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Abstract. In the current designs of OSN with a central provider, users’
read and write requests over the shared data (e.g., Facebook wall or a
group page) are handled via a central OSN provider. However, such cen-
tralization comes with view consistency issues where a corrupted provider
may serve users with different views of the shared data e.g., by adding,
dropping or reordering posts. Integrita provides a data-sharing platform
that empowers view consistency relying on N federated servers whose
N − 1 can be malicious and colluding. Users are guaranteed that the
servers cannot show divergence view of the shared data (e.g., posts of
the group page) to the users (e.g., group members) without being de-
tected. Unlike the state-of-the-art, Integrita enables detection of incon-
sistency neither by using storage inefficient data replication solution nor
by requiring users to exchange their views out of the band. Every user,
without relying on the presence of other users, can verify any server-
side equivocation regarding her performed operation. We introduce and
achieve a new level of view consistency called q-detectable consistency
in which any inconsistency between users’ view cannot remain unde-
tected for more than q posts. The data-sharing platform of Integrita
advances the centralized and distributed counterparts by improving the
view-consistency and storage overhead (by the factor of 1

N
where N is the

number of the servers), respectively. Nevertheless, concerning per server
storage overhead and cross-server communication, Integrita’s overhead
is the minimum among all its counterparts.
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Malicious, Shared Data, Collaborative Data Sharing, Integrity, History Integrity.

1 Introduction

OSNs enable various methods of data sharing like via users’ personal walls or
social groups. Using the personal wall, a user may share her personal information
(e.g., thoughts, images, and videos), with the social connections she authorizes
on the OSN, i.e., the friends or followers. In addition to the user being able
to continuously update its wall information, her friends or followers may also
update her wall by adding post to it e.g., birthday messages, and commenting.
A similar data-sharing paradigm appears in the context of social networking
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groups like Facebook groups where the members of the group can jointly update
the content of the group page by inserting posts.

In the current designs of OSN with a central provider, users’ read and write
requests over the shared data (being a wall or a group page) is sent to the central
OSN server who authorizes the request and acts accordingly. Users’ interaction
with OSN provider is based on trust that is the server processes the requests
honestly and according to the designated instructions. However, in the current
practice of OSNs, rather than trust, no technique is deployed to enforce such
trustworthy behavior of the OSN server. A corrupted server may add arbitrary
content to the shared data and make users accept them as authentic data or hide
some posts from some users. As a historical example, in 2012, several bloggers
claimed that Sina Weibo, a Chinese OSN, aimed to practice censorship by serving
different views of the walls to their followers via hiding some of their posts [9].
Given such historical incidents, it is vital to tackle view consistency of the object
with a practical solution rather than trusting the service provider.

To formalize the problem of view consistency, we will use the term shared
object to indicate a collaborative data-sharing environment (such as a Facebook-
like wall or a group-page) on which a set of users are authorized to perform
read and write operation. We denote the shared object by D. Each object is
comprised of smaller units called post which have content and an author. Similar
to Frientegrity [8], we assume posts are uploaded to the object one after another
hence no concurrency will happen in users write operations. We denote the
kth version of D by Dk = {post1, · · · , postk} namely, an ordered sequence of k
posts. Likewise, the view of a user u toward the ith version of D is comprised
of a sequence of i posts seen by that user i.e., V iewui = {post′1. · · · post′i}. The
view consistency concerns two aspects of users’ views. First, to ensure that the
corrupted storage provider cannot forge any post i.e., all the post′j ∈ V iewui
are issued by authorized users. This can be immediately addressed by deploying
digital signatures. The second aspect regards the history integrity of an object
D which is less recognized and studied in the literature. This second property
assures that the view of all the users (obtained through their interaction with
the corrupted provider) contains an identical and intact sequence of posts i.e.,
no post is dropped or misplaced. More formally, for the ith version of object,
for every authorized user u and for all j ∈ [1, i], post′j is equal to postj where
post′j ∈ V iewui , and postj ∈ Di.

Related Work: The view consistency problem is addressed in the literature
by two types of solutions: communication-based solutions which are sought by
the centralized architectures, and replication-based solutions deployed by the
distributed designs. We elaborate on each solution type next.

In a centralized architecture with non-communicating users, the best achiev-
able level of view consistency is fork consistency [30], first defined by [20].
The fork-consistency is a weaker form of view-consistency in which a corrupted
provider is able to split users into disjoint sets (to fork them) and serve each set
with a distinct view though the provider is forced to serve each set with a consis-
tent view of the operations performed by the users of the same set. Identification
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of the forked views can only happen through users’ communication. That is users
must regularly communicate their views of the object (e.g., a wall) with all the
other authorized users (e.g., friends) to catch any view inconsistency. This ap-
proach would not be practical considering that a user of an OSN like Facebook
has 338 friends on the average1. Hence, each user needs to communicate with
almost 338*338= 114244 other users to monitor the view consistency of her wall
and her friends’ walls. Addressing view consistency using communication-based
solution is sought in the context of secure OSNs [8, 10], and cloud computing [5,
4, 19, 2].

The replication-based solutions are deployed in peer-to-peer OSNs [22] (as
a distributed OSN), Authenticated data structures (ADS) [11, 12, 24, 28, 13, 23]
as well as Byzantine fault-tolerant protocols [17, 6]. The idea is to designate
multiple entities for the storage of the object and let all the read and write
operations happen through all of them. In specific, the shared object (or some
authenticated-metadata associated with it) must be replicated on f + 1 entities
considering f of them may act maliciously. Having only one honest repository
suffices to always retrieve the intact content of the object. Replication based
solutions are not efficient concerning the storage overhead since f extra copies
of the object must be stored in the OSN.

Integrita: In Integrita, we aim to achieve the best of both aforementioned
solutions: a method to achieve view consistency which is replication-free as well
as communication-free, and an approach where users do not have to communi-
cate their views out-of-band. In particular, N federated servers run by multiple
authorities are utilized, and the storage of shared object is split among them
(rather than replicated). Each server gets to serve only a part of the shared ob-
ject which has no overlap with the parts stored by other servers. This way, we
cope with the storage overhead imposed by replication-based proposals as only
one instance of the shared object (and its associated meta-data) is maintained
in the entire design. We let servers be malicious/Byzantine entities who may act
arbitrarily, collude, compromise the view consistency by dropping, tampering
with, and forging posts. Nonetheless, our approach guarantees that as long as
one server does not collude with the other servers, the view consistency is pre-
served. We assume that users shall act honestly and tend to achieve a consistent
view. A similar assumption is sought in prior studies [7] as well. Note that in
Integrita, we are not concerned about the privacy of the posts; one can address
it using the well-practiced techniques like encryption [1, 16].

Integrita provides the following features.

• q-Detectable-Consistency: In Integrita, we introduce a new level of view
consistency called q-Detectable-Consistency in which the views of users to-
ward the object (i.e., wall) cannot diverge for more than q sequence of posts
without detection. That is, if a user uploads a post, either her post correctly
becomes a part of the shared object and being seen consistently by all the
other users, or she can catch any inconsistency within the next q posts. The

1 https://www.brandwatch.com/blog/facebook-statistics/
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value of q depends on the total number of servers and the number of posts on
the shared object at the time of write operation. A thorough analysis of this
relation is provided in Section 3.3. Moreover, we provide a formal definition
of q-detectable consistency together with a security proof in Section 4.1.

• Communication-free: In contrast to the fork-based systems, our fork de-
tection mechanism relies neither on the users’ collaboration in sharing their
views in each operation nor an out-of-band communication. Every user is
able to verify any server-side equivocation regarding her performed opera-
tion, alone (without relying on the presence of other users).

• Replication-free: Our solution for view consistency is storage efficient as
we do not replicate the shared object over all the servers. That is, one copy
of the object is present in the entire system and each server retains only
(an identical) portion of it. Our numerical analysis asserts that by using
Integrita, an OSN like Facebook with 2.3 billion monthly active users 2 saves
up to 2344 Terabyte storage per year (deploying 20 servers) compared to the
replication-based approach.

Note that each of the N storage providers is modeled as a data-center that
would take care of a portion of the data assigned to it. While Integrita does
not depend on data replication to achieve view consistency, this does not
contradict with the replication of data for the sake of availability. Namely,
each data-center shall deploy its replication mechanism to maintain the avail-
ability of the data assigned to it. However, due to Integrita, the amount of
data assigned to each data-center is 1

N of the data that would be otherwise
assigned by using a replication-based solution.

