
Practical Volume-Based Attacks on Encrypted Databases
Stephanie Wang, Rishabh Poddar, Jianan Lu, Raluca Ada Popa

UC Berkeley

ABSTRACT

In recent years, there has been an increased interest towards strong

security primitives, such as oblivious protocols, that hide which

data records a query touches in a database, and reveal only the

volume of results. However, recent work has shown that volume

is a significant leakage that can enable reconstructing the entire

database. Yet, such attacks make two limiting assumptions: they

require a large number of queries to be issued by the user, and

assume certain distributions on the queries (e.g., uniformly random),

which are not realistic in practice.

In this work, we present new attacks for recovering the content

of individual user queries, assuming no leakage from the system

except the number of results, and avoiding the limiting assumptions

above. Unlike prior attacks, our attacks require only a single query

to be issued by the user for recovering the keyword. Furthermore,

our attacks make no assumptions about the distribution of issued

queries or the underlying data. Our key insight is to exploit the real

behavior of specific applications.

We start by surveying 11 applications to identify two key char-

acteristics that can be exploited by attackers—(i) file injection, and

(ii) automatic query replay. We present attacks that leverage these

two properties in concert with volume leakage, independent of the

details of any encrypted database system. Subsequently, we per-

form an end-to-end attack on the Gmail web client by simulating

a server-side adversary. Our attack on Gmail completes within a

matter of minutes, demonstrating the feasibility of our techniques.

We also present three ancillary attacks for situations when certain

mitigation strategies are employed.

1 INTRODUCTION

In recent years, the interest towards encrypted databases that per-

mit querying of encrypted data has increased drastically because

they provide guarantees against a compromised database server. A

number of practical encrypted database systems have been pro-

posed [3, 11, 14, 19, 21, 32, 46, 53, 56, 64], which typically rely on

property-preserving encryption [7, 8, 38, 43, 52] or searchable en-

cryption [9, 11, 12, 15, 30, 35, 39, 42, 49, 50, 60, 61].

Most of these schemes leak query access patterns. Consider the

example of an email application: a user issues a search query for a

keyword over their emails. The mail server typically stores an in-

verted index (also called a secondary index) for each user’s mailbox,

which maps a keyword to a list of emails. When fetching the results

of a queried keyword, most of these schemes leak to the attacker the

set of email identifiers that match the keyword (i.e., the access pat-

terns of the query), even though the email bodies remain encrypted.

A set of recent works [2, 10, 16, 23, 28, 33, 34, 36, 41, 44, 55, 66] has

shown that such access patterns leak significant information to a

compromised server; they were able to reconstruct the keyword

the user searches for, as well as email contents.

Many of these works discuss oblivious protocols, such as ORAM

(Oblivious RAM) [26, 63] or PIR (Private Information Retrieval) [22],

as a solution to this leakage. These schemes hide access patterns:

even an attacker eavesdropping at the database server does not

learn which keyword the user is querying for. These schemes are

often regarded as giving a very strong security guarantee, the main

downside largely being their slow performance.

However, in seminal work, Kellaris et al. [36] showed that even

schemes that provably conceal access patterns allow attackers to

reconstruct the database counts, i.e., the number of documents in

the database containing each particular value. The attacker neither

knows the content of individual queries (which are encrypted), nor

does it learn which documents were returned in response (i.e., ac-

cess patterns remain hidden). Instead, it only observes the volume

of query results. Kellaris et al. showed that volume-based attacks

were possible, even if not yet practical. Their techniques required

the attacker to observe the result volumes of O(N 4
logN) range

queries, for a domain of size N . Furthermore, they also assumed

that the range queries were drawn at random from a uniform dis-

tribution, thus severely limiting the applicability of the attack in

practice. In recent work, Grubbs et al. [27] improved upon the re-

sults of Kellaris et al. by presenting an attack that does not require

a uniformity assumption for queries as long as another assump-

tion holds (e.g., all possible queries are issued at least once), and

by showing that for uniform queries, O(N 2
logN) range queries

suffice for reconstructing the database in some specific settings.

In this work, we explore an alternative design point in the space

of attacks, and show that volume-based attacks are practicalwithout

making any assumptions about queries or the underlying data. Our

aim is to recover the content of individual queries that search for a

specific keyword in the database. We note that as long as a query

for each keyword is issued at least once, our attack enables an

adversary to reconstruct the list of all the keywords in the database.

In particular, we focus on the behavior of applications that allow

users to search for keywords over a secondary index, a common data

structure in database systems that maps keys to a set of matching

records. In the encrypted database literature, this corresponds to

the model of searchable encryption schemes [9, 11, 12, 15, 30, 35,

39, 42, 49, 50, 60, 61].

Our key insight is that by exploiting the behavior of specific real

applications, we can avoid assumptions made by previous volume-

based attacks about the distribution of queries. Furthermore, it

allows our attack to be eminently practical, requiring only a single

query to be issued by the user for recovering the keyword.

As such, even though real-world applications today leak far

more information than just the volume of results, the importance

of volume attacks will only grow in the future. Privacy-conscious

services have begun deploying sophisticated schemes to plug tradi-

tional sources of leakage, including access patterns (e.g., the Signal

messaging service [1, 45]). The takeaway of our work is that as

practitioners take steps for enhancing the privacy guarantees of

their applications, they must also account for the leakage of result

volumes, given the ease with which volume-based attacks can be

1

mounted (as our work demonstrates). Application-specific behavior

that facilitates easy exploitation of this leakage must be patched.

1.1 Techniques and contributions

We start by examining 11 representative applications that enable

search queries over a secondary index (e.g., Gmail, Twitter, and

Facebook) to identify realistic attacker capabilities that can be lever-

aged in concert with volume leakage. We find that many of these

applications satisfy two key characteristics that enable us to mount

efficient volume-based attacks, even if they are built atop a cryp-

tographic backend (such as ORAM or PIR) that plugs traditional

sources of leakage, and only leaks the volume of results.

First, we find that many applications inherently allow other users

to inject application data into a victim user’s index. This property

of applications has also been noted in prior work [11, 44, 66]. In our

setting, it allows the attacker to potentially influence the volume

of results returned by a query.

However, it is not clear how to leverage file injection alone

when the only information available is the number of results. File-

injection attacks have been studied in the searchable encryption

literature [11, 44, 66], but these attacks rely crucially on the attacker

knowing the query access patterns—namely, the set of files match-

ing the keyword. The key idea is that the attacker injects special

files F1, . . . , Fn constructed so that each keyword is contained in a

unique subset of files. When the victim queries for a keyword, the

attacker learns the exact set of files returned and hence the key-

word. In our model, though, the attacker only learns the number of

files returned, not the exact set. Ensuring that each keyword has

a unique number of files means injecting |D | files, where D is the

dictionary space. For the English dictionary (∼200K words), this

attack would only be feasible on a small subset. Moreover, given a

set of files, there may be many different keywords that are present

in the same number of files, precluding these attacks in our setting.

Instead, our strategy is to leverage a second application property

we observed in the real applications surveyed, which is key for

making an injection attack feasible with only volume leakage: the

ability to replay queries issued by a user without further user inter-

vention. While this seems at first glance to be a strong assumption,

we find that several applications display this behavior as a built-in

feature, ostensibly to hide transient application errors.

