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Abstract. Differential cryptanalysis of block ciphers requires the identification of
differential characteristics with high probability. For block ciphers that have a large
block size and a large number of rounds, identifying these differential trails is a
computationally intensive task. Matsui first proposed a branch-and-bound algorithm
to search for differential trails in 1994. There have been numerous improvements made
to the branch-and-bound algorithm since then, such as improving its efficiency by
bounding the number of active s-boxes, incorporating a meet-in-the-middle approach,
and adapting it to different block cipher architectures like ARX. Although mixed-
integer linear programming (MILP) technique has been widely used recently to
evaluate the differential resistance of block ciphers, MILP is still an inefficient
technique for clustering differential trails (also known as the differential effect). The
branch-and-bound method is still a tool better suited for the task of trail clustering.
However, it still requires enhancements before being feasible for block ciphers with
large block sizes, especially for a large number of rounds. Motivated by the need for
a more efficient branch-and-bound algorithm to search for block cipher differential
clusters, we propose a GPU-accelerated branch-and-bound approach. The proposed
GPU-accelerated algorithm substantially increases the performance of the differential
cluster search. We were able to derive a branch enumeration and evaluation kernel that
is 5.95 times faster than its CPU counterpart. Then to showcase the practicality of the
proposed approach, it is applied on TRIFLE-BC, a 128-bit block cipher. By utilizing
the proposed GPU kernel together the incorporation of a meet-in-the-middle approach,
we were able to improve the performance of the algorithm by approximately 60 times
the original recursive algorithm based on a 20-round TRIFLE-BC. Also, differential
clusters with sizes of approximately 2 million for 43 rounds were constructed, leading
to slight improvements to the overall differential probabilities. This result depicts the
practicality of the proposed GPU framework in constructing clusters consisting of
millions of differential trails, which could be used to improve cryptanalytic findings
against other block ciphers in the future.
Keywords: Cryptanalysis · automatic search · differential characteristic · differential
cluster · block cipher · GPU · branch-and-bound

1 Introduction
Differential cryptanalysis [BS91] is one of the most wide-known cryptanalytical methods,
the resistance to which has become one of the basic requirements for modern block ciphers
[BKL+07][GPPR11][BPP+17]. The success of differential cryptanalysis relies on identifying
high probability differentials. The search for high probability differentials of modern block
ciphers is a non-trivial task especially for block ciphers with large block sizes and number
of rounds.
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Automatic search for differential characteristics could be used instead of performing
manual searching. Matsui [Mat95] proposed a classic branch-and-bound technique to
search for differential characteristics and linear trails. This technique was used at that
time to study DES. Since then, there were numerous improvements that have been made
to the branch-and-bound algorithm. In [BV14] an ARX version of the branch-and-bound
searching algorithm was proposed and the algorithm was also subsequently improved in
[CTX+16] by the introduction of a sorted partial differential distribution table. In addition,
[CMST15] incorporated a meet-in-the-middle approach to the differential cluster search
and updated the pruning rules to bound the number of active of s-boxes to further improve
upon the search efficiency.

In [MWGP12], a mixed-integer linear programming (MILP) approach was proposed as
an alternative to the branch-and-bound algorithm. The MILP model requires identifying
relevant linear inequalities which are then fed into a MILP solver which produces the
minimal number of active s-boxes for a particular block cipher. The MILP framework
had been extended by [SHS+14] to be applicable to bit-oriented block ciphers. [SLM+14]
demonstrated the capability of MILP to enumerate differential characteristics to form
differential clusters or linear hulls. However, the aforementioned method is impractical
for identifying differential clusters for block ciphers with large block sizes and rounds. In
addition, none of the related-works attempt to utilize specialized hardware acceleration to
perform the search.

General purpose graphical processing unit (GPGPU) technology that utilizes specialized
GPU hardware could be used to improve the efficiency of the branch-and-bound search.
This would alleviate some of the computational load needed to identify differential clusters
for large block ciphers. However, the GPU requires tasks to be divided into smaller tasks
so that the subdivided tasks could be processed across a large number of processing units
simultaneously. The GPU architecture also has its own array of optimization problems such
as memory limitations, work divergence, low number of available subdivided tasks, and
many more. Therefore, any GPU-accelerated searching algorithm needs to be optimized
with respect to the architecture of the GPU to obtain a reasonable performance boost. In
this paper, we propose a GPU framework to improve the efficiency of the branch-and-bound
searching algorithm for differential clusters.

1.1 Our Contributions
In this paper, we proposed an enhanced automatic search for differential clusters ac-
celerated by GPU hardware. The proposed algorithm also incorporated a meet-in-the-
middle (MITM) approach [CMST15] to further improve the efficiency of the GPU-based
search. Although there have been numerous GPU-accelerated branch-and-bound proposals
[LEB12][BHG17][MCMT12], these proposals solved different sets of sub-problems unre-
lated to cryptanalysis. Therefore, this work is a novel approach leveraging GPU hardware
acceleration for this specific sub-problem. The proposed algorithm achieved a substantial
speedup up to a factor of approximately 5.95. The proposed technique can theoretically
be extended to utilize a grid of CPU-GPU computing nodes in a real-world environment
to enhance the efficiency even further.

To showcase the practicality and feasibility of the proposed GPU-accelerated algorithm,
an investigation of the differential cluster effect is performed on the 128-bit block cipher,
TRIFLE-BC [NAD+19] as a proof of concept. TRIFLE-BC is chosen as the target cipher
because it is used as the underlying primitive of the lightweight authenticated cipher
TRIFLE, which is one of the round-1 candidates of the ongoing lightweight cryptography
standardization effort by NIST [NIS19a]. By applying the newly proposed GPU-accelerated
automatic search for differential clusters, the computational time needed to compute the
differential clusters for a large number of rounds of 128-bit TRIFLE-BC was significantly
shortened. This effectively allowed us to find differentials with the highest probability to
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date, by clustering differential characteristics . Thus, this work also contributes towards
the NIST standardization efforts for lightweight cryptography in terms of cryptanalysis
findings.

