
Integrita: Protecting View-Consistency in Online
Social Network with Federated Servers

Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

Department of Computer Engineering, Koç University, İstanbul, Turkey
{staheri14,akupcu,oozkasap}@ku.edu.tr

Abstract. Current designs of Online Social Networks (OSN) deploy
centralized architecture where a central OSN provider handles all the
users’ read and write requests over the shared data (e.g., Facebook wall
or a group page). The historical incidents demonstrate that such cen-
tralization is leveraged for censorship and violating view consistency;
a corrupted provider deliberately displays different views of the shared
data to the users. Integrita provides a data-sharing mechanism that pro-
tects view consistency by replacing the centralized architecture with the
federated-server model consisting of N malicious providers, N − 1 of
which can be colluding. The state of the shared data is modeled by an
append-only data structure, stored at the servers side, which contains
the history of all the operations performed by the users. The consis-
tency of users’ views towards shared data depends on their accessibility
to the intact log of operations. Integrita guarantees that the servers can-
not manipulate the log without being detected by the users. Unlike the
state-of-the-art, Integrita accomplishes this neither by using storage in-
efficient data replication nor by requiring users to exchange their views.
Every user, without relying on the presence of other users, can verify
whether his operation has been added to the log and is visible to the
rest of the users. We introduce and achieve a new level of view consis-
tency named q-detectable consistency, where any inconsistency between
users’ views cannot remain undetected for more than q operations where
q is a function of the number of the servers. This level of consistency
is stronger than what centralized counterparts offer. Also, our proposal
reduces the storage overhead imposed by replication-based solutions by
the multiplicative factor of 1

N
. Furthermore, the application of Integrita

is not limited to OSNs, and can be integrated into any log-based systems
e.g., versioning control system as well.

Keywords: View consistency, q-Detectable Consistency, Strong Consistency,
Malicious Adversary, Collaborative Data Sharing, History Integrity, Log-based
System.

1 Introduction

Online Social Networks (OSNs) enable various methods of data sharing, e.g.,
via users’ walls or social groups. Using a personal wall, a user may share her

2 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

personal information (e.g., thoughts, images, and videos) with her social con-
nections e.g., friends or followers. The content of the wall can be updated by the
user or her connections e.g., by posting a message on the wall and commenting.
A similar data-sharing paradigm appears in the context of social networking
groups like Facebook groups where the group pages are like a shared board on
which members can post their content.

In the current designs of OSN with a central provider, users read and write
operations over the shared data go through the central OSN server who is sup-
posed to be trusted and serves users as expected. However, in the current practice
of OSNs, rather than trust, no technique is deployed to enforce such trustwor-
thiness of the OSN server. A corrupted server may add arbitrary content to the
shared data and make users accept them as authentic or hide some content from
some users. As a historical example, in 2012, several bloggers claimed that Sina
Weibo, a Chinese OSN, aimed to practice censorship by serving different views
of the walls to their followers via hiding some of their posts [15]. Given such
historical incidents, it is vital to tackle view consistency of the shared data with
a practical solution rather than trusting the service provider.

To formalize the problem of view consistency, we use the term shared ob-
ject to indicate a collaborative data-sharing environment (such as a Facebook-
like wall or a group-page) with a defined set of users with read/write ac-
cess. Users can modify the object by inserting or deleting a post. The cur-
rent content of each object is the result of a sequence of insertion and dele-
tion of posts. For example, the content of a shared object after the follow-
ing operations ∆ = {insert(post1), insert(post2), delete(post1), insert(post3)}
would be {post1, post3}. The view of a user towards an object , at any point in
time, is defined as the sequence of operations seen by that user e.g., view =
{insert(post1), insert(post2)} is the view of a user from ∆ who has not yet
fetched the last two operations. We assume that users perform their operations
sequentially hence no concurrency happens. This assumption has been similarly
sought by Frientegrity [14] which addresses view-consistency in a centralized
OSN. Users are said to have a consistent view of the shared object if the fol-
lowing two conditions are met. First, operations served to the users are only
generated by the authorized users. This can be immediately addressed by de-
ploying digital signatures. The second criteria regards the history integrity of
an object which is less recognized and studied in the literature. That is all
the users get to see an identical and intact log of operations i.e., no opera-
tion is dropped or misplaced. For instance, the following sequence of operations
∆′ = {insert(post1), delete(post1), insert(post3)} is inconsistent w.r.t. ∆ since
insert(post2) is dropped from the original sequence.

Related Work: The view consistency problem is addressed in the literature
by two types of solutions: communication-based solutions which are sought by
the centralized architectures, and replication-based solutions deployed by the
distributed designs. We elaborate on each solution type next.

In a centralized architecture with non-communicating users, the best achiev-
able level of view consistency is fork-consistency [42], first defined by [31]. The

Integrita: Protecting View-Consistency in OSNs with Federated Servers 3

fork-consistency is a weaker form of view-consistency in which a corrupted
provider can split users into disjoint sets (fork them) and serve each set with a
distinct view. However, the provider is forced to serve each set with a consistent
view of the operations performed by the users of the same set. Identification of
the forked views can only happen through users’ communication. That is, the
users must regularly communicate their views of the object (e.g., a wall) with
all the other authorized users (e.g., friends) to catch any inconsistency. This ap-
proach would not be practical considering that a user of an OSN like Facebook
has 338 friends on the average1. Hence, each user needs to communicate with
almost 338*338= 114244 other users to monitor the view consistency of her wall
and her friends’ walls. Addressing view consistency using communication-based
solution is sought in the context of secure OSNs [14, 16], and cloud computing
[6, 5, 30, 3].

The replication-based solutions are deployed in peer-to-peer distributed
OSNs [33], Authenticated Data Structures (ADS) [18, 19, 35, 40, 20, 34], Byzan-
tine fault-tolerant protocols [28, 8] as well as certificate transparency [27, 26].
The idea is to designate multiple entities for the storage of the object and let all
the read and write requests go through all of the storage providers. In specific,
the shared object (or some authenticated-metadata associated with it) must be
replicated on N entities considering N − 1 of them may act maliciously. Hav-
ing only one honest repository suffices to always retrieve the intact content of
the object . Replication-based solutions are not efficient concerning the storage
overhead where N extra copies of the object must be stored in the OSN.

Integrita: In Integrita, we achieve the best of both aforementioned solu-
tions: a method to achieve view consistency which is replication-free as well as
communication-free, i.e., users do not have to directly exchange their views. In-
tegrita utilizes N federated servers (governed by distinct authorities) who might
be malicious/Byzantine; act arbitrarily, collude, and compromise the view con-
sistency by dropping, tampering with, and forging operations. Nonetheless, our
approach guarantees that as long as one server is non-colluding, the view consis-
tency is preserved. We assume that users shall act honestly and tend to achieve
a consistent view. A similar assumption was sought in prior studies [9]. Note
that the sole objective of Integrita is to address view consistency but not data
privacy. One can address it using the well-practiced techniques like encryption
[1, 25]. In summary, Integrita provides the following features.

• q-Detectable-Consistency: Integrita introduces a new level of view con-
sistency called q-Detectable-Consistency where the views of the users toward
the object cannot diverge for more than a sequence of q operations without
being detected. That is, if a user performs an operation e.g., inserts a post,
servers either honestly serve her post to the rest of users, or their misbehav-
ior gets caught by the post owner within the next q operations. q depends on
the number of servers and the number of operations applied on the shared
object . Section 4.5 covers a thorough analysis of this relation. The formal
definition and proof of q-detectable consistency are presented in Section 6.

1 https://www.brandwatch.com/blog/facebook-statistics/

4 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

We also discuss that after a certain number of operations on the object , the
q-detectable consistency level turns to the strong consistency.

• Communication-free: Users do not have to exchange their views of the
shared object to uncover inconsistencies. Instead, each user, independent of
other users, can verify whether her operation is applied on the object (hence
visible to all the other users) or catch the server-side misstep.

• Replication-free: The shared object is not replicated over the servers, in-
stead, the object is partitioned into disjoint sets each resides at one server2.
Our numerical analysis asserts that by using Integrita, an OSN like Facebook
with 2.3 billion monthly active users 3 saves up to 2344 Terabyte storage per
year compared to the replication-based approach (deploying 20 servers). In
our proposed replication-free solution, we trade the strong consistency with
the q-detectable consistency.

• Efficient verification: In Integrita, each read and write request is associ-
ated with a proof of correctness. Due to the lack of a central entity for the
generation of the proof, users have to individually contact servers and con-
struct the proof. Despite this, the overhead of users and servers w.r.t. data
transmission, the communication and computation complexity is identical to
the centralized fork-consistent counterparts [15, 16] (while Integrita enforces
a higher level of consistency).

• Cross-server communication-free: Servers do not need to communicate
or to coordinate to resolve the users’ read and write requests. Instead, all
the communication happens solely between the users and the servers.

2 System Model

Entities: Integrita is comprised of N servers denoted by S1,...,SN (each oper-
ated by a distinct authority so that at least one of them does not collude with the
others) and a set of users U1, ..., UT . The shared object resides at the servers side.
For the sake of simplicity, users are assumed to have identical read/write access,
though, more fine-grained access control can be enforced using the technique
proposed by [15].
Security Goals: The security goal of Integrita is to achieve q-detectable consis-
tency that is any inconsistency between users’ views cannot remain undetected
for more than q operations. A formal definition is provided in section 6.
Adversarial Model. We assume that N − 1 servers are colluding and may
act maliciously by showing users a different subset of operations. On the other

2 Note that each of the N storage providers is modeled as a data-center that would
take care of a portion of the data assigned to it. While Integrita does not depend
on data replication to achieve view consistency, this does not contradict with the
replication of data for the sake of availability. Namely, each data-center shall deploy
its replication mechanism to maintain the availability of the data assigned to it.
However, due to Integrita, the amount of data assigned to each data-center is 1

N
of

the data that would be otherwise assigned by using a replication-based solution.
3 https://www.statista.com/statistics/264810/number-of-monthly-active-Facebook-

users-worldwide/

Integrita: Protecting View-Consistency in OSNs with Federated Servers 5

side, users are honest and tend to achieve a consistent view of the shared object .
The communication channels are authenticated but not secure hence subject to
eavesdropping. Note that data confidentiality is out of the scope of Integrita and
can be addressed by well-studied solutions like encryption.

3 Definitions and Preliminaries

Negligible: A function f is called negligible if for all positive polynomials p,
there exists a constant C such that for every value c > C it holds that f(c) < 1

p(c) .

Signature Scheme A signature scheme [17] Sig consists of three algorithms;
key generation, sign and verify denoted by Sig = (Gen, Sign, V rfy). A pair
of keys (sk, vk) is generated via SGen where sk is the signature key and vk
is the verification key. The signer signs a message m using sk by computing
η = Signsk(m). Given the verification key vk, a receiver of signature runs
V rfyvk(η,m) to verify.

A signature scheme Sig = (Gen, Sign, V rfy) is said to be existentially un-
forgeable under adaptive chosen message attack [17] if ∀ probabilistic polynomial
time adversary A, there exists a negligible function nelg(.) s.t. the following holds
[24]:

Pr[(sk, vk)← Gen(1λ); (m,σ)← ASignsk(.)(vk)

s.t. m /∈ Q and V rfyvk(m,σ) = accept] = negl(λ) (1)

ASignsk(.) indicates that adversary has oracle access to the signature algorithm.
Q indicates the set of adversary’s queries to the signature oracle.
Collision-Resistant Hash Function: A hash function Π = (Gen,H) is
collision-resistant if for all probabilistic polynomial time adversary A, there ex-
ists a negligible function negl(λ) for which the following holds [10]. λ is the
security parameter.

