
Automated Search for Block Cipher
Differentials: A GPU-Accelerated

Branch-and-Bound Algorithm

Wei-Zhu Yeoh1, Je Sen Teh1, and Jiageng Chen2

1 Universiti Sains Malaysia, Malaysia
yeohweizhu@gmail.com , jesen teh@usm.my
2 Central China Normal University, China

chinkako@gmail.com

Abstract. Differential cryptanalysis of block ciphers requires the iden-
tification of differential characteristics with high probability. For block
ciphers with large block sizes and number of rounds, identifying these
characteristics is computationally intensive. The branch-and-bound al-
gorithm was proposed by Matsui to automate this task. Since then, nu-
merous improvements were made to the branch-and-bound algorithm
by bounding the number of active s-boxes, incorporating a meet-in-the-
middle approach, and adapting it to various block cipher architectures.
Although mixed-integer linear programming (MILP) has been widely
used to evaluate the differential resistance of block ciphers, MILP is still
inefficient for clustering singular differential characteristics to obtain dif-
ferentials (also known as the differential effect). The branch-and-bound
method is still better suited for the task of trail clustering. However, it
requires enhancements before being feasible for block ciphers with large
block sizes, especially for a large number of rounds. Motivated by the
need for a more efficient branch-and-bound algorithm to search for block
cipher differentials, we propose a GPU-accelerated branch-and-bound al-
gorithm. The proposed approach substantially increases the performance
of the differential cluster search. We were able to derive a branch enumer-
ation and evaluation kernel that is 5.95 times faster than its CPU coun-
terpart. To showcase its practicality, the proposed algorithm is applied
on TRIFLE-BC, a 128-bit block cipher. By incorporating a meet-in-the-
middle approach with the proposed GPU kernel, we were able to improve
the search efficiency (on 20 rounds of TRIFLE-BC) by approximately 58
times as compared to the CPU-based approach. Differentials consisting
of up to 50 million individual characteristics can be constructed for 20
rounds of TRIFLE, leading to slight improvements to the overall dif-
ferential probabilities. Even for larger rounds (43 rounds), the proposed
algorithm is still able to construct large clusters of over 500 thousand
characteristics. This result depicts the practicality of the proposed algo-
rithm in constructing large differentials even for a 128-bit block cipher,
which could be used to improve cryptanalytic findings against other block
ciphers in the future.

Keywords: Automated search · block cipher · branch-and-bound · crypt-
analysis · differential characteristic · differential cluster · GPU

2 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

1 Introduction

Differential 3 cryptanalysis [3] is one of the most widely-known cryptanalytical
methods, resistance to which has become a basic requirement for modern block
ciphers [1,6,12]. The success of differential cryptanalysis relies on identifying
differential characteristics that occur with high probability. The search for these
characteristics is a non-trivial task especially for block ciphers with large block
sizes and number of rounds. In addition, differential cryptanalysis also takes into
consideration differentials (clusters of single characteristics) for a more accurate
estimate of the overall differential probability 4 [13].

Recently automated search for differential characteristics has been used in-
stead of manual searching. Matsui [15] proposed a branch-and-bound technique
to search for differential characteristics and linear trails. This technique was used
at that time to study DES. Since then, there were numerous improvements that
have been made to the branch-and-bound algorithm. In [5] an ARX version of the
branch-and-bound searching algorithm was proposed and the algorithm was also
subsequently improved in [9] by the introduction of a sorted partial differential
distribution table. In addition, [8] incorporated a meet-in-the-middle approach
to the differential cluster search, and updated the pruning rules to bound the
number of active of s-boxes to further improve upon the search efficiency.

In [17], a mixed-integer linear programming (MILP) approach was proposed
as an alternative to the branch-and-bound algorithm. The MILP model requires
identifying relevant linear inequalities which are then fed into a MILP solver
which produces the minimal number of active s-boxes for a particular block
cipher. The MILP framework had been extended by [26] to be applicable to bit-
oriented block ciphers. [24] demonstrated the capability of MILP to enumerate
differential characteristics to form differential clusters or linear hulls. However,
the aforementioned method is impractical for identifying differential clusters for
block ciphers with large block sizes and rounds. In addition, none of the related-
works attempt to utilize specialized hardware acceleration to perform the search.

General purpose graphical processing unit (GPGPU) technology that uti-
lizes specialized GPU hardware could be used to improve the efficiency of the
branch-and-bound search. This would alleviate some of the computational load
needed to identify differential clusters for large block ciphers. However, the GPU
requires tasks to be divided into smaller tasks so that the subdivided tasks could
be processed across a large number of processing units simultaneously. The GPU
architecture also has its own array of optimization problems such as memory lim-
itations, work divergence, low number of available subdivided tasks, and many
more. Therefore, any GPU-accelerated searching algorithm needs to be opti-
mized with respect to the architecture of the GPU to obtain a reasonable perfor-
mance boost. Although GPU-accelerated branch-and-bound algorithm had been

3 This paper with a minor correction has been accepted and will be presented at the
25th Australasian Conference on Information Security and Privacy (ACISP 2020).

4 We use the term differential cluster interchangeably with differentials to ensure that
there is a clear distinction between differentials and individual characteristics.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 3

studied in [14] for knapsack, [16] for flow-shop scheduling, and [7] for multiprod-
uct batch plants optimization sub-problems, there exists no prior work that uses
GPU to accelerate the branch-and-bound search for differential cryptanalysis.

Our Contributions. The proposed work is a novel approach leveraging GPU
hardware acceleration for the specific sub-problem of differential cluster search.
It also incorporates the meet-in-the-middle (MITM) technique [8] to further im-
prove its efficiency. The proposed algorithm can achieve a substantial speedup,
up to a factor of approximately 5.95. A comparison based on cloud computing
also indicates that the GPU-based algorithm can save costs by up to 85% as com-
pared to its CPU-based counterpart in enumerating high number of branches.

To showcase the practicality and feasibility of the proposed GPU-accelerated
algorithm, we investigate the differential clustering properties of the 128-bit
block cipher, TRIFLE-BC [19] as a proof-of-concept. Apart from having a 128-
bit block size, TRIFLE-BC was also chosen as the target cipher because it is
used as the underlying primitive of the lightweight authenticated cipher TRI-
FLE, one of the round-1 candidates of the ongoing lightweight cryptography
standardization effort by NIST [20]. By applying the proposed GPU-accelerated
automatic search for differential clusters, the computational time needed to con-
struct differential clusters for a large number of rounds of 128-bit TRIFLE-BC
was significantly shortened. This effectively allowed us to identify differentials
with the highest probability to date. Thus, as an additional minor contribu-
tion, this work also contributes towards the NIST standardization efforts for
lightweight cryptography in terms of cryptanalysis findings.

