = (B1, B2),C,e,Z1,Z2,Z3) and (A,B =
(B1, B2),C, e∗,Z∗1 ,Z∗2 ,Z∗3), where e 6= e∗, Z1 6= Z∗1 , Z2 6= Z∗2 , and Z3 6= Z∗3 ,
then we extract δi, r and si as explained below. Since both transcripts are ac-
cepting we have A ·γei = gZ1 and A ·γe∗i = gZ

∗
1 . We divide both sides of equalities

and obtain

gZ1−Z∗1 = γe−e
∗

i = gsi·(e−e
∗)(mod p) (34)

Thus, Z1 − Z∗1 ≡ si · (e − e∗) mod q. It follows that si =
Z1−Z∗1
e−e∗ . To extract

δi and r we proceed as follows. We know that B1 · eδei,1 = ωZ2 · hZ3 as well as

B1 · eδe
∗

i,1 = ωZ
∗
2 · hZ∗3 . Dividing both sides of equalities results in

eδe−e
∗

i,1 = ωZ2−Z∗2 · hZ3−Z∗3 (mod p)

ωδi(e−e
∗) · hr(e−e

∗) = ωZ2−Z∗2 · hZ3−Z∗3 (mod p) (35)

As such, it follows that δi =
Z2−Z∗2
e−e∗ mod q and r =

Z3−Z∗3
e−e∗ mod q.

A.2 Special honest verifier zero knowledge:

We construct a PPT simulator Sim which is given τi, eδi = (eδi,1, eδi,2), γi, ω and
e and generates an accepting transcript. It selects Z1, Z2, Z3 at random and con-

structs A = gZ1

γe
i

mod p and B1 = ωZ2 ·hZ3

eδei,1
mod p and B2 = gZ3

eδei,2
mod p and C =

τ−ei ·B · eδei,1 ·h−Z3 ·ωZ1 mod p. Sim outputs (A,B = (B1, B2), C, e, Z1, Z2, Z3).
It is immediate that the probability distribution of (A,B,C, e, Z1, Z2, Z3) and a
real conversation between honest prover and honest verifier are identical.

44 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

A.3 Zero-knowledge POIC (ZKPOIC):

We apply the method given in [16] to our Σ protocol to convert it to a zero-
knowledge proof system. Let FRPOIC (given in Equation 36) demonstrate the
security guarantees of the resultant ZKPOIC over the relation R that we defined
in Equation 14.

FRPOIC((X,W), X) = (⊥, R(X,W)) (36)

FRPOIC shall be run by a trusted third party. X refers to the statement whose
correctness is to be proven, i.e., X = (τi, eδi, γi, ω) contains the content of an
individual invitation letter (τi, eδi) as well as the commitment to the inviter’s
master share, i.e., γi, and the token ω. The witness W , which is only known to
the prover, is (si, r, δi). The ideal functionality FRPOIC receives a common input
X from the prover and the verifier as well as the private input W from the
prover. FRPOIC outputs to the verifier whether X and W fit into the relation R.