Pr[s← Gen(1λ);A(s) = x, x′|Hs(x) = Hs(x
′) AND x 6= x′] ≤ negl(λ) (2)

History Tree: A history tree [9] is an append-only tamper-evident data struc-
ture modeled by a variant of the Merkle hash tree. The leaves of the tree hold
data items and the intermediate nodes and root node store the hash of their
children. In such a structure, the root essentially covers the entire content of the
tree. New data items can freely be added as the leaf nodes to the right side of
the tree. For each newly added item, the value of intermediate nodes and the
root shall be recalculated. A sample history tree consisting of 4 and 5 data items
(leaves) are demonstrated in Figure 1 and Figure 2, respectively. We use the
term of tree digest or τ to refer to the root of a history tree and we write τi to
indicate version-i tree i.e., the root of the the history tree with i data items. The
history tree exhibits the following properties (that are fundamental in efficiently
preserving view consistency).

6 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

H(H(h1||h2)||H(h3||h4))

H(h1||h2)

h1 h2

H(h3||h4)

h3 h4

Fig. 1. A history tree with 4 leaves. his represent the data items.

H(H(H(h1||h2)||H(h3||h4))||H(H(h5)))

H(H(h1||h2)||H(h3||h4))

H(h1||h2)

h1 h2

H(h3||h4)

h3 h4

H(H(h5)))

H(h5)

h5

Fig. 2. A history tree with 5 leaves. his represent the data items. The sub-trees with
no data item are shown by �.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 7

• Every tree digest τj uniquely defines a distinct ordered sequence of j data
items. That is, the roots of history trees constructed from an identical set
of data items but under different orders, e.g., {h1, h2, h3} and {h2, h1, h3},
would be different. This is because the underlying hash function is collision
resistant.

• Proof of membership: Given a tree with j data items (and the root τj), the
membership of a data item hi at a certain position i (where i <= j) of the
tree is efficiently verifiable in O(log(j)). The proof of membership includes
the sequence of values stored at the siblings of the nodes (indicating whether
it is a left or right sibling) on the path from the leaf node storing hi to the
root τj . Given the proof, one can recompute the root as τ ′j and compare
against τj . For example, as shown in Figure 3, the membership proof of h3
as the 3rd data item of a history tree with tree digest τ4 is h3, h4, H(h1||h2).
To verify the proof, one should reconstruct the tree digest TD′4 recursively
from the values included in the proof. If τ ′4 equals to τ4, the membership
proof is verified.
Throughout the description of the paper, MemVf refers to the function
defined below

True/False = MemV f(τj , {(i, hi), · · · , (k, hk)}, proof)) (3)

MemVf takes a tree digest τj , a set of index and item pairs as
{(i, hi), · · · , (k, hk)}, and a membership proof proof . The function returns
True if the proof can successfully verify the membership of {hi, · · · , hk} for
the given positions {i, · · · , k} of the history tree with tree digest τj . We
also write {hi, · · · , hk} ∈ τj to indicate that there exists a proof for which
MemVf returns True.

• Incremental Proof: Given two tree digest s τi and τj where i < j one can
check whether they share the same history regarding h1, · · · , hi. The incre-
mental proof between version-2 (τ2) and version-5 (τ5) is shown in Figure 4.
Let τ ′2 and τ ′5 indicate the tree digest s computed using the given proof. If
τ ′2 = τ2 and τ ′5 = τ5 then the consistency between τ2 and τ5 is successfully
verified.
Throughout the paper, we consider IncrV f function as defined below [9]

True/False = IncrV f(τi, τj , proof) (4)

It takes two tree digest s τj and τj where i < j, and verifies whether
proof is a correct incremental proof between τi and τj or not. We write
τi =⇒ τj to indicate that there exists an incremental proof for which
IncrV f(τi, τj , proof)) returns True.

4 Integrita System Design

In the current section, we present our solution to address the view consistency
issue in a collaborative data-sharing environment. Recall that the system con-
tains a shared object whose content gets altered by a set of authorized non-
communicating collaborators. The object resides at the servers side.

8 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

H(H(h1||h2))||H(h3||h4))

H(h1||h2) H(h3||h4)

h3 h4

Fig. 3. The membership proof of h3 for version-4 of the history tree. The proof in-
cludes the solid rectangles. The proof includes the solid rectangles. Other hashes can
be derived from their children.

H(H(H(h1||h2))||H(h3||h4))||H(H(h5)))

H(H(h1||h2))||H(h3||h4))

H(h1||h2)

h1 h2

H(h3||h4)

H(H(h5)))

H(h5)

h5

Fig. 4. The incremental proof of the 2nd version of the shared object to the 5th version.
The solid rectangles represent the proof. The gray parts are computable given the proof
parts.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 9

The shared object is comprised of smaller data units called operations. Each
operation may contain an image, text, audio, etc. Users may add or remove
operations. The sequence of users activity (addition or deletion operations) is
recorder in the activity log ∆ = {op1, · · · , opj} where each operation opi∈[1,j]
indicates either a operation insertion or a operation deletion together with the
operation’s content. The activity log has an append-only nature as the operations
only get added but not removed.

Users have consistent view from the shared object if they have access to
the intact activity log. However, due to the servers misbehavior, this may not
be the case. We denote a user’s view by δi which is the sequence of i oper-
ations i.e., δi = {op′1, · · · , op′i}. A view δi is consistent with the activity log
∆ = {op1, · · · opk} (where i <= k) if it is a prefix of the activity log i.e.,
∆ = δi||{opi+1, · · · , opk}. This definition implies the following properties. A
solution for the view consistency issue must satisfy all these three properties
and vise versa.

1. Authenticity: A consistent view contains operations that are made by the
authorized users.

2. Individual view consistency: For a user with a consistent view, her past and
current views should be also consistent i.e., the past view is a prefix of the
current view. To put it formally, for every two views δi and δj of the same
user where i < j, we have δj = δi||δi+1,j where δi+1,j contains the last j − i
activities of the δj .

3. Cross-users view consistency: For a user with a consistent view, her view
at any point in time should share the same history with the view of every
other authorized user. More precisely, consider δAlicei and δBobj (i < j) are

the views of Alice and Bob, two authorized users. It should hold that δBobj =

δAlicei ||δBobi+1,j where δBobi+1,j is the last j − i operations of δBobj .

4.1 Solution Overview

We address the view consistency problem by providing a solution for each of
the aspects enumerated above, namely, authenticity, individual view consistency
and cross-users view consistency.

The authenticity of the log of activities is guaranteed through digital sig-
natures where each operation shall be signed by the user who performs the
operation.

To protect individual view-consistency, we model the activity log by a history
tree where the hashed operations constitute the leaves of the tree. Each user
maintains the tree digest of the history tree as her local Status and keeps
updating it to the latest version after each read and write request. The tree
digest mirrors the content of the activity log in an abstract format. Using her
local Status, each user monitors the consistency of her past and present view by
constantly verifying the result of her read and write request using membership
and incremental proofs.

10 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Tackling cross-user view consistency is beyond the simple deployment of a
history tree. Prior studies utilizing history-tree have shown that users can still
be forked into two disjoint groups and only be served by the operations of users
in their own group in a consistent and verifiable manner [14], hence compromis-
ing cross-user view consistency. In such a situation, unless users communicate
and compare their views, the fork remains undetected [15]. Satisfying cross-user
consistency, namely, preventing and detecting forked views without relying on
users’ communication is one of the core contributions of Integrita. There are two
key methods to our solution for cross-user view consistency.

1. Integrita replaces the central storage of the shared object (that is the major
roadblock for satisfying cross-user view consistency) by a federated server
architecture that deploys multiple independent providers with conflicting
interest (that is at least one of them will not collude with the rest). The
storage of the activity log, which is modeled by a history tree, is parti-
tioned among the servers using an algorithmic approach offered by Integrita.
All the nodes of the history tree namely, tree digest , internal nodes and
leaves, are indexed (using a proposed indexing function) and grouped into
disjoint sets, and each set is assigned to a distinct server. We remark that no
replication takes place. The indexing function is public and users can know
where to locate a particular node of the history tree. To obtain a (mem-
bership/incremental) proof, users identify the nodes along a membership or
incremental proof, then fetch them from the corresponding storage servers.
The distributed storage of nodes of history tree is one of the keys to prevent-
ing malicious servers from forking users’ views without being detected. The
intuition is that when a fork happens, the users under each fork shall receive
membership and incremental proofs that are different from the other fork.
Recall that proofs in a history tree data structure are a subset of tree nodes.
Thus, when a fork is created, users of each fork are handed with different
(inconsistent) values of nodes along the proof paths. However, the storage
of nodes is distributed among N servers which one of them is non-colluding.
Once the users of the forked groups contact the non-colluding server (who is
not involved in the malicious behavior of N − 1 other servers), the server’s
response shall only be consistent with the view of one of those forked groups
but not both. Therefore, the proof for one of the groups fails and the incon-
sistency is revealed. Essentially, the N − 1 malicious servers can fork users’
views for the operations whose membership proofs reside at the malicious
servers (but not the non-colluding server). However, our proposed indexing
algorithm assures that for the nodes along the membership proof of every
sequence of q operations, there will be at least one node that resides at the
non-colluding server. Therefore, no fork can last for more than q consecutive
operations.

2. The distribution of the storage of the activity log alone does not suffice to
achieve a quantifiable and provable level of view-consistency. In fact, despite
the presence of an honest server in every sequence of q operations, yet the
dishonest servers, in particular circumstances which are not avoidable, can

Integrita: Protecting View-Consistency in OSNs with Federated Servers 11

bypass the honest server and make the fork last a bit longer (more than q
operations). They can do so, by exchanging operations i.e., leaf nodes from
one fork to another fork. To mitigate this interchangeability, we propose that
each newly inserted operation (i.e., a leaf) as well as the associated root must
be signed by the user who submits the operation. This way, each leaf is tied
to the resultant tree. Hence, the operations are no longer exchangeable, since
operations and their associated s should be exchanged together. Since the
tree digest of the tree reflects the entire history of the operations, the tree
digest of one fork will not share the same history as the other fork. Subse-
quently, if malicious servers attempt to exchange operations, they fall short
in providing valid incremental proof between two inconsistent tree digest s.
By mitigating the interchangeability of operations, we can provably guaran-
tee that no fork lasts for more than q consecutive operations. Our solution
enjoys another significant property due to which the value of q converges to
1 as the size of activity log grows (an extensive analysis of this feature is
supplied in section 4.5). Having q equal to 1 indicates that no fork lasts for
even 1 operation, thus, the system enters a strong level of consistency.

4.2 Distributed storage of the shared object

In Integrita, we propose a method to divide the storage of the shared object
among N servers in a non-overlapping manner. The details of this method are
described next. We first present our new indexing mechanism for the nodes of
a history tree. Then, we describe how to utilize those indices to distribute the
storage of nodes among the servers.

First, we define the insertion path of operation i to be the nodes of the history
tree whose values get altered while inserting that operation into the tree. Figure
5 illustrates the insertion path of operations 1−4, each with a different color.The
index labels Ii,j indicates the jth node at level i. For a tree with M leaves, i
ranges from 0, for the leaves of the history tree, to dlog(M)e, for the root of the
history tree. Since the history tree supports logarithmic path lengths from the
root to the leaves, the insertion path of the ith operation consists of dlog(i)e+ 1
nodes where the logarithm evaluation is in base 2. For example, the insertion
path of op1 is comprised of only one node I1,1 (dlog(1)e + 1 = 1) whereas the
insertion path op2 consists of two nodes I1,2 and I2,1 (dlog(2)e + 1 = 2). The
insertion paths of distinct operations may overlap e.g., the insertion path of op3
i.e., {I0,3, I1,2, I2,1}, and the insertion path op4 i.e., {I0,4, I1,2, I2,1}, overlap in
I1,2 and I2,1. However, the value of each of these nodes at the time of insertion
of op3 and op4 are different, e.g., I1,2, on the insertion path of op3 contains
H(h3|| ⊥) whereas its value changes to H(h3||h4) after the insertion of op4.