The main impact of this work comes not from the cryptanalytic findings for
TRIFLE-BC but rather the capability of the proposed approach in discovering
large clusters for full-sized (non-lightweight) block ciphers with a large number
of rounds. This work is one of the first successful attempts in implementing
an automated differential search for a block cipher with 128-bit block size at a
very large number of rounds (43 rounds). Previous automated search attempts
have focused on block ciphers with block sizes of 64 bits or less [8,24]. For
literature that involve 128-bit block ciphers, the number of rounds searched were
noticeably lower (typically <= 20), and are only capable of identifying singular
differential characteristics [4,10]. Although the framework proposed in [25] was
able to identify clusters for SPECK128 and LEA-128, it is not applicable to
most ARX ciphers due to its reliance on the independent addition assumption.
Also, it could be noted that all prior findings could be potentially improved by
applying the proposed GPU framework.

Outline. The rest of this paper is organized as follows: Section 2 introduces the
GPU architecture and CUDA technology, followed by TRIFLE and its cryptan-
alytic results. Section 3 describes the conventional branch-and-bound differen-
tial search and its improved version that serves as the basis for this work. The
GPU-accelerated algorithm is detailed in Section 4, the performance of which
is compared with its CPU-counterpart. Capabilities and limitations of the pro-

4 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

posed algorithm are also discussed. Section 5 investigates the differential cluster
effect of TRIFLE-BC. Section 6 concludes the paper.

2 Preliminaries

In this section, background information on GPU architecture, CUDA and TRI-
FLE are provided to aid readers’ understanding of the remaining sections of this
paper.

2.1 GPU architecture and CUDA

A graphics processing unit (GPU) is specialized hardware designed for highly
multithreaded and parallelized data processing workflow. The primary function
of a GPU is to manipulate computer graphics and perform image processing.
However, the massively parallel processing architecture of GPUs has also enabled
them to outperform central processing units (CPUs) in other non-graphical pro-
cessing algorithms that involve a massive amount of data. With the introduction
of the Compute Unified Device Architecture (CUDA) in 2006 by NVIDIA, the
parallel processing power of GPUs becomes readily available for solving many
other computationally complex problems.

CUDA is a general-purpose parallel computing platform and application pro-
gramming interface (API) designed by NVIDIA for NVIDIA GPU cards. GPUs
are based on the single instruction, multiple threads (SIMT) execution model
whereby multiple distinct threads perform the same operation on multiple data
concurrently. By dedicating more transistors to data processing (arithmetic logic
unit, ALU) and consequently de-emphasizing data caching and flow control,
parallel computation becomes more efficient. The aforementioned structure is
schematically illustrated in Figure 1. This unique property of GPUs allows them
to efficiently solve data-parallel computational problems that are arithmetic-
heavy but with lower memory access frequency.

Fig. 1: Structural differences between CPU and GPU.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 5

CUDA threads run on a separate physical device (GPU) to accelerate par-
allel tasks given by the co-running host program (CPU) as illustrated by Figure
2. The host and device analogy will be used throughout the paper. A kernel is
a CUDA device function that will be executed in parallel by different CUDA
threads on the device. A single kernel consists of a single grid that may hold a
maximum of 231 − 1 number of blocks, whereas each block can contain a maxi-
mum of 210 threads. When a kernel is launched, the blocks that reside within the
kernel are assigned to idle streaming multiprocessors (SM). The multiprocessors
execute parallel threads within the assigned block in groups of 32 called warps.
A warp executes one common instruction at a time. If threads of a warp diverge
due to conditional instruction, each branch path will be executed in different
warp cycles. Therefore, the use of conditional branches should be minimized to
maximize the multiprocessors’ efficiency. Since an SM executes a warp of 32
threads at a time, it is advisable to choose the number of threads per block to
be a multiple of 32 to optimize GPU utilization.

Fig. 2: Heterogeneous programming architecture of a typical GPU-accelerated
algorithm. (Note that serial host code executes on the CPU while parallel

device code executes on the GPU)

CUDA threads are able to read data from multiple types of memory during
their execution. Each thread has its own local memory. Threads reside within the
same thread block can access a shared memory space called the shared memory.

6 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

There are three types of memory visible to all threads namely global memory,
read-only constant memory, and read-only texture memory. Global memory is
the slowest memory and requires read/write to be coalesced in 32, 64, or 128-
byte memory to achieve maximum efficiency. Constant memory is optimized for
broadcasting, whereby the maximum efficiency is reached when all threads of
the same warp request the same memory address . Texture memory is optimized
for 2D spatial locality [23], whereby threads of the same warp reading memory
locations that are close to each other will lead to maximum efficiency . Since the
different memory types are better suited for different tasks, the memory access
pattern of a CUDA program should also be optimized accordingly to maximize
efficiency.

The CUDA model maintains separate memory spaces for host and device
memory. To alleviate the complexity of memory management, unified memory
may be used to unify the host and device memory spaces. Unified managed mem-
ory provides a single coherent memory address visible to both CPU and GPU.
If a large amount of memory transfer is needed and the transfer happens often,
it is advised to pin down the memory to avoid the cost of the transfer between
page-able and pinned memory. Pinned memory also enables the asynchronous
(non-blocking) execution of kernel and data transfer.

This section has only covered information that are relevant to the proposed
work. There are a lot more features left unexplored such as concurrent kernel
launches, asynchronous execution, and multi-device execution. For a more de-
tailed guide and reference in optimizing for CUDA, refer to [22].

2.2 TRIFLE

Notation. The following mathematical notations will be used throughout the
paper:

– {0, 1}∗ denotes the set of all strings.
– {0, 1}n denotes the set of strings of length n.
– |M | denotes the length (number of bits) in string M .
– M1||M2 denotes concatenation of string M1 and string M2.
– ⊕ denotes field addition and ⊗ field multiplication.
– OZP(X) applies an optional 10∗ padding on n bits. If |X| < n, then OZP(X)

= 0n−|X|−1||1||X. If |X| = n, then OZP(X) = X.
– bXc is an integer floor function that produces an integer i closest to X such

that i ≤ X.
– >>> denotes bitwise right rotations.
– Wbit(X) denotes the number of 1 bits in a given binary string X while
Wnibble(X) denotes the number of non-zero 4-bit values in a binary string
X.