However, we wish to note that the cryptanalytic findings for TRIFLE-BC is not the main
contribution of this work but rather to depict the practicality of the proposed approach in
discovering large clusters for full-sized (non-lightweight) block ciphers with a large number
of rounds. This work is one of the first successful attempts in implementing an automated
search for differentials for a block cipher with 128-bit block size at a very large number
of rounds (43 rounds). This is significant because the computational requirements of a
branch-and-bound differential search is proportionate to the block size and also increases
exponentially as the number of rounds grows. Previous automated search for differential
clusters have focused on block cipher with sizes of 64 bits and below [CMST15][SLM+14].
For literature that involve identifying differentials for 128-bit block ciphers, the number of
rounds searched are noticeably lower (typically <= 20) and are only capable of identifying
a singular differential characteristics [BN10] [EAY19]. Although the framework proposed
in [SHY16] was able to identify clusters for SPECK128 and LEA-128, it is not applicable
to most ARX ciphers due to its reliance on the independent addition assumption. Also,
it could be noted that all prior findings could be potentially improved by applying the
proposed GPU framework.

1.2 Outline
The remainder of this paper starts off with a brief introduction to GPU architecture and
CUDA technology, followed by a recap on TRIFLE’s specification and prior differential
cryptanalysis efforts. In Section 3, we provide descriptions for both the conventional
automatic branch-and-bound search for block cipher differential clusters along with the
improved version of the algorithm that serves as the basis for GPU-acceleration. In Section
4, the GPU-accelerated differential cluster algorithm will be detailed. Its performance will
be benchmarked against its CPU-counterpart to gauge the efficiency and speed-up attained
by the proposed algorithm. The capabilities and limitations of the proposed algorithm are
also discussed. In Section 5, we investigate the differential cluster effect of TRIFLE-BC.
Section 7 concludes the paper.

2 Preliminaries
In this section, background information on GPU architecture, CUDA and TRIFLE are
provided to aid readers’ understanding of the remaining sections of this paper.

2.1 GPU architecture and CUDA
A graphics processing unit (GPU) is specialized hardware designed for highly multithreaded
and parallelized data processing workflow. The primary function of a GPU is to manipu-
late computer graphics and perform image processing. However, the massively parallel
processing architecture of GPUs has also enabled them to outperform central processing
units (CPUs) in other non-graphical processing algorithms that involve a massive amount
of data. With the introduction of the Compute Unified Device Architecture (CUDA) in
2006 by NVIDIA, the parallel processing power of GPUs becomes readily available for
solving many other computationally complex problems.

CUDA is a general-purpose parallel computing platform and application programming
interface (API) designed by NVIDIA for NVIDIA GPU cards. GPUs are based on the single
instruction, multiple threads (SIMT) execution model whereby multiple distinct threads
perform the same operation on multiple data concurrently. By dedicating more transistors
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to data processing (arithmetic logic unit, ALU) and consequently de-emphasizing data
caching and flow control, parallel computation becomes more efficient. The aforementioned
structure is schematically illustrated in Figure 1. This unique property of GPUs allows
them to efficiently solve data-parallel computational problems that are arithmetic-heavy
but with lower memory access frequency.

Figure 1: The illustration of structural differences between CPU and GPU.

As illustrated by Figure 2, CUDA threads run on a separate physical device (GPU)
to accelerate parallel tasks given by the co-running host program (CPU). The host and
device analogy will be used throughout the paper. A kernel is a CUDA device function
that will be executed in parallel by different CUDA threads on the device. A single kernel
consists of a single grid that may hold a maximum of 231 − 1 number of blocks, whereas
each block can contain a maximum of 210 threads.

When a kernel is launched, the blocks that reside within the kernel are assigned to idle
streaming multiprocessors (SM). The multiprocessors execute parallel threads within the
assigned block in groups of 32 called warps. A warp executes one common instruction at a
time. If threads of a warp diverge due to conditional instruction, each branch path will be
executed in different warp cycles. Therefore, the use of conditional branches should be
minimized to maximize the multiprocessors’ efficiency. Since an SM executes a warp of
32 threads at a time, it is advisable to choose the number of threads per block to be a
multiple of 32 to optimize GPU utilization.

CUDA threads are able to read data from multiple types of memory during their
execution. Each thread has its own local memory. Threads reside within the same thread
block can access a shared memory space called the shared memory. There are three types
of memory visible to all threads namely global memory, read-only constant memory, and
read-only texture memory. Global memory is the slowest memory and requires read/write
to be coalesced in 32, 64, or 128-byte memory to achieve maximum efficiency. Constant
memory is optimized for broadcasting whereby the maximum efficiency is reached when all
threads of the same warp request the same memory address. Texture memory is optimized
for 2D spatial locality [Pad11], whereby threads of the same warp reading memory locations
that are close to each other will lead to maximum efficiency. Since the different memory
types are better suited for different tasks, the memory access pattern of a CUDA program
should also be optimized accordingly to maximize efficiency.

The CUDA model maintains separate memory spaces for host and device memory.
Thus, the program requires manual management of a device’s memory space (allocation
and deallocation) during the CUDA runtime. To alleviate the complexity of memory
management, unified memory may be used to unify the host and device memory spaces.
Unified managed memory provides a single coherent memory address visible to both CPU
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Figure 2: Heterogeneous programming architecture of a typical GPU-accelerated
algorithm. (Note that serial host code executes on the CPU while parallel device code

executes on the GPU)

and GPU. Pinned memory is used as a staging area by CUDA for the transfer of data
between device and host memory. If a large amount of memory transfer is needed and
the transfer happens often, it is advised to pin down the memory to avoid the cost of
the transfer between page-able and pinned memory. Pinned memory also enables the
asynchronous (non-blocking) execution of kernel and data transfer.