Following the above intuition, in Integrita, we distinguish among different
values of intermediate nodes and address them based on their location on the
insertion path of each operation. That is, each node is addressed with a pair
of integers (p, l) where l indicates the level of a node along the insertion path
and p represents the operation number. Recall that level of a node ranges from
0 for the leaves to dlog(p)e for the root of the tree. We write Np,l to indicate

12 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

h1 = H(op1)

I0,1

H(h1||h2)

I1,1

h1 = H(op1)

I0,1

h2 = H(op2)

I0,2

H(H(h1||h2))||H(h3|| ⊥))

I2,1

H(h1||h2)

I1,1

h1 = H(op1)

I0,1

h2 = H(op2)

I0,2

H(h3|| ⊥)

I1,2

h3 = H(op3)

I0,3

H(H(h1||h2))||H(h3||h4))

I2,1

H(h1||h2)

I1,1

h1 = H(op1)

I0,1

h2 = H(op2)

I0,2

H(h3||h4)

I1,2

h3 = H(op3)

I0,3

h4 = H(op4)

I0,4

Fig. 5. Insertion paths of op1, op2, op3, and op4. Each insertion path is indicated by a
distinct color.

the hash value of the node with address (p, l). Figure 6 demonstrates this new
addressing semantic for operations 1− 4. The insertion paths of op3 and op4 are
{N3,0, N3,1, N3,2} and {N4,0, N4,1, N4,2}, respectively. By contrasting Figure 6
and 5, we see that in the new addressing mode, node I1,2 is given two separate
index labels N3,1 and N4,1, corresponding to the values at the insertion of op3
and op4, respectively.

Following our new addressing mechanism, we define and distinguish three
types of nodes of the history tree.

• Tree digest: The root of the tree after the insertion of each operation is
called the tree digest. In figure 6, nodes N1,0, N2,1, N3,2, N4,2 all represent
the tree digests which are the roots of the tree at the insertion time of
op1, op2, op3, and op4, respectively. A node with the address (p, l) is a tree
digest if Equation 5 holds.

l = dlog(p)e (5)

• Full node: A full node is a node whose left and right sub-trees are full,
i.e., insertion of further operations will not alter the value of a full node. In
Figure 6, the nodes N1,0, N2,0, N3,0, N4,0, N4,1 and N4,2 are full. A node with
the address (p, l) is a full node if Equation 6 is met:

p mod 2l = 0 (6)

• Temporary node: Nodes whose left or right sub-trees are not full are called
temporary nodes. We call them temporary since the insertion of further
operations will change their hash values. For example, nodes N3,2 and N3,1

in Figure 6 are temporary as there is an empty node in their right sub-trees
corresponding to H(op4). In general, Np,l is a temporary node if Equation 7

Integrita: Protecting View-Consistency in OSNs with Federated Servers 13

h1 = H(op1)

N1,0

H(h1||h2)

N2,1

h1 = H(op1) h2 = H(op2)

N2,0

H(H(h1||h2))||H(h3|| ⊥))

N3,2

H(h1||h2)

h1 = H(op1) h2 = H(op2)

H(h3|| ⊥)

N3,1

h3 = H(op3)

N3,0

H(H(h1||h2))||H(h3||h4))

N4,2

H(h1||h2)

h1 = H(op1) h2 = H(op2)

H(h3||h4)

N4,1

h3 = H(op3) h4 = H(op4)

N4,0

Fig. 6. Insertion paths of op1, op2, op3, and op4. Each insertion path is indicated by
a distinct color. Each node is addressed with a pair of integers (p, l) as Np,l where i
indicates the operation number and l stands for the level of node on the insertion path.

holds:

p mod 2l 6= 0 (7)

Assignment of nodes to the servers The index of the storage server of a
node with the address (p, l) is determined by function F defined in Equation
8. N is the total number of servers.

F (p, l) = [L(p, l) mod N] (8)

where L is defined as in Equation 9. Think of L as a deterministic labeling
function that converts node addresses (p, l) to an integer value .

L(p, l) = 1 + l +

i−1∑
j=1

(dlog(j)e+ 1) (9)

For example, in a system with 4 servers, the storage of N1,0, N3,1, N4,2, · · ·
are given to the first server S1. Nodes N2,0, N3,2, · · · are given to S2, S3 gets
to serve N2,1, N4,0 · · · and S4 stores N3,0, N4,1, · · · . This results in two main
observations. First, the assignment of the nodes circulates across the servers
that is {N1,0 → S1, N2,0 → S2, N2,1 → S3, N3,0 → S4, N3,1 → S1, N3,2 →
S2, · · · }, where → indicates the assignment and the pattern of S1, S2, S3, S4

recurs throughout the assignment. The first observation implies the second
observation that is the labels of nodes assigned to each server are N distant.
This is due to the fact that the storage of nodes is assigned to the servers
with a circular pattern hence the labels of two consecutive nodes received by
a server are N distant. For example, consider the sequence of nodes stored

14 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

at server one i.e., N1,0, N3,1, N4,2, · · · whose labels are L(1, 0) = 1, L(3, 1) =
5, L(4, 2) = 9, · · · , respectively; the difference between the label of each node
and its preceding node is N i.e., L(3, 1)− L(1, 0) = 5− 1 = 4 and L(4, 2)−
L(3, 1) = 9 − 5 = 4. In section 6, we discuss how we enforce q-detectable-
consistency using this circular storage distribution.

Fetching proofs in a distributed manner: In Integrita, there is no central
entity holding a global view of the history tree associated with the activity log. As
such, dislike the centralized system where one entity i.e., the server would create
the membership and incremental proofs and shares with users, in Integrita, the
user herself is responsible to determine the nodes along the proof path and fetch
them from the corresponding storage providers (using Equation 8). Once nodes
are fetched, the correctness of the proof can be verified as described in section 3
(more details can be also found in [13, 12]).

Identifying the nodes that are required for a membership or incremental proof
is straightforward and exemplified in section 3. However, due to the storage
efficiency (explained in section 5.1), Integrita makes a subtle change to that
procedure. That is, in Integrita, the nodes of the tree that are temporary (with a
non-full right or left sub-trees) never get stored at the servers side. Instead, if the
value of a temporary node is required as part of a proof, it can be reconstructed
from the full nodes with the highest level in it’s left and it’s right sub-trees. For
example, consider node N5,2 in Figure 7, which is a temporary node. The full
nodes with the highest level in its left and right are N5,0 and ⊥, respectively.
It is easy to verify that N5,2 can be calculated by only having these two values
i.e., N5,2 = H(H(N5,0|| ⊥)|| ⊥). As such, if node N5,2 is needed to construct a
proof, the user should instead fetch N5,0 from its corresponding storage server
i.e., SF (5,0) where F is defined in Equation 8.

N5,3

N4,2

N2,1

N1,0 N2,0

N4,1

N3,0 N4,0

N5,2

N5,1

N5,0 ⊥

⊥

Fig. 7. 5th version of the shared object ’s activity log. The temporary nodes are shown
in red.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 15

4.3 Construction

Integrita consists of four decentralized protocols namely Create object, Update
Status, Read, and Write which are run between users and servers. Through
Create Object protocol, a user initiates the shared object and communicates
necessary information about the object with the authorized users. A user runs
Update Status protocol to fetch the root of the latest version of the history
tree. A user inserts an operation to the history tree through the Write protocol.
Users engage in the Read protocol to read a subset of operations from servers in
a decentralized manner. The communication channel between users and servers
are assumed to be authenticated.

The main protocols of Integrita rely on the following sub-protocols which
are essentially remote procedure calls (RPC) available at each server Sj where
j ∈ [1, N] namely, Sj .Push, Sj .Pull, and Sj .GetStatus. The main protocols are
each a different orchestration of these RPC calls to a subset of storage servers.

Setup Authorized users (with read and write access to the shared object) are
each associated with a signature key pair. FList = {(Uj , vkUj)}j∈[1,T] shall
contain the username Uj and the signature verification key vkUj of each user
where T is the total number of authorized users. FList is publicly available to
the servers and the authorized users. Moreover, the content that users operation
on the object are all encrypted using symmetric key encryption where the key
ek is given to the authorized users. For more fine-grained access control one can
deploy the method proposed by [15]. We assume that users exchange FList and
the encryption key out of band, however, this can be outsourced to the server-
side utilizing the method proposed by [15]. Also, for the ease of explanation,
we assume that the set of authorized users is static which can be extended to a
dynamic version by deploying the proposal of [15].

Each server has a signature key pair and a unique index in the range of
[1, N]. We write Si to indicate the server with index i. Servers publicize the
ordered list SList = {Si}i=1:N where each server Si’s signature verification key
is accessible through Si.vk. Besides, the definition of the hash function H to be
used in the history tree is publicly available. Each server also sets up a database
DB to store the parts of the shared object ’ activity log (history tree) for which
it is responsible. Also, each server has a local Status variable that reflects the
address (p, l) (as demonstrated in Figure 6) of the latest node of the history tree
stored (or seen) by that server.

Notations: Throughout our description, we distinguish between the data
generated or operation performed by a server and a user using S and U subscript.
That is, we write σUi to indicate a signature generated by the ith user. Likewise,
SignUi(.), and V erifyUi(.) mean the execution of Sign and V erify algorithms
using the signature key and verification key of the ith user, respectively. Following
the same pattern, we have σSi , SignSi(.), and V erifySi(.) for the ith server.

16 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

4.4 Server-side Remote Procedure Calls

Each server Sj where j ∈ [1, N] is available to the users through three RPCs
namely, Sj .Push, Sj .Pull, and Sj .GetStatus. During the main protocols, user
may contact any of the servers in order to push or pull a node of the history
tree. Each server has a local Status variable that reflects the address (p, l) of
the latest node of the history tree that is pushed to that server.

1. Sj.Push(Ui, (p, l), in = (Np,l, op, σUi)): The details of the Push RPC is
shown in Algorithm 1. This function is invoked by a user to upload a single
node of the history tree to the corresponding storage server. Ui indicates
the calling user, (p, l) represents the address of the intended node (recall
our addressing convention in section 4.2), and in is the metadata about the
intended node.

Algorithm 1 Sj .Push(Ui, (p, l) , in = (Np,l, op, σUi))

1: if Ui /∈ FList then
2: Return “Reject”

3: if F (p, l) 6= j then
4: Return “Reject”

5: if L(p, l)− L(Sj .Status.p, Sj .Status.l) 6= N then
6: Return “Reject”

7: if Np,l is a leaf node then
8: if H(op) 6= Np,l OR V erifyUi(Np,l||p, σUi) 6= accept then
9: Return “Reject”

10: if Np,l is a tree digest then
11: if V erifyUi(Np,l||p, σUi) 6= accept then
12: Return “Reject”

13: Insert (Ui, (p, l), in) into DB
14: if Sj .Status.p 6= p then
15: Remove the user signature σUi ∀ τi ∈ Sj .DB \ τ1
16: Sj .Status=(p, l);
17: if Np,l is a tree digest then
18: Return SignSj (Np,l||p)
19: else
20: Return “Accept”

Firstly, the server needs to perform several checks:
• The request is issued by an authorized user, which is Ui ∈ FList (lines

1-2).
• The server is responsible for the storage the intended node (lines 3-4).
• The node is the next node that the server expects to receive (lines 5-

6). Each server receives a sequel of nodes whose labels are N distant.
That is, L(p, l) which is the label of the inserted node must equal to
L(Sj .Status.p, Sj .Status.l)+N where F (Sj .Status.p, Sj .Status.l) is the

Integrita: Protecting View-Consistency in OSNs with Federated Servers 17

label of the last seen node by the server. This is due to the fact that the
storage of nodes are assigned to the servers with a circular pattern hence
the labels of two consecutive nodes received by a server are N distant
(see section 4.2).