– AS is used to represent the number of active s-boxes.
– Pc represents the probability of a differential cluster and Pt is the probability

of a single differential trail.
– ∆X is an XOR difference, ∆Ui is the ith nibble value inside ∆X, and ∆AUi

is the ith active nibble value (non-zero difference) inside ∆X.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 7

Description. TRIFLE is one of the round-1 candidates of lightweight authen-
ticated encryption standardization effort organized by NIST [20]. TRIFLE is
a block cipher-based authenticated encryption scheme with a block size of 128
bits. It receives an encryption key K ∈ {0, 1}128, nonce N ∈ {0, 1}128, associated
data A ∈ {0, 1}∗ and message M ∈ {0, 1}∗ as inputs, and produces an encrypted
ciphertext C ∈ {0, 1}|M | and an authentication tag T ∈ {0, 1}128 as outputs. The
corresponding verification and decryption scheme receives a key, nonce, associ-
ated data, ciphertext and a tag as inputs, and produces the decrypted plaintext
if the authentication tag is valid.

TRIFLE employs a MAC-then-Encrypt scheme whereby a cipher block chain-
ing (CBC) authentication is performed on the nonce, associated data and plain-
text to produce the authentication tag. The authentication tag is used as the
initialization vector (IV) in output feedback (OFB) mode to produce the cipher-
text. For a more detailed TRIFLE specification, refer to [19].

The underlying block cipher used by TRIFLE, TRIFLE-BC is a 50-round
128-bit SPN block cipher. It receives a 128-bit plaintext X127||X126||...||X0 where
Xi is a bit, and a 128-bit key K7||K6||...||K0 where Ki is a 16-bit word and
produces a 128-bit ciphertext. Each round of TRIFLE-BC consists of four con-
secutive functions namely SubNibbles, BitPermutation, AddRoundKey, and Ad-
dRoundConstant. The four functions are detailed in Appendix 1.

Differential properties of TRIFLE-BC. By analyzing the differential distri-
bution table of TRIFLE’s s-box, it was found that each ∆U that has a hamming
weight of a single bit (Wbit = 1) can be differentially mapped back to ∆V with
Wbit = 1. These 1-bit to 1-bit differential relationships (1 → 8, 2 → 1, 4 →
2, and 8 → 4) hold with a probability of 2−3. The 1-bit ∆V will be permuted
and propagated to the next round to become yet another ∆U with Wbit = 1
due to the nature of bitwise permutation that shuffles bits without affecting the
total number of active bits in the block cipher.

Therefore, for any n arbitrary rounds of TRIFLE, there exists a differential
characteristic ∆X(X0, X1, ..., X31) → ∆Y (Y0, Y1, ..., Y31) such that Wbit(X

j
i) =

1 where 0 ≤ i < 32, 0 ≤ j < n and P (∆X → ∆Y) = 3−3n. Moreover, there
exist 4 differentials ∆U → ∆V (7 → 4, B → 2, D → 1, and E → 8) where
Wbit(∆U) > 1, Wbit(∆V) = 1 and P (∆U → ∆V) = 2−2. This set of differ-
entials can be used to improve the first round of the aforementioned single-bit
differential characteristics to increase the probability to 3−3n+1 for any n arbi-
trary rounds. .

Since there also exists a ∆V for every ∆U with Wbit(∆U) = 1 such that
P (∆U → ∆V) = 2−2, these differential relationships can be used at the final
round. Thus, the single-bit differential characteristics with improved first and
final rounds that have a probability of 3−3n+2 exist for any n arbitrary rounds
of TRIFLE provided that n ≥ 3. In fact, there are exactly 128 (128 different
starting bit position) such characteristics for every round. These observations
have also been discussed in [11] and [21].

8 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Based on the aforementioned improved single-bit differential characteristics,
a key recovery strategy had been discussed in [11] that recovers the key for 11
rounds of TRIFLE with a time complexity and data complexity of 2104 and
263 respectively. The authors proposed using a 42-round improved single-bit
differential in their key recovery strategy on TRIFLE-BC. However, the authors
made an error of using the 41-round (2−3(41)+2 = 2−121) differential probability
in their calculation instead of 42 (2−3(42)+2 = 2−124). Therefore, the differential
attack of TRIFLE-BC in [11] should able to recover the secret key of a 43-round
TRIFLE-BC (instead of 44 rounds) with the time and data complexity of 2126.

The differential discussed in this subsection only considers the probability of
a single characteristic. The differential probability can be potentially improved
by incorporating probability gains from the clustering effect (also referred to
as the differential effect) shown in [18], whereby multiple differential character-
istics with the same ∆X → ∆Y are considered for the probability of a given
differential.

3 Automatic search for differential

Matsui proposed a branch-and-bound algorithm [15] for searching linear paths
and differential characteristics. The algorithm had been used on DES to find the
best characteristic at the time. The algorithm relied on pruning bad branches
that have lower probability than the best one found so far, Bn. The initial value
of Bn also helps break off bad branches in the early parts of the algorithm. Thus,
when Bn approaches the real value of the best probability, Bn where Bn ≤ Bn,
the search speed is improved as well. The algorithm also used the knowledge of
Bn−i computed from round 0 to round i to estimate the probability of the current
branch being searched. It will effectively cut off branches with probabilities that
are estimated to be worse than Bn.

Since then, several improvements have been made to Matsui’s algorithm. A
cluster search algorithm such as [8] improved upon Matsui’s algorithm by search-
ing for differential clusters after identifying a main differential characteristic. The
differential cluster search includes all differential characteristics that share the
same input ∆X and output ∆Y differences but with different intermediary dif-
ferences. Every individual characteristic included into the cluster improves upon
the probability of the overall differential. This approach has successfully iden-
tified differentials with improved probability for block ciphers such as LBlock
and TWINE [8]. It is also worth noting that [8] used the number of active s-
boxes as part of the pruning rules to eliminate bad branches. There were also
other researchers [5,9] that use a type of automatic search known as the thresh-
old search. Although these automated approaches were meant for ARX ciphers,
their tendency to identify differential characteristics with high probabilities is
worth noting.

A combination of the number of active s-boxes and the differential proba-
bility threshold will be used as the pruning rules for the proposed GPU-based
automatic search. The combination of both allows for greater flexibility during

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 9

the search, and also effectively filters branches quickly if configured correctly.
This CPU-based recursive algorithm is described in Algorithm 15.