• Efficient verification: In Integrita, each read and write operation is asso-
ciated with a proof of correctness which must be verified by the user. While
the creation and transmission of proof in Integrita are handled in a dis-
tributed fashion, resultant overhead for users and the servers concerning the
amount of data transmission, the communication and computation complex-
ity is identical to the centralized fork-consistent counterparts [9, 10] (while
Integrita enforces a higher level of consistency). In Section 4, we further
discuss that distributing the storage among multiple servers not only does
not degrade the experience of user’s interaction with the system concerning
the performance but also lowers the computational and storage overhead on
each server (compared to both centralized design and the replication-based
proposals).

• Cross-server Communication-free: While the storage of the shared ob-
ject is distributed among N servers, servers do not need to communicate or
to coordinate to resolve the users’ read and write operations. Instead, all the
communication happens solely between the users and the servers.

2 https://www.statista.com/statistics/264810/number-of-monthly-active-Facebook-
users-worldwide/



Integrita: Protecting View-Consistency in OSNs with Federated Servers 5

2 System Model

2.1 Model

Integrita is comprised of N OSN servers denoted by S1,...,SN (each operated
by a distinct authority), a set of users U1, ..., UT with read/write access to a
shared object that is stored at the servers side. We assume all the users have
an identical read/write access, though one can enforce more fine-grained access
control using the technique proposed by [9]. The N servers are responsible to
store the objects, serve the users’ read and write requests.

The shared object is comprised of an ordered sequence of posts as well as is
associated with an authenticated data structure that is to be kept at the servers’
side. The storage of ADS and the object are divided among the servers where
each server only holds a portion. This way, we avoid the space inefficiency of the
replication by trading the strong consistency with the q-detectable consistency
(in which the inconsistency may happen but would not last for more than q posts
i.e., the inconsistency is detectable). Hence only one copy of the object and the
associated ADS exist in the entire system.

To monitor the trustworthiness of servers in serving all the object posts
consistently to every authorized user, namely, preserving view consistency, each
user maintains a local data structure that mirrors the state of that object at the
time of reading/writing. Each time that the user reads the object, she has to
check whether her local state is consistent with the current state of the object.
To ensure q-detectable consistency, users also need to audit their updates on the
profile at a certain point after their write operation to ensure that the update
has become accessible to all the other users.

2.2 Security Goal

The security goal of Integrita is to achieve q-detectable consistency in which
users are able to verify any server-side equivocation regarding their performed
operation alone and without relying on the presence of other users. In other
words, in a q-detectable consistent system, any inconsistency between users’
views cannot remain undetected for more than q posts.

2.3 Adversarial Model

The servers are untrusted hence may act maliciously to compromise the integrity
of profile history. This includes dropping a post, reordering posts, and showing
users a different subset of posts. We assume that out of N servers, at least one
server does not conspire with the rest of the servers. We treat confidentiality as
an orthogonal issue to be addressed by encrypting the content of posts. Thus,
our sole objective is protecting the users’ view consistency.
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3 Integrita System Design

In Integrita, we make use of an authenticated data structure called history tree
to represent the shared object and to enable verifiable write and read operation
for the users. That is, each read and write operation is associated with a proof
through which the user can verify the authenticity of the operation result. The
details of object representation is provided in Section 3.1. Representing a shared
object using a history tree does not suffice to provide view consistency. We further
discuss in Section 3.2 how to distribute the storage of shared object among N
servers.

3.1 Shared object representation

The shared object D is treated as an ordered sequence of posts D =
{post1, ..., postM}. Each post shall be signed by its issuing user and can con-
tain any type of data e.g., text or image. Concerning privacy, one can assume
the content is encrypted and the decryption key is provided to all the other
users.

The shared object is additionally attached to an authenticated data structure
called history tree which is initially introduced by [7]. A history tree is an append-
only data structure modeled by a variant of the Merkle hash tree. In Integrita,
the leaves of the tree hold the hash of each post posti. The intermediate nodes
and root node store the hash of their children. In such a structure, the root
essentially covers the entire content of the tree. The new posts can freely be
added as the leaf nodes to the right side of the tree. For each newly added post,
the value of intermediate nodes and the root shall be recalculated. A sample of
history tree for a shared object D with 4 posts is provided in Figure 1. Figure
2 represents the same tree after the insertion of post5. We use the term of Tree
digest or TD for short to refer to the history tree root and we write TDi to
indicate the content of the root after insertion of ith post. We refer to the shared
object with i posts as the ith version of the shared object .

The history tree exhibits the following properties that are fundamental inef-
ficiently preserving view consistency.

– Every tree digest TDj uniquely defines a distinct ordered sequence of j
posts. That is, for two identical sets of posts each with a different order e.g.,
D3 = {post1, post2, post3} and D′3 = {post2, post1, post3}, their associated
tree digests TD3 and TD′3 end up completely different. This is due to collision
resistant property of the underlying hash function.

– Proof of membership: The occurrence of a particular post posti at position
i in a tree digest TDj where i <= j is efficiently verifiable in O(log(j)). The
proof of membership includes the sequence of values stored at the siblings
of the nodes (indicating whether it is a left or right sibling) on the path
from the leaf node storing posti to the root TDj . Given the proof, one
can recompute the root as TD′j and compare against TDj . For example, as

shown in Figure 3, to prove that TD4 contains post3 as its 3rd post, the
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ℎ"
= H(p:LM")

ℎ-
= K(;:LM-)

K(ℎ"||ℎ-)

ℎ.
= K(;:LM.)

K(ℎ.||ℎ8)

K(K(ℎ"| ℎ- ||K(ℎ.||ℎ8))

ℎ8
= K(;:LM8)

Fig. 1. A history tree constructed for the object with 4 posts.

h"
= H(post")

h-
= H(post-)

H(h"||h-)

h.
= H(post.)

H(h.||h8)

H(H(h"| h- ||H(h.||h8))

h8
= H(post8)

hX
= H(postX) ⊥

TDX = H(H(H(h"| h- ||H(h.||h8)) ||H(H hX ))

H(hX) ⊥

H(H hX )

Fig. 2. The tree of Figure 1 after the insertion of post5.
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proof includes h3, h4, H(h1||h2) and H(H(h5)). The tree digest TD′5 can
be reconstructed recursively from the values included in the proof. If the
computed value TD′5 and the given tree digest TD5 match, then post3 is the
3rd post of the object .

H(h"||h-)

h.

= H(post.)

H(h.||h8)

TD8 = H(H(h"| h- ||H(h.||h8))

h8

= H(post8)

Fig. 3. The membership proof of post3 for version 4th of the shared object .

– Incremental Proof: Given two different tree digests TDi and TDj of the same
shared object , where i < j, one can check whether the two tree digests make
consistent claim about the past posts namely, whether TDi and TDj share
the same history regarding post1, · · · , posti. The incremental proof between
version 2nd and version 5th of a shared object is shown in Figure 4. Let TD′2
indicate the tree digests computed using the given proof. If TD′2 = TD2

then the incremental proof asserts the consistency of TD2 and TD5.

3.2 Distributed storage of the shared object

For the distributed storage of the shared object and its associated history tree,
we proceed as follows. First, we define an insertion path of post i to be nodes
of history tree whose hash values get altered while inserting post i to the tree.
Figure 5 illustrates the insertion path of posts 1− 4 each with a different color.
Ii,j refers to the jth node at level i. Since Merkle trees support logarithmic path
lengths from the root to the leaves, the insertion path of ith post will consist of
dlog(i)e + 1 nodes. For example, the insertion path post1 is comprised of only
one node I1,1 whereas the insertion path post2 consists of two nodes I1,2 and
I2,1.
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h"
= H(post")

h-
= H(post-)

H(h"||h-) H(h.||h8)

H(H(h"| h- ||H(h.||h8))

hX
= H(postX) ⊥

TDX = H(H(H(h"| h- ||H(h.||h8)) ||H(H hX ))

H(hX) ⊥

H(H hX )

Fig. 4. The incremental proof of the 2nd version of the shared object to the 5th version.
The solid rectangles represent the proof. The gray parts are computable given the proof
parts.

1

ℎ"
= H(post")

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2|| ⊥)

,(,(ℎ"| ℎ+ ||,(ℎ2|| ⊥))

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2||ℎ4)

,(,(ℎ"| ℎ+ ||,(ℎ2||ℎ4))

ℎ4
= ,(-./04)

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

Insertion of post" Insertion of post+

Insertion of post2 Insertion of post4

Fig. 5. Insertion path of post1, post2, post3, and post4. Each insertion path indicated
by a distinct color.
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Note that insertion paths of post3 and post4 have two nodes in common
namely, I2,2 and I3,1. However, the value of each of these nodes at the time
of insertion of post3 and post4 are different e.g., I2,2, on the insertion path of
post3 contains H(h3|| ⊥) whereas its value changes to H(h3||h4) after insertion
of post4. Following this intuition, in Integrita, we treat each of these nodes
separately and address them based on their location on the insertion path of
each post. That is, each node is addressed with a pair of integers (i, l) as Ni,l
where i indicates post number and l stands for the level of node on the insertion
path. The history tree of Figure 5 under the new addressing is demonstrated
in Figure 6. Under the new addressing, node I2,2 corresponds to N3,2 and N4,2

indicating its distinct values at the insertion of post3 and post4.