This section has only covered information that are relevant to the proposed work. There
are a lot more features left unexplored such as concurrent kernel launches, asynchronous
execution, and multi-device execution. For a more detailed guide and reference in optimizing
for CUDA, refer to [NVI19].

2.2 TRIFLE
2.2.1 Notation

The following mathematical notations will be used throughout the paper:

• {0, 1}∗ denotes the set of all strings.

• {0, 1}n denotes the set of strings of length n.

• |M | denotes the length (number of bits) in string M .

• M1||M2 denotes concatenation of string M1 and string M2.
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• ⊕ denotes field addition and ⊗ field multiplication.

• OZP(X) applies an optional 10∗ padding on n bits. If |X| < n, then OZP(X) =
0n−|X|−1||1||X. If |X| = n, then OZP(X) = X.

• bXc is an integer floor function that produces an integer i closest to X such that
i ≤ X.

• >>> denotes bitwise right rotations.

• Wbit(X) denotes the number of 1 bits in a given binary string X while Wnibble(X)
denotes the number of non-zero 4-bit values in a binary string X.

• AS is used to represent the number of active s-boxes.

• Pc represents the probability of a differential cluster and Pt is the probability of a
single differential trail.

• ∆X is an XOR difference, ∆Ui is the ith nibble value inside ∆X, and ∆AUi is the
ith active nibble value (non-zero difference) inside ∆X.

2.2.2 Description of TRIFLE

TRIFLE is one of the round-1 candidates of lightweight authenticated encryption standard-
ization effort organized by NIST [NIS19a]. TRIFLE is a block cipher-based authenticated
encryption scheme with a block size of 128 bits. It receives an encryption key K ∈ {0, 1}128,
nonce N ∈ {0, 1}128, associated data A ∈ {0, 1}∗ and message M ∈ {0, 1}∗ as inputs, and
produces an encrypted ciphertext C ∈ {0, 1}|M | and an authentication tag T ∈ {0, 1}128

as outputs. The corresponding verification and decryption scheme receives a key, nonce,
associated data, ciphertext and a tag as inputs, and produces the decrypted plaintext if
the authentication tag is valid.

TRIFLE employs a MAC-then-Encrypt scheme whereby a cipher block chaining-esque
(CBC) authentication is performed on the nonce, associated data and plaintext to produce
the authentication tag. The authentication tag is used as the initialization vector (IV) in
output feedback (OFB) mode to produce the ciphertext. For a more detailed TRIFLE
specification, refer to [NAD+19].

Figure 3: Encryption Scheme of TRIFLE.

The underlying block cipher used by TRIFLE, TRIFLE-BC (represented as Ek in Figure
3 ) is a 50-round 128-bit SPN block cipher. It receives a 128-bit plaintext X127||X126||...||X0



Wei-Zhu Yeoh, Je Sen Teh and Jiageng Chen 7

where Xi is a bit, and a 128-bit key K7||K6||...||K0 where Ki is a 16-bit word and produces
a 128-bit ciphertext. Each round of TRIFLE-BC consists of four consecutive functions
namely SubNibbles, BitPermutation, AddRoundKey, and AddRoundConstant. The four
functions are detailed as follows:

SubNibbles. TRIFLE-BC uses an invertible 4-bit to 4-bit s-box S : F4
2 → F4

2. The same
4-bit s-box is used throughout the cipher and is applied to every nibble of the cipher state.
The mapping of the s-box is given in Table 1 using hexadecimal notation.

Table 1: The TRIFLE-BC s-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 0 C 9 7 3 5 E 4 6 B A 2 D 1 8 F

BitPermutation. The bit permutation used in TRIFLE maps bits from bit position i of
the cipher state to bit position P (i). The bit permutation P (i) is defined as

P (i) = bi/4c+ (i%4)× 32.

AddRoundKey. In this stage, a 64-bit round key (K4,K5,K1,K0) is extracted from the
key state. The extracted round key is then applied to the cipher state in an interleaved
manner whereby

V31||V30||...||V0 ← K1||K0

U31||U30||...||U0 ← K4||K5

X4i+1 ← X4i+1 ⊕ Vi(0 ≤ i ≤ 31)
X4i+2 ← X4i+2 ⊕ Ui(0 ≤ i ≤ 31).

The key state will be updated using simple word-wise rotations for the key state and
bit-wise rotations within individual subdivided key states similar to the one defined in
GIFT-128 [BPP+17]. The key schedule is defined as

K7||K6||...||K0 ← K1 >>> 2||K0 >>> 12||K7||K6||...||K2.

AddRoundConstant. A 6-bit round constant is XOR-ed into 6 different bit-states while
a constant value of 1 is XOR-ed into the most significant bit X127 as shown in

X127 ← X127 ⊕ 1
X23 ← X23 ⊕ C5

X19 ← X19 ⊕ C4

X15 ← X15 ⊕ C3

X11 ← X11 ⊕ C2

X7 ← X7 ⊕ C1

X3 ← X3 ⊕ C0.

The 6-bit round constant is then updated using the SKINNY’s 6-bit affine LFSR
function [BJK+16] defined as

C5||C4||..||C0 ← C4||C3||...||C0||(C5 ⊕ C4 ⊕ 1).
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2.2.3 Differential properties of TRIFLE-BC

By analyzing the differential distribution table of TRIFLE’s s-box presented in Table 2, it
is found that each ∆U that has a hamming weight of a single bit (Wbit = 1) can be mapped
back differentially to ∆V with Wbit = 1. These 1-bit to 1-bit differential relationships
(1 → 8, 2 → 1, 4 → 2, and 8 → 4) hold with a probability of 2−3. The 1-bit ∆V will be
permuted and propagated to the next round to become yet another ∆U with Wbit = 1
due to the nature of bit permutation that shuffles bits without affecting the total number
of active bits in the block cipher.