4 GPU-accelerated automatic search for differential
characteristics and their clusters

To facilitate the differential search for block ciphers with a large block size and
number of rounds, the processing power of GPUs can be leveraged to provide a
substantial performance boost to the conventional branch-and-bound searching
algorithm. The proposed GPU-accelerated algorithm is a variant of a depth-first
search whereby the algorithm will first visit nodes (possible branches) in succes-
sive rounds before backtracking to visit other nodes. The difference is that once
a node is visited, all of its corresponding child branches are enumerated. This
enables the task of enumeration for the relevant child branches, and subsequently
the evaluation of the pruning rules to be parallelized and solved by the GPU.
All this can be performed while keeping the memory footprint to a manageable
range by enumerating one branch at a time rather than all possible branches of
a particular depth at once (breadth-first search). The exception exists for the
final round of the search whereby all of the branches are visited and evaluated
simultaneously. The behaviour of the modified depth-first search algorithm is
illustrated in Figure 3.

However, if the total number of possible child branches for a particular differ-
ence pattern is too low, then it will cause the GPU kernel to have low efficiency
due to low occupancy (insufficient tasks to be distributed across multiproces-
sors). In the proposed algorithm for TRIFLE, this scenario occurs when the
number of active s-boxes for a particular difference is < 4. To alleviate this
problem, differences with a low number of possible branches are instead enu-
merated and evaluated by the CPU-variant procedure. The GPU kernel and its
CPU-variant are discussed in Subsection 4.1. The complete algorithm for the
proposed GPU-accelerated branch-and-bound differential cluster search without
enumeration kernels and method details is provided in Algorithm 2. Note that
the correctness of the proposed algorithm has been verified by comparing the
results of Algorithms 1 and 2.

4.1 Enumeration using GPU Kernel and CPU

The GPU kernel has been optimized for TRIFLE’s structure which has a con-
stant branching number of 7 for ∆V . This means that ∀∆U that goes through
the TRIFLE’s s-box, there are precisely 7 possible choices of ∆V . Despite this
specific customization used, the kernel can be generalized to any SPN block ci-
pher while still retaining a similar efficiency by estimating the correct number
of branches and assigning workload among the threads accordingly.

The configuration of the proposed GPU architecture will utilize 1D blocks
for each kernel launch. Since each block within a grid contains its own block

5 All algorithms are described in Appendix 2.

10 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Fig. 3: The searching strategy for the proposed algorithm.

threads, each thread is assigned a unique thread ID based on its position in a
given grid. This thread ID assignment facilitates the process of work distribution
and reduction. For TRIFLE, the number of possible branches of ∆Xi is 7ASi .
When ASi = 4, there are 2401 tasks to be distributed. 19 blocks (> 9 SMs
in NVIDIA GTX-1060) are declared for a grid and each block contains 128
threads (32|128) totalling up to 2432 threads (excess threads are terminated
during runtime immediately).

Let NB1, NB2, NB3, NB4 be the number of possible branches, and I1, I2, I3,
I4 be the nth numbered branches in the four active ∆U branches respectively.
Thread ID, Ti can also be computed as

ID(I1, I2, I3, I4) = (I1×NB0) + (I2×
1∏

i=0

NBi) + (I3×
2∏

i=0

NBi) + (I4×
3∏

i=0

NBi), (1)

where NB0 = 1. The work assignment (the branch taken by each individual
thread) is done by computing ID−1(Ti). For ASi > 4, the work assignment will
still occur for the first four active ∆U branches, but the remaining active ∆U
branches are exhaustively enumerated by each working thread individually. The
last round follows the same logic of Algorithm 1 whereby after a branch (now a
trail) is enumerated, ∆Yn == ∆Y is checked, then Pi is incremented accordingly.
To avoid race conditions, each thread has its own probability accumulator, Pi.
The final cluster probability, Pc =

∑Ttotal

i=1 Pi + Ph is computed in the host
procedure where Ph is the host probability accumulator.

Special attention needs to be given to memory management. All of the nec-
essary device memory allocation and host memory pinning are done during pro-
gram initialization. Both the allocated memory and pinned memory are reused
whenever possible since allocation and de-allocation of the memory are expen-
sive and will impact the overall efficiency of the proposed algorithm. DDT and
permutation lookup tables are specifically loaded into the shared memory each

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 11

time the kernel is launched because the improved latency of the shared memory
will ease the frequent access of the DDT and permutation table. The complete
algorithm for the kernel is summarized in Algorithm 4.

The GPU kernel can only be used when there is a large number of branches
to maintain high GPU utilization. For AS ≤ 3, a CPU-version of enumeration
method is used instead. The CPU-version follows the general logic of the GPU
kernel without parallelized processing. The complete CPU enumeration method
is shown in Algorithm 3.

4.2 Meet-in-the-middle searching approach

The meet-in-the-middle (MITM) approach described in [8] is used to further
improve the efficiency of the search. Since the number of branches grows ex-
ponentially as the number of rounds increases, the search for large number of
rounds could be completed much quicker if the number of rounds to search is
split between α rounds and β rounds instead of searching directly for (α + β)
rounds.

The steps involved in the MITM approach starts off by dividing the search
into forward α rounds and backward β rounds. For the forward search, the pro-
posed algorithm mentioned in Algorithm 2 is used. The difference is that during
the αth (final) round, instead of evaluating ∆Yα, the ∆Yα and its probability is
accumulated in an array for matching purposes. Since the amount of informa-
tion needed to store all of the possible permutations of 128-bit data far exceeds
the practical memory storage option currently available, an encoding method
is used to index into the array. The encoding is computed by using the format
of [Pos∆AVi

, ∆AVi, Pos∆AVi+1
, ∆AVi+1, Pos∆AVi+2

, ∆AVi+2]. The total number
of nibbles to be stored is currently limited to a maximum of 3 (12 bits). Since
each nibble requires 5 bits to represent its nibble position, thus the total num-
ber of bits needed to represent 3 nibbles among 32 possible nibble positions is
27 bits. This amounts to an array size of 134217728 that requires 1.07 GB of
memory when using a 64-bit double-precision floating point format to store the
probability.

Meanwhile, the backward search requires the computation of a reversed DDT
and the corresponding reversed permutation table. During the βth (final) round,
∆Yβ is encoded using the same method described earlier to index into the storage
array to check for matching trails. Matching trails contribute toward the final
cluster probability Pc. The MITM approach detailed in this section is illustrated
in Figure 4.