2

ℎ"
= H(post")

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2|| ⊥)

,(,(ℎ"| ℎ+ ||,(ℎ2|| ⊥))

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2||ℎ4)

,(,(ℎ"| ℎ+ ||,(ℎ2||ℎ4))

ℎ4
= ,(-./04)

="," =+,"

=+,+

=4,"

=4,+

=4,2

=2,"

=2,+

=2,2

Insertion of post" Insertion of post+

Insertion of post2 Insertion of post4

Fig. 6. Insertion path of post1, post2, post3, and post4. Each insertion path indicated
by a distinct color. Each node is addressed with a pair of integers (i, l) as Ni,l where i
indicates post number and l stands for the level of node on the insertion path.

We further define a labeling function L to convert these pairs to a distinct
numerical value. L : {1, ...,M} × {1, ..., log(M)} → {0, 1}∗ is a deterministic
labeling function which receives the pair of (i, l) as defined above and returns
back an integer label as given in Equation 1. We labeled nodes of Figure 6 and
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showed the result in Figure 7. We write Ni,l and NL(i,l), interchangeably, e.g.,
N4,2 and N8 refer to the same node i.e., N4,2 = N8 = H(h3||h4).

L(i, l) = l +

i−1∑
j=1

(dlog(j)e+ 1) (1)

ℎ"
= H(post")

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

> 1,1 = 1 > 2,1 = 2

> 2,2 = 3

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2|| ⊥)

,(,(ℎ"| ℎ+ ||,(ℎ2|| ⊥))

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2||ℎ4)

,(,(ℎ"| ℎ+ ||,(ℎ2||ℎ4))

ℎ4
= ,(-./04)

> 3,1 = 4

> 3,2 = 5

> 3,3 = 6

> 4,1 = 7

> 4,2 = 8

> 4,3 = 9

Insertion of post" Insertion of post+

Insertion of post2 Insertion of post4

Fig. 7. The labeling of insertion path of post1, post2, post3, and post4 using the labeling
function L. Each insertion path indicated by a distinct color. The label of each node
is indicated above it.

Given the above labeling mechanism, the storage of each labeled node shall
be assigned to a distinct server circularly. For this, we define a function F that
receives the label of the node as label and returns the index of the server which
is responsible for that node. N is the total number of servers.

F (i, l) = [L(i, l) mod N ] + 1 (2)

For example, in a system with 3 servers, the storage of N3, N6, N9, · · · are
given to the first server S1. Nodes N1, N4, N7, · · · are given to S2 whereas S3 gets
to serve N2, N5, N8, · · · . Say it differently, the assignment of nodes to the servers
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follow a circular pattern where {N1 → S1, N2 → S2, N3 → S3, N4 → S1, N5 →
S2, N6 → S3, · · · }, → indicates the assignment. In section 5, we discuss how
we enforce q-detectable-consistency using the circular distribution of storage of
history tree among the servers.

Following our labeling method, we define and distinguish three types of nodes
of the history tree.

• Tree digest: The root of tree after insertion of each post is called tree digest.
In figure 6, nodes N1,1, N2,2, N3,3, N4,3 all represent the tree digests which
are roots of the tree at the insertion time of post1, post2, post3, and post4,
respectively. Given a post number i and the level of node on the insertion
path as l, one can identify whether the node is tree digest if Equation 3
holds:

l = dlog(i)e+ 1 (3)

• Full node: A full node is a node whose left and right sub-trees are full i.e.,
insertion of further posts will not alter the value of a full node. A node on the
lth level of insertion path of ith post is full if the following relation (Equation
4) is met:

i mod 2l−1 = 0 (4)

In Figure 6, nodes N1,1, N2,1, N3,1, N4,1, N4,2 and N4,3 are all full.
• Temporary node: Nodes whose left or right sub-trees are not full are called

temporary node. We call them temporary since the insertion of further posts
will change their hash values. For example, nodes N3,3 and N3,2 in Figure 6
are temporary as there is an empty node in their right sub-trees correspond-
ing to post4. In general, Ni,l is a temporary node if Equation 5 holds:

i mod 2l−1 6= 0 (5)

The content of a temporary node can be reconstructed given the value of the
highest full node in its left and its right sub-trees. For example, as shown in
Figure 7, the node N5 as a temporary node can be reconstructed using the
highest full node of its left sub-tree which is N4 and the highest full node in
its right sub-tree which is ⊥. Likewise, the content of N6 can be correctly
recreated using N3 and its highest full node at its right sub-tree which is N4

i.e., N6 = H(N3||N5) = H(N3||H(N4|| ⊥)). Due to this property, the stor-
age servers of temporary nodes will not save their hash values. Instead, the
responsible servers just maintain some state information about the inserted
post (see section 3.3).

Fetching proofs in a distributed manner: In Integrita, there is no central
entity holding a global view of the shared object and its history tree. As such,
dislike the centralized system where the server would create the membership
and incremental proofs on its own, in Integrita, the user herself is responsible
to determine the nodes on the proof path (using the labeling algorithm given in
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Equation 1) and their associated storage providers (using Equation 2) and fetch
the hash values. Once hashes are fetched, the user can check the correctness of
the proof as normal.

For the ease of explanation, we define the following function

{(SF (p,l), (p, l))} = ProofPath(v,R = {i, · · · , j}) (6)

that receives a version number v of the shared object , and a set R = {i, · · · , j} of
a range of post indices. The function returns a set of pairs (SF (p,l), (p, l)) where
Np,l is a node holding a value of the membership proof of {posti, · · · , postj}
and SF (p,l) is the index of the corresponding storage provider. For example, one
may call ProofPath(7, {5, 6}) to find out the nodes located on the membership
proof of post5 and post6 with respect to the version 7th of the shared object . The
proof, as illustrated in Figure 9, includes the values of N9, N10, N14, and N18

and their corresponding storage servers S1, S2, S3, and S4. Note that since the
temporary nodes are not saved in the system, the proof includes N18 instead of
N19 which is a temporary node; given N18 the calculation of N19 is immediate.
As we stated before, for a temporary node, its highest full node in its right and
left sub-trees shall be fetched instead.

Note that an incremental proof between ith and jth version of the history tree
involves the membership proof of posti and postj . Thus, the function ProofPath
can be also used to find the nodes and the servers holding values of incremental
proof. For example, finding the nodes on the incremental proof between 2nd and
5th version of the object requires a call to ProofPath(5, {2, 5}).

We additionally consider the existence of the following two functions that
shall be run by the users:

• True, False ← INCR.V F (TDi, TDj , proof): Given two tree digests TDj

and TDk where i < j it verifies whether proof is a correct incremental proof
between TDi and TDj . We write TDi → TDj to indicate that there exists an
incremental proof for which INCR.V F (TDi, TDj , proof)) returns True.

• True, Fale ← MEMBERSHIP.V F (TDj , i, post
′

i, proof)): Given
proof , the function checks whether the object with tree digest TDj

has post′i as the ith post. This function can further accept multiple

posts MEMBERSHIP.V F (TDj , {i, · · · , k}, {post
′

i, · · · , post
′

k}, proof))
and checks their memberships with respect to TDj . We write
posti ∈ TDj to indicate that there exists a membership proof for
which MEMBERSHIP.V F (TDj , i, posti, proof)) returns True.

3.3 Construction

Authorized users (with read and write access to the shared object) are associ-
ated with a signature key pair. FList = {(Uj , vkUj )}j∈[1,T ] shall contain the
username Uj and the verification key vkUj of each user. T is the total number of
authorized users. FList is publicly available to the servers and the authorized
users. Also, posts on the object are all encrypted using an encryption key ek. The
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Fig. 8. Version 7th of the shared object . The full nodes as well as the nodes on the
insertion path of the last post i.e., N18, N19, N20, N21 are shown.
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Fig. 9. Nodes located on the membership proof of 5th post concerning the 7th version
of the shared object . The solid rectangles represent the nodes included in the proof.
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corresponding decryption key is given to the authorized users. Note that for the
sake of simplicity, we assume that the exchange of FList and the encryption key
pair among the users happens out of band, however, one may use the method
proposed by [9] to further outsource the storage of FList and management of
users access to the servers side. Also, for the ease of explanation, we assume that
the set of authorized users is static which can be extended to a dynamic version
by deploying the proposal of [9].