As an example, Gmail inbox search fits our setting seamlessly,

and satisfies both the aforementioned properties. The user can

search for a keyword in their emails, an attacker can inject data by

simply sending the user an email with a specific keyword, and the

user’s query is automatically replayed by the application when the

server’s response is delayed without relying on user intervention.

In §2.2, we define these abilities formally, demonstrate how they

appear more generally in a wide range of applications, and explain

why they are hard to avoid.

Given these attacker abilities, we present attack algorithms that

are able to reconstruct user queries, in some cases with 100% confi-

dence, on secondary indices. Our high-level strategy, described in

§3, is twofold:

(1) Inject: the attacker injects k specially crafted files that alter the

number of results for a candidate query.

(2) Replay: the attacker causes the client to automatically replay

the query without user intervention.

The process repeats to narrow the search space, without the

user’s knowledge. This base attack succeeds with 100% probability

in identifying words in the attacker’s dictionary. Specifically, given

a dictionary of keywords D that represents the attacker’s domain of

interest, the attack recovers a queried keyword in only O(logk |D |)
replays of the query (e.g., < 5 for the English dictionary).

Subsequently, we build upon our base attack to present three

ancillary attacks. The ancillary attacks show that our strategy re-

mains feasible, albeit more expensive or less accurate, even when

certain mitigation techniques are employed (§6).

• No replay attack:We provide an extension to our base attack

that works even when query replay is not possible (§3.2). While

the detection accuracy decreases in this case due to thementioned

shared cardinality, the attack still succeeds with significant prob-

ability on a smaller dictionary.

• Attack with padding: We further demonstrate that our attack

remains possible even when padding is used to hide result counts

(§3.3), through an extension to our base attack that requires more

injected data but with proven effectiveness.

• Attack with noise: We finally show an extension of the base

attack with noisy data when the attacker does not know the

result count precisely (§3.4).

In Appendix A, we also discuss extensions to the attack for

recovering keywords in conjunctive queries.

Finally, we demonstrate the feasibility of our techniques and at-

tack the real Gmail web client by simulating a server-side adversary

(§4.5). The characteristics of real applications poses a number of

constraints on the attack, e.g., based on the the behavior of replays,

or the time it takes to inject files into the secondary index. De-

spite these constraints, we show that our attack completes within

a matter of minutes for the Gmail application. We also analyze the

theoretical complexity of our attacks, and experimentally evaluate

their overheads and accuracy in a variety of settings.

While there are ways to mitigate the attack, the vulnerability

from result count leakage is difficult to eradicate from a system

completely. Padding to the worst-case count theoretically prevents

leakage, but in many applications, this results in unaffordable over-

heads. For instance, Naveed [48] shows that, in representative set-

tings, such worst-case padding is slower than streaming all data to

the client, obviating the benefit of oblivious protocols and remote

search. Rather than trying to reduce system leakage, we believe

that the most effective mitigation is actually on the application side,

although these techniques too may be burdensome because they

interfere with application-specific functionality (e.g., disallowing

users from sending email). In §6, we discuss these mitigations, but

we note that in general, it is difficult to protect against the attack

completely because it relies on very little from the system model

and on features inherent to the application model.

2 ATTACK MODEL

In this section, we discuss the generic system model (§2.1) and

the application model (§2.2) that is vulnerable to our attacks. We

present the three key attack assumptions: (1) that the system leaks

volume, (2) that the application allows data injection, and (3) that the

2

Clients ServerORAM
proxy

App.
server

ORAM

Server
Client

Figure 1: (Left) ORAM-based system model; both the server and a subset

of the clients are untrusted (shaded). (Right) PIR-based model; the server is

untrusted.

applications automatically replays queries under certain scenarios.

We then demonstrate the validity of our assumptions by studying a

number of concrete instances for both the system and application

models. In particular, we examine 11 popular web applications that

allow users to issue keyword search queries over an inverted index—

we find that (i) all 11 applications allow attackers to inject data into

the victim user’s index; and (ii) 5 of the 11 applications also replay

queries automatically without user intervention.

2.1 System Model

We consider systems in which an untrusted server (the adversary in

our setting) maintains a secondary index in an encrypted database.

The index maps a keyword to a list of documents or database rows

(referred to as files, henceforth) that the keyword appears in and is

stored on the server for query efficiency. Whenever the application

proxy or the client queries the index for a keyword, the user receives

the corresponding list of files containing the keyword. We assume

that the query’s execution reveals no information to the adversary

except the number of results.

More formally, similar to Kellaris et al. [36], we define a database

D as a set of records that associate keywords with the files from a

collection F that the keywords appear in:

D = {(w, f) : w ∈ f , f ∈ F }

A query for word w is a function qw (where w is private) that

maps D to a list of matching files in F :

qw (D) = { f : (w, f) ∈ D} .

An implementation of such a database may internally use one

layer of indirection, so that the first query returns a list of file

pointers, or indices into F , and the subsequent queries are used to

fetch the file contents from F .

The adversary’s goal is to identify the keywordw using only the

size of the result set |qw (D)|.

Examples. We now illustrate the relevance of volume-based at-

tacks by discussing concrete examples of cryptographic systems

that leak the volume of results to attackers. We consider a client-

server model where the database stored at the server is encrypted

using sophisticated techniques that also hide access patterns, and

the server maintains a secondary index over the encrypted data.

As we’ll see in the following examples, content encryption is not

sufficient to prevent volume leakage.

ORAM-based systems. In the ORAM model (Figure 1, left), the

database administrator additionally backs the database with ORAM,

hiding access patterns from the server in addition to the result con-

tents. However, even with a guarantee of this strength, volume

leakage is possible for a passive attacker because the size of the re-

sult contents is not hidden. In addition, even if a layer of indirection

is used, so that the first query only returns a list of file pointers,

the number of files returned can still be measured by recording the

number of subsequent queries made.

PIR-based systems. In the PIR model (Figure 1, right), an un-

trusted server owns the database and maintains a secondary index

on it for fast access. In this case, the server sees all the data, as

its role is to maintain and serve publicly available data. The un-

trusted server answers user queries in which the key requested

is private [22]. However, since the data is publicly available, the

untrusted server can easily learn the size of the query results.

2.2 Application model

We assume an application model based on the behavior of actual

applications that rely on a secondary index. The model consists of

two key assumptions: the ability to inject data into a user’s index

and the ability to replay a user query without the involvement of

the user. We argue that these two assumptions are in fact often

inherent to the application. As evidence, we survey a variety of

popular web applications that rely on a secondary index and find

that both assumptions hold in 5 out of the 11 surveyed. Finally, we

describe how these assumptions together make it difficult to detect

our attack.

2.2.1 File injection. First, we consider the assumption that the

attacker can inject data into a user’s index. For applications that

involve interactions between multiple users, injection by other

users is often necessary for application functionality. For example,

to inject into Gmail inbox search, the attacker sends the victim

user an email. Injection is especially easy if there is a secondary

index that is shared. To inject an entry for a hashtag in Twitter, the

attacker uploads a post with that hashtag; in Slack, the attacker

simply sends a message. The ability of the attacker to inject in

such applications is fundamental because these applications are

inherently designed for multiple users and contain shared data.