4.3 Performance comparison of GPU and CPU-based automatic
search for differential algorithms

The CPU and GPU algorithms are implemented using C++ and CUDA/C re-
spectively. The performance results are obtained by running the implementations

12 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Fig. 4: Meet-in-the-middle approach.

on a single Linux desktop computer with Intel 6th generation Skylake Core i5-
6600K CPU clocked at 3.5 GHz, NVIDIA Pascal GeForce GTX-1060 with 3 GB
memory, and 16 GB of RAM.

A fixed problem set which satisfies a specific Wnibble(∆X) criteria has been
computed on both the GPU-accelerated kernel and CPU-enumeration method.
The results obtained (including the time spent on memory transfer) are recorded
in Table 1 and is an average of a hundred instances. These results show the po-
tential of the performance improvement of the GPU-accelerated functions which
can be up to a factor of 5.95 over the CPU-enumeration method. Also, if the
GPU possesses higher on-chip memory whereby the necessary computing differ-
ential caches are able to fit, it is possible for the proposed algorithm to reach a
speedup of up to 27.07 as shown in Table 2. A similar experiment is performed
for a series of Google VM Cloud-based CPU and GPU. The performance results
indicate that for AS = 8, the cost reduction is estimated to be around 16% to
85% of the original cost compared to the reference XEON CPU. These results
depict the potential of the proposed algorithm in terms of cost-saving for large
numbers of active s-boxes.

A series of practical tests of the proposed algorithm is performed on various
rounds of TRIFLE-BC. The results are recorded in Table 4 and these results are
bounded by PROB BOUND = Pt × 2−21 and are an average of ten instances.
It can be seen that although the algorithm depict a speed-up of 5.95, as the
number of rounds increases, the performance also increases and stabilizes at
approximately 2.5. This result is obtained because the computation is not GPU-

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 13

accelerated when the number of active s-boxes is between 1 and 3. It can also
be noted that the MITM approach greatly increases the performance of the
searching algorithm over the traditional recursive method for up to a factor of
approximately 58 at round 20.

Table 1: Search time (µs) comparison of CPU and GPU kernel enumeration.

Wnibble(∆X) GPU-Accel CPU-Enum Speedup

4 35.5 173.7 4.89
5 141.2 716.6 5.08
6 861.4 4589.0 5.33
7 5974.9 32 200.4 5.39
8 41 561.5 247 393.0 5.95

Table 2: Search time (µs) comparison of CPU and GPU kernel enumeration
(without output memory synchronization).

Wnibble(∆X) GPU-Accel CPU-Enum Speedup

4 34.2 173.7 5.08
5 70.3 716.6 10.19
6 286.9 4589.0 16.00
7 1656.7 32 200.4 19.44
8 9140.1 247 393.0 27.07

Table 3: Cloud computing cost (USD) comparison without memory
synchronization for ∆Xi → ∆Xi+1 for Wnibble(∆X) = 8.

Device Time(µs) Cost/Month Core Equivalent Cost%

Xeon Skylake 2.0 GHz* 506 703.0 27.46 1 100
Tesla T4 8531.6 255.50 60 16
Tesla P100 8080.4 1065.80 63 62
Tesla V100 6528.0 1810.40 78 85

4.4 Limitations and capabilities of the proposed algorithm.

The proposed algorithm presented in this paper is not without its limitations.
Firstly, the kernel is only utilized when AS of ∆X is ≥ 4. It should be theo-
retically possible to bundle several small work units into a large compiled work

14 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Table 4: Search time (ms) of various rounds of TRIFLE-BC.

Round(s) MITM-GPU-Accel GPU-Accel CPU-Enum

5 1135.9 661.5 787.2
10 2197.3 8644.5 19 564.6
15 8795.6 62 928.7 156 725.0
20 15 675.2 363 274.2 908 978.1

unit to be sent to kernel for processing. The added benefit of this is the higher
performance gains for cases of AS BOUND < 8, which could achieve a speedup
equivalent to using AS BOUND = 8. Doing so will definitely incur more over-
head. Thus, the feasibility of such an idea may be studied in future work.

This method also requires a large amount of memory especially as compared
to a recursive version of the algorithm shown in Algorithm 1. The dependency
on the GPU hardware requires some tweaking on the number of blocks and the
number of threads per block so that the GPU utilization could be maximized.
Currently, the proposed algorithm requires some customization to be applicable
to other SPN block ciphers. Its feasibility for other types of block ciphers such
as ARX and Feistel will be investigated in future work. Further work is also
needed to generalize the proposed algorithm for SPN block ciphers with minimal
modifications.

With that said, the proposed algorithm is able to use GPU hardware to
shorten the searching runtime drastically. This enables the automated search to
be conducted for block ciphers with large block sizes (128-bit) for a large number
of rounds (≥ 30). This has yet to be attempted in previous works. The possibility
of distributing the workload of the proposed algorithm across a grid or grids of
CPU-GPU computing nodes makes it possible to enhance the efficiency of the
search even further. For example, by enumerating all the second or third level
branches in a breadth-first manner, these branches can be divided into individual
work items that can be distributed across CPU-GPU computing nodes. This also
requires the modification of the proposed algorithm to be able to utilize more
CPU cores to better utilize the available computing resources. In addition, the
algorithm can be easily adapted to search for linear hulls.

5 Differential clustering effect of TRIFLE-BC

The proposed algorithm has been used to study the differential cluster effect
in TRIFLE-BC. The 128 improved single-bit differences propagation trails de-
scribed in Subsection 2.2 are clustered using the proposed algorithm. The cluster
search was conducted for 43-round TRIFLE-BC using AS BOUND = 4 and
PROB BOUND = Pt × 2−21. A equivalent search is conducted for 20-round
TRIFLE-BC using AS BOUND = 4 and PROB BOUND = Pt × 2−31. A
slightly higher bound is used here in an attempt to cluster more differential
trails. The time required to complete the search is two days using the desktop
computer described in Subsection 4.3.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 15

Table 5: Differential for 20-round TRIFLE-BC

∆X ∆Y Pt Pc # of Trails

0000 0000 0000 0000
00b0 0000 0000 0000

0000 0000 0000 0000
0000 0001 0000 0001

2−58 2−57.97 50901814

0000 0000 0000 0000
0000 d000 0000 0000

0000 0100 0000 0100
0000 0000 0000 0000

2−58 2−57.97 39432495

0000 0000 0000 0000
0000 0000 0700 0000

0000 0000 0000 0000
0000 0002 0000 0002

2−58 2−57.97 51377914

0000 0000 0000 0000
0000 0b00 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

2−58 2−57.996 30372009

Since the differential probabilities are similar, we select only 4 differentials
with 3 being the best probability and 1 differential being the differential de-
scribed in [11] to show in Table 5 and Table 6. We found that the effect of
clustering these paths do not significantly improve the probability. However,
large differential clusters could be enumerated, consisting of up to 51 and 0.5
million trails for 20-round and 43-round TRIFLE-BC respectively. The differ-
ential used in [11] for a key recovery attack against TRIFLE can be improved
slightly from 2−58 to 2−57.996.