Each server has a signature key pair and a unique index in the range of [1, N ].
Servers publicize the ordered list SList = {Si}i=1:N where each server Si’s index
and verification key is accessible through Si.index and Si.vk, respectively. For
simplicity, we assume that the index of each server corresponds to its position
in the list i.e., Si.index = i. Besides, the definition of the hash function H to be
used in the history tree is publicly available. Each server also sets up a database
DB to store the parts of shared object and the history tree which is responsible
for. Also, each server keeps track of the label of the last seen node as a tuple of
(p, l), where p indicates the post number and l is the level of the node, in a local
variable Status which gets updated once a write operation takes place at that
server.

Servers are accessible to the users through three different function calls
Write, Read, and GetStatus. Users communicate with servers utilizing these
function calls to handle their read and write requests. Namely, users interact
with the servers through four protocols Create object, Update Status, Read, and
Write. We consider an authenticated channel between users and servers. We
elaborate on the function calls and protocols below.

Throughout our description, we distinguish between the data generated or
operation performed by a server and a user using S and U subscript. That is, we
write σUi to indicate a signature generated by the ith user. Likewise, SignUi(.),
and V erifyUi(.) mean the execution of Sign and V erify algorithms using the
signature key and verification key of ith user, respectively. Following the same
pattern, we will have σSi , SignSi(.), and V erifySi(.) for the ith server.

Server-side function calls: Each server is available to the users through
three function calls Write, Read, and GetStatus that are explained below.

1. Sj.Write(Ui, (p, l), in = (Np,l, post, σUi)): User Ui calls this method to
upload the tuple in = (Np,l, post, σUi) to be recorded for the node at the
lth level of the insertion path of pth post. Np,l refers to the hash value of
the node in the history tree. post carries the content of a post and σUi is a
user-generated signature. Depending on the type of node i.e., tree digest, full
or temporary, one or all of these fields might be empty. If the inserted node
is a leaf node, then it is associated with the content of a post i.e., post and
a user-side signature σUi over Np,l||p. Likewise, the tree digests should be
associated with the user-side signature. However, for the temporary nodes,
all the fields of in are empty.
The details of Write procedure is shown in Algorithm 1. Firstly, the server
needs to check whether the write operation is coming from an authorized
user (Ui ∈ FList ), the server is the corresponding storage provider of the
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Algorithm 1 Sj .Write(Ui, (p, l) , in = (Np,l, post, σUi))

1: if Ui ∈ FList AND F (p, l) = Sj .index AND F (p, l) −
F (Sj .Status.p, Sj .Status.l)=N then

2: if Np,l is a leaf node AND (H(post) 6= Np,l OR V erifyUi( Np,l||p, σUi) 6=
accept) then

3: Return Not Verified
4: end if
5: if Np,l is a tree digest AND V erifyUi( Np,l, σUi) 6= accept then
6: Return Not Verified
7: end if
8: Insert (Ui, (p, l), in) into DB
9: if Sj .Status.p 6= p then

10: Remove the user signature σUi ∀ TDi ∈ Sj .DB \ TD1

11: end if
12: Sj .Status=(p, l);
13: if Np,l is a tree digest then
14: Return Signsj (Np,l)
15: else
16: Return accept
17: end if
18: Return Res
19: end if

intended node (F (p, l) = Sj .index), and if the node is the next node that the
server is expected to receive (i.e., F (p, l)−F (Sj .Status.p, Sj .Status.l)=N);
Note that servers hold Status variable to keep track of their last seen post
in the system. The last equality check is correct since the storage assignment
of nodes to the servers is circular hence the labels of two consecutive nodes
received by a server are N distant. If all the checks passed correctly, the
server proceeds as below. If the node is a leaf node or a tree digest (line 2
and line 4), then the server must authenticate the user-side signature (lines
2-7). Upon successful verification, the server inserts the tuple in into the
DB (line 8). Also, the server can remove all the user side signatures for the
tree digests TDi which refer to prior posts except the first post (line 9-11).
This removal has a significant impact on the storage complexity where at
any point in time there will be N signed tree digests saved in the system
(rather than all of the signatures of the tree digests). Note that if the node
is a temporary node then no data will be recorded for it (as in is empty)).
The server updates its Status variable (line 12). If the inserted node is a
tree digest, the server must sign the node (lines 13-15) and responds to the
user accordingly. Otherwise, the server only acknowledges the success of the
write operation (lines 16-18).

2. Sj.Read(p, l): Algorithm 2 demonstrates the read procedure. This function
receives the index of the node in the history tree i.e., p as the post number
and l as the level of the node in the insertion path of pth post. The server
checks whether it is responsible for the storage of the requested node i.e.,
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Algorithm 2 Sj .Read(Ui, p, l)

Output: (record = (Ui, (p, l), (Np,l, post, σUk ), σSj )
1: if Ui /∈ FList OR F (p, l) 6= Sj .index then
2: Return ⊥
3: end if
4: record = DB.get(p, l)
5: Parse record as (∗, (p, l), Np,l, ∗, ∗)
6: if Np,l is tree digest then
7: σSj = SignSj (Np,l)
8: else
9: σSj =⊥

10: end if
11: Return (record, σSj )

Algorithm 3 Sj .GetStatus ()

1: Return Sj .Status

Np,l (line 1). If not, it returns ⊥ (line 2). Otherwise, the server retrieves the
corresponding record from DB (lines 4-5). Note that as we discussed in the
Sj .Write algorithm, depending on the type of requested node some or all
of the entries (Np,l, post, σ) might be empty. If the requested node is a tree
digest, then the server generates a signature over Np,l (lines 6-10). Finally,
the server sends the record and the signature (if any) to the user (line 11).

3. Sj.GetStatus(): The server sends its Status to the user (Algorithm 3).

User-side Protocols:
Create object : This protocol aims to initialize the share object by the insertion
of its first post and then to communicate the first tree digest TD1 with the
authorized users. The content of the first post must be uniquely representative
for the object e.g., the name of the group page together with its creation date.
As such, given the first tree digest of the shared object , users can distinguish
between different shared object s (e.g., different group pages). We assume one of
the authorized users Ui e.g., the owner of a wall or the admin of a Facebook-like
group page will run this protocol. The input of the user to this protocol is a
post. The user contacts the server SF (1,1) who is responsible for the first post
and calls its Write function for (Ui, (1, 1), (H(post||1), post, SignUi(H(post||1)).
As the result, user receives a signature σSF (1,1)

over the inserted value TD1 =
H(post||1) from the server. Note that, the hash value H(post||1) corresponds to
the N1,1 = TD1.

The admin then communicates TD1 with all the authorized users in FList.
Each user initializes a local variable Status for the shared object which is the
tuple of the following format Status = (v, TDv, σ) where v reflects the last
version of shred object seen by the user, TDv is the corresponding tree digest
and σ is a server-side signature of the TDv. Each user sets the Status variable
to (1, TD1, σSF (1,1)

).
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Update Status: This protocol, as demonstrated in Figure 10, is run between
a user and the N servers through which the user aims to find the index of the
latest post uploaded on the object , to fetch the corresponding tree digest, and
check its consistency against her local Status variable. As such, the user collects
the Status value of all the servers via their GetStatus function call (line 1).
The largest Status value indicates the latest post index i.e., last. If the label of
last nodes seen by the servers differ in more than N (N is the total number of
servers), then inconsistency is detected (lines 2-3). This is because servers get to
serve nodes in a circular manner, hence, the difference between the labels of the
nodes seen by the servers can be at most N .

Next, the user must check whether her last seen tree digest TDv (stored in
her Status variable) (line 4) is consistent with the given tree digest TDlast. To
do so, the user identifies the nodes holding the path of an incremental proof
between tree digest TDv and TDlast (line 5) and contacts the corresponding
storage servers (lines 6-7). Next, she authenticates the retrieved signatures of
leaf nodes and tree digests (lines 6-12). If the authentication succeeds, then
the user checks whether the fetched proof is a valid incremental proof be-
tween TDv and TDlast (line 13). If verified, the user updates her Status value
to (last, TDlast, σSF (last,dlog(last)e+1)

) (line 14). Note that σSF (last,dlog(last)e+1)
is

fetched as a part of proof .