2.2.2 Query replay. Second, we assume that the attacker can replay

a user’s query a finite number of times. While this assumption is

certainly not universal across applications that rely on a secondary

index, we find that it is surprisingly common, with many applica-

tions replaying queries automatically in the background without

any user intervention. This is because many applications are writ-

ten to handle transient errors transparently, to put as little burden

on the user as possible. In particular, an application that wants to

provide a seamless experience when network connectivity is spotty

may retry a query automatically if the response is too slow. Indeed,

the HTTP/1.1 RFC [20] specifies that “When an inbound connec-

tion is closed prematurely, a client MAY open a new connection

and automatically retransmit an aborted sequence of [idempotent]

requests.” A compromised server can force this behavior by simply

dropping its HTTPS responses, triggering an automatic replay.

Examples. To show that these assumptions are realistic, we sur-

veyed 11 applications, including Gmail, Twitter, and Facebook, and

tested for the ability to inject data and replay queries for a target

user (Figure 2). To test for injection, we examined the application

functionality to determine whether the attacker could inject data

3

Application Type of queries File injection strategy No. of replays observed

in 10 minutes

Gmail Email keywords Send emails to victim 6

Facebook Names, post keywords Create posts in a group page 4

Dropbox File keywords Upload files to a shared folder 1

Google Doc File keywords Upload files to a shared folder 1

iCloud Mail Email keywords Send emails to victim 1

Twitter Hashtags Post tweets with hashtags 0

Piazza Post keywords Create posts in a class 0

Slack Names, message keywords Send messages to a group channel 0

Skype Names, message keywords Send messages to victim 0

Yahoo Mail Email keywords Send emails to victim 0

Outlook Mail (Hotmail) Email keywords Send emails to victim 0

Figure 2: An empirical assessment of 11 popular web applications. In each case, we list the type of query made by the user, how the attacker can influence the

result of this query by application-specific injection, and the number of replays observed. To measure replay, all server responses are dropped for 10 minutes,

and we report the number of duplicate queries made within 10 minutes.

into an index searchable by the user. To measure the number of

query replays, we drop responses from the server, record all net-

work traffic from the application client, and count the number of

duplicate queries that appear within 10 minutes. We find that for

all applications, injection is possible, although sometimes only if

the attacker and the user share some index (e.g., they are both

members of a public Facebook group). We also find that 5 of these

applications have query replay.

Upon further investigation of these 5 applications, we find that

all retry queries automatically, though the rate of retries varies. Two

applications, Gmail and Facebook, retry the query repeatedly. The

remaining three, Dropbox, Google Drive, and iCloud Mail, retry the

query once. The number of retries is important because the greater

the number of retries, the easier it is for the attacker to identify

the query. Nevertheless, as we show in §4.2, even a single replay is

sufficient for significantly pruning the space of query possibilities,

and, in many cases, for mounting the attack feasibly.

Some applications do not replay a query automatically, as is

the case with Twitter or Slack. In §3.2 we provide a single-round

version of our attack that does not require queries to be replayed

at all. This version of our attack is predictably less effective than

the base attack with the ability to replay, but as we show in §4.3, it

is practical for small attacker dictionaries.

Avoiding detection. Because the attack relies on injection visible

to the user, one practical concern in launching the attack is avoiding

detection. Fortunately, in many settings, our attack is difficult to

detect before it completes. The reason is that once the user issues a

query, the attacker can continue to drop / block the responses to

the client, causing the web application to retry queries until the

attack completes.

We verified this behavior with Gmail: no results are returned to

the user during the attack, and to the user it simply appears that

they have a bad network connection. That is, once the user initiates

the query, the attack will complete without further actions from

the victim user.

It is possible that the user later sees the injected emails and

realizes from the synthetic content that they are under attack, but

this happens only after the attack completes. Further, we note that

although services like Gmail may strip suspicious HTML elements

during email preprocessing, we can still use style formatting to

avoid showing the injected content to the user, to reduce suspicion.

The rest of the email could show content that is more user-friendly,

e.g., an ad. It is further unlikely for spam filters to detect the injected

emails, since the attack targets a specific user. This is just one

example, but it illustrates the numerous ways that an attacker

could inject data in a way that is difficult to detect before the query

is reconstructed.

3 ATTACKS

Given the attacker abilities discussed in §2, we present and analyze

a file-injection attack to recover a user’s query on a secondary

index. We show that this attack can be launched on the generic

database described in §2.1, as long as the attacker can view the

number of results returned. This is true even if the result content is

encrypted and a model like ORAM is used to hide access patterns.

The general attack (§3.1) can recover a user’s query with 100%

accuracy, by leveraging the three assumptions presented in §2. One

may attempt to weaken the attacker’s abilities by making it more

difficult to replay a user’s query, or padding the result sets. We

discuss extensions to the attack in §3.2–§3.4 and show that it is

still feasible even when various countermeasures are employed,

albeit at higher overheads and possibly imperfect accuracy. Figure 4

summarizes the overheads of the base attack and its extensions.

In Appendix A, we describe further extensions to the attack for

recovering keywords in conjunctive queries.

3.1 Base Attack

At a high level, the base attack works by searching on the keyword

universe throughmultiple rounds of user query replay. By recording

the result counts between rounds, the attacker can narrow down

the keyword search space by a constant factor per round.

The attacker uses file injection to influence the result count be-

tween rounds. During each round, the attacker constructs files from

the keyword search space and injects the files into the user’s index.

The response for each round will then contain some number of

injected files. The attacker can use the new result count to deter-

mine the number of files injected after the previous round. In this

4

Algorithm 1 Pseudocode for the base attack. qw is a private query

for a wordw on a database D. Each round of the attack partitions

the search space by k .

1: procedure RecoverQuery(qw , k)
2: D ← the initial database

3: D ← keyword universe

4: n ← |qw (D) |
5: while |D | > 1 do

6: for i in [1, . . . , k] do
7: Fi ← an empty file

8: Di ← an empty dictionary

9: end for

10: for index in [1, . . . , |D |] do
11: w ← D[index]
12: i ←

⌊
index
|D |/k

⌋
13: Append w to i unique files in F
14: Add w to dictionary Di
15: end for

16: D ← InjectFiles(D, F)
17: n′ ← |qw (D) |
18: i ← n′ − n
19: D ← Di
20: n ← n′

21: end while

22: return D[0]
23: end procedure

way, the attacker can determine which subset of the search space

contains the user’s query.

The setup of the attack is as follows: A user queries qw on a

database D, as defined in §2. The response is the set of matching

file contents, qw (D) = { f1, . . . , fn }. The goal of the attack is to

recoverw , using only n = |qw (D)|, the number of files returned.

Algorithm 1 provides pseudocode for the base attack Recover-

Query. In more detail, the attacker first records the user query’s qw
and the number of files returned, n0. n0 is the number of files that

already matched tow prior to the attack. This enables the attacker

to differentiate user-uploaded files from injected ones.

Next, the attacker proceeds in rounds to reduce the keyword

search space. He chooses an initial dictionary D0, a set of words

that might containw , and a parameter k . During each round j, the
attacker divides D j into k equal partitions. He injects k files into

the database and distributes the words among them as follows: If

a word appears in the i-th partition, he adds the word to exactly i
out of the k files. Hence, if a word appears in the k-th partition, the

attacker adds this word to all k files.

The attacker then replays the user’s query qw on the updated

database and records the number of files returned,nj . Assuming that

the attacker can block updates to the secondary index, the number

of files injected since the previous round is then i∗ = nj − nj−1.
Thus,w must have been assigned to the i∗-th partition during round
j. The attacker repeats this in rounds, each time using the i∗-th
partition as the new dictionary, until |D | = 1.