Table 6: Differential for 43-round TRIFLE-BC

∆X ∆Y Pt Pc # of Trails

0000 0000 0000 b000
0000 0000 0000 0000

0000 0000 0010 0000
0010 0000 0000 0000

2−127 2−126.931 544352

0000 0000 0000 0000
b000 0000 0000 0000

0000 0002 0000 0002
0000 0000 0000 0000

2−127 2−126.931 564220

0000 0000 0000 0000
0007 0000 0000 0000

0020 0000 0020 0000
0000 0000 0000 0000

2−127 2−126.931 584356

0000 0000 0000 0000
0000 0b00 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

2−127 2−126.995 381035

The improved efficiency of the searching algorithm allows for practical iden-
tification of large clusters. Although the large clusters found in TRIFLE did
not contribute to significant improvements in terms of differential probability,
this may not be the case for other block ciphers, especially block ciphers with
smaller block size. When the block size is larger, the differential probability is
distributed into more trails, whereby the number of possible trails is a factor
of 264 more than lightweight block ciphers. Meanwhile, when the block size is
smaller, the probability of each trail is, by comparison, much larger. Thus, the
proposed searching algorithm can be used to more accurately determine the se-
curity margin of these ciphers, and also provide a detailed look at their clustering
effects.

16 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

6 Conclusion

In this work, a new GPU-accelerated branch-and-bound algorithm for differen-
tial cluster search of block ciphers has been proposed. Rather than just a direct
application of GPUs to the problem, we implicitly partitioned the difference
branches into chunk sizes which corresponds to a individual thread in the GPU
kernel. The implicit partitioning allows the thread to acquire its work unit in
a fixed amount of step without thread divergence and synchronization mecha-
nisms to maximize the GPU core utilization. The proposed algorithm can achieve
a tremendous speedup especially when enumerating large amount of branches.
The speedup enables the search for large differential clusters for block ciphers
with a large block size over a large number of rounds. Aided by the proposed
GPU framework, we provide a detailed look at the clustering effect of the au-
thenticated cipher TRIFLE, which also served to showcase the practically of
the proposed framework. We were able to construct large clusters consisting of
hundreds of thousands to millions of individual differential characteristics, even
for a large number of rounds of TRIFLE’s underlying 128-bit block cipher. The
GPU-accelerated algorithm can be adapted to suit other SPN block ciphers by
changing the permutation and differential distribution table, and customizing
the kernel thread number based on the GPU hardware capability. However for
other block cipher structures such as Feistel and ARX, more work still has to be
done with respect to the feasibility of the proposed approach. The proposed ap-
proach can also be extended to utilize a grid of CPU-GPU computing nodes in a
real-world environment for an even higher efficiency gains. In addition, it can be
easily adapted to search for linear hulls. Last but not least, the GPU framework
described in this paper can be used to provide a more accurate security bound
on differential cryptanalysis for block ciphers.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 17

Appendix 1 The Trifle-BC round function

TRIFLE-BC The four operations of round function of TRIFLE-BC are as
follow:
SubNibbles. TRIFLE-BC uses an invertible 4-bit to 4-bit s-box S : F4

2 → F4
2.

The same 4-bit s-box is used throughout the cipher and is applied to every
nibble of the cipher state. The mapping of the s-box is given in Table 7 using
hexadecimal notation.

Table 7: The TRIFLE-BC s-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 0 C 9 7 3 5 E 4 6 B A 2 D 1 8 F

BitPermutation. The bit permutation used in TRIFLE maps bits from bit
position i of the cipher state to bit position P (i). The bit permutation P (i) is
defined as

P (i) = bi/4c+ (i%4)× 32.

AddRoundKey. In this stage, a 64-bit round key (K4,K5,K1,K0) is extracted
from the key state. The extracted round key is then applied to the cipher state
in an interleaved manner whereby

V31||V30||...||V0 ← K1||K0

U31||U30||...||U0 ← K4||K5

X4i+1 ← X4i+1 ⊕ Vi(0 ≤ i ≤ 31)

X4i+2 ← X4i+2 ⊕ Ui(0 ≤ i ≤ 31).

The key state will be updated using simple word-wise rotations for the key state
and bit-wise rotations within individual subdivided key states similar to the one
defined in GIFT-128 [1]. The key schedule is defined as

K7||K6||...||K0 ← K1 >>> 2||K0 >>> 12||K7||K6||...||K2.

AddRoundConstant. A 6-bit round constant is XOR-ed into 6 different bit-
states while a constant value of 1 is XOR-ed into the most significant bit X127

18 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

as shown in

X127 ← X127 ⊕ 1

X23 ← X23 ⊕ C5

X19 ← X19 ⊕ C4

X15 ← X15 ⊕ C3

X11 ← X11 ⊕ C2

X7 ← X7 ⊕ C1

X3 ← X3 ⊕ C0.

The 6-bit round constant is then updated using the SKINNY’s 6-bit affine
LFSR function [2] defined as

C5||C4||..||C0 ← C4||C3||...||C0||(C5 ⊕ C4 ⊕ 1).

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 19

Appendix 2 CPU and GPU-accelerated Algorithm for
Differential Cluster Search

Algorithm 1 Differential characteristics (cluster) searching algorithm with con-
straints on probability and number of active s-boxes.

Input: Input difference ∆X and output difference ∆Y .
Output: Probability Pc of ∆X → ∆Y cluster.
Adjustable Parameters:

1. AS BOUND : Maximum of number of active sboxes for ∆Y .
2. PROB BOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

procedure cluster search round i (1 ≤ i < n)
for each candidate ∆Yi do

pi ← Pr(∆Xi,∆Yi)
ASi+1 ←Wnibble(∆Yi)
if ASi+1 ≤ AS BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB BOUND then
call procedure CLUSTER SEARCH ROUND (i+ 1)

end if
end if

end for
end procedure

procedure cluster search round n
for each candidate ∆Yn do

if ∆Yn == ∆Y then
pn ← Pr(∆Xn,∆Yn)
Pc ← Pc + [p1, ..., pn]

end if
end for

end procedure

20 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Algorithm 2 GPU-accelerated differential (cluster) searching algorithm.