1. (p5678, l5678) = max{ SB. GetStatus()|i ∈ [1, N]}
2. (pòBô, lòBô) = min{ SB. GetStatus()|i ∈ [1, N]}
3. If (F(p5678, l5678)-F(pòBô, lòBô)>N) 

Inconsistency is detected

4. Retrieve TDO from UB. State
5. path = {(SV D,5 , (p, l))} = ProofPath(last, {v, last})

6. For  (SV(D,5), (p, l)) ∈ path

7. UP, p, l , ND,5, post, σj[ , σö{(õ,|) = SV D,5 . Read(UB, p, l)

8. If ND,5 is a leaf node AND (ND,5 ≠ H post OR Verifyj[ ND,5||p, σj[ == False)

9. Inconsistency is detected

10. If ND,5 is a tree digest AND (Verifyj[ ND,5, σj[ == False)

11. Inconsistency is detected

12. proof. insert ND,5
13. If (INCR.VF(TDO, TD5678, proof)==False) An inconsistency is detected

14. UB. state = (last, TD5678, σö{(|}~�, |ÉÑ |}~� ÄÅ)
)

UB

Sû∈[%,ü]

Fig. 10. Update Status protocol. The arrows indicate users interaction with servers.

Read: During the Read protocol as shown in Figure 11, the user reads a certain
range R = [x, y] of posts i.e., postx, · · · , posty of the shared object (line 1).
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For this, the user first runs the UpdateStatus protocol and updates her Status
variable (line 2). Next, she specifies the storage servers holding the nodes on the
membership proof path of posti∈R (line 3). She contacts the servers and fetches
the required data (lines 4-11). The fetched tree digest and leaf nodes should
be appropriately signed by the issuing users (lines 6-9). Once the signatures
are verified, the user verifies the correctness of membership proofs of the posts
against TDlast (line 12). If the result of membership proof is false then a view
inconsistency is detected (line 13).

1. Select a range R = [x, y]
2. Run Update Status and fetch TD5678
3. path = {(SV(D,5), (p, l))} = ProofPath(last, R)

4. For  (SV(D,5), (p, l)) ∈ path

5. UP, p, l , ND,5, post, σj[ ,∗ = SV D,5 . Read(UB, p, l)

6. If ND,5 is a leaf node AND (ND,5 ≠ H post OR Verifyj[ ND,5||p, σj[ == False)

7. Inconsistency is detected

8. If ND,5 is a tree digest AND (Verifyj[ ND,5, σj[ == False)

9. Inconsistency is detected

10. proof. insert p, l , ND,5

11. Posts. insert(post)

12. If(MEMBERSHIP. VF TD5678, R, Posts, proof ≠True)

13. Inconsistency is detected

UB

Sû∈[%,ü]

Fig. 11. Read protocol. The arrows indicate the user’s interaction with servers.

Write: In this protocol, illustrated in Figure 12, a user interacts with N servers
to insert her post to the object . User initially runs Update Status protocol to
fetch TDlast corresponding to the latest version of the object (line 1).

The user Ui crafts the content of her post (line 2) and signs it (line 3). She
identifies the nodes on the insertion path of her post (line 5) and then fetches the
values from the corresponding storage servers (lines 6-10). Next, she recomputes
the hash values of intermediate nodes on the insertion path of her post (line
11). She submits the hash values to the corresponding servers by invoking their
Write function (lines 12-16). For the leaf node, the user submits the hash value
Nlast+1,1 together with the content of the post post and a signature σ (line
13). For the full node, the value of the node is sent to the corresponding server
(line 14) whereas the storage server of the temporary node just gets informed
about the insertion of the new post (line 15). If any of the servers respond by
reject, then inconsistency is detected (line 17). The storage provider of the tree
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digest i.e., Npc,lC returns a signature (line 18). The user authenticates the given
signature and updates her Status accordingly (lines 16-17).

1. Run Update Status and fetch TD5678
2. post: Enc°P(Content)
3. σ = SignjR H post ||last + 1

4. p¢=last+1	l¢= log last +1
5. path = {(SV D,5 , (p, l))} = ProofPath(p¢, p¢)

6. For  (SV(D,5), (p, l)) ∈ path

7. UP, p, l , ND,5, post, σj[ ,∗ = SV D,5 . Read UB, p, l

8. If ND,5 is a leaf node AND (ND,5 ≠ H post OR Verifyj[ ND,5||p, σj[ == False)

9. Inconsistency is detected

10. proof. insert((p, l), ND,5, post, σj[ )

11. Using proof, recalculate the insertion path ND§,5∈[%,5§]
12. For ND,5 ∈ ND§,% ⋯ND§,5§•%
13. If ND,5 is a leaf node, v= ND,5, post, σ

14. If ND,5 is a tree digest, v = (ND,5, ⊥, SignjR ND,5 ) 

15. If ND,5 is a full node, v = (ND,5, ⊥, ⊥) 

16. If ND,5 is a temporary node,  v = (⊥, ⊥, ⊥)

17. Res = SV D,5 .Write UB, p, l, v

18. If Res==Reject then Inconsistency is detected

19. σ7{ õ§,|§
= SV D§,5§ .Write UB, p¢, l¢, ND§,5§

20. If Verify7{ õ§,|§
ND§,5§, σ7{ õ§,|§

== True

21. UB. state = (ND§,5§, σ7{ õ§,|§
)

UB

Sû∈[%,ü]

Fig. 12. Write protocol. The arrows indicate the user’s interaction with servers.

Audit: As we discussed before, each user is responsible to ensure that her post
is correctly inserted to the object and is visible to all the other users. As such,
every write operation of ith post must be followed by a call to the UpdateStatus
at i+qth version of the object . That is, once the user uploads a post to the shared
object , she must check the status of the shared object when q more posts are
uploaded on top of her post. If the execution of UpdateStatus at i+qth version of
object concludes successfully, then the user ensures that her post is consistently
visible to all the other users. Otherwise, an inconsistency is detected.

Audit Threshold: The value of q is a function of object version i (the index of
inserted post) and the number of servers N as shown in Equation 7. We refer to
q as audit threshold i.e., a threshold for the number of posts that a user needs
to wait to be inserted on top of her post to ensure that her post is consistently
visible to all the users.
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Q(i,N) = min(q) s.t.
∑
j=0:q

dlog(i+ j)e+ 1 ≥ N (7)

As a concrete example, assume a system with 8 servers i.e., N = 8. A user
who inserts the second post i.e., i = 2 shall execute UpdateStatus after the
insertion of Q(2, 8) = 2 more posts on the object i.e., at the 4th version of the
object . If the Update Status protocol does not end successfully, then there is
a view inconsistency e.g., servers attempted to drop her post or replace with
another post.

We give some intuitions into why auditing the object after Q(i,N) posts will
result in achieving q-detectable consistency. In section 5, we will provide a formal
security definition for a q-detectable consistent system together with solid proof
as to how Integrita satisfies q-detectable consistency relying on our proposed
auditing strategy.

For the insertion of each post i, servers that are located on the insertion path
will be informed about the insertion of that new post regardless of the type of
nodes they are responsible for (see Figure 12). Recall that we assume at least
one of the servers is honest. We use the term of frozen post for a post whose part
of the insertion path gets to be served by the honest server by frozen post. It is
named frozen since due to the presence of the honest server, no other post with
the same index as the frozen post will exist; the honest server will not accept the
insertion of two posts with the same index (as indicated in line 2 of Algorithm
1). This implies that for the frozen post with the index of f , there would be only
one tree digest TDf in the system which represents a unique history (sequence
of posts) of the object . We call a tree digest corresponding to a frozen post as
frozen tree digest. All the other tree digest TDj created as the result of further
write operations j > f will comply with the history that TDf represents (this is
due to the incremental proof check in the Step 11 of the Update Status protocol).
Thus, if a post i where i < f belongs to the sequence of posts that a frozen tree
digest TDf represents then it will certainly belong to all the future versions of
the object (again due to the incremental proof check in the Step 11 of the Update
Status protocol). Thus, to ensure view consistency, the user needs to perform
a consistency check between the tree digest at the time of insertion of her post
and the very next frozen tree digest. To determine the index of the next frozen
tree digest, we need to know the index of the honest server. However, there is
no presumption about which server will act honestly. As such, after insertion
of each post i the user shall wait for q many posts to be inserted as the result
of which all the servers get contacted at least once. As the storage of nodes is
assigned to the servers under a circular pattern, if the sum of the length of the
insertion path of the next q posts exceeds N , it means that all the N servers,
including the honest server whose index is unknown, are contacted at least once.
Equation 7 calculates q i.e., the total number of posts (inserted after ith post)
whose insertion paths lengths on aggregate exceeds N . Recall that the number
of nodes located on the insertion path of jth post is dlog(j)e + 1 which means
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dlog(j)e + 1 distinct servers get contacted as the result of insertion of the jth

post.
Analysis of Audit Threshold Figure 13 shows the audit threshold com-

puted based on function Q(i,N) under different number of servers N and post
number i. The audit threshold for a particular post number will increase with the
number of servers e.g., the threshold audit for post number 65 for N = 8, 16, 24,
and 32 are 0, 1, 2 and 3 respectively.