The complete overheads for the attack are summarized in Fig-

ure 4. This attack converges in a bounded number of rounds since

each round is guaranteed to reduce the dictionary size. Furthermore,

for a high enough k and a small enough D, the number of rounds,

i.e., the number of times the attacker has to replay the user’s query,

is quite low. We formalize this in the following claim:

Claim 1. For any dictionary D and for any word w ∈ D, let qw
be a private query for w , and k be the number of partitions. Then,

RecoverQuery(qw ,k) returnsw after

⌈
logk |D |

⌉
rounds.

Proof. Consider the j-th round of the attack, which searches

a dictionary D j that contains w . w is guaranteed to match to a

partition of the dictionary that has size ≤ |D j |/k . Thus, round j + 1
of the attack will search a dictionary of size at most |D j |/k that

also contains w . The algorithm repeats until the dictionary has

size one. At this point, RecoverQuery returns the only word in

the dictionary,w . Thus, it takes

⌈
logk |D |

⌉
rounds to complete the

attack, where D is the initial dictionary. □

The attacker must also inject a significant number of files. We

show that the number of files, along with the file size, measured in

number of words, is not too large.

Claim 2. For any dictionary D and for any wordw ∈ D, let qw be

a private query forw and k be the number of partitions. Then, the total

number of files injected by RecoverQuery(qw ,k) is k
⌈
logk |D |

⌉
.

Proof. During a single round of the attack, the words in the i-th
partition of the dictionary must be distributed among i unique files,
so that the number of results for the queryqw during the next round

will be increased by i ifw was in that partition. The maximum value

for i is k , the number of partitions. Therefore, each round requires

injecting at least k files. There are

⌈
logk |D |

⌉
rounds according to

Claim 1, so we require a total of k
⌈
logk |D |

⌉
file injections. □

Claim 3. For any dictionary D and for any word w ∈ D, let qw
be a private query forw and k be the number of partitions. Then, the

total number of words injected by RecoverQuery(qw ,k) is O(k |D |).

Proof. A dictionary D j is searched during round j of the attack.
Each word in partition i of the dictionary appears i times during

round j. Each partition has size

|D j |

k . Therefore, the total file size

injected during this round is

|D j |

k (1 + 2 + · · · + k) = O(k |D j |).

Each round reduces the size of the dictionary searched by a factor

of k , so |D j+1 | =
|D j |

k . According to Claim 1, there are

⌈
logk |D |

⌉
many rounds. Then, if the initial dictionary has size |D |, the total
file size injected across all rounds is:

k |D | + k

(
|D |

k

)
+ k

(
|D |

k2

)
+ · · · + k

(
|D |

k ⌈logk |D | ⌉

)
< k |D |

(
1 +

1

k
+

1

k2
+ . . .

)
= O(k |D |)

□

The attack presented can recover a user’s query on a generic

secondary index with perfect accuracy, even when the file contents

and metadata, except result counts, are hidden. The number of

results returned is indeed the only information we assume, and we

do not require knowledge of the distribution of the query dictionary.

5

Notation Definition

D The database, a secondary index mapping words

to the files they are associated with.

qw A query for the word w , where w is hidden.

D The dictionary, a set of words probed by the at-

tacker.

k The number of partitions to search during each

round. A higher k means more files injected per

round, but fewer rounds total.

nj |qw (D) |, or the number of file results for the query

on round j . For j = 0, this is the user’s initial query

dictionary.

m A parameter for the single-round attack. A higher

m means more files injected, but higher expected

accuracy.

s A parameter for the noisy data attack. A higher s
means more files injected, but a greater possible

amount of noise tolerated.

Figure 3: A table of notation for the attacks described.

Algorithm 2 Pseudocode for the single-round attack. Inputm rep-

resents the tradeoff between file injection and accuracy.

1: procedure SingleRoundInit(m)

2: D ← the initial database

3: D ← keyword universe

4: for i in [1, . . . ,m × |D |] do
5: Fi ← an empty file

6: end for

7: for index in [1, . . . , |D |] do
8: w ← D[index]
9: Append w tom × index unique files in F
10: end for

11: D ← InjectFiles(D, F)
12: end procedure

13: procedure SingleRoundRecoverQuery(qw ,m)

14: n ← |qw (D) |
15: if n < m then

16: w ′ ← null
17: else

18: index ←
⌊ n
m
⌋

19: w ′ ← D[index]
20: end if

21: return w ′

22: end procedure

3.2 Single-round Attack

The base attack relies heavily on the ability to replay the user’s

query. Without the ability to replay a user’s query, it is difficult to

recover the query with total accuracy without some knowledge of

the existing distribution of words in the database. This is a funda-

mental limitation of the attack—since we assume that the attacker

cannot read any file metadata other than the total number of results,

the attacker cannot differentiate between user-uploaded files and

injected files during just one round of the user’s query.

We now present a version of our attack that does not require

the attacker to replay queries. We show that the attacker can guess

the user’s query in a single round with some degree of accuracy if

he can inject a larger number of files. Moreover, if the universe of

possible keywords is smaller in size, then the attacker can identify

the query with high probability. For example, consider an attacker

who knows that Alice is sick, and wants to identify what disease

she has by recovering her queries. The attacker can use the set of

common diseases as the dictionary of possible keywords, the size

of which is on the order of tens. Note that using this dictionary still

does not require knowledge of Alice’s query distribution. In fact,

our attack will also permit the attacker to identify that the query

of the victim is not in his query set.

The key idea is as follows. Although the attacker cannot inject

files multiple times, he may still be able to inject a large enough

number of files before the user sends his query, so as to filter out

the noise from user-uploaded files that match the query. And, as

we will see from the analysis, this can actually be done in such a

way that multiple queries can be recovered without requiring the

attacker to execute the attack repeatedly per query, in contrast to

the base attack.

We describe the attack formally in Algorithm 2. First, the attacker

initializes the attack using SingleRoundInit. The attacker starts

with a dictionary D of candidate words, and chooses a constant

m. Before the user sends his query qw , the attacker injectsm |D |
files into the database D, such that the i-th word in the dictionary

appears inmi files. Thus, each word appears a unique number of

times and is spaced apart by at leastm files.

Then, when the user queries qw , the attacker estimates w us-

ing SingleRoundRecoverQuery (Algorithm 2). The attacker first

reads the result set size n = |qw (D)|. If n < m, thenw is not in the

attacker’s dictionary, and no more information can be gained for

this particular query. If n ≥ m, then the attacker guesses w ′, the
i-th word in the dictionary, where i = ⌊ nm ⌋. With some probability,

the attacker’s guess is correct andw ′ = w .

The question, then, is how to choosem such that we maximize

the probability thatw ′ = w . Clearly, the largerm is, the better, since

a largerm can filter out more noise from the user’s uploaded files.

Given some underlying distributions of word and query frequency,

we can write the precise probability of the attack’s success.

Formally, let Q be a probability distribution over the universe

of words where Q(w) is the probability that the user will query

qw . Let D0 be the initial database, before any file injections. Then,

|qw (D0)| equals the number of user-uploaded files that would have

been returned forw .