Once all the checks are passed successfully, the server validates the metadata
in. in has three parts:

• Np,l represents the hash value of the node. This parameter is non-empty
except for the temporary nodes. That is, if the user is pushing a node
with the address of (p, l) that belongs to a temporary node then the user
leaves Np,l empty. Recall from section 4.2 that the temporary nodes are
never saved at the server-side.

• op: This field is non-empty only for the leaf nodes. op represents an oper-
ation of the activity log. The operation op can be deletion or insertion of
a operation e.g., op = Insert||post. Recall that in the history tree of the
activity log, the leaves are the hash of operations. Thus, if the inserted
node is a leaf node then the following should hold Np,l = H(op) (see
Figure 6).

• σUi is the user-generated signature over Np,l||p. This field is set by the
user if the inserted node is a leaf or a tree digest.

The server performs necessary verification over the content of in depending
on the type of the node (lines 7-12). Upon successful verification, the server
inserts the node and the associated metadata i.e., in to the database (line
13).

If the inserted node belongs to an operation that is newer than the last
operation seen by the server (line 14), the server can erase the signatures
that belong to the older tree digests. This will save storage for the server.
Erasing the signatures will not affect the provable view consistency. This is
formally proven in section 6.

The server updates its Status variable (line 16) to reflect the address of the
most recent node. Finally, if the inserted node is a tree digest, the server
must sign the node (lines 17-18) and responds to the user accordingly (this
signature is indeed a commitment from the server on the correct receipt
of the tree digest). Otherwise, the server only acknowledges that the push
operation is done (lines 19-20).

2. Sj.Pull(p, l): Algorithm 2 demonstrates the Pull procedure. This function
gets the address of a node i.e., (p,l) and returns the information associated
with that node. Initially, the server checks whether the calling user is au-
thorized (line 1) as well as whether there is any record associated with that
node in the database (line 3). If any of those fails, the algorithm outputs ⊥
(lines 2 and 4). Otherwise, the server retrieves the record corresponding to
the node from DB (line 5). If the requested node is a tree digest, then the
server generates a signature σSj over Np,l||p (lines 6-7), otherwise leaves σSj
empty (lines 8-9). Finally, the server sends the record and the signature (if
any) to the user (line 10).

18 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Algorithm 2 Sj .Pull(Ui, (p, l))

1: if Ui /∈ FList then
2: Return ⊥
3: if DB.get((p, l)) =⊥ then
4: Return ⊥
5: record = DB.get(p, l)
6: if Np,l is tree digest then
7: σSj = SignSj (Np,l)
8: else
9: σSj =⊥

10: Return (record, σSj)

3. Sj.GetStatus(): Once this procedure is called, the server sends its signed
Status to the user (Algorithm 3).

Algorithm 3 Sj .GetStatus ()

1: σSj = SignSj (Sj .Status)
2: Return (Sj .Status, σSj)

4.5 Main Protocols

Create object : During this protocol, the shared object gets initialized and
the necessary information is communicated among the authorized users. The
protocol is visualized in Figure 8.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 19

Authorized Users Uj Group Administrator Ui SF(1,1)

1.post = Encek(Title||Date||Time)

2.op = insert||post
3.N1,1 = H(op)

4.σUi = SignUi(N1,1||1)

5.SF(1,1).Push(Ui, (1, 1),N1,1, op, σUi)−−−−−−→

7.StatusUi = (1,N1,1, σSF(1,1)
)

6.σSF(1,1)←−−−−−−
8.StatusUi←−−−−−−−

9.StatusUj = StatusUi

Fig. 8. Create object protocol.

Users: One of the authorized users Ui, e.g., the admin of a Facebook-like
group page, runs this protocol. She inserts the very first operation op to the
object ’s activity log. The very first operation is the insertion of the first operation.
The content of the initial operation must uniquely represent the object , e.g., the
title of the group page together with its creation date and time. The group
administrator proceeds as illustrated in steps 1-4 of Figure 8. Next, she submits
N1,1 to the corresponding storage server SF (1,1) by invoking its Push function
(step 5).

Servers: The procedure of the Push function is shown in Algorithm 1 and
discussed in section 4.4. Once the function is executed, and since the attempted
node N1,1 is a tree digest , the server signs N1,1||1 and returns the signature
σF (1,1) back to the user (step 6).

Users: The group administrator updates her own Status (step 7) and also
communicates her Status information with all the authorized users (step 8).
Notice that Status is a local variable comprised of the following components
Status = (v, τv, σ) where v reflects the last version of the shared object seen by
the user, τv is the corresponding tree digest, and σ is the server-side signature
over τv||v. Note that for the initial operation, the group administrator sets the
parameters as follows v = 1, τv = N1,1 and σ = σF (1,1). All the other users
initialize their Status variable according to the group administrator’s (step 9).

Update Status: In this protocol, demonstrated in Figure 9, the user interacts
with N servers to find out and fetch the tree digest corresponding to the latest
version of the activity log. To identify the latest version, one should find the
index of the last operation inserted to the activity log. As such, the user collects

20 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

the Status variable of all the servers by invoking their GetStatus function and
determines the maximum and the minimum node addresses among those (steps
1-2). Identifying the minimum node address helps user to verify the consistency
among the servers outputs. The outputs are consistent if the gap between the
label of the max and min addresses i.e., L(pmax, lmax)−L(pmin, lmin) is at most
N . This constraint is valid since servers get to serve nodes of the activity log
(history tree) in a circular manner, hence, the difference between the labels of the
nodes seen by the servers is upper-bounded byN . If the constraint is satisfied, the
user accepts pmax as the most updated version of the activity log and pulls the
corresponding tree digest from the respective storage server (steps 4-5). Since
user is pulling a tree digest , the output of the Pull invocation will contain two
signatures, one generated by the user (who has generated the pthmax operation),
and the server generated signature (recall Algorithm 2). Accordingly, the user
verifies the associated signatures (steps 6-7). If any failure happens, the user
aborts.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 21

User U Sj∈[1,N]

1. (pmax, lmax) = max
i∈[1,N]

{Si.GetStatus()} ⇐⇒

2. (pmin, lmin) = min
i∈[1,N]

{Si.GetStatus()} ⇐⇒

3. If (L(pmax, lmax)− L(pmin, lmin) >= N) then Abort

4. p∗ = pmax l∗ = dlog(pmax)e+ 1

5. (U′, (p∗, l∗), (τp∗ ,⊥, σU′), σSF(p∗,l∗)) = SF(p∗,l∗).Pull(U, (p∗, l∗)) ⇐⇒

6. If VerifyU′(τp∗ ||p∗, σU′) == False then Abort

7. If VerifySF(p∗,l∗)(τp∗ ||p
∗, σSF(p∗,l∗)) == False then Abort

8.Retrieve τv from U.Status

9. path =Nodes (pi, li) along the incremental proof of τv and τp∗

10. For (pi, li) ∈ path

11. (Uk, (pi, li), (Npi,li , op, σUk), σSF(pi,li)
) = SF(pi,li).Pull(U, pi, li)⇐⇒

12. If Npi,li is a leaf

If VerifyUk(Npi,li ||pi, σUk) == False then Abort

13. proof.insert((pi, li),Npi,li , op)

14. If (IncVrfy(τv, τ
∗, proof) == False) then Abort

15.U.Status = (p∗, τ∗, σSF(p∗,l∗))

Fig. 9. Update Status protocol. The arrows indicate the user’s interaction with the
servers.

Next, user checks whether her local Status variable i.e., τv is consistent with
τp∗ . This can be done through an incremental proof between τv and τp∗ (steps
9-114). To this end, the user identifies the nodes along the incremental proof
(step 9) and downloads them from the corresponding storage servers (step 10-
11). Next, for each node on the path, she authenticates the associated signatures
(step 12) and aborts in case the authentication fails. Once the proof is obtained,
she verifies whether the proof can correctly assert the consistency between τv
and τp∗ (step 14). If the verification does not pass, the user aborts. Otherwise,
she updates her Status value (step 11).

Read: During the Read protocol which is illustrated in Figure 10, the user
reads a certain range R = [x, y] of operations, i.e., opx, · · · , opy, of the activity
log (line 1). At first, the user updates her Status variable through Update Status

22 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

protocol (line 2) to learn the latest version of the activity log. Next, she specifies
the nodes along the membership proofs of the intended operations (line 3) and
contacts the corresponding storage servers to fetch the nodes (lines 4-6). The
leaf nodes of the proof should be appropriately signed by the issuing users (line
7). Also, the user should ensure that a leaf node is the hash of the corresponding
operation (line 8). If any verification fails, the user aborts. Ultimately, the user
verifies the correctness of the membership proofs of the operations against τ∗

(line 10). If the result of the membership proof is false, then the user aborts (line
13).

User U Sj∈[1,N]

1. Select a range R = [x, y]

2.Run Update Status and fetch the latest tree digest τ∗ ⇐⇒
3. path = Nodes (pi, li) along the membership proof of opx · · · opy

4. For (pi, li) ∈ path

5. (Uk, (pi, li), (Npi,li , op, σUk),−) = SF(pi,li).Pull(U, pi, li) ⇐⇒
6. If Npi,li is a leaf

7. If VerifyUk(Npi,li ||pi, σUk) == False then Abort

8. If Npi,li 6= H(op) then Abort

9. proof.insert((pi, li),Npi,li , op)

10. If (MemVrfy(τ∗, {(j,Nj,0)}j∈R, proof) == False) then Abort

Fig. 10. Read protocol. The arrows indicate the user’s interaction with the servers.

Write: In this protocol, illustrated in Figure 11, a user interacts with N servers
to insert her operation to the object . The user initially runs Update Status pro-
tocol to fetch the latest tree digest τ∗ corresponding to the latest version of
the object (line 1) also determines the index of the next operation (line 2).

Integrita: Protecting View-Consistency in OSNs with Federated Servers 23

User U Sj∈[1,N]

1.Run Update Status and fetch (p∗, τ∗, σSF(p∗,dlog(p∗)e)) ⇐⇒
2. pc = p∗ + 1 , lc = dlog(pc)e

3. oppc = Craft the operation

4. σ = Signui(H(oppc)||pc)

5. path = Nodes (pi, li) along the insertion path of oppc and their siblings

6. For (pi, li) ∈ path

7. (Uk, (pi, li), (Npi,li , op, σUk),−) = SF(pi,li).Pull(U, (pi, li)) ⇐⇒
8. If Npi,li is a leaf

9. If VerifyUk(Npi,li ||pi, σUk) == False then Abort

10. If Npi,li 6= H(op) then Abort

11. proof.insert((pi, li),Npi,li , op)

12.Using proof, recalculate the insertion path {Npc,li}li∈[0,lc]
13. For Npc,li ∈ {Npc,0, · · · ,Npc,lc−1}

14. If Npc,li is a leaf node: in = (Npc,li , oppc , σ)

15. If Npc,li is a full node: in = (Npc,li ,⊥,⊥)

16. If Npc,li is a temporary node: in = (⊥,⊥,⊥)

17. Res = SF(pc,li).Push(Ui, (pc, li), in) ⇐⇒

18. If Res == Reject then Abort

19. σSF(pc,lc)
= SF(pc,lc).Push(Ui, (pc, lc), (Npc,lc ,⊥, σ)) ⇐⇒

20. If VerifySF(pc,lc)
(Npc,lc , σSF(pc,lc)

) == False then Abort

21.Ui.Status = (Npc,lc , σSF(pc,lc)
)

Audit Procedure

23.Wait for T operations to be inseterted s.t. T ≥ Q(pc,N)

24.Run Update Status, if Abort occurs then Abort

Fig. 11. Write protocol. The arrows indicate the user’s interaction with the servers.

The user sets her operation (line 3) and signs it (line 4). She identifies the
nodes along the insertion path of her operation together with their siblings (line
5) and then fetches the values from the corresponding storage servers (lines 6-11).
For the leaf nodes, the signature of the issuers (line 9) as well as the computed
hash values (line 10) must be checked. If anything goes wrong, the user aborts.