After a certain version of object , every inserted post is a frozen one since all
the servers get contacted as the insertion of each post. Indeed, the object enters
into its strong consistent version where no fork can happen in users’ views. We
call that version of the object as transition point. For a given N , its transition
point is computed as given in Equation 8.

TP (N) = 2N−2 + 1 (8)

For example, with N = 8, strong consistency starts at version 65 whereas
with N = 16 the transition point is 16385. Thus the higher the number of servers
the later the object enters its strong consistency version. The transition points
of the different numbers of servers (1-20) are illustrated in Figure 14.

4 Complexity and Performance

In this section, we analyze the asymptotic performance of Integrita with respect
to the storage overhead (section 4.1), communication round and communication
complexity (section 4.2) for both servers and users.

4.1 Storage Overhead

User: Users have to store constant amount of data as for their Status variable.
Server: Servers are responsible to store the object’s posts and its associated
history tree i.e., the full nodes, the tree digests, and the leaves.

hSize · |L|+ hSize · |F |+ hSize · |T − F |+ SSize · |L|+ SSize · |T | (9)

An object with M posts consists of M leaves, and M full nodes and M
tree digests. However, out of M tree digests, some of them overlap with the
full nodes hence are already saved in the system. Indeed, out of M tree digests
(for M posts), log(M) many of them associated with post indices 20, 21, 22,...,
2log(M)) are full nodes, hence, servers the number of tree digests to be stored by
the servers will be M − log(M) (rather than M). Additionally, every leaf node
is attached to a user-side signature, thus, M signatures shall be maintained by
the servers. Also, for an object with M posts, O(N) many signed tree digests
are stored by the servers which result in O(N) signatures.

As such, the total amount of storage spent by the N servers is given in
Equation 10 which is of O(M).

hSize·( M +M︸ ︷︷ ︸
leaves and full nodes

+

tree digests that are not full nodes︷ ︸︸ ︷
M − log(M) )+SSize·(M+N) (10)
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Fig. 13. The Audit Threshold for various number of servers each demonstrated by a
different diagram. The x axis represents the index of post whereas the y axis shows the
audit threshold computed based on function Q(i,N) given in Equation 7.
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Fig. 14. The Transition point for various number of servers as defined in Equation 8.
The x axis represents the number of servers whereas the y axis shows the the logarithm
of the transition point.
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Design Asymptotic Overhead Concrete total overhead Concrete overhead per server Consistency level

Centralized hSize · (2 ·M) + SSize ·M 124TB 124TB Fork-consistency

Replication-based N · [hSize · (2 ·M) + SSize ·M ] 2488TB 2488TB Strong consistency

Integrita hSize · (3M − Log(M)) + SSize · (M +N) 143TB 7.1TB q-detectable consistency

Table 1. Storage overhead of Integrita vs related work. N : number of servers. M :
number of posts on the object. SSize: The size of each signature in bit length. hSize:
the bit-length of hash output.

Related Work: In a replication-based solution, one needs to copy the history
tree (of 2M nodes) as well as the signed leaves of the history tree (i.e., M
signatures) over N servers. Thus, the storage overhead for such design would be
N · [hSize · (2 ·M) +SSize ·M ]. In the centralized systems, the server stores the
history tree (With 2 ·M nodes) together with its user-side authenticated leaves
(i.e., M signatures) which results in hSize · (2 ·M) + SSize ·M overhead.

Table 1 summarizes the comparison of the storage overhead of Integrita with
the centralized and the replication-based solutions. The concrete overhead is
measured for annual storage consumption of a social network like Facebook, for
walls of its 2.41 billion monthly active users3 each wall containing 1241 posts (per
year) 4. We deploy SHA-3 as the hash function with a 512-bit output length and
RSA signature scheme with a 2048-bit signature length. The number of servers
N is set to 20.

4.2 Round Complexity and Communication Complexity

In this section, we analyze the round complexity as well as the communication
complexity i.e., the number of bits communicated between parties during the
protocol. We consider each communication round to be a sent and a receive
operation. If multiple rounds can be done concurrently (they are independent),
then we count them as one round. The results are summarized in Table 2.

– Update Status: In the first round, the user contacts all the N servers to get
their latest Status. Then she performs a consistency proof check between
her local state variable and the latest state of the object. To fetch values
of the incremental proof path, the user contacts with N servers (at most)
and downloads the necessary values concurrently. Thus, the overall round
complexity of Update Status is 2. Likewise, as the result of Update Status,
each server may get contacted twice, once to share its latest status and the
second time when the server may be located on the proof path.
The communication complexity of Update Status is to download the signed
state of servers Si for i ∈ [1, N ] as well as fetching the incremental proof.
The former requires SSzie ·N data transfer whereas the latter involves the
transmission of at most 2 · log(M) hash values (M is the number of object’s

3 https://www.businessinsider.com/facebook-grew-monthly-average-users-in-q1-
2019-4

4 https://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-
stats
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Entity\Overhead Update Status Read Write

User 2 1 2

Servers 2 1 2

(a) Integrita Communication Complexity

Entity\Overhead Update Status Read Write

User SSize · (N + 3) + hSize · 2 · log(M) hSize · (2.log(M) +R) + SSize ·R hSize · 2 · log(M)

Servers SSize+ hSzie · 2·log(M)
N

hSize·(2.log(M)+R)+SSize·R
N

hSize·2·log(M)
N

(b) Integrita Communication Complexity.

Table 2. Communication complexity. N : number of servers. M : number of posts on
the object. SSize: The size of each signature in bit length. hSize: the bit-length of
hash output. R: number of consequitive operations to be read from the object.

posts). The user additionally downloads the user authenticated version of
the last post’s tree digest and leaf node as well as the server-signed version
of the tree digest which adds 3 more SSize to the amount of transferred
data. As such, the communication complexity at the user side is at most
SSize · (N + 3) + hSize · 2.log(M). The average communication complexity

for each server is SSize·(N+3)+hSize·2.log(M)
N ≈ SSize+ hSize·(2·log(M))

N

– Read: Let the object containsM posts, and a user wants to read a consecutive
range R = [i, j] of posts. She has to fetch the membership proof paths
of all the posts from the corresponding servers. The user can connect to
all the servers simultaneously, hence she can perform read in 1 round of
communication. As a result, each server at most gets contacted also once
which results in communication complexity of 1 for each server.

The user downloads R many leaf nodes with their user-side signatures which
requires R · (hSize + SSize) data transmission. The proof path includes
at most 2 · log(M) hash values. On aggregate, user communicates hSize ·
(2.log(M)+R)+SSize ·R bit data. Consequently, the average data transfer

on each server is hSize·(2.log(M)+R)+SSize·R)
N .

– Write: To insert a post to the object, the user needs to fetch the nodes on the
insertion path of her post. This can be handled in a 1 round of communication
with concurrent connections to the servers. Next, the user recomputes the
values for the nodes on the insertion path of her post and upload the new
values to the servers. This also counts as a 1 round of communication. Thus,
in total user performs the write operation in 2 rounds of communications.
Subsequently, servers may get contacted for at most 2 rounds.

From the communication complexity perspective, downloading the insertion
path of the current post requires to download at most 2 · log(M) hash values.
As such, the user-side communication complexity would lead to hSize · 2 ·
log(M) bits. The data transfer at the server-side shall be hSize·2·log(M)

N .
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5 Security

5.1 q-Detectable Consistency and Inconsistency Interval

In a q-detectable consistent system, views of users toward the ith version of a
shared
object is guaranteed to be consistent expect for the last δ posts i.e.,
posti−δ, ..., posti. We use the term inconsistency interval to refer to the range of
the posts i.e., [i− δ, i] where the inconsistency is allowed. The views of users for
any history of
object preceding i− δ version of the
object is guaranteed to be the same. In Integrita, δ is a function of
object version i and the number of servers N and its value is computed using
function ∆(i,N) given in Equation 11.

∆(i,N) = max(q ∈ [0, i]) s.t.
∑
j=0:q

dlog(i− j)e+ 1 ≥ N (11)

As a concrete example, assume a system with 8 servers i.e., N = 8 and two users
looking at the 5th version of the
object, the inconsistency interval is 2 (∆(5, 8) = 2) that is the view
consistency holds for all the posts except the 4th and the 5th post. As
such, the following two views V iew5 = {post1, post2, post3, post4, post5} and
V iew′5 = {post1, post2, post3, post′4, post′5} are q-consistent since the consis-
tency holds for all the posts out of the inconsistency interval. However, the
following two views V iew5 = {post1, post′2, post3, post4, post5} and V iew′5 =
{post1, post′2, post3, post′4, post′5} do not satisfy q-consistency because there is
an inconsistency at the second post which is out of the inconsistency interval.