Therefore, for any n arbitrary rounds of TRIFLE, there exists a differential characteristic
∆X(X0, X1, ..., X31)→ ∆Y (Y0, Y1, ..., Y31) such that Wbit(Xj

i ) = 1 where 0 ≤ i < 32, 0 ≤
j < n and P (∆X → ∆Y ) = 3−3n. Moreover, there exist 4 differentials ∆U → ∆V
(7 → 4, B → 2, D → 1, and E → 8) where Wbit(∆U) > 1, Wbit(∆V ) = 1 and P (∆U →
∆V ) = 2−2. This set of differentials can be used to improve the first round of the
aforementioned single-bit differential characteristics to increase the probability to 3−3n+1 for
any n arbitrary rounds without affecting the intermediary single-bit differences propagation.

A similar improvement can be made to the final round of the single-bit differential
characteristics by maximizing the probability of the final-round differential. Since there
exists a ∆V for every ∆U with Wbit(∆U) = 1 such that P (∆U → ∆V ) = 2−2, these
differential relationships can be used at the final round without affecting the intermediary
single-bit differences propagation as well.

Thus, the single-bit differential characteristics with improved first and final rounds that
have a probability of 3−3n+2 exist for any n arbitrary rounds of TRIFLE provided that
n ≥ 3. In fact, there are exactly 128 (128 different starting bit position) such characteristics
for every round. The same differential behavior and its resulting differential characteristics
had been observed and discussed in [FT19] and [NIS19b].

Based on the aforementioned improved single-bit differential characteristics, a key
recovery strategy had been discussed in [FT19] that recovers the key for 11 rounds of
TRIFLE with a time complexity and data complexity of 2104 and 263 respectively. The
authors proposed using a 42-round improved single-bit differential in their key recovery
strategy on TRIFLE-BC. However, the authors made an error of using the 41-round
(2−3(41)+2 = 2−121) differential probability in their calculation instead of 42 (2−3(42)+2 =
2−124). Therefore, the differential attack of TRIFLE-BC in [FT19] should able to recover
the secret key of a 43-round TRIFLE-BC (instead of 44 rounds) with the time and data
complexity of 2126.

The differential discussed in this subsection only considers the probability of a single
characteristic. The differential probability can be potentially improved by incorporating
probability gains from the clustering effect (also referred to as the differential effect) shown
in [NB13], whereby multiple differential characteristics with the same ∆X → ∆Y are
considered for the probability of a given differential.

3 Differential characteristics (cluster) search
Matsui proposed a branch-and-bound algorithm [Mat95] for searching linear paths and
differential characteristics. The algorithm had been used on DES and found the best
characteristic for it at the time. The algorithm relies on pruning bad branches that have
less probability than the best probability found so far Bn. The initial value of Bn also helps
break off bad branches in the early parts of the algorithm. Thus, when Bn approaches the
real value of the best probability Bn where Bn ≤ Bn, the search speed is improved as well.
The algorithm also uses the knowledge of Bn−i that is computed from round 0 to round i
to estimate the probability of the current branch being searched. It will effectively cut off
branches with probabilities that are estimated to be worse than Bn.
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Table 2: The TRIFLE-BC differential distribution table.

∆U
∆V 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 2 2 2 0 2 0 4 2 2 0
2 0 2 0 0 0 2 0 0 0 4 0 2 2 2 2 0
3 0 2 2 0 2 2 0 4 0 2 0 2 0 0 0 0
4 0 0 2 4 0 0 0 2 0 2 2 2 0 2 0 0
5 0 0 0 0 0 4 2 2 0 2 2 0 0 2 0 2
6 0 0 2 2 2 0 0 2 2 0 2 0 0 0 4 0
7 0 0 2 2 4 0 0 0 0 2 0 2 2 0 0 2
8 0 0 0 2 2 2 4 2 0 0 0 2 0 0 2 0
9 0 2 2 0 0 0 0 0 2 0 2 4 2 2 0 0
A 0 0 0 2 0 2 0 0 0 0 4 2 2 0 2 2
B 0 2 4 0 0 0 2 0 0 2 0 0 2 2 0 2
C 0 2 0 0 2 2 2 0 2 0 0 0 0 4 2 0
D 0 4 0 2 0 0 2 0 2 0 0 0 2 0 2 2
E 0 0 0 2 2 0 2 2 4 2 0 0 0 0 0 2
F 0 2 2 0 2 2 0 0 2 0 2 0 0 0 0 4

Since then, several improvements had been made to Matsui’s algorithm. A cluster
search algorithm such as [CMST15] improved upon the Matsui’s algorithm by searching
for differential clusters after a main differential characteristic is identified. A differential
cluster search includes all differential characteristics that share the same input ∆X and
output ∆Y differences but with different intermediary differences. The searched cluster
will improve upon the probability of the overall differential. This approach has successfully
identified differentials with improved probability for block ciphers such as LBlock and
TWINE [CMST15]. The resulting differentials have higher probabilities than prior ones. It
is also worth noting that [CMST15] work used the number of active s-boxes as the pruning
rules to eliminate bad branches.

Moreover, the work in [BV14] and [CTX+16] use a type of automatic search known
as the threshold search. Although both of the aforementioned automated approaches are
meant for ARX ciphers, the tendency of the algorithm to identify differences with high
probabilities is worth noting as well.

A combination of the number of active s-boxes and the differential probability threshold
will be used as the pruning rules for our proposed GPU-based automatic search. The
combination of both allows greater flexibility during the search and also effectively cuts off
more bad branches quickly if configured correctly. The proposed algorithm is shown in
Algorithm 1.