Claim 4. For any query qw , and anym ≥ 1, the probability that

SingleRoundRecoverQuery(qw ,m) outputs an incorrectw ′ is:

Pr(w ′ , w) =
∑

w, |qw (D0) |≥m

Q(w)

Proof. Consider a user query qw . If |qw (D0)| < m, then there

are two cases for the result set size, either w is in the dictionary

probed by the attacker orw is not. Ifw is not in the dictionary, then

the current database D is unchanged, so the count observed is still

|qw (D0)|. Since this is less thanm, the attacker will not output a

guess w ′, so we can ignore this case. Otherwise, suppose that w
is the i-th word in the attacker’s dictionary. Then, the number of

injected files forw ismi . The attacker will then guess the word at

index ⌊
|qw (D) |

m ⌋ = ⌊
|qw (D0) |+mi

m ⌋ = i , sow ′ = w .

6

Attack type Number of replays Total files injected Total words injected

Base attack

⌈
logk |D |

⌉
k
⌈
logk |D |

⌉
O (k |D |)

Single-round attack 1 m |D | O (m |D |2)

File padding (base-2 tiers) k
⌈
logk |D |

⌉
O

(
n0k |D |logk 2

)
O (n0 |D |)

Noisy data

⌈
logk |D |

⌉
sk

⌈
logk |D |

⌉
O (sk |D |)

Figure 4: The overheads required to launch each type of attack, in terms of the number of query replays, files injected, and words injected.

The remaining case is when |qw (D0)| ≥ m. Then, it is guaran-

teed that w ′ , w , whether or not w is actually in the dictionary

probed by the attacker. If w is the i-th word in the dictionary,

then the attacker will guess w ′ with a dictionary index greater

than i . Otherwise, the attacker will incorrectly guess that the user

queried for a word in the dictionary. Thus, the probability that

the attacker guesses an incorrect w ′ is the probability that the

user will query for a word w such that |qw (D0)| ≥ m. This is∑
w, |qw (D0) |≥m Q(w). □

This claim implies that if a large enoughm is chosen, then the

attacker will be able to perfectly recover all user queries. For in-

stance, if m is greater than maxw |qw (D0)|, then the probability

of an incorrect guess is 0. Therefore, the better the attacker can

estimate the distribution |qw (D0)| andQ , the more he can increase

his probability of recovering the user’s query correctly. Otherwise,

he will have to guess a large enoughm to ensure accurate query

recovery, at the cost of more file injection.

The query’s success rate is also dependent on the dictionary

of words chosen by the attacker. If Q(w) = 0 for all w ∈ D, for
example, the attacker will not be able to output a correct guess.

Ideally, the attacker would insert the entire universe of words, but

this is infeasible since the total number of words injected is given

by:m + 2m + · · · + |D |m = O(m |D |2). However, even if the attacker

can only afford to probe a small dictionary, he can still increase

his chance of success if he has some knowledge of Q ; he can then

choose to probe words that the user is more likely to query.

There are two key advantages of this approach over the base

scheme presented in §3.1. First, the initial round of file injections

can be reused to recover multiple user queries over a long period of

time. As long as the attacker chooses a large enoughm, the noise

due to files that may be added by the user later on can still be filtered

out. The attacker can launch a long-running attack in which he

continuously probes for the same dictionary of words by gradually

increasingm to match the rate at which real files are added. Then,

at any point in the future when the user queries for a word in the

dictionary, the attacker will be able to discover the word.

The second advantage is that this variation of the attack is mostly

passive, in that the attacker actively injects files once and then

passively reads file responses for the remaining duration. This is

in contrast to the base attack, in which the attacker must actively

inject new files with every query response. Thus, although the file

injection overhead becomes higher and the success rate is reduced,

an attack without the ability to replay a user’s query is still both

possible and practical.

3.3 Attack Against File Padding

An obvious countermeasure to the attack outlined in §3.1 is to

use a cryptographic scheme that pads query responses to hide the

number of files returned. Note that padding might not always be

possible because it potentially adds nontrivial bandwidth overheads

and hence increases costs for a system operator.

Padding interferes with the attacker’s ability to determine the

number of files returned for a query. However, as we show in this

section, the attacker can still learn some information. The common

issue in all of the following schemes is that the attacker retains

the ability to inject files. Thus, even if the attacker can no longer

determine a user’s query, he can still inflate the bandwidth overhead

by injecting large enough files.

The simplest scheme would be to always pad to the worst case.

Formally, the largest possible response ismaxw |qw (D)|. The scheme

must then pad every result set to this count, which is potentially

very expensive. The attacker can aggravate the problem by simply

injecting a large number of files that all contain the same word,

forcing the system to send that many files in response to all requests.

A more practical scheme is to use tiered padding. In this case,

each response is padded to one of several predefined sizes, or tiers.

For example, one could choose to use base-2 exponential padding,

so that each response size is rounded up to the nearest power of 2.

Tiered padding can deter the base attack, but comes at the cost

of expensive bandwidth overheads. Here, we analyze the number of

files that the attacker must inject and the bandwidth overhead for

the server. We use exponential tiered padding for the analysis, but

a similar analysis applies to any padding scheme. Recent works [37,

40] propose more efficient padding schemes that add probabilistic

noise to the result set size; in §3.4 we describe an extension of our

attack that applies to such scenarios.

Recall that on every round, the attacker records nj−1 = |qw (D)|,
the number of files returned to the user’s query at the end of the

previous round. Under this padding scheme, nj−1 = 2
p
for some

p. The actual number of files is then in the range (
nj−1
2
,nj]. In the

next round, the attacker must inject enough files to ensure that

the query will be padded to the next highest tier, so that there is a

measurable difference in the query’s number of results. This is at

least

nj−1
2

files.

In a direct translation of the base attack, the attacker has to inject

k partitions of the dictionary in such a way that he can differentiate

between the partitions. Then, the attacker would have to inject

nj−1
2

files for the first partition,

nj−1
2
× 2 for the second, and so on.

This leads to nj−12
k−2

files injected for a single round. Even worse,

nj = nj−12
k−2

, so the next round will also require an exponentially

larger number of files to be injected.

7

The number of files injected can be reduced by injecting the

partitions one at a time, with

nj−1
2

files per partition. After all of the

files for a partition are injected, the attacker can replay the query

to measure if the user’s query matched that partition. This way,

the attacker can inject

knj−1
2

files per round. However, this requires

increasing the number of query replays by a factor of k , since each
round now requires k replays instead of one.

Claim 5. Consider a database that uses base-2 exponential tiers to

pad query responses. For any user query qw , let n0 = |qw (D)|, the
query response on the initial database. For any attacker dictionary D
and any number of partitions k used during the search, the total num-

ber of file injections necessary to recover the query isO(n0k |D |
logk 2).

Proof. During round j of the attack, where nj−1 is the observed
number of files returned by qw during the previous round, the

attacker must inject

nj−1
2

files for each of the k partitions. Then,

the attacker must inject

knj−1
2

files during round j. Each round

doubles the number of files returned, so that nj = 2nj−1. There

are

⌈
logk |D |

⌉
rounds by the same analysis as in Claim 1. Then, the

attacker must inject a total of O(n0k2
logk |D |) = O(n0k |D |

logk 2)

files to recover qw . □

Claim 6. For any queryqw , the total size of files injected, measured

in number of words, is O(n0 |D |).