To capture the notion of q-consistency, we define the following game to be
played between an adversary A and a challenger Chal. The adversary shall
control N − 1 servers whereas the Chal gets to play for authorized users Ui
i ∈ FList and the honest server. We write F to indicate the indices of corrupted
servers and Sh to be the honest server. The adversary can dictate the read and
write operations to be done by particular users. However, it does not have control
over the Audit protocol execution. The challenge for the adversary is to make
two users U and U ′ accept two q-inconsistent views of the ith version of the
object i.e., there is at least one index j /∈ [i−∆(i,N), i] for which U and U ′ read
postj and post′j as the jth post such that postj 6= post′j .
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q-Detectable Consistency Experiment q-Det-Consistency(1λ)

1. The challenger gives the security parameter 1λ to the adversary. The
adversary communicates a set of signature verification keys {vkSi}i∈F
for the servers under its control to the challenger. The challenger
runs the signature key generation algorithm for the honest server
and hands the vkSh to the adversary. Also, the challenger generates
the signature key pairs for the users U1, ..., UT and outputs FList =
{(U1, vkU1

), · · · , (UT , vkUT )} to the adversary.
2. The adversary specifies a user Uj to create the shared object D

through the invocation of Create object protocol.
Steps 3 and 4 can be repeated polynomial times by the adversary.

3. The adversary specifies a user Uj to Write a post on the object D.
Chal runs the Write protocol accordingly. Note that after each write
operation, the challenger shall act upon the Audit protocol.

4. The adversary specifies a range R = [l, r] to be read by a particular
user Ui. Chal runs the Read protocol accordingly.

5. The adversary specifies two users U and U ′, a version number j and
a post index i∗ where i∗ < j − ∆(j,N). The challenger runs Read
protocol for jth post on behalf of U and U ′. A wins if Read protocol
ends successfully for U and U ′ such that the tree digest in the Status
variable of U and U ′ both have index j and posti∗ and post′i∗ be the
posts the U and U ′ read, respectively s.t. posti∗ 6= post′i∗ .

Definition 1. A storage system provides q-detectable consistency for a shared
object if the success probability of adversary in q-Det-Consistency(1λ) experiment
is negligible in the security parameter λ.

Theorem 1. If the deployed signature scheme is existentially unforgeable under
adaptive chosen message attack and the hash function is secure then Integrita
satisfies q-detectable consistency.

Proof Overview: If A wins i.e., U and U ′ read two different post posti∗ 6= post′i∗
where i∗ < j−∆(j,N) this implies that there is a fork in the system where users
are split into two groups depending on whether they are shown posti∗ or post′i∗ .
For both forks to successfully continue till the jth version of the object, each
fork should have a successful chain of write operations from i∗th to jth version
of the object. However, for the frozen postk where i∗ < k < i∗ + Q(i∗, N) < j,
the honest server accepts only one write operation which results in one valid tree
digest hence only one fork will get to grow. For the other fork (namely the second
fork) to grow, the corrupted servers need to bypass the honest server. As such, the
corrupted servers need to convince the users of the second fork that the last post
on the object has an index higher than k so that they won’t attempt insertion
of the kth post. However, this would only happen if the corrupted servers can
generate an authenticated post and tree digest on behalf of an authorized user
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from the second fork. Thus, if B can guess for which authorized user this forgery
takes place, B will exploit this forgery and breaks the unforgeability of the
underlying signature scheme.
Proof: We base our proof over the following lemma that is due to [7].

Lemma 1. If there is a valid incremental proof between two
tree digests TDi and TDj, then for every operation postk where
k < i for which there is a valid membership proof , s.t. True ←
MEMBERSHIP.V F (k, TDi, postk, proof)), and post′k s.t. there is a proof ′

for which True ← MEMBERSHIP.V F (k, TDj , post
′
k, proof)) then postk

must be equal to post′k. Namely, if two tree digests are consistent then they both
represent the same sequence of operations for their shared past [7].

Proof: If there exists an adversary A who wins q-Det-Consistency(1λ) with
non-negligible probability ε then we construct a simulator B who breaks the
underlying signature scheme. The internal code of B is given below. B is given
the security parameter 1λ as well as a signature verification key vk′ from the
signature scheme challenger.

1. The challenger gives the security parameter 1λ to the adversary. The ad-
versary communicates a set of signature verification keys for the corrupted
servers {vkSi}i∈F to the challenger. The challenger runs the signature key
generation algorithm for the honest server and hands the vkSh to the adver-
sary. B selects a random value β ← [1, T ]. B sets the signature verification
key of Uβ to vk′ and for the rest of users generates the signature key pairs
as normal. B sends FList = {(U1, vk1), · · · , (Uβ , vk′), · · · , (UT , vkT )} to the
adversary.

2. The adversary specifies a user Uj to create the shared object D through the
invocation of Create object protocol. If j = β, then to generate required
signatures, B queries the signing oracle of the outside challenger and stores
the set of queried messages and signatures in set QSign. Otherwise, B acts
as in Create object protocol.

3. The adversary specifies a user Uj to write a post on the object D. B runs
the Write protocol accordingly.
First, B runs the Update Status and fetch the latest tree digest TDlast. As
the result of running Update Status, B obtains proof = {(Np,l, post, σUk)}
for some p and l. If there exists a tree digest Nx,y ∈ proof (or a leaf node)
signed by Uβ as σUβ s.t. Nx,y /∈ QSign (or Nx,y||x /∈ QSign) then B outputs
(Nx,y, σUβ ) (or (Nx,y||x,σUβ )) to the outside challenger.
B fetches required nodes for the insertion of the new post as proof =
{(Np,l, post, σUk)}. If there exists a tree digest Nx,y ∈ proof (or a leaf node)
signed by Uβ as σUβ s.t. Nx,y /∈ QSign (or Nx,y||x /∈ QSign) then B outputs
(Nx,y, σUβ ) (or (Nx,y||x,σUβ )) to the outside challenger.
B recalculates the nodes on the insertion path of her post as well as the
tree digest. B signs the leaf node i.e., H(post)||last + 1 and the tree digest
TDlast+1 using the Uj signature key. If Uj == Uβ then B queries the signing
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oracle of the outside challenger and inserts the queried message and the
obtained signature to QSign.
If an inconsistency is detected as the result of Write protocol, B immediately
aborts.
Note that after each write operation, B shall act upon the audit protocol
i.e., B runs the Update Status protocol at the last + Q(last,N) version of
the
object. As the result of running Update Status B obtains proof =
{(Np,l, post, σUk)}. If there exists a tree digest Nx,y ∈ proof (or a leaf node)
signed by Uβ as σUβ s.t. Nx,y /∈ QSign (or Nx,y||x /∈ QSign) then B outputs
(Nx,y, σUβ ) (or (Nx,y||x,σUβ )) to the outside challenger. If any inconsistency
is detected as the result of Update Status, then B aborts.

4. The adversary specifies a range R = [l, r] to be read by a particular user Ui.
B runs the Read protocol accordingly. If an inconsistency is detected as the
result of Read protocol, then B aborts. Otherwise, during the execution of
Read protocol, B obtains proof = {(Np,l, post, σUk)}. If there exists a tree
digest Nx,y ∈ proof (or a leaf node) signed by Uβ as σUβ s.t. Nx,y /∈ QSign
(or Nx,y||x /∈ QSign) then B outputs (Nx,y, σUβ ) (or (Nx,y||x,σUβ )) to the
outside challenger.

5. The adversary specifies two users U and U ′, a version number j and a post
index i∗ where i∗ < j −∆(j,N). B runs Read protocol for U and U ′ sepa-
rately. B acts identically to the step 4 to run the Read protocol. Let TDj

and TD′j indicate the Status variable of U and U ′ after the Read protocol
execution . Also let posti∗ and post′i∗ indicate the read posts for U and U ′. If
posti∗ 6= post′i∗ and Read protocol ends without detecting any inconsistency
for both U and U ′ then B will find a signature forgery as we discuss below.

Note that the inconsistency between posti∗ and post′i∗ means that there will
be two different tree digests TDi∗ (with posti∗ as its i∗th post) and TD′i∗ (with
post′i∗ as its i∗th post). As such, from version i∗ onward, users will be divided
into two groups G and G′ depending on whether they are shown posti∗ (TDi∗) or
post′i∗ (TD′i∗). More precisely, a group G of users whose further Status variables
i.e., TDf where f ≥ i∗ are consistent with TDi∗ i.e., TDi∗ → TDf and the other
group G′ whose further Status variables i.e., TD′f where f ≥ i∗ are consistent
with TD′i∗ i.e., TD′i∗ → TD′f .