4 GPU-accelerated automatic search for differential char-
acteristics and their clusters

The search for differential clusters is computationally intensive. To facilitate the searching
of differential clusters for block ciphers with a large block size and a large number
of rounds (such as TRIFLE), the processing power of GPUs is leveraged to obtain a
substantial performance boost to the conventional branch-and-bound searching algorithm.
Although GPU-accelerated branch-and-bound algorithm had been studied in [LEB12] for
knapsack, [MCMT12] for flow-shop scheduling, and [BHG17] for multiproduct batch plants
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Algorithm 1 Differential characteristics (cluster) searching algorithm with constraints on
probability and number of active s-boxes.

Input: Input difference ∆X and output difference ∆Y .
Output: Probability Pc of ∆X → ∆Y cluster.
Adjustable Parameters:
1. AS_BOUND : Maximum of number of active sboxes for ∆Y .
2. PROB_BOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

procedure cluster_search_round_i (1 ≤ i < n)
for each candidate ∆Yi do

pi ← Prob(∆Xi,∆Yi)
ASi+1 ←Wbyte(∆Yi)
if ASi+1 ≤ AS_BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB_BOUND then
call procedure CLUSTER_SEARCH_ROUND_(i+ 1)

end if
end if

end for
end procedure

procedure cluster_search_round_n
for each candidate ∆Yn do

if ∆Yn == ∆Y then
pn ← Prob(∆Xn,∆Yn)
Pc ← Pc + [p1, ..., pn]

end if
end for

end procedure

optimization sub-problems, there exists no prior work that uses GPU to accelerate the
branch-and-bound search for differential cryptanalysis. Thus the proposed work is the
novel application of such an approach.

The proposed GPU-accelerated algorithm is a variant of the depth-first search algorithm
whereby the algorithm will first visit nodes (possible branches) in the following round
before backtracking to visit other nodes. The difference is that once a node is visited, all
of its corresponding child branches are enumerated. This enables the task of enumeration
for the relevant child branches and subsequently the evaluation of the pruning rules to be
parallelized and solved by the GPU. All this can be performed while keeping the memory
footprint to a manageable range by enumerating one branch at a time rather than all
possible branches of a particular depth at once (breadth-first search). The exception exists
for the final round of the search whereby all of the branches are visited and evaluated
simultaneously. The behaviour of the modified depth-first search algorithm is illustrated
in Figure 4.

However, if the total number of possible child branches for a particular difference
pattern is too low, then it will cause the GPU kernel to have low efficiency due to low
occupancy (insufficient tasks to be distributed across multiprocessors). In the proposed
algorithm for TRIFLE, this scenario occurs when the number of active s-boxes for a
particular difference is < 4. To alleviate this problem, differences with a low number of
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possible branches are instead enumerated and evaluated by the CPU-variant procedure.
The GPU kernel and its CPU-variant are discussed in subsection 4.1. The complete
algorithm for the proposed GPU-accelerated branch-and-bound differential cluster search
without enumeration kernels and method details is provided in Algorithm 2. Note that
the correctness of the proposed algorithm had been verified by comparing the results of
Algorithms 1 and 2.

Figure 4: The searching strategy for the proposed algorithm.

4.1 Enumeration using GPU Kernel or CPU Method
The GPU Kernel has been specifically optimized for TRIFLE’s structure which has a
constant branching number of 7 for ∆V . This means that ∀∆U that goes through
the TRIFLE’s s-box, there are precisely 7 possible choices of ∆V . Despite the specific
optimization used, the kernel should be able to be generalized to any SPN block cipher
while still retaining a similar efficiency by estimating the correct number of branches and
assigning workload among the threads accordingly.

The configuration of the proposed GPU architecture will utilize 1D blocks for each
kernel launch. Since each block within a grid contains its own block threads, each thread is
assigned a unique thread id based on its position in a given grid. This thread id assignment
facilitates the process of work distribution and reduction. For TRIFLE, the number of
possible branches of ∆Xi is 7ASi . When ASi = 4, there are 2401 tasks to be distributed.
19 blocks (> 9 SMs in NVIDIA GTX-1060) are declared for a grid and each block contains
128 threads (32|128) totalling up to 2432 threads (excess threads are terminated during
runtime immediately).

Let NB1, NB2, NB3, NB4 be the number of possible branches, and I1, I2, I3, I4 be the
nth numbered branches in the four active ∆U branches respectively. Thread id, Ti can
also be computed as

ID(I1, I2, I3, I4) = (I1 ×NB0) + (I2 ×
1∏
i=0

NBi) + (I3 ×
2∏
i=0

NBi) + (I4 ×
3∏
i=0

NBi), (1)

where NB0 = 1. The work assignment (the branch taken by each individual thread) is done
by computing ID−1(Ti). For ASi > 4, the work assignment will still occur for the first four
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Algorithm 2 GPU-accelerated differential (cluster) searching algorithm.
Input: Input difference ∆X and output difference ∆Y .
Output: Probability Pc of ∆X → ∆Y cluster.
procedure cluster_search

allocate device memory
allocate and pin host memory
call procedure CLUSTER_SEARCH_ROUND_0
copy Pi from device to host
Pc ← (

∑Ttotal

i=1 Pi) + Ph
end procedure

procedure cluster_search_round_i (1 ≤ i < n)
//Enumerate all possible branches of ∆Yi
ASi ←Wbyte(∆Xi)
if ASi > 3 then

call procedure ENUMERATION_DEVICE_i
else

call procedure ENUMERATION_HOST_i
end if
//Prune or proceed based on enumerated branches and their evaluation results
for each computed ∆Y ji do

if (∆Ycondition)ji == TRUE then
if i+ 1 < N then

call procedure CLUSTER_SEARCH_ROUND_(i+ 1)
else

if ASi+1 > 3 and ASi > 3 then
call procedure ENUMERATION_DEVICE_n

else
call procedure ENUMERATION_HOST_n

end if
end if

end if
end for

end procedure

active ∆U branches, but the remaining active ∆U branches are exhaustively enumerated
by each working thread individually. The last round follows the same logic of Algorithm 1
whereby after a branch (now a trail) is enumerated, ∆Yn == ∆Y is checked, then Pi is
incremented accordingly. To avoid race conditions, each thread has its own probability
accumulator, Pi. The final cluster probability, Pc =

∑Ttotal

i=1 Pi + Ph is computed in the
host procedure where Ph is the host probability accumulator.