24 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Next, she recomputes the hash values of the nodes along the insertion path of
her operation (line 12) and then attempts to submit them to the corresponding
servers by invoking their Push function (lines 13-20). She builds the necessary
metadata in for the submission of each node as explained below:

1. If the node is a leaf node (line 14), the user needs to submit the operation
oppc , the hash of operation as well as the signature σ.

2. For the full node (line 15), only the hash value of the node is needed for the
metadata.

3. For a temporary node (line1 16), no metadata is required (all the fields of
in are empty). The corresponding server only gets contacted to be informed
about the insertion of the new operation.

If the response of any of the servers (line 17) is reject (line 18), then inconsistency
is detected and the user aborts. Finally, the user submits the tree digest to the
corresponding server (line 19), obtains the server-side signature, authenticates
the signature (line 20) and updates her Status accordingly (line 21). If the server
signature did not get verified, user aborts.

Audit: As discussed before, each user is responsible to ensure that her op-
eration is correctly inserted to the object and is visible to all the other users.
As such, every write operation must be followed by the audit procedure (lines
23-24) during which the user waits for q or more operations to be inserted into
the object (the value of q is discussed below). Then, she checks whether the tree
digest at version pc is consistent with the tree digest at version pc + q of the
object. She carries out this consistency check by the execution of the update
Status protocol (during which the incremental proof between τpc and τpc+q is
checked). If Update Status terminates successfully, then the user knows that her
operation is consistently visible to all the other users. Otherwise, servers must
have equivocated about the user’s operation which will be caught by the user.

Audit Threshold: The value of q is formulated in Equation 10 and is a function
of the object version v at which the write operation takes place (i.e., v = pc in
Figure 11) and the number of servers N . We refer to q as audit threshold.

Q(v,N) = min(q) s.t.

 q∑
j=0

dlog(v + j)e+ 1 ≥ N

 (10)

As a concrete example, assume a system with N = 8 servers. A user who
inserts the second operation v = 2 shall execute Update Status after the insertion
of Q(2, 8) = 2 more operations into the object , i.e., at the v + q = 2 + 2 = 4th

version of the object . If the Update Status protocol does not end successfully,
then there is a view inconsistency, e.g., servers attempted to drop her operation
or replace it with another one.

Below, we provide intuition as to why auditing the object after Q(p,N) op-
erations will result in achieving q-detectable consistency. Moreover, in section 6,
we provide a formal security definition for a q-detectable consistent system fol-
lowed by a proof asserting that Integrita is q-consistent relying on our proposed
auditing strategy.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 25

For the insertion of each operation i, the servers that are located on the
insertion path will be informed about the insertion regardless of the type of
nodes they are responsible for (see Figure 11, lines 13-19). We assume that at
least one of the servers is honest, as this is a minimal requirement. We call
an operation “frozen” if one or some of the nodes along its insertion path are
assigned to the honest server. It is named frozen since due to the presence of
the honest server, no other operation with the same index will exist; the honest
server will not accept the insertion of two operations with the same index (as
indicated in line 5 of Algorithm 1). This implies that for the frozen operation
with the index of f , there would be only one tree digest τf in the system which
represents a unique history (sequence of operations) of the object . We call a tree
digest corresponding to a frozen operation as frozen tree digest. All the other
tree digests τj created as the result of further write operations j > f will comply
with the history that τf represents (this is due to the incremental proof check
in Step 11 of the Update Status protocol). Thus, if an operation i where i < f
belongs to the sequence of operations that a frozen tree digest τf represents,
then it will certainly belong to all the future versions of the object . Thus, to
ensure view consistency, the user needs to perform a consistency check between
the tree digest at the time of insertion of her operation and the very next frozen
tree digest. To determine the index of the next frozen tree digest, we need to
know the index of the honest server. However, there is no presumption about
which server will act honestly. As such, after insertion of each operation i, the
user shall wait for q many operations to be inserted as the result of which all the
servers get contacted at least once. As the storage of nodes is assigned to the
servers under a circular pattern, if the sum of the length of the insertion path of
the next q operations exceeds N , it means that all the N servers, including the
honest server whose index is unknown, are contacted at least once. Equation 10
calculates q, i.e., the total number of operations (inserted after ith operation)
whose insertion paths’ lengths in total exceeds N . Recall that the number of
nodes located on the insertion path of jth operation is dlog(j)e+ 1 which means
dlog(j)e + 1 distinct servers get contacted as the result of insertion of the jth

operation.

Analysis of Audit Threshold Figure 12 shows the audit threshold com-
puted based on function Q(v,N) (Equation 10) under different number of servers
N and operation number v. The audit threshold for a particular operation num-
ber will increase with the number of servers, e.g., the audit threshold for opera-
tion number 65 for N = 8, 16, 24, and 32 are 0, 1, 2 and 3 respectively.

26 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

0 20 40 60 80 100 120
0

2

4

6

8

10

v: Operation Number

Q
(v

,N
)

N=8

N=12

N=16

N=24

N=32

Fig. 12. The Audit Threshold for various number of servers each demonstrated by a
different color. The x axis represents the index of operation whereas the y axis shows
the audit threshold computed based on function Q(v,N) given in Equation 10.

After a certain version of the object , each inserted operation is a frozen one
since all the servers get contacted along the insertion of each operation. Indeed,
the object enters its strong consistent version where no fork can happen in users’
views. We call that version of the object as the transition point of the object .
For a given N , the transition point is computed based on Equation 11.

TP (N) = 2N−2 + 1 (11)

For example, with N = 8, the strong view consistency starts at version
65, whereas with N = 16 the transition point is 16385. Thus, the higher the
number of servers, the later the object transits to its strong consistent version.
The transition points of the different numbers of servers (1-20) are illustrated in
Figure 13.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 27

0 5 10 15 20
0

5

10

15

20

N:Number of Servers

L
og

2
(T
P

(N
))

Fig. 13. The object ’s transition point for various number of servers as defined in Equa-
tion 11. The x axis represents the number of servers whereas the y axis shows the
binary logarithm of the transition point.

5 Complexity and Performance

In this section, we analyze the asymptotic performance of Integrita with respect
to the storage overhead (Section 5.1), round and communication complexity
(Section 5.2) for both the servers and the users. Throughout this section, we
consider |H| to be the bit-length of hash values whereas |σ| indicates the bit-
length of each signature.

5.1 Storage Complexity

User: Users have to store constant amount of data for their Status variable.
Server: Servers are responsible for storing the object’s posts, and the activity
log. Note that in the history tree representing the activity log, only leaves, full
nodes and tree digest are maintained by the servers but no temporary node.

An activity log with M operations consists of M leaves, M full nodes, and M
tree digests. However, out of M tree digests, some of them overlap with the full
nodes, and hence are already saved in the system. Indeed, out of M tree digests
(for M operations), log(M) many of them (associated with the operations indices
20, 21, 22,..., 2log(M)) are full nodes. Therefore, the total number of full nodes and
tree digests stored is M +M − log(M). Additionally, each leaf node is attached
to a user-side signature, thus, M signatures shall be maintained by the servers
on aggregate. Similarly, tree digests are also signed by the users, though, only
the signature of the O(N) most recent tree digests are kept in the system (lines
14-15 of Algorithm 1).

28 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

As such, the overall storage consumption by the N servers is as shown in
Equation 12 which is of O(M).

|H| · (M︸︷︷︸
leaves

+ M +M − log(M)︸ ︷︷ ︸
tree digests and full nodes

) + |σ| · (M +N) (12)

Comparison with related work: In the replication-based solutions [28,
8, 18, 19, 35, 40, 34], the activity log must be replicated over all the N servers.
The history tree associated with the activity log with M operations has 2M − 1
nodes. Also, all theM leaves are attached to a user-generated signature. Thus the
storage of a single activity log takes up |H|·(2·M−1)+|σ|·M bits. Each server has
one copy of the activity log which on aggregate results in N ·[|H|·(2·M)+|σ|·M]
space complexity for the entire system. On the other side, in the centralized
architectures [15, 16], there is only one central server which holds a single copy
of the activity log which imposes |H| · (2 ·M − 1) + |σ| ·M storage overhead.

Table 1 summarizes the comparison of the storage overhead between Integrita
and the related studies. For the concrete overhead, we consider Facebook walls
as the shared object and the average number of posts on users walls as the total
number of operations in the activity log (though, we believe the true number of
operations including the deletion operations would be higher than the number
of posts). On Facebook, each wall on average has 1241 posts (per year)4. Thus
we set M = 1241. Moreover, the number of monthly active users on Facebook is
approximately 2.41 billion5 which means 2.41 billion walls (activity logs) should
be maintained by the OSN. The values reported in Table 1 is the storage required
for 2.41 billion activity logs each with M = 1241 operations. We assume the
deployment of SHA-3 as the hash function with a 512-bit output length and
RSA signature scheme with a 2048-bit signature length. The number of servers,
i.e., N , is set to 20.

Design Centralized Replication-based Integrita

Asymptotic |H| · (2 ·M − 1) + |σ| ·M N · [|H| · (2 ·M − 1) + |σ| ·M] |H| · (3M − Log(M)) + SSize · (M +N)

Concrete 124TB 2488TB 143TB

Per Server 124TB 2488TB 7.1TB

View Consistency Level Fork-consistency Strong consistency q-detectable consistency

Table 1. Storage overhead of Integrita vs. related work. N : the number of servers. M :
the number of operation in the activity log. |σ| and |H| represent the bit-length of the
signatures and hashed values, respectively.

5.2 Round Complexity and Communication Complexity

In this section, we analyze the round complexity as well as the communication
complexity, i.e., the number of bits communicated between parties during the

4 https://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-
stats

5 https://www.businessinsider.com/facebook-grew-monthly-average-users-in-q1-
2019-4

Integrita: Protecting View-Consistency in OSNs with Federated Servers 29

main protocols. We consider each communication round to be one send and one
receive operation. If multiple rounds can be done concurrently (since they are
independent), then we count them as one round. The results are summarized in
Table 2. M and N stand for the total number of operations in the activity log
and the total number of servers, respectively.

• Update Status: In this protocol as shown in Figure 9, the user communicates
with servers at 3 different steps 1,5, and 11. The result of step 1, where the
user gets the Status of all the servers, is necessary for the next two communi-
cations. Thus, step 1 should precede steps 5 and 11 However, steps 5 and 11
during which the user downloads the tree digest and the incremental proof,
respectively can be executed in parallel. Thus, the overall round complexity
of Update Status is 2 for the users. The same holds for the servers who may
get contacted twice during this protocol, once to share their latest status and
the second time when the server may be holding the tree digest or located
on the proof path.
The communication complexity of Update Status is due to the download of
the signed Status of the servers (step 1) as well as fetching the most recent
tree digest (step 5) and the incremental proof (step 11). The transmis-
sion of Status variables incurs SSzie · N bits data exchange for N server
generated signatures. The response to the pull request of the tree digest
embodies |H|+ 2 ·SSize bits data (the tree digest and two signatures, one
server-generated, and the other user-generated). The incremental proof will
approximately contain log2(M) of tree nodes where 4 of them are leaves.
The metadata associated with these nodes will be log2(M) · |H|+ 4 · SSize
bits (where log2(M) · |H| portion is for the hash values of the nodes
and 4 · SSize correspond to the user signatures for the 4 leaves). Thus,
on aggregate, the communication complexity at the user side is at most
|σ| · (N + 6) + |H| · 2 · log(M). The average communication complexity for

each server is SSize·(N+6)+|H|·2·log(M)
N ≈ SSize+ |H| · 2·log(M)

N .
• Read: During the Read protocol, shown in Figure 10, the user communicates

with the servers at two phases, once at step 2 to fetch the latest tree digest
by executing Update Status protocol and another time at step 5, to pull the
nodes along the membership proofs. The former has the round complexity
of 2 whereas for the latter the user can connect to all the servers simultane-
ously, hence, she can fetch all the nodes in 1 round of communication. The
round complexity can be enhanced further by combining the second round
of Update Status protocol with step 5 of the Read protocol. This is doable
since in both phases the user pulls a set of nodes from the servers where the
indices of nodes are known and independent. Therefore, the overall round
complexity of the Read protocol for the user is 2. Similarly, each server may
get contacted at most 2 times.
To read the range of [i, j] of operations, the user downloads R = j−i+1 many
leaf nodes with their user-side signatures, which requires R · [SSize + |H|]
bits transmission. The membership proof of R operations entails at most
2·log(M) hash values. On aggregate, the user communicates |H|·(2.log(M)+

30 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

Entity\Overhead Update Status Read Write

User 2 2 3

Servers 2 2 3

((a)) Integrita Round Complexity

Entity\Overhead Update Status Read Write

User |σ| · (N + 6) + |H| · 2 · log(M) |σ| ·R+ |H| · (2.log(M) +R) |H| · 3 · log(M)

Servers SSize+ hSzie · 2·log(M)
N

|σ| ·R+ |H|·(2.log(M)+R)
N

|H|·3·log(M)
N

((b)) Integrita Communication Complexity.