Proof. To compute the total number of words injected, we first

consider the number of words injected during round j . The number

of files injected is

knj−1
2

. Each file contains a copy of a single parti-

tion of the current dictionary. Since the dictionary size is reduced

by a factor of k with each round, the current dictionary has size

|D |
k j . Then, the total number of words injected during a single round

is

nj−1 |D |
2k j−1 . nj = n02

j
, so the number of words injected during a

single round is O

(
n0 |D |

(
2

k

) j−1)
. With k ≥ 2, this gives us a total

of O (n0 |D |) words injected across all rounds. □

While the overhead for the attacker is significant, this analysis

does not take into account the substantial bandwidth costs for

the client. Every query may require nearly doubling the query’s

number of results. To answer the attacker’s replayed queries, the

cryptographic scheme needs to pad the files with approximately

as much data as the attacker must inject, to hide the number of

files returned. This can be prohibitively expensive for a database

system.

In the PIR setting, an even more effective version of our attack

is possible: the server has the ability to also delete data in addition

to injecting it. So the attacker can toggle the number of results for

a keyword over multiple padding sizes, instead of just increasing it.

3.4 Attack with Noisy Data

In §3.1, we assume that the attacker can identify precise result

counts. That is, we assume that the observed number of results is

exactly equal to |qw (D)|, to the number of files that matchedw in

the database D. This allows the attacker to precisely measure the

change in query result sets between rounds due to injected files.

However, the change measured may not exactly equal the num-

ber of injected files. For example, if the cryptographic scheme adds

some noise to the result sets, then the attacker cannot precisely

identify the change in result counts due to file injection. Another

example appears in some searchable encryption schemes, where

the results are batched together in blocks (saym results per block),

or when using ORAMs [57] that attempt to hide the number of

results within an ORAM Path. For the first, the attacker observes

the number of blocks so it can estimate the actual number of re-

sults within an error of ∼m. For the second, we discuss in §5 that

such ORAMs still reveal an approximate number of results in some

realistic settings.

In this section, we show that our attack still has a significant

chance of success even if there is some noise in the volume mea-

surements. Formally, if the attacker expects a noise of at most s
files in some time interval, this means that for each word w , the

database system can add up to s elements to the database D. Each

of these elements is of the form (w, f), where f is a dummy file. If

a user queries qw on every interval, he can expect an increase of at

most s files with each new query.

Similar to ideas presented in the above scenarios, the attacker

can still recover a query qw if he can inject more files to filter out

noise in the database. In particular, with an expected noise of s
in between rounds of an attack, he can repeat a word in the i-th
partition si times instead of just i . If the user’s query wordw falls

in partition i during round j, then the number of results observed

will be nj ≤ nj−1 + si + s . Then, to determine the partition that the

user’s query belonged in, he can compute ⌊
nj−nj−1

s ⌋ = i .
Thus, assuming that the attacker can correctly guess the maxi-

mum noise that will be added during any round, the attacker can

still recover the user’s query with perfect accuracy. The attacker

can estimate s with some knowledge of the application. For in-

stance, he can record the rate of incoming email for an average

user, for example. Furthermore, if the attacker underestimates s and
guesses a wrong partition, he will quickly discover his error since

the query’s result set size is unlikely to match any partition during

the following round.

The overhead to overcome noise is quite low; a factor of s to
the number of files and words injected. Thus, even if the attacker

is unable to perfectly measure the number of results and/or block

network traffic, he can still recover the user’s query with near-

perfect accuracy.

4 EVALUATION

In this section, we evaluate the overheads and accuracy for the

base attack (§4.2) and its extensions. We simulate various applica-

tion settings and degrees of attacker ability, including an attacker

that cannot replay the query (§4.3), and a storage system with file

padding (§4.4). Second, we present a case study on Gmail to eval-

uate the feasibility of the attacker’s abilities assumed in the base

attack in a real-world application (§4.5). We demonstrate success-

ful attacks on Gmail by simulating a server-side adversary, that

complete within a few minutes across a variety of dictionary sizes.

8

 2

 6

 10

 14

 18

 22

 2 4 8 16 32

N
u
m
b
e
r
o
f
ro
u
n
d
s

Choice of k

D = 100
D = 1000
D = 10K
D = 340K

Figure 5: (Base attack) Number of rounds

required to identify a keyword with varying

choices of k , across different dictionary sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16 32

T
o
ta
l
f
le
s

in
je
c
te
d

Choice of k

D = 100
D = 1000
D = 10K
D = 340K

Figure 6: (Base attack) Total number of

files injected with varying choices of k ,
across different dictionary sizes.

 2 4 8 16 32

M
a
x

b
y
te
s

in
je
c
te
d

Choice of k

100B

1KB

10KB

100KB

1MB

10MB

100MB

 2 4 8 16 32

A
v
g
.
b
y
te
s

in
je
c
te
d

Choice of k

Figure 7: (Base attack)Number of bytes injected with varying

choices ofk , across different dictionary sizes: (left) average bytes
per round; (right) maximum bytes across rounds.

4.1 Setup

In all experiments, we use the entire corpus of emails from the Enron

email dataset [18] as the queried documents, consisting of ∼500K

emails belonging to 151 users and ∼2.5GB in size. We extracted

keywords from this dataset by first stemming the words [54], and

then removing 675 stopwords. We next filtered out any words that

contained non-alphabetic characters, or were ≥ 20 or ≤ 3 characters

long. This gave us a total of ∼259K keywords. In our experiments,

we only used the top ∼123K keywords (i.e., those that appeared in

> 3 documents) in order to remove noise from the dataset.

Since an attacker’s dictionary may contain words that do not ex-

ist in the queried documents, we supplemented the Enron keywords

with a corpus of English words [17]. Preprocessing the English

words in a similar manner yielded a total of ∼257K keywords. The

union of both datasets resulted in a universe of ∼342K keywords.

4.2 Base Attack

Assuming that the queried word is in the initial dictionary chosen

by the attacker, the base attack achieves perfect query recovery,

with strict bounds on the overheads necessary in number of query

replays and data injected (as described in Figure 4). Our simulation

of the attack in Figures 5 and 6 confirms the theoretical guarantees.

In this experiment, we build the attacker’s dictionary D by ran-

domly sampling keywords from the keyword universe. We pick the

keyword queried by the user at random from D in order to stress

test the effort required by the attacker—a keyword not in the D
would be trivially detected at the end of a single round without

requiring further replays. We then report the number of rounds

required to guess the keyword with 100% accuracy for different

choices of k in Figure 5, and the total number of files injected across

rounds in Figure 6. Recall from §3.1 that any instance of the attack

converges after exactly

⌈
logk |D |

⌉
replays and k

⌈
logk |D |

⌉
files in-

jected, where k is an integer chosen by the attacker. Thus, with a

dictionary of fixed size |D |, the parameter k represents a tradeoff

between the number of query replays required vs. the number of

file injections required. The attacker’s choice of k then depends on

the attacker’s ability to replay the query and the rate at which files

can be injected for the target application.

We explore this tradeoff with fixed-size dictionaries in Figure 7,

which demonstrates how the average number of bytes injected per

round increases with k (while the number of rounds decreases). In

the worst case where the dictionary comprises the entire keyword

universe and k = 24, the bytes injected per round is still less than

10MB, demonstrating the feasibility of the attack. We also show the

maximum number of bytes injected across any round in Figure 7,

equivalent to the number of bytes injected during the first round.

The number of bytes that the attacker can inject during a single

round must be at least as large as this number. We find that even in

the worst case, this is approximately 50MB.

Takeaway. The attack can be mounted easily even when queries

are replayed at most once, i.e., the attacker can recover the keyword

in merely two rounds without having to inject more than several

tens of MBs of data. As an example, Gmail limits the size of emails

to a comfortable 25MB [25], and the attacker need only send 3-4

emails to the victim’s inbox in order to identify the query.