Special attention needs to be given to memory management. All of the necessary device
memory allocation and host memory pinning are done during program initialization. Both
the allocated memory and pinned memory are reused whenever possible since allocation
and de-allocation of the memory are expensive and will impact the overall efficiency of
the proposed algorithm. DDT and permutation lookup tables are specifically loaded into
the shared memory each time the kernel is launched because the improved latency of the
shared memory will ease the frequent access of the DDT and permutation table. The
complete algorithm for the kernel is summarized in Algorithm 4.

The GPU kernel can only be used when there is a large number of branches to maintain
high GPU utilization. For AS ≤ 3, a CPU-version of enumeration method is used instead.



Wei-Zhu Yeoh, Je Sen Teh and Jiageng Chen 13

Algorithm 3 Host (CPU) enumeration and evaluation method.
Input: Input Difference ∆X.
Output: Enumerated branches, its evaluation result and probabilities Pi.
Adjustable Parameters:
1. AS_BOUND : Maximum of number of active sboxes for ∆Y .
2. PROB_BOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

procedure enumeration_host_i (1 ≤ i ≤ n)
for each candidate (∆AV1,∆AV2, ...,∆AVAS_BOUND) do

if i 6= n then
(∆Ycondition)candidate_index

i ← FALSE
pi ← Prob(∆Xi,∆Yi)
ASi+1 ←Wbyte(∆Yi)
if ASi+1 ≤ AS_BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB_BOUND then
(∆Ycondition)candidate_index

i ← TRUE
end if

end if
else if ∆Yi == ∆Y then

Pi ← Pi + pi
end if

end for
end procedure

The CPU-version follows the general logic of the GPU kernel without parallelized processing.
The complete CPU enumeration method is shown in Algorithm 3.

4.2 Meet-in-the-middle searching approach
The meet-in-the-middle (MITM) approach described in [CMST15] is used to further
improve the efficiency of the search. Since the number of branches grows exponentially as
the number of rounds increases, the search for large number of rounds could be completed
much quicker if the number of rounds to search is split between α rounds and β rounds
instead of searching directly for (α+ β) rounds. This is underlying property behind the
efficiency improvements achieved by MITM.

The steps involved in the MITM approach starts off by dividing the search into
forward α rounds and backward β rounds. For the forward search, the proposed algorithm
mentioned in Algorithm 2 is used. The difference is that during the αth (final) round,
instead of evaluating ∆Yα, the ∆Yα and its probability is accumulated in an array for
matching purposes. Since the amount of information needed to store all of the possible
permutations of 128-bit data far exceeds the practical memory storage option currently
available, an encoding method is used to index into the array. The encoding is computed
by using the format of [Pos∆AVi

,∆AVi, Pos∆AVi+1 ,∆AVi+1, Pos∆AVi+2 ,∆AVi+2]. The
total number of nibbles to be stored is currently limited to a maximum of 3 (12 bits).
Since each nibble requires 5 bits to represent its nibble position, thus the total number
of bits needed to represent 3 nibbles among 32 possible nibble positions is 27 bits. This
amounts to an array size of 134217728 that requires 1.07 GB of memory when using a
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64-bit double-precision floating point format to store the probability.
Meanwhile, the backward search requires the computation of a reversed DDT and the

corresponding reversed permutation table. During the βth (final) round, ∆Yβ is encoded
using the same method described earlier to index into the storage array to check for
matching trails. Matching trails contribute toward the final cluster probability Pc. The
MITM approach detailed in this section is illustrated in Figure 5.

Figure 5: Meet-in-the-middle approach.

4.3 Performance comparison of GPU and CPU-based automatic search
for differential algorithms

The CPU and GPU algorithms are implemented using C++ and CUDA/C respectively.
The performance results are obtained by running the implementations on a single Linux
desktop computer with Intel 6th generation Skylake Core i5-6600K CPU clocked at 3.5
GHz, NVIDIA Pascal GeForce GTX-1060 with 3 GB memory, and 16 GB of RAM.

A fixed problem set which satisfies a specific Wbyte(∆X) criteria has been computed
on both the GPU-accelerated kernel and CPU-enumeration method. The results obtained
(including the time spent on memory transfer) are recorded in Table 3 and is an average
of a hundred instances. These results show the potential of the performance improvement
of the GPU-accelerated functions which can be up to a factor of 5.95 over the CPU-
enumeration method. Also, if the GPU possesses higher on-chip memory whereby the
necessary computing differential caches are able to fit, it is possible for the proposed
algorithm to reach a speedup of up to 27.07 as shown in Table 4. The 3 GB GPU that used
in the practical experiment setup cannot accomplish such a task because to hold 22-rounds
of maximum possible enumerated branches used in α-round of the MITM approach, it
would require approximately 11 GB of memory, but a more powerful workstation GPU
with ≥ 16 GB memory could easily accomplish this.

A series of practical tests of the proposed algorithm is performed on various rounds
of TRIFLE-BC. The results are recorded in Table 5 and these results are bounded by
PROB_BOUND = Pt × 2−21 and are an average of ten instances. It can be seen that
although the algorithm depict a speed-up of 5.95, as the number of rounds increases, the
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performance also increases and stabilizes at approximately 2.5. This result is obtained
because the computation is not GPU-accelerated when the number of active s-boxes is
between 1 and 3. It can also be noted that the MITM approach greatly increases the
performance of the searching algorithm over the traditional recursive method for up to a
factor of approximately 60 at round 20.