Table 2. Communication complexity. N : the number of servers. M : the number of
posts on the object. |σ|: the size of each signature in bit length. |H|: the bit-length of
the hash output. R: the number of consecutive posts to be read from the object.

R)+ |σ| ·R bits data. Consequently, the average data transfer for each server

is |σ| ·R+ |H|·(2.log(M)+R))
N . Note that this is in addition to the data exchange

incurred by the Update Status protocol that is run at the beginning of the
Read protocol.

• Write: At the beginning of this protocol, as illustrated in Figure 11, the user
obtains the latest tree digest via Update Status protocol which imposes
two rounds of communication. Next, at step 7, the user fetches the nodes
on the insertion path of her operation. This can be handled in 1 round of
communication with concurrent connections to the servers. Step 7 can be
merged with the second round of communication in Update Status protocol
since all the nodes fetched at these two phases are independent of each other
can be downloaded concurrently. At steps 17 and 19, the user recomputes
the values for the nodes on the insertion path of her operation and pushes
the new values to the servers. This also counts as 1 round of communication.
Thus, in total, the Write protocol costs 3 rounds of communications for the
user. Subsequently, each server on the average may get involved for at most
3 rounds.
From the communication complexity perspective, the insertion path of the
current operation requires download of at most 2·log(M) hash values whereas
pushing back the updated nodes requires the exchange of |H| · log(M) bits.
As such, the user communicates |H|·3·log(M) bits with the servers. The data

transfer at the server-side, on the average, shall be |H|·3·log(M)
N . Note that

in this calculation we excluded the data exchange incurred by the Update
Status protocol that is run at the beginning of the Write protocol.

6 Security

6.1 q-Detectable View Consistency and Inconsistency Interval

In this section, we provide a different interpretation of q-Detectable view consis-
tency. Recall that we name this level of consistency as q-detectable since servers

Integrita: Protecting View-Consistency in OSNs with Federated Servers 31

misbehavior in perturbing views cannot last for longer than q operations. An-
other way to look at this definition is that in a q-detectable consistent system
where the shared object is in its vth version (v operations are applied to the
activity log), users are guaranteed to have consistent views towards all the op-
erations in the activity log except the last δ operations, i.e., opv−δ, ..., opv. We
use the term inconsistency interval to refer to the range of operations [v − δ, v]
where no guarantee about consistency is in place. The views of the users for any
history of the object preceding the v− δth version of the object is guaranteed to
be the same. In Integrita, δ is a function of the object version v and the number
of servers N , and its value is computed using the function ∆(v,N) formulated
in Equation 13.

∆(v,N) = max(q ∈ [0, v]) s.t.

 q∑
j=0

dlog(v − j)e+ 1 ≥ N

 (13)

As a concrete example, assume a system with N = 8 servers and an object at
its 5th version, the inconsistency interval is 2 (∆(5, 8) = 2), that is, the view
consistency holds for all the operations except the 4th and the 5th operation.
As such, the following two views V iew5 = {op1, op2, op3, op4, op5} and V iew′5 =
{op1, op2, op3, op′4, op′5} are q-consistent since, the consistency holds for all the
operations out of the inconsistency interval. However, the following two views
V iew5 = {op1, op2, op3, op4, op5} and V iew′5 = {op1, op′2, op3, op′4, op′5} do not
satisfy q-consistency because there is an inconsistency at the second operation
which is out of the inconsistency interval.

To capture the notion of q-consistency, we define the following game to be
played between an adversary A and a challenger Chal. The adversary controls
N − 1 servers, whereas the challenger gets to play for the authorized users Ui ∈
FList and the honest server. F indicates the set of indices corresponding to the
corrupted servers and Sh to be the honest server. The adversary can specify a
user to run read or write protocol. The challenge for the adversary is to make
two users U and U ′ accept two q-inconsistent views of the object .

32 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

q-Detectable Consistency Experiment q-Det-Cons(1λ)

1. The challenger gives the security parameter 1λ to the adversary. Next,
the challenger and the adversary exchange the signature verification
keys of the parties they control. The challenger hands in the adver-
sary vkSh and {vkU1

, · · · , vkUT } that are the verification keys of the
honest server and the authorized users, respectively. Likewise, the
adversary delivers a set of signature verification keys {vkSi}i∈F for
the corrupted servers.

2. The adversary designates the group administrator Uj . The challenger
initiates the shared object on behalf of Uj through Create object pro-
tocol.
Steps 3 and 4 can be repeated polynomial times by the adversary, in
any order.

3. The adversary specifies a user Uj to run the Write protocol and
insert an operation op to the object ’s activity log. The content of
op is determined by the adversary. The challenger runs the Write
protocol accordingly. Note that the challenger shall act upon the audit
procedure (which is a subroutine of the Write protocol) without the
adversary’s intervention.

4. The adversary determines a range of operations R = [l, r] to be read
by a particular user Ui. Chal runs the Read protocol accordingly.

5. The adversary specifies two users U and U ′, a version number j, and
the index i∗ of an operation such that i∗ is out of the inconsistency
interval of the jth version of the shared object i.e., i∗ < j −∆(j,N).
The challenger attempts to read the jth operation on behalf of both
U and U ′ via the execution of the Read protocol. A wins if
(a) the Read protocol terminates successfully for both U and U ′ while

the Status variable of both users point to the jth version of the
shared object

(b) and U and U ′ have obtained two different values for the i∗th

operation. That is, U and U ′ have read opi∗ and op′i∗ , respectively
while opi∗ 6= op′i∗ .

Definition 1. A storage system provides q-detectable consistency if the success
probability of any probabilistic polynomial time adversary in the q-Det-Cons(1λ)
experiment is negligible in the security parameter λ.

Theorem 1. If the deployed signature scheme is existentially unforgeable under
adaptive chosen message attack and the hash function is collision-resistant, then
Integrita provides q-detectable consistency.

Proof Overview: Before diving into the full proof, we provide an overview.
The success of adversary indicates that U and U ′ have read two different values
for the i∗ operation where i∗ < j −∆(j,N). Therefore, the system undertook a

Integrita: Protecting View-Consistency in OSNs with Federated Servers 33

fork at the i∗ operation due to which users are split into two groups depending
on whether they are shown opi∗ or op′i∗ . Also, based on step 5.a of the game,
the presence of a fork has stayed unnoticed and continued successfully till the
jth version of the object. This means that each fork should have a successful
chain of write operations from i∗th to jth version of the object. Recall that
within this interval, there is at least one frozen operation (recall that a frozen
operation is the one that the honest server sits on its insertion path). Let k
where i∗ < k < i∗+Q(i∗, N) < j denote the index of that operation. The honest
server accepts only one operation with index k, thus there will be only one valid
tree digest at version k. This further implies that only one fork will get to grow.
For the other fork (namely the second fork) to grow, the corrupted servers need
to bypass the honest server. For this to happen the corrupted servers have two
choices:

• The corrupted servers need to convince the users of the second fork that the
last operation on the object has an index higher than k so that they won’t
attempt insertion of the kth operation. However, this would only happen if
the corrupted servers can generate an authenticated operation and tree digest
on behalf of an authorized user. Thus, if B can guess for which authorized
user this forgery takes place, B will exploit this forgery and breaks the
unforgeability of the underlying signature scheme.
• Alternatively, the corrupted servers can bypass the honest server if they

can successfully convince the users of the second fork to accept τk and opk
(generated by the first fork). This implies that the servers have to craft a
valid incremental proof to τk from an older tree digest seen by the users of
the second fork. Since the Status variable of all the users in the second fork
contains a tree digest that is consistent with τ ′i∗ , a valid crafted incremental
proof would assert that τk is consistent with τ ′i∗ . However, τk is generated by
the users of the first fork and hence complies with the history represented
by τi∗ (but not τ ′i∗). This means that if users of the second fork verify τk as
a valid tree digest then τk must represent two different sequence of posts,
a sequence with opi∗ and the other one with op′i∗ . This indicates that for
an index h where i∗ < h ≤ k the tree digests τh and τ ′h, generated by the
first and second fork, respectively, collide i.e., a collision is found for the
underlying hash function.

Based on the above arguments, breaking the q-detectable consistency is
equivalent to breaking the security of the underlying signature scheme or finding
a collision in the hash function. In the formal proof, that follows, we assume that
the hash function is collision resistant and hence tie the proof to the security of
the signature scheme. The proof leverages the following lemma that is due to
[9].

Lemma 1. If there is a valid incremental proof between two tree digests τi and
τj, then for every operation opk where k < i for which there is a valid membership
proof , s.t. True←MEMBERSHIP.V F (k, τi, opk, proof)), and op′k s.t. there
is a proof ′ for which True ← MEMBERSHIP.V F (k, τj , op

′
k, proof)), then

34 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

opk must be equal to op′k. Namely, if two tree digests are consistent, then they
both represent the same sequence of operations for their shared past [9].

Proof: If there exists an adversary A who wins q-Det-Cons(1λ) with non-
negligible probability ε, then we construct a simulator B who finds a forgery for
the underlying signature scheme. The internal code of B is given below. B is
given the security parameter 1λ as well as a signature verification key vk′ from
the challenger of the signature scheme.

1. B gives the security parameter 1λ to the adversary. B runs the signature key
generation algorithm for the honest server and hands the vkSh to the adver-
sary. B selects a random value β ← [1, T]. B sets the signature verification
key of Uβ to vk′ and for the rest of users generates the signature key pairs
as normal. B sends FList = {(U1, vk1), · · · , (Uβ , vk′), · · · , (UT , vkT)} to the
adversary. The adversary communicates a set of signature verification keys
for the corrupted servers {vkSi}i∈F to B.

2. The adversary specifies a user Uj as the group administrator to initiate the
shared object through the invocation of Create object protocol. The adver-
sary also determines the content of the first post i.e., title, date and time.
The challenger performs as indicated in Figure 8. If the designated group
administrator is β (for which the challenger does not have the signature key)
then to generate the required signatures, B queries the signing oracle of the
signature challenger and stores the set of queried messages and signatures
in QSign set. Otherwise, B acts as in the Create object protocol.