Input: Input difference ∆X and output difference ∆Y .
Output: Probability Pc of ∆X → ∆Y cluster.
procedure cluster search

allocate device memory
allocate and pin host memory
call procedure CLUSTER SEARCH ROUND 0
copy Pi from device to host
Pc ← (

∑Ttotal
i=1 Pi) + Ph

end procedure

procedure cluster search round i (1 ≤ i < n)
//Enumerate all possible branches of ∆Yi

ASi ←Wnibble(∆Xi)
if ASi > 3 then

call procedure ENUMERATION DEVICE i
else

call procedure ENUMERATION HOST i
end if
//Prune or proceed based on enumerated branches and their evaluation results
for each computed ∆Y j

i do
if (∆Ycondition)ji == TRUE then

if i+ 1 < N then
call procedure CLUSTER SEARCH ROUND (i+ 1)

else
if ASi+1 > 3 and ASi > 3 then

call procedure ENUMERATION DEVICE n
else

call procedure ENUMERATION HOST n
end if

end if
end if

end for
end procedure

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 21

Algorithm 3 Host (CPU) enumeration and evaluation method.

Input: Input Difference ∆X.
Output: Enumerated branches, its evaluation result and probabilities Pi.
Adjustable Parameters:

1. AS BOUND : Maximum of number of active sboxes for ∆Y .
2. PROB BOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

procedure enumeration host i (1 ≤ i ≤ n)
for each candidate (∆AV1,∆AV2, ...,∆AVAS BOUND) do

if i 6= n then
(∆Ycondition)candidate index

i ← FALSE
pi ← Pr(∆Xi,∆Yi)
ASi+1 ←Wnibble(∆Yi)
if ASi+1 ≤ AS BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB BOUND then
(∆Ycondition)candidate index

i ← TRUE
end if

end if
else if ∆Yi == ∆Y then

Pi ← Pi + pi
end if

end for
end procedure

22 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Algorithm 4 Device (GPU) enumeration and evaluation method.

Input: Input Difference ∆X.
Output: Enumerated branches, its evaluation result and probabilities Pi.
Adjustable Parameters:

1. AS BOUND : Maximum of number of active s-boxes for ∆Y .
2. PROB BOUND : Maximum probability of ∆X → ∆Y .
3. PAS : Estimated probability of a nibble ∆U → ∆V .

Assumption:
1. Non-active nibble (s-boxes) will have a difference value of zero. Thus, an attempt

to differentially substitute it will yield 0→ 0 with a probability of 1.
procedure enumeration device i (1 ≤ i ≤ n)

synchronize necessary information with device memory (asynchronously)
call KERNEL i (asynchronously)
synchronize device information with host memory (asynchronously)
cuda stream synchronized (wait for device to complete its computation)

end procedure

procedure kernel i (1 ≤ i ≤ n)
copy permutation table, sorted DDT (Descending Frequency), and branch size

table
to shared memory
Ti ← (blockIdx.x× blockDim.x+ threadIdx.x)
//Work assignment
V alue← Ti, Divide V alue← 1
for each active nibble values,∆AUi where 1 ≤ i ≤ 4 do

Ii ← bV alue/Divide V aluec mod NBi

∆AVi ← sorted DDT[∆AUi][Ii]
update pi
Divide V alue← Divide V alue×NBi

end for
//Enumerating all remaining branches if AS BOUND > 4
//Note that the for loop will still be entered even if AU5 = 0
for each candidate (∆AV5,∆AV6, ...,∆AVAS BOUND) do

if i 6= n then
global offset← (

∏AS BOUND
j=1 NBj × Ti + candidate index)

(∆Ycondition)global offset
i ← FALSE

pi ← Pr(∆Xi,∆Yi)
ASi+1 ←Wnibble(∆Yi)
if ASi+1 ≤ AS BOUND then

pi+1 ← (PAS)ASi+1

pr ← (PAS)n−i−1

if [p1, ..., pi, pi+1, pr] ≥ PROB BOUND then
(∆Ycondition)global offset

i ← TRUE
end if

end if
else if ∆Yi == ∆Y then

Pi ← Pi + pi
end if

end for
end procedure

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 23

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
Small Present. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2017, vol. 10529, pp. 321–345. Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16, http://
link.springer.com/10.1007/978-3-319-66787-4_16

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-
Latency Variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryp-
tology – CRYPTO 2016, vol. 9815, pp. 123–153. Springer Berlin Heidelberg,
Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 5, http://
link.springer.com/10.1007/978-3-662-53008-5_5

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563, http:
//link.springer.com/10.1007/BF00630563

4. Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Character-
istics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and
Others. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M.,
Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Gilbert, H. (eds.) Advances
in Cryptology – EUROCRYPT 2010, vol. 6110, pp. 322–344. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 17,
http://link.springer.com/10.1007/978-3-642-13190-5_17

5. Biryukov, A., Velichkov, V.: Automatic Search for Differential Trails in ARX Ci-
phers. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Benaloh, J. (eds.)
Topics in Cryptology – CT-RSA 2014, vol. 8366, pp. 227–250. Springer Inter-
national Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 12,
http://link.springer.com/10.1007/978-3-319-04852-9_12

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Ci-
pher. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2007, vol. 4727, pp. 450–466. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31,
http://link.springer.com/10.1007/978-3-540-74735-2_31

7. Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization of branch-and-
bound for multiproduct batch plants optimization. The Journal of Supercom-
puting 73(2), 639–651 (Feb 2017). https://doi.org/10.1007/s11227-016-1784-x,
http://link.springer.com/10.1007/s11227-016-1784-x

8. Chen, J., Miyaji, A., Su, C., Teh, J.: Improved Differential Characteristic Search-
ing Methods. In: 2015 IEEE 2nd International Conference on Cyber Secu-
rity and Cloud Computing. pp. 500–508. IEEE, New York, NY, USA (Nov
2015). https://doi.org/10.1109/CSCloud.2015.42, http://ieeexplore.ieee.org/
document/7371529/