4.3 Single-round Attack

In the single-round variation of the attack, we sacrifice some ac-

curacy but do not require the ability to replay the user’s query.

This variation of the attack is also stronger in that it can be used to

identify multiple queries over a long period of time, whereas the

base attack must be instantiated once for every query of interest.

Also, this variation is a mostly passive attack, since the bulk of the

attack is spent reading query responses, rather than also injecting

files in an online fashion.

We evaluate this attack by measuring its accuracy while varying

the parameterm. Recall thatm is an integer chosen by the attacker

that represents the tradeoff between the file injection overhead

and the number of files injected (§3.2). In this experiment, we only

query keywords that exist in the Enron dataset, since keywords

that do not exist in the dataset will always be accurately detected

for any choice ofm.

For each value ofm, we measure the attack’s accuracy in two

scenarios: (i) when the queried keyword is in the attacker’s dictio-

nary and the attacker guesses the keyword; and (ii) the keyword is

not in the dictionary, and the attacker determines that the keyword

is not of interest. In each scenario, we first fix the dictionary, and

then inject a single round of files at the beginning of the simulation

for a chosen value ofm. We then query 1000 randomly selected

keywords and measure the percentage of accurate guesses. Figure 8

plots the accuracy of guesses asm increases, averaged over different

dictionary sizes.

Predictably, the accuracy of the attack improves withm, while

the number of file injections required also increases. Form = 5, we

9

 0

 20

 40

 60

 80

 100

 10 100 1000

A
c
c
u
ra
c
y

(%
)

Choice of m

Queries in dict.
Queries not in dict.

Figure 8: (Single-round attack) Accuracy with

varyingm across different dictionary sizes.

1B

1KB

1MB

1GB

1TB

 100 1000 10000

T
o
ta
l
b
y
te
s

in
je
c
te
d

Size of dictionary

No padding
Power-of-2
Power-of-10

Figure 9: (File padding) Overhead incurred by

attacker when query responses are padded.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70

N
u
m
b
e
r
o
f
f
le
s

in
je
c
te
d

Time since injection (seconds)

Figure 10: (Gmail) CDFmeasuring the time it takes

for files to be injected into the index for Gmail.

need only inject 5|D | files, but achieve an accuracy rate of only∼14%
for words that belong to the attacker’s dictionary. Form = 1000,

we achieve an accuracy of ∼96%, but must inject 1000|D | files. In
practice, a lower value of m might not only suffice but also be

feasible: for m = 20 we achieve an accuracy of ∼64%, while the

number of bytes injected for a dictionary of size 10K is ∼7GB.

Takeaway. The barrier to mount an attack is higher in the ab-

sence of replays, and the attacker needs to inject several GBs of

data to identify a keyword with reasonable confidence. However, in

scenarios where the attacker’s dictionary contains a small number

of words (when the attack knows a candidate list of queries, as dis-

cussed in §3.2), the feasibility of the attack increases proportionately.

For example, an attacker who wishes to identify the disease that a

victim might have only needs a dictionary of ∼950 keywords [13].

If the attacker is interested only in sexually transmitted infections

(STIs), then the size of the dictionary drops to ∼27 keywords [31],

increasing the feasibility of the attack manifold.

4.4 Attack Against File Padding

We assess the feasibility of the attack when the server pads query

responses to one of several predefined sizes. In such cases, though

it is still possible for the attacker to guess the queried keyword with

100% accuracy, it also requires greater effort. As described in §3.3,

the attacker can choose to either minimize the number of rounds,

or minimize the number of files injected. In this experiment, we

evaluate the latter strategy. Specifically, we measure the overhead

incurred by the attacker when the server pads responses to powers

of 2 and 10, and compare it with a baseline where the responses are

unpadded.

We build the attacker’s dictionary by randomly selecting key-

words from the Enron dataset, and then measure the overhead for

each keyword in the dictionary. We use this setup to stress the

number of files the attacker will have to inject, since responses for

non-existent keywords will get padded to a size of 1 by the server.

Figure 9 illustrates the attacker’s overhead in terms of the to-

tal number of bytes injected with varying dictionary sizes. When

responses are padded to a power of 2, the attacker has to inject

a feasible ∼35MB on average to mount the attack, with a large

dictionary size of 10K keywords. Though the overhead increases

dramatically when the responses are padded to a power of 10, a

small dictionary size of 100 keywords still requires only ∼45MB of

injected data to pinpoint the keyword.

Takeaway. Padding responses is a viable defense only if the fol-

lowing conditions hold simultaneously: (i) the quantum of padding

is high, and (ii) the attacker’s dictionary of interest is large. In all

other situations, the attack remains feasible as demonstrated above.

4.5 Case Study: Gmail Inbox Search

|D | k No. of

replays

(theoretical)

No. of

replays

(actual)

Total

injected

emails

Attack

duration

10 10 1 1 10 1 min

100 10 2 2 20 2 min 5s

1K 32 2 2 63-64 2 min 5s

10K 22 3 3 64 5 min 6s

100K 18 4 5 71 7 min 10s

Figure 11: Attack parameters and duration for Gmail across various dictio-

nary sizes.

So far, we have experimentally validated the theoretical per-

formance of our attacks across various parameter choices. In this

section, we demonstrate the practical feasibility of our attack in

real-world applications by attacking Gmail’s inbox search feature.

We attack Gmail by simulating a server-side adversary using

a man-in-the-middle proxy, and we assume that the volume of

results is leaked to it by the server. We first show that the attacker

can indeed meet the two key requirements of file injection and

automatic query replay.

Subsequently, we perform an exhaustive experiment across a

wide range of dictionary sizes (10 to 100K) to determine the min-

imum amount of time required to mount a successful attack on

Gmail. The parameters of our attack are governed by the follow-

ing constraints: (i) the periodicity of replays in the Gmail client;

(ii) the time it takes to inject files into a user’s inbox; and (iii) the

pagination limit in Gmail (which upper bounds the total number of

injections). We find that for a small dictionary of size 10, a success-

ful attack can be mounted within 1 minute from start to end; for a

large dictionary with 100K words, an attack completes successfully

in around 7 minutes (see Figure 11).

We now describe our methodology in more detail.

Setup. Since we don’t have control over Gmail servers, we sim-

ulate a server-side adversary using a man-in-the-middle (MITM)

HTTPS proxy [47]. Specifically, we launch the Gmail web client on

a browser within a guest virtual machine, and launch the MITM

10

proxy on the host. We reroute all host network traffic through the

MITM proxy. Subsequently, we install the proxy’s certificate at

the client browser in order to simulate a server-side adversary. At

this point, all TLS network traffic to and from the client browser

passes through the MITM proxy, which it can then examine and

manipulate.

Query replay. Once a user issues a query, we use the MITM

proxy to stimulate automatic query replay by simply dropping the

HTTP responses returned by the server. After a period of time,

the Gmail web client retries the query automatically, without user

intervention. Specifically, we find that the client replays the query

every 1–3 minutes in the absence of a response. To the user, it

simply appears as if the client has a bad network connection.

File injection. File injection in Gmail is simple; the attacker re-

quires a separate Gmail account to send emails to the victim. For

the base attack, the attacker must send k emails in each round and

also be sure that they are all indexed by the next replay (i.e., at

least 60s). We determined the rate at which emails could be injected

(Figure 10) to show that it is feasible to index a sufficient number

of emails. We found that after injecting 40 emails of size 10KB each,

36 were visible in the user’s mailbox 60 seconds later, shown in

Figure 10. Thus, within a time window of 60s, the attacker can pick

any value less than 36 as a safe option for k .