3. The adversary specifies a user Uj to carry out a write operation op on the
object . B runs the Write protocol accordingly.
First, B runs the Update Status and fetches the latest tree digest τp∗ . As
the result of running Update Status, B fetches an incremental proof =
{(Np,l, op, σUk)} for some p and l and k. If there exists a tree digest Np,l ∈
proof or a leaf node signed by Uβ as σUβ s.t. Np,l||p /∈ QSign then B outputs
(Np,l||p,σUβ) to the signature challenger as a forgery.
B fetches the required nodes for the insertion of the new operation as
proof = {(Np,l, op, σUk)}. If there exists a tree digest Np,l ∈ proof or a leaf
node signed by Uβ as σUβ s.t. Np,l||p /∈ QSign then B outputs (Np,l||p,σUβ)
to the signature challenger as a forgery.
B recalculates the nodes on the insertion path of her operation. B signs the
leaf node H(op)||p∗ + 1 and the tree digest τp∗+1 using the signature key
of Uj . If j = β, then B queries the signing oracle and inserts the queried
message and the obtained signature to QSign.
If the Write protocol terminates with abort, then B immediately aborts.
Note that after each write operation, B shall act upon the audit procedure,
i.e., B runs the Update Status protocol at the p∗ + Q(p∗, N)th version (or
some later version) of the object . As the result of running Update Status, B
pulls some of the tree nodes as proof = {(Np,l, op, σUk)}. If there exists a tree
digest or a leaf node Np,l ∈ proof signed by Uβ as σUβ s.t. Np,l||p /∈ QSign
then B outputs (Np,l||p,σUβ) to the signature challenger as a forgery. If the
Update Status results in abort, then B aborts.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 35

4. The adversary specifies a range R = [l, r] to be read by a particular user Ui. B
runs the Read protocol accordingly. B aborts in case that the Read protocol
concludes with abort. Otherwise, as the result of running Read protocol, B
pulls some of the nodes of the tree as proof = {(Np,l, op, σUk)}. If there
exists a tree digest or a leaf node Np,l ∈ proof signed by Uβ as σUβ s.t.
Np,l||p /∈ QSign then B outputs (Np,l||p,σUβ) to the signature challenger as
a forgery.

5. The adversary specifies two users U and U ′, a version number j, and a
operation index i∗ where i∗ < j − ∆(j,N). B runs the Read protocol for
U and U ′ separately. B acts identically to the step 4 (above) to run the
Read protocol. If the protocol concludes with abort, then B also aborts.
Otherwise, B proceeds as follows. Let τj and τ ′j indicate the tree digests
inside the Status variable of U and U ′ after the Read protocol execution.
Also let opi∗ and op′i∗ indicate the content of the ith operation that are read
by U and U ′, respectively. If opi∗ 6= op′i∗ then B finds a signature forgery as
we discuss below.

Note that the inconsistency between opi∗ and op′i∗ means that there will be
two different tree digests τi∗ (with opi∗ as its i∗th operation) and τ ′i∗ (with op′i∗
as its i∗th operation). As such, from version i∗ onward, the users will be divided
into two groups G and G′ depending on whether they are shown opi∗ (τi∗) or
op′i∗ (τ ′i∗). More precisely, a group G of users whose further Status variables (i.e.,
τf where f ≥ i∗) are consistent with τi∗ (i.e., τi∗ → τf) and the other group
G′ whose further Status variables (i.e., τ ′f where f ≥ i∗) are consistent with τ ′i∗
(i.e., τ ′i∗ → τ ′f).

Since the users are divided in two groups G and G′, there will be two separate
chains of operations (after the i∗th operations) generated by group G and G′, i.e.,
opi i ∈ [i∗, j] uploaded by group G and op′i i ∈ [i∗, j] performed by users of group
G′. Assume k ∈ [i∗, i∗ + Q(i,N)] is the index of the frozen node (a node of the
tree for which the honest server stores one of the nodes along its insertion path).
Assume that a user from group G attempts the insertion of opk earlier than a
user from a group G′. Since the honest server appears on the insertion path of
opk, it gets informed about the inclusion of the kth operation and updates its
Status accordingly. When a user from the group G′ holding a state variable τ ′i
wants to insert op′k, it first runs the Update Status to fetch the latest version
of the object and perform consistency check between τ ′i and the current version
of the object . During the status update protocol, the adversary may try to act
dishonestly which we discuss next.

1. The adversary may attempt to send an incorrect Status value to the user
and make her accept a lower version < k of the object . However, due to the
presence of the honest server (who has witnessed the insertion of opk), the
adversary does not succeed as the honest server will communicate its intact
state value, i.e., k with the user.

2. The adversary may attempt sending a Status value x, where x ≥ k, for
which the adversary also needs to come up with a valid tree digest τ ′x where

36 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

τ ′x =⇒ τ ′i
6 (τ ′i is the status of the user from group G′ while inserting op′k)

in order to pass the Update Status protocol successfully. To come up with a
valid τ ′x, the adversary has the following choices:

(a) The adversary may use the tree digest τx that is signed and generated by
one of the members of the group G. However, any tree digest τx generated
by a member of group G will be consistent with τi∗ but not with τ ′i∗ , i.e.,
τi∗ 6=⇒ τx. This means that there will be no valid incremental proof
between τ ′i∗ and τx.

(b) The other choice for the adversary is to generate a op′x and forge a
signature on H(op′x||x) (the leaf node) on behalf of an authorized user.

(c) The adversary uses opx generated by one of the members of G and com-
putes the tree digest τ ′x accordingly. A also needs to generate a valid
signature over τ ′x on behalf of the user who issued opx.

The above argument indicates that for a member of group G′ to accept
that the latest version of object as x where x ≥ k and successfully pass the
Update Status protocol, the adversary needs to forge a signature on behalf
of an authorized user U

′′
either on the leaf node H(op′x||x) or the tree digest

τ ′x||x. Thus, B shall figure out this forgery while fetching the incremental
proof on behalf of a member of the group G′.

B can win the signature game if the forgery of the adversary is from Uβ .
Recall that the probability of A winning the q-Det-Cons(1λ) is ε(λ) and the
total number of users T is polynomial in the security parameter (i.e., poly(λ)).
Thus, we have

Pr[B breaks the signature scheme] = Pr[q-Det-Cons(1λ) = 1 AND U
′′

= Uβ]

= Pr[q-Det-Cons(1λ) = 1|U
′′

= Uβ] · Pr[U
′′

= Uβ]

≥ ε(λ) · 1

T

= ε(λ) · 1

poly(λ)
(14)

In the above formulation, breaking the signature scheme is equivalent to the
definition given in Equation 1. If ε(λ) is non-negligible, then B also breaks the
signature scheme with non-negligible probability. This concludes the proof. �

7 Related Works

The problem of view consistency in a collaborative data sharing environment has
been investigated in centralized OSNs, peer-to-peer (p2p) OSNs, cloud storage
platforms, Byzantine fault-tolerant protocols, and authenticated data structures.
In the following, we elaborate on each one of these areas and shed light on their

6 We write τi =⇒ τj to indicate that there exists an incremental proof for which
IncrV f(τi, τj , proof)) returns True.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 37

shortcomings compared to Integrita. Later in this section we also discuss how to
integrate Integrita in each one of the related studies.

Centralized OSN: Among the centralized OSNs, Frientegrity [15] and
SPORC [16] address the view consistency. However, their solutions do not elimi-
nate the possibility of having forked views, and in principle, they only guarantee
fork-consistency level that is weaker than q-detectable consistency. In the fork-
consistent system, while a corrupted provider is able to fork the users into disjoint
sets, he is forced to serve each set with a consistent view of the operations per-
formed by the users of the same set. This is enabled since the users embed their
views of the object history in each post that they insert. Thus, as soon as the
server forks the view of two users, he cannot show their operations to each other
without risking detection. Users can detect the inconsistency of their views by
exchanging them out of the band. The main shortcoming of fork-consistent sys-
tems is that the server’s equivocation remains undetected till the users happen
to contact out of the band. Thus, to ensure view consistency, users must reg-
ularly communicate their views of the shared object. This approach would not
be practical. For example, consider Facebook walls as a shared object to which
both the user and her friends have access. Each Facebook user has 338 friends on
the average7. Hence, on aggregate, each user needs to communicate with almost
338*338= 114244 other users to monitor the view consistency of her wall and
her friends’ walls.

Peer-to-Peer OSNs: In a p2p OSN, there is no central server running the
system and instead, the individual users called peers contribute a part of their
computation and storage power to the system. The social networking services
are enabled in a distributed manner relying on shared resources. As such, the
storage of users’ data is also distributed among the existing peers. The view
consistency in p2p OSNs is usually addressed through replication or by leveraging
users’ trust. In the latter case, the object owner (e.g., the owner of a wall) is
responsible to store and serve the content of her wall on her own or replicates
it on some trusted peers like her friends. Subsequently, the view consistency
is guaranteed due to the trustworthiness of storage peers [38, 21, 29, 4, 39, 41].
However, if the storage responsibility is spread over the p2p network and the
storing peers are untrusted, then view consistency is met through replication
[33]. In particular, suppose f is the fraction of potential dishonest peers. The
object (or some units of the object like a post) should be replicated on f+1 peers
to ensure that at least one honest peer is among the replicas. Each requester reads
each post from all the f + 1 replicas and identifies the latest content (e.g., using
a version number). However, such a solution results in storage overhead and
communication complexity which grow linearly by f . Note that other studies
in the context of p2p OSNs also utilize replication but for the sake of data
availability [37, 32, 41]. Namely, the storing nodes are supposed to be trusted
and always serve the intact contents when available.

Byzantine Fault-Tolerant Protocols: In BFT protocols, a service is to
be given to a set of clients while the execution of the service concerning the

7 https://www.brandwatch.com/blog/facebook-statistics/

38 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

sequence of requests appears identical to all the clients (and this sequence pre-
serves the temporal order of non-concurrent operations). Enabling consistency,
BFT protocols also seek a replication-based solution [28, 8] where they deploy
several servers each keeping a replica of the state of the intended service. Byzan-
tine fault-tolerant systems behave correctly when no more than f out of 3f + 1
replicas fail [28].

Cloud Storage Platforms: Similar to the centralized OSNs, the best level
of view consistency in the context of cloud storage is fork-consistency [6, 5,
30, 3, 42], due to the presence of a single corrupted service provider and non-
communicating users. Addressing the fork issue, cloud storage platforms utilize
replication over multiple servers [22, 28].

Authenticated Data Structures: In the Authenticated data structures,
a data owner outsources her data to multiple untrusted repositories. The out-
sourced data is modeled by a data structure that enables performing queries on
the data in a verifiable and authenticated manner. Repositories, on behalf of the
data owner, are responsible to answer queries of users on the data structure and
hand them with a proof of the validity of the answer. The same data structure is
replicated over all the repositories and repositories need to keep themselves up-
dated with the data owner in the case of update [18, 19, 35, 40, 34]. As such, one
can assume view consistency of ADSs is guaranteed through replication, which
is not storage efficient.

Certificate Transparency: In public key cryptography, parties need to
have access to each others authentic public keys. To accomplish this, a central-
ized certificate authority is designated through which users insert and retrieve
each others public keys. To ensure that CAs hand on authentic public keys,
the Certificate transparency (CT) [27, 26] techniques are developed. CT relies
on a set of public, untrusted, append-only log servers that collect the certifi-
cates issued by CAs and serve the certificates to the users in a verifiable manner
[11]. Moreover, the log servers are tracked by auditors/monitors. Auditors collect
external information as well as constantly query the log servers to catch incon-
sistency. In the nutshell, protecting view consistency in CTs roots in replication
(i.e., multiple log servers) as well as constant auditing. Clearly, replication is
not storage efficient. Also, in collaborative data sharing environments like Face-
book groups, making users to constantly audit the servers is neither desirable
nor effective. Essentially, the servers know the set of authorized members, hence
they still can answer queries deliberately and partition users’ views (in contrast
to the CTs where auditors can be arbitrary entities). Some other CT proposals
suggest users exchange their views of the log through gossiping protocols [7, 23,
36]. This immediately violates the assumption of non-communicating users that
we set earlier.
Adoption of Integrita: Integrita can be integrated in any of the studies listed
above as long as the following conditions are met in the given context. We will
refer to this list as Integrita Adoption Requirements or IAR for short.