Recall that every read and write operation requires the user to run the Update
Status protocol, and to perform an incremental proof check between local Status
variable and the latest state of the system i.e., TDlast. Since users are divided in
two groups G and G′, there will be two separate chains of posts (after i∗th post)
generated by group G and G′ i.e., posti i ∈ [i∗, j] uploaded by group G and post′i
i ∈ [i∗, j] performed by users of group G′. Let assume k ∈ [i∗, i∗ + Q(i,N)] be
the index of the next frozen node (the honest server is the storage server of one
of the nodes on the insertion path of post k). Assume that a user from a group
G attempts the insertion of postk earlier than a user from a group G′. Since the
honest server appears on the insertion path of postk, it gets informed about the
inclusion of kth post and update its Status accordingly. When a user from the
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group G′ holding a state variable TD′i wants to insert post′k, it first runs the
Update Status to fetch the latest version of the
object and perform consistency check between TD′i and the current version of
the
object. During the status update protocol, the adversary may try to act dishon-
estly which we discuss next.

1. The adversary may attempt to send an incorrect Status value to the user
and make her accept a lower version < k of the
object. However, due to the presence of the honest server (who has witnessed
the insertion of postk), the adversary does not succeed as the honest server
will communicate its intact state value i.e., k with the user.

2. The adversary may attempt sending a Status value x where x ≥ k for which
the adversary also needs to come up with a valid tree digest TD′x where
TD′x =⇒ TD′i (TD′i is the status of user while inserting post′k) in order to
pass the Update Status protocol successfully. To come up with a valid TD′x,
the adversary has the following choices:
(a) The adversary may use the tree digest TDx that is signed and generated

by one of the members of the group G. However, any tree digest TDx

generated by a member of group G will be consistent with TDi∗ but not
with TD′i∗ i.e., TDi∗ 6=⇒ TDx. This means that there will be no valid
incremental proof between TD′i∗ and TDx. Thus this choice is absolute.

(b) The other choice for the adversary is to generate a post′x and forge a
signature on H(post′x||x) (the leaf node) on behalf of an authorized user.

(c) The adversary uses postx generated by one of the members of G and
computes the tree digest TD′x accordingly. A also needs to generate a
valid signature over TD′x from one of the authorized users.

This means that for a member of group G′ to accept that the latest version
of
object is x ≥ k and successfully pass the Update Status protocol, the adver-
sary needs to forge a signature on behalf of an authorized user U

′′
either on

the leaf node H(post′x||x) or the tree digest TD′x. Thus, B shall figure out
this forgery while fetching the incremental proof on behalf of a member of
the group G′.

B can win the signature game if the forgery of the adversary is from Uβ .
Recall that the probability of A winning the q-Det-Consistency(1λ) is ε(λ) and
the total number of users i.e., T is a polynomial poly(λ). Thus, we have

Pr[B breaks the signature] = Pr[q-Det-Consistency(1λ) = 1 AND U
′′

= Uβ ]

= Pr[q-Det-Consistency(1λ) = 1|U
′′

= Uβ ] · Pr[U
′′

= Uβ ]

= ε(λ) · 1

T

= ε(λ) · 1

poly(λ)
(12)

if ε(λ) is non-negligible, then B also breaks the signature scheme with non-
negligible probability. This concludes the proof. �
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6 Related Works

The concern of view consistency similarly is investigated in the context of cen-
tralized OSN, peer-to-peer (p2p) OSN, cloud storage, Byzantine fault-tolerant
protocols, and authenticated data structures. In the following, we elaborate on
these proposals and compare them with Integrita.

Centralized OSN: In centralized architecture of OSNs, frientegrity [9] and
SPORC [10] address the view consistency by achieving fork-consistency on a
shared data. In the fork*-consistent system, while a corrupted provider is able
to fork the users into disjoint sets, he is forced to serve each set with a consistent
view of operations performed by the users of the same set. This is enabled since
users embed their views of the object history in each post they insert. Thus,
as soon as the server forks view of two users, he cannot show their operations
to each other without risking detection. Users can also detect the inconsistency
of their views by exchanging them out of the band. The main shortcoming of
fork*-consistent systems is that the server’s equivocation remains undetected till
users happen to contact out of the band. Thus, to ensure view consistency, users
must regularly communicate their views of the shared object. This approach
would not be practical. For example, on Facebook, each user has on the average
338 friends 5 which would all have access to her wall as a shared object. Hence,
each user needs to communicate with almost 338*338= 114244 other users to
monitor the view consistency of her wall and her friends’ walls.

Peer-to-Peer OSN: In a p2p OSN, there is no central server running the
system and instead, the individual users called peers contribute a part of their
computation and storage power to the system. The social networking services
are enabled in a distributed manner relying on shared resources. As such, the
storage of users’ data is also distributed among the existing peers. The view con-
sistency in p2p OSNs is usually addressed through replication or by leveraging
users’ trust. In the latter case, the object owner (e.g., owner of a wall) stores
and serves her wall by herself or replicates on some trusted peers like her friends.
Subsequently, the view consistency is guaranteed due to the trustworthiness of
storage peers [26, 14, 18, 3, 27, 29]. However, if the storage responsibility is spread
over the p2p network and the storing peers are untrusted, then view consistency
is met through replication [22]. In particular, suppose f as the fraction of poten-
tial dishonest peers, the object (or some units of the object like a post) should
be replicated on f + 1 peers to ensure that at least one honest peer is among the
replicas. Each requester reads each post from all the f + 1 replicas and identi-
fies the latest content (e.g., using a version number). However, such a solution
results in storage overhead and communication complexity which grow linearly
by f . Other studies in the context of p2p OSNs also utilize replication but for
the sake of data availability [25, 21, 29]. Namely, the storing nodes are supposed
to be trusted and always serve the intact contents when available.

Byzantine Fault-Tolerant Protocols and Cloud Storages: In BFT
protocols, a service is to be given to a set of clients while the execution of

5 https://www.brandwatch.com/blog/facebook-statistics/
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the service concerning the sequence of requests appears identical to all clients
(and this sequence preserves the temporal order of non-concurrent operations).
Enabling consistency, BFT protocols also seek the replication-based solution
[17, 6] where they deploy several servers each keeping a replica of the state of
the intended service. Byzantine fault-tolerant systems behave correctly when no
more than f out of 3f + 1 replicas fail [17].

Similar to the centralized OSNs, the best level of view consistency in the con-
text of cloud storage is fork-consistency [5, 4, 19, 2, 30] which is due to the pres-
ence of a corrupted service provider and non-communicating users. Addressing
the fork issue, cloud storage platforms utilize replication over multiple servers
[15, 17].

Authenticated Data Structure: In the Authenticated data structures,
a data owner outsources her data to multiple untrusted repositories. The out-
sourced data is modeled by a data structure that enables performing queries on
the data in a verifiable and authenticated manner. Repositories, on behalf of the
data owner, are responsible to answer queries of users on the data structure and
hand them with a proof of the validity of the answer. The same data structure is
replicated over all the repositories and repositories need to keep themselves up-
dated with the data owner in the case of update [11, 12, 24, 28, 23]. As such, one
can assume view consistency of ADSs is guaranteed through replication which
is not storage efficient.

7 Conclusion

In Integrita, we address the view consistency issue in a collaborative data-sharing
environment like Facebook group pages. The shared data called a shared object
is comprised of a sequence of posts which can be generated by any of the au-
thorized users. The view consistency concerns that all the authorized users are
shown the same set of posts and with the intact order. In Integrita, we introduce
a new level of consistency called q-detectable consistency where any inconsistency
between users view cannot remain undetected for more than q posts. Integrita
preserves q-detectable consistency as long as one server does not collude with the
rest of the servers. In Integrita, q is a function of the number of posts uploaded
on the shared object as well as the number of servers. Integrita outperforms
the state of the art in two major directions. First, unlike the replication-based
solutions, Integrita operates only on one instance of the shared object that is
maintained collaboratively by all the servers. As such, Integrita saves 2344 Ter-
abyte of storage annually for an OSN with 2.3 billion users and running on the
federation of 20 servers (i.e., service providers). We enable this by trading the
strong consistency with the q-detectable consistency. Second, in contrast to the
centralized counterparts in which the inconsistency detection relies on the users’
direct communication, Integrita detects any fork in the users’ views regardless
of users direct communication. Nevertheless, distributing the storage of shared
data among multiple servers not only does not degrade the performance of our
design compared to the centralized architecture, but also our complexity analysis
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shows that Integrita performs identically to the centralized architecture concern-
ing the communication and computation both at the user and the server-side.
Also, Integrita reduces the storage overhead per server by a factor of N (N
is the number of servers). Additionally, Integrita does not rely on cross-server
communication in resolving users’ read and write requests.

As our future work, we would extend Integrita to support view-consistency
in the adversarial model where users may also be corrupted.
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