9. Chen, K., Tang, X., Xu, P., Guo, M., Qiu, W., Gong, Z.: An Im-
proved Automatic Search Method for Diffierential Trails in TEA Ci-
pher. International Journal of Network Security 18(4), 644–649 (Jul 2016).
https://doi.org/10.6633/IJNS.201607.18(4).05

https://doi.org/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
http://link.springer.com/10.1007/978-3-662-53008-5_5
http://link.springer.com/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/BF00630563
http://link.springer.com/10.1007/BF00630563
http://link.springer.com/10.1007/BF00630563
https://doi.org/10.1007/978-3-642-13190-5_17
http://link.springer.com/10.1007/978-3-642-13190-5_17
https://doi.org/10.1007/978-3-319-04852-9_12
http://link.springer.com/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/978-3-540-74735-2_31
http://link.springer.com/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/s11227-016-1784-x
http://link.springer.com/10.1007/s11227-016-1784-x
https://doi.org/10.1109/CSCloud.2015.42
http://ieeexplore.ieee.org/document/7371529/
http://ieeexplore.ieee.org/document/7371529/
https://doi.org/10.6633/IJNS.201607.18(4).05

24 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

10. ElSheikh, M., Abdelkhalek, A., Youssef, A.M.: On MILP-Based Automatic Search
for Differential Trails Through Modular Additions with Application to Bel-
T. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) Progress in Cryptology –
AFRICACRYPT 2019, vol. 11627, pp. 273–296. Springer International Publish-
ing, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0 14, http://link.

springer.com/10.1007/978-3-030-23696-0_14
11. Fukang, L., Takanori, I.: Iterative Differential Characteristic of TRIFLE-BC

(2019), https://eprint.iacr.org/2019/727.pdf
12. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. Cryp-

tographic Hardware and Embedded Systems – CHES 2011 pp. 326–341 (2011)
13. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Crypt-

analysis. In: Davies, D.W. (ed.) Advances in Cryptology — EUROCRYPT
’91, vol. 547, pp. 17–38. Springer Berlin Heidelberg, Berlin, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 2, http://link.springer.com/10.1007/

3-540-46416-6_2
14. Lalami, M.E., El-Baz, D.: GPU Implementation of the Branch and Bound Method

for Knapsack Problems. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum. pp. 1769–1777. IEEE,
Shanghai, China (May 2012). https://doi.org/10.1109/IPDPSW.2012.219, http:
//ieeexplore.ieee.org/document/6270853/

15. Matsui, M.: On correlation between the order of S-boxes and the strength of
DES. In: Goos, G., Hartmanis, J., van Leeuwen, J., De Santis, A. (eds.) Advances
in Cryptology — EUROCRYPT’94, vol. 950, pp. 366–375. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1995). https://doi.org/10.1007/BFb0053451, http:

//link.springer.com/10.1007/BFb0053451
16. Melab, N., Chakroun, I., Mezmaz, M., Tuyttens, D.: A GPU-accelerated

Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem. In: 2012
IEEE International Conference on Cluster Computing. pp. 10–17. IEEE, Bei-
jing, China (Sep 2012). https://doi.org/10.1109/CLUSTER.2012.18, http://

ieeexplore.ieee.org/document/6337851/
17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis

Using Mixed-Integer Linear Programming. In: Wu, C.K., Yung, M., Lin, D. (eds.)
Information Security and Cryptology, vol. 7537, pp. 57–76. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7 5,
http://link.springer.com/10.1007/978-3-642-34704-7_5

18. Nicky, M., Bart, P.: Towards Finding Optimal Differential Characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
https://eprint.iacr.org/2013/328

19. Nilanjan, D., Ashrujit, G., Debdeep, M., Sikhar, P., Stjepan, P., Ra-
jat, S.: TRIFLE (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
20. NIST: Lightweight Cryptography, Round-1 Candidates (Apr 2019), https://csrc.

nist.gov/projects/lightweight-cryptography/round-1-candidates
21. NIST: Round 1 Lightweight Cryptography | Official Comments - TRIFLE (2019),

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/official-comments/TRIFLE-official-comment.pdf
22. NVIDIA: CUDA C Programming Guide Version 9.0 (Oct 2019), https://docs.

nvidia.com/cuda/cuda-c-programming-guide/
23. Padua, D. (ed.): Encyclopedia of Parallel Computing. Springer US, Boston, MA

(2011). https://doi.org/10.1007/978-0-387-09766-4, http://link.springer.com/

10.1007/978-0-387-09766-4

https://doi.org/10.1007/978-3-030-23696-0_14
http://link.springer.com/10.1007/978-3-030-23696-0_14
http://link.springer.com/10.1007/978-3-030-23696-0_14
https://eprint.iacr.org/2019/727.pdf
https://doi.org/10.1007/3-540-46416-6_2
http://link.springer.com/10.1007/3-540-46416-6_2
http://link.springer.com/10.1007/3-540-46416-6_2
https://doi.org/10.1109/IPDPSW.2012.219
http://ieeexplore.ieee.org/document/6270853/
http://ieeexplore.ieee.org/document/6270853/
https://doi.org/10.1007/BFb0053451
http://link.springer.com/10.1007/BFb0053451
http://link.springer.com/10.1007/BFb0053451
https://doi.org/10.1109/CLUSTER.2012.18
http://ieeexplore.ieee.org/document/6337851/
http://ieeexplore.ieee.org/document/6337851/
https://doi.org/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/978-3-642-34704-7_5
https://eprint.iacr.org/2013/328
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-0-387-09766-4

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 25

24. Siwei, S., Lei, H., Meiqin, W., Peng, W., Kexin, Q., Xiaoshuang, M., Danping, S.,
Ling, S., Kai, F.: Towards Finding the Best Characteristics of Some Bit-oriented
Block Ciphers and Automatic Enumeration of (Related-key) Differential and Lin-
ear Characteristics with Predefined Properties (2014)

25. Song, L., Huang, Z., Yang, Q.: Automatic Differential Analysis of ARX Block
Ciphers with Application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.)
Information Security and Privacy, vol. 9723, pp. 379–394. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0 24, http://
link.springer.com/10.1007/978-3-319-40367-0_24

26. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic Security Evaluation of Block
Ciphers with S-bP Structures Against Related-Key Differential Attacks. In: Lin,
D., Xu, S., Yung, M. (eds.) Information Security and Cryptology, vol. 8567, pp. 39–
51. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-
3-319-12087-4 3, http://link.springer.com/10.1007/978-3-319-12087-4_3

https://doi.org/10.1007/978-3-319-40367-0_24
http://link.springer.com/10.1007/978-3-319-40367-0_24
http://link.springer.com/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-319-12087-4_3
https://doi.org/10.1007/978-3-319-12087-4_3
http://link.springer.com/10.1007/978-3-319-12087-4_3

	Automated Search for Block Cipher Differentials: A GPU-Accelerated Branch-and-Bound Algorithm