1. There is a shared object to be accessed and modified by a known set of
authorized users.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 39

2. All the authorized users are acting honestly and willingly to achieve view
consistency.

3. The shared object has an append-only nature (e.g., updates are not remov-
able).

4. Updates on the object come sequentially but not concurrent.
5. The system should deploy the federated-server architecture where the service

is run by the collaboration of multiple independent service providers.
6. The number of deployed servers should be fixed and known beforehand. This

is required to achieve q-detectable consistency and to have a well-defined
transition point to the strong consistency.

Many studies listed above exhibit the aforementioned features yet sometimes
seek additional objectives which are not covered by Integrita. Thus, we emphasize
that the adoption of Integrita should take place only to achieve view consistency
conditioned to IAR.

Applications that address view consistency by relying on replication (i.e.,
deploying replicated storage providers) can alternatively benefit from Integrita
and enjoy its extended features8. Examples are P2P OSN [33] as well as OSN
services like [2, 37, 39]9. Centralized OSNs like [15] and cloud storage providers
like [16, 22, 28] can benefit from Integrita conditioned to utilizing multiple in-
dependent servers. BFT protocols like [28, 8] and cloud storage services of [6, 5,
30, 3, 42, 22, 28] also comply with IAR, though, they additionally deal with the
linearization of concurrent operations which is out of the scope of Integrita. The
view consistency in CTs can be resolved using Integrita noting that the num-
ber of log servers should be preset in order to achieve q-detectable consistency.
Also, note that CTs tackle with the problem of fraudulent certificate (where a
malicious user (e.g., CA) inserts a certificate to replace an existing one. Treating
such issues are out of the scope of Integrita.

8 Conclusion

In Integrita, we address the view consistency in a collaborative data-sharing en-
vironment like Facebook group pages and walls. The shared object is comprised
of a sequence of posts that can be generated by any of the authorized users.
The view consistency concerns that all the authorized users are shown the same
set of posts and with the intact order. To accomplish this, the log of operations
performed on the shared object (called activity log) is modeled by a history tree
which is an append-only data structure. Operations constitute the insertion and

8 Note that sometime replication is used for the sake of data availability e.g., in the case
of ADS, the data is replicated over multiple servers residing in multiple geographical
locations to reduce the users access delay. In such situations, replication does not
solely serve view consistency. Therefore, while adoption of Integrita can address view
consistency, we cannot draw any conclusion about data availability.

9 These are already run on the federated-server architecture hence the adoption of
Integrita is straight forward.

40 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

deletion of posts. Having access to the intact activity log naturally guarantees
users’ view-consistency. Our design relies on the federation of N OSN servers. In
Integrita, we introduce a new level of consistency called q-detectable consistency
where any inconsistency between users’ view (toward the activity log) cannot re-
main undetected for more than q operations. The q-detectable consistency holds
as long as one server does not collude with the rest of the servers. q is quantified
based on the number of operations in the activity log as well as the number of
servers. Our proposal outperforms the state of the art in two major directions.
First, unlike the replication-based solutions, Integrita operates only on one in-
stance of the shared object that is maintained collaboratively by all the servers.
As such, Integrita saves 2344 Terabytes of annual storage for a social network
like Facebook with 2.3 billion users and presumably running on the federation of
20 servers. This is enabled by trading the strong consistency with q-detectable
consistency. Nevertheless, q-detectable consistency will ultimately converge to-
ward strong consistency as the size of activity log elevates. Moreover, unlike the
centralized OSNs where the inconsistency detection relies on the users’ direct
communication, Integrita detects any fork in the users’ views regardless of users
direct communication.

As future work, Integrita can be extended to further support q-detectable
view-consistency in a malicious adversarial model where a subset of users may
get corrupted and conspire with the servers.

Acknowledgements

We acknowledge the support of the Turkish Academy of Sciences.

References

1. Bethencourt, J., Sahai, A., and Waters, B. Ciphertext-policy attribute-based
encryption. In IEEE symposium on security and privacy (SP’07) (2007), IEEE,
pp. 321–334.

2. Bielenberg, A., Helm, L., Gentilucci, A., Stefanescu, D., and Zhang, H.
The growth of diaspora-a decentralized online social network in the wild. In 2012
Proceedings IEEE INFOCOM Workshops (2012), IEEE, pp. 13–18.

3. Brandenburger, M., Cachin, C., and Knežević, N. Don’t trust the cloud,
verify: Integrity and consistency for cloud object stores. ACM Transactions on
Privacy and Security (TOPS) 20, 3 (2017), 8.

4. Buchegger, S., Schiöberg, D., Vu, L.-H., and Datta, A. Peerson: P2p social
networking: early experiences and insights. In Proceedings of the Second ACM
EuroSys Workshop on Social Network Systems (2009), ACM, pp. 46–52.

5. Cachin, C., Keidar, I., and Shraer, A. Fork sequential consistency is blocking.
Information Processing Letters 109, 7 (2009), 360–364.

6. Cachin, C., and Ohrimenko, O. Verifying the consistency of remote untrusted
services with conflict-free operations. Information and Computation 260 (2018),
72–88.

Integrita: Protecting View-Consistency in OSNs with Federated Servers 41

7. Chuat, L., Szalachowski, P., Perrig, A., Laurie, B., and Messeri, E. Ef-
ficient gossip protocols for verifying the consistency of certificate logs. In 2015
IEEE Conference on Communications and Network Security (CNS) (2015), IEEE,
pp. 415–423.

8. Civit, P., Gilbert, S., and Gramoli, V. Polygraph: Accountable byzantine
agreement. IACR Cryptology ePrint Archive (2009), 587.

9. Crosby, S. A., and Wallach, D. S. Efficient data structures for tamper-evident
logging. In USENIX Security Symposium (2009), pp. 317–334.

10. Damg̊ard, I. B. A design principle for hash functions. In Conference on the
Theory and Application of Cryptology (1989), Springer, pp. 416–427.

11. Eskandarian, S., Messeri, E., Bonneau, J., and Boneh, D. Certificate trans-
parency with privacy. Proceedings on Privacy Enhancing Technologies 2017, 4
(2017), 329–344.

12. Etemad, M., and Küpçü, A. A generic dynamic provable data possession frame-
work. IACR Cryptology ePrint Archive 2016 (2016), 748.

13. Etemad, M., and Küpçü, A. Verifiable database outsourcing supporting join.
Journal of Network and Computer Applications 115 (2018), 1–19.

14. Feldman, A. J., Blankstein, A., Freedman, M. J., and Felten, E. W. Pri-
vacy and integrity are possible in the untrusted cloud. IEEE Data Eng. Bull. 35,
4 (2012), 73–82.

15. Feldman, A. J., Blankstein, A., Freedman, M. J., and Felten, E. W. Social
networking with frientegrity: Privacy and integrity with an untrusted provider. In
USENIX (2012).

16. Feldman, A. J., Zeller, W. P., Freedman, M. J., and Felten, E. W. Sporc:
Group collaboration using untrusted cloud resources. In OSDI (2010), vol. 10,
pp. 337–350.

17. Goldwasser, S., Micali, S., and Rivest, R. L. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing 17,
2 (1988), 281–308.

18. Goodrich, M. T., Lentini, J., Shin, M., Tamassia, R., and Cohen, R. Design
and implementation of a distributed authenticated dictionary and its applications.
Tech. rep., Technical report, Center for Geometric Computing, Brown University,
2002.

19. Goodrich, M. T., and Tamassia, R. Efficient authenticated dictionaries with
skip lists and commutative hashing, Aug. 14 2007. US Patent 7,257,711.

20. Goodrich, M. T., Tamassia, R., and Hasić, J. An efficient dynamic and dis-
tributed cryptographic accumulator. In International Conference on Information
Security (2002), Springer, pp. 372–388.

21. Graffi, K., Gross, C., Stingl, D., Hartung, D., Kovacevic, A., and Stein-
metz, R. Lifesocial. kom: A secure and p2p-based solution for online social net-
works. In 2011 IEEE Consumer Communications and Networking Conference
(CCNC) (2011), IEEE, pp. 554–558.

22. Han, S., Shen, H., Kim, T., Krishnamurthy, A., Anderson, T., and
Wetherall, D. Metasync: File synchronization across multiple untrusted storage
services. In 2015 {USENIX} Annual Technical Conference ({USENIX} {ATC} 15)
(2015), pp. 83–95.

23. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., and
Van Steen, M. Gossip-based peer sampling. ACM Transactions on Computer
Systems (TOCS) 25, 3 (2007), 8.

24. Katz, J., and Lindell, Y. Introduction to modern cryptography. CRC press,
2014.

42 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, Öznur Özkasap

25. Kurosawa, K., and Desmedt, Y. A new paradigm of hybrid encryption scheme.
In Annual International Cryptology Conference (2004), Springer, pp. 426–442.

26. Langley, A., Kasper, E., and Laurie, B. Certificate transparency.
27. Laurie, B., Langley, A., and Kasper, E. Certificate transparency. ACM Queue

12, 8 (2014), 10–19.
28. Li, J., and Maziéres, D. Beyond one-third faulty replicas in byzantine fault

tolerant systems. In NSDI (2007).
29. Loupasakis, A., Ntarmos, N., Triantafillou, P., and Makreshanski, D.

exo: Decentralized autonomous scalable social networking. In CIDR (2011), pp. 85–
95.

30. Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., and
Walfish, M. Depot: Cloud storage with minimal trust. ACM Transactions on
Computer Systems (TOCS) 29, 4 (2011), 12.

31. Mazieres, D., and Shasha, D. Building secure file systems out of byzantine
storage. In Proceedings of the twenty-first annual symposium on Principles of
distributed computing (2002), ACM, pp. 108–117.

32. Narendula, R., Papaioannou, T. G., and Aberer, K. Privacy-aware and
highly-available osn profiles. In 2010 19th IEEE International Workshops on En-
abling Technologies: Infrastructures for Collaborative Enterprises (2010), IEEE,
pp. 211–216.

33. Nilizadeh, S., Jahid, S., Mittal, P., Borisov, N., and Kapadia, A. Cachet:
a decentralized architecture for privacy preserving social networking with caching.
In Proceedings of the 8th international conference on Emerging networking exper-
iments and technologies (2012), ACM, pp. 337–348.

34. Palazzi, B. Outsourced storage services: Authentication and security visualization.
PhD thesis, Ph. D. thesis, Roma Tre University, 2009.

35. Polivy, D. J., and Tamassia, R. Authenticating distributed data using web
services and xml signatures. In XML Security (2002), pp. 80–89.

36. Ryan, M. D. Enhanced certificate transparency and end-to-end encrypted mail.
In NDSS (2014), pp. 1–14.

37. Shakimov, A., Lim, H., Cáceres, R., Cox, L. P., Li, K., Liu, D., and Var-
shavsky, A. Vis-a-vis: Privacy-preserving online social networking via virtual
individual servers. In Third International Conference on Communication Systems
and Networks (2011), IEEE, pp. 1–10.

38. Strufe, T. Safebook: A privacy-preserving online social network leveraging on
real-life trust. IEEE Communications Magazine 95 (2009).

39. Stuedi, P., Mohomed, I., Balakrishnan, M., Mao, Z. M., Ramasubrama-
nian, V., Terry, D., and Wobber, T. Contrail: Enabling decentralized social
networks on smartphones. In ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing (2011), Springer,
pp. 41–60.

40. Tamassia, R. Authenticated data structures. In European symposium on algo-
rithms (2003), Springer, pp. 2–5.

41. Tegeler, F., Koll, D., and Fu, X. Gemstone: empowering decentralized social
networking with high data availability. In 2011 IEEE Global Telecommunications
Conference-GLOBECOM 2011 (2011), IEEE, pp. 1–6.

42. Williams, P., Sion, R., and Shasha, D. E. The blind stone tablet: Outsourcing
durability to untrusted parties. In NDSS (2009), Citeseer.