Table 3: Search time (µs) comparison of CPU enumeration and GPU kernel enumeration.
Wbyte(∆X) GPU-Accelerated CPU-Enumeration Speedup

4 35.5 173.7 4.89
5 141.2 716.6 5.08
6 861.4 4589.0 5.33
7 5974.9 32 200.4 5.39
8 41 561.5 247 393.0 5.95

Table 4: Search time (µs) comparison of CPU enumeration and GPU kernel enumeration
(without output memory synchronization).

Wbyte(∆X) GPU-Accelerated CPU-Enumeration Speedup
4 34.2 173.7 5.08
5 70.3 716.6 10.19
6 286.9 4589.0 16.00
7 1656.7 32 200.4 19.44
8 9140.1 247 393.0 27.07

Table 5: Search time (ms) of various rounds of TRIFLE-BC.
Round(s) MITM GPU-Accel GPU-Accelerated CPU-Enum Recursive

5 1135.9 661.5 787.2 855.6
10 2197.3 8644.5 19 564.6 21 808.7
15 8795.6 62 928.7 156 725.0 165 202.3
20 15 675.2 363 274.2 908 978.1 941 195.2

4.4 Limitations and capabilities of the proposed algorithm.
The proposed algorithm presented in this paper is not without its limitations. Firstly,
the kernel is only utilized when AS of ∆X is ≥ 4. It should be theoretically possible
to bundle several small work units into a large compiled work unit to be sent to kernel
for processing. The added benefit of this is the higher performance gains for cases of
AS_BOUND < 8, which could achieve a speedup equivalent to using AS_BOUND = 8.
Doing so will definitely incur more overhead. Thus, the feasibility of such an idea may be
studied in future work.

In addition, the maximum number of active s-boxes for any ∆X had to be limited. In
this case, it is limited to below 9 AS for TRIFLE. Since the memory growth is exponential
as the number of AS increases, for the case where AS ≥ 9, it can be seen that it requires
far more than 16-GB of RAM and is thus infeasible for the target machine. A similar
problem is faced by the MITM approach whereby the differences in the middle meeting
point must be limited to a maximum of 3 AS, while the differences outside the meeting
point remain unaffected. Due to these limitations, some differential characteristics that
contain intermediary differences with the number of AS larger than the specified amount
will be unreachable by the proposed algorithm. However, the memory limitation could
be alleviated to some extent by writing the necessary intermediary differences to a file.



16

Luckily for block ciphers with smaller block sizes, these properties are less detrimental to
the overall paths covered by the search.

This method also requires a large amount of memory especially as compared to a
recursive version of the algorithm shown in Algorithm 1. The dependency on the GPU
hardware requires some tweaking on the number of blocks and the number of threads per
block so that the GPU utilization could be maximized. Currently, the proposed algorithm
requires some customization to be applicable to other SPN block ciphers. Its feasibility for
other types of block ciphers such as ARX and Feistel will be investigated in future work.
Further work is also needed to generalize the proposed algorithm for SPN block ciphers
with minimal modifications.

With that said, the proposed algorithm is able to use GPU hardware to shorten the
searching runtime drastically. This enables the automated search to be conducted for
block ciphers with large block sizes (128-bit) at a high number of rounds (≥ 30). This has
not been practically attempted in previous works. It is also possible for the work to be
adapted to block ciphers with super s-boxes. The possibility of distributing the workload
of the proposed algorithm across a grid or grids of CPU-GPU computing nodes makes it
possible to enhance the efficiency of the search even further. For example, by enumerating
all the second or third level branches in a breadth-first manner, these branches can be
divided into individual work items that can be distributed across CPU-GPU computing
nodes. This also requires the modification of the proposed algorithm to be able to utilize
more CPU cores to better utilize the available computing resources.

4.5 Summary of the proposed algorithm
In short, by utilizing a GPU to accelerate the automatic search for differential clusters,
a substantial performance boost up to a factor of 5.95 could be obtained, however the
practical runtime shows that the performance increase is around the range of 2.5 for a
large number of rounds with AS_BOUND = 4. Although the proposed algorithm is able
to search for differential clusters of block ciphers with large block size and a high number
of rounds, memory limitation is incurred by both the immediate complete enumeration
of branches once a node is visited and MITM approach. This memory limitation affects
the number of potential branches to be explored and consequently some combinations
of differences are unreachable. A small portion of the enumeration tasks still needs to
be performed on the host. The tasks split between host and device are summarised as below:

Tasks performed on host (CPU)

• Memory management and synchronization.

• Launching of the GPU kernel.

• Enumeration and evaluation of branches for ∆X when the enumerable range is too
small, for TRIFLE it is when AS < 4.

Tasks performed on device (GPU)

• Enumeration of branches for ∆X for a large dataset in parllel.

• Evaluate the enumerated branches.

5 Differential clustering effect of TRIFLE-BC
The proposed algorithm has been used to study the differential cluster effect in TRIFLE-BC.
The 128 improved single-bit differences propagation trails described in Subsection 2.2.3
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Table 6: Differential for 20-round TRIFLE-BC bounded by
AS_BOUND = 4 and PROB_BOUND = Pt ∗ 2−31

∆X ∆Y Pt Pc # of Trails
0000 0000 0000 0000
00b0 0000 0000 0000

0000 0000 0000 0000
0000 0001 0000 0001

2−58 2−57.97 44221306

0000 0000 0000 0000
0000 d000 0000 0000

0000 0100 0000 0100
0000 0000 0000 0000

2−58 2−57.97 36278752

0000 0000 0000 0000
0000 0000 0700 0000

0000 0000 0000 0000
0000 0002 0000 0002

2−58 2−57.97 47516983

0000 0000 0000 0000
0000 0000 0000 000e

0000 0200 0000 0200
0000 0000 0000 0000

2−58 2−57.97 32376080

0000 0000 0000 0000
0000 0b00 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

2−58 2−57.996 27608539

Table 7: Differential for 43-round TRIFLE-BC bounded by
AS_BOUND = 4 and PROB_BOUND = Pt ∗ 2−21

∆X ∆Y Pt Pc # of Trails
0000 0000 0000 b000
0000 0000 0000 0000

0000 0000 0010 0000
0010 0000 0000 0000

2−127 2−126.931 2202258

0000 0000 0000 0000
b000 0000 0000 0000

0000 0002 0000 0002
0000 0000 0000 0000

2−127 2−126.931 2197251

0000 0000 0000 0000
0007 0000 0000 0000

0020 0000 0020 0000
0000 0000 0000 0000

2−127 2−126.931 2226164

0000 0000 0000 0000
0000 0007 0000 0000

0000 0000 0000 0000
0000 0200 0000 0200

2−127 2−126.931 2034427

0000 0000 0000 0000
0000 0b00 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

2−127 2−126.995 1504844

are clustered using the proposed algorithm. Cluster searchs are conducted for 43-round
TRIFLE using AS_BOUND = 4 and PROB_BOUND = Pt ∗ 2−21. The time required
to complete the search is one and a half days using the desktop computer described in
Subsection 4.3.

A equivalent search is conducted for 20-round TRIFLE using AS_BOUND = 4 and
PROB_BOUND = Pt ∗ 2−31. A slightly higher bound is used here in an attempt to
cluster more differential trails. The time needed to complete the search is half a day using
the desktop computer described in Subsection 4.3.

Since the differential probabilities are similar, we select only 5 differentials with 4
being the best probability and 1 differential being the differential described in [FT19]
to show in Table 6 and Table 7. We found that the effect of clustering these paths
do not significantly improve the probability. However, large differential clusters could
be enumerated, consisting of up to 44 and 2.2 million trails for 20-round and 43-round
TRIFLE-BC respectively. The differential used in [FT19] for a key recovery attack against
TRIFLE can be improved slightly from 2−58 to 2−57.996.

The improved efficiency of the searching algorithm allows for practical identification
of large clusters. Although the large clusters found in TRIFLE did not contribute to
significant improvements in terms of differential probability, this may not be the case for
other block ciphers, especially block ciphers with smaller block size. When the block size
is larger, the differential probability is distributed into more trails, whereby the number of
possible trails is a factor of 264 more than lightweight block ciphers. Meanwhile, when the
block size is smaller, the probability of each trail is, by comparison, much larger. Thus,
the proposed searching algorithm can be used to more accurately determine the security
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margin of these ciphers, and also provide a detailed look at their clustering effects.

6 Conclusion
In this work, a new GPU-accelerated branch-and-bound algorithm for differential cluster
search of block ciphers has been proposed. This method improves upon the existing branch-
and-bound method by utilizing the parallel processing power of GPU hardware for speedup.
The proposed algorithm can achieves a substantial speedup up to a factor of approximately
5.95. The proposed method will be useful in differential cryptanalysis to identify large
differential clusters that can contribute to higher differential probabilities. The GPU-
accelerated algorithm can be adapted to suit other SPN block ciphers by changing the
permutation and differential distribution table and customizing the kernel thread number
based on the GPU hardware capability. However, other block cipher structures such as
Feistel and ARX more work still has to be done with respect to the feasibility of the
proposed approach. With the assistance of this developed GPU framework, we provide
a detailed look at the clustering effect of the authenticated cipher TRIFLE, which also
served to showcase the practically of the proposed framework.
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Algorithm 4 Device (GPU) enumeration and evaluation method.
Input: Input Difference ∆X.
Output: Enumerated branches, its evaluation result and probabilities Pi.
Adjustable Parameters:
1. AS_BOUND : Maximum of number of active s-boxes for ∆Y .
2. PROB_BOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

Assumption:
1. Non-active nibble (s-boxes) will have a difference value of zero. Thus, an attempt

to differentially substitute it will yield 0→ 0 with a probability of 1.
procedure enumeration_device_i (1 ≤ i ≤ n)

synchronize necessary information with device memory (asynchronously)
call KERNEL_i (asynchronously)
synchronize device information with host memory (asynchronously)
cuda stream synchronized (wait for device to complete its computation)

end procedure

procedure kernel_i (1 ≤ i ≤ n)
copy permutation table, sorted DDT (Descending Frequency), and branch size table
to shared memory
Ti ← (blockIdx.x× blockDim.x+ threadIdx.x)
//Work assignment
V alue← Ti, Divide_V alue← 1
for each active nibble values,∆AUi where 1 ≤ i ≤ 4 do

Ii ← bV alue/Divide_V aluec mod NBi
∆AVi ← sorted DDT[∆AUi][Ii]
update pi
Divide_V alue← Divide_V alue×NBi

end for
//Enumerating all remaining branches if AS_BOUND > 4
//Note that the for loop will still be entered even if AU5 = 0
for each candidate (∆AV5,∆AV6, ...,∆AVAS_BOUND) do

if i 6= n then
global_offset← (

∏AS_BOUND
j=1 NBj × Ti + candidate_index)

(∆Ycondition)global_offseti ← FALSE
pi ← Prob(∆Xi,∆Yi)
ASi+1 ←Wbyte(∆Yi)
if ASi+1 ≤ AS_BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB_BOUND then
(∆Ycondition)global_offseti ← TRUE

end if
end if

else if ∆Yi == ∆Y then
Pi ← Pi + pi

end if
end for

end procedure
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