Volume leakage. In this experiment we assume that the proxy

directly obtains the exact result set size from the server, since we

simulate a server-side adversary. However, we find that Gmail has

a maximum pagination limit of 100, i.e., the server returns at most

100 results in response to a query. The pagination limit constrains

the parameter regime of our attack, in that it upper bounds the

total number of files that can be injected by the attacker over the

duration of the attack.

End-to-end attack. The aim of the experiment is to minimize the

time it takes to launch a successful attack. However, the constraints

discussed above—the periodicity of replays, the time it takes to

inject files, and the pagination limit—restrict the parameter regime

within which an attacker can operate. Therefore, we start by com-

puting the optimal parameters required for mounting a successful

attack within the space of possible parameters. Next, we attack

Gmail using the computed parameters and report the end-to-end

duration of the attack.

Since the Gmail application has a fixed periodicity of replays,

the attack duration is directly governed by the number of replays

required for the attack. Hence, given a dictionary size |D |, our
aim is to minimize logk |D |, where k refers to the number of files

that need to be injected per round. However, given the pagination

limit of ℓ = 100, we require that the total number of injected files

k × logk |D | be less than ℓ. At the same time, k should be less than

36 given the time it takes to inject files.

We therefore solve the following optimization problem:

minimize logk |D |

subject to k × logk |D | < 100

and k < 36

Figure 11 summarizes our findings for varying sizes of the attacker’s

dictionary, 10 to 100K. Note that the total number of injected emails

is sometimes marginally less than k × logk |D |. This is because

logk |D | is not always an integer, and therefore files of interest

across subsequent rounds may sometimes contain less than k key-

words. Additionally, for |D | = 100K , our attack requires an extra

round of replay because the size of the injected files in the first

round were large, increasing the time it took for files to get sent

and indexed.

Overall, our experiment demonstrates the feasibility of volume-

based attacks on Gmail, which can be successfully completed within

a matter of minutes depending on the size of the attacker’s dictio-

nary.

In addition, the attack is difficult to detect because during the

course of the attack, the user only sees a suspended connection. The

user only makes a single query, and the Gmail client automatically

replays the query in the background. During this time, emails in-

jected by the attacker are also not delivered to the user’s web client,

and only modify the server-side index. The user may later see the

injected emails, but only after the attack successfully completes.

5 RELATEDWORK

To access or compute on encrypted data, the community has de-

veloped a rich set of cryptographic schemes and protocols, as well

as encrypted database systems. A recent set of attack papers study

the information an attacker can obtain from these schemes and

systems, termed leakage-abuse attacks by Cash et al. [12]. Most of

the attacks in this category leverage leakage from data relations or

access patterns, and very few works target oblivious schemes and

systems relying only on volume leakage, as our work does.

We now briefly discuss cryptographic schemes and systems that

leak result volumes, followed by related attacks on these systems.

Cryptographic schemes and systems. There are a multitude

of ways to access or compute on encrypted data, such as property-

preserving or property-revealing encryption [7, 8, 38, 43, 52] or

searchable encryption [9, 11, 12, 15, 30, 35, 39, 42, 49, 50, 60, 61].

For a comprehensive survey, see [59]. Here we focus on systems

leveraging ORAM or PIR that leak the volume of results.

Oblivious RAM techniques [26, 63] and Private Information Re-

trieval (PIR) [22] schemes enable a client to access data items stored

at the server without the server knowing the query requested. These

two types of schemes consider different models and employ differ-

ent techniques, but ultimately, the goal of both is to hide the query

from the server.

Many works leverage ORAM for different purposes. For example,

ObliviStore [62] and CURIOUS [5] show how to use ORAM for

cloud storage. TaoStore [58] shows how to support asynchronicity

in multi-user cases. These systems leak the volume of results to the

server. Roche et al. [57] propose an ORAM scheme (called vORAM)

that supports variable-sized data blocks by including themwithin an

ORAM node (or bucket) on the same path, but our attack with noisy

data in §3.4 can still work on these schemes. While such a scheme

confers some degree of hiding, it limits the amount of data that

can be included on a path in this way, say L files, and the attacker

sees how many ORAM paths are fetched. Hence, the attacker can

estimate the number of results with an error margin of L. In the

database setting, this error margin can be made relatively small,

because the database fetches the rows that match the keyword

(not just the row identifiers), and these cannot all be stored on the

11

same path. Moreover, Naveed [48] demonstrates that, in general,

extending ORAM schemes to hide the number of query results is

(for a large fraction of queries) slower than streaming the database

through the client.

Some works [4, 51, 65] build SQL databases or keyword indices

on top of PIR. For example, to perform an index search for a keyword

k , the client performs PIR retrievals to traverse the index and select

every value in the index. The server does not know which data

items were fetched, but it still sees the number of results.

Related attacks. When considering the amount of leakage attacks

exploit, there are at least three categories: attacks exploiting data

relations, attacks exploiting access patterns, and attacks exploiting

result set size but not access patterns or data relations. The last

category is the most challenging because the attacker needs to

work with the least amount of information. At the same time, this

category is also the least studied. Our attack is in this last category,

and we now discuss other volume-based attacks.

Cash et al. [11] point out that if an attacker knows the exact

number of times a keyword appears in a victim’s documents, and if

that result size is unique to this keyword, the attacker can identify

the keyword when seeing the result size. In comparison, our attack

does not assume the attacker knows the frequency of each keyword

in a victim’s index—indeed, when attacking a specific user in the

email application, the attacker often does not have access to the

victim’s mailbox and does not know these counts. Moreover, many

keywords don’t have unique counts (e.g., 99% words in the Enron

dataset, §4), making this attack not work for these keywords. Our

attack can recover 100% queries in a dictionary in realistic scenarios

without access pattern information.

Kellaris et al. [36] also show how an attacker can reconstruct

contents of a field in the database given only the result size, but

their attack differs from ours in assumptions and target. First, Kel-

laris et al. assume that (1) the user makes range queries that are

uniformly distributed on that column, a property on which their al-

gorithm relies crucially; and (2) the user makesO(N 4
logN) queries

where N is the size of the domain. Such a large number of queries

is infeasible for the attacker to observe in many settings. Very re-

cently, Grubbs et al. [27] improve upon the results of Kellaris et

al. by demonstrating attacks that do not make assumptions on the

distribution of queries, as long as all possible range queries are

issued. For queries drawn from a uniform distribution, their attack

requires O(N 2
logN) queries.

In contrast, our attack requires only a single query to be issued

by the user, followed byO(log |D |) replays, which is often less than

10 in number (§4). Our attack also makes no assumptions about the

query distribution—assuming a uniform range query distribution

is not realistic for many applications. On the other hand, unlike

the aforementioned works, our attack requires the ability to inject

and sometimes replay queries, though we demonstrate realistic

scenarios in which this can be achieved (§2.2). A second difference

is that the aforementioned attacks reconstruct the database (out of

range queries), but not individual query keywords; we reconstruct

queries, but do not target the overall database. However, we note

that a similar reconstruction follows as a direct consequence of

our attack, where the original counts for each keyword could be

determined if queries for all possible keywords are issued.

Concurrent work. Gui et al. [29] and Blackstone et al. [6] also

propose volume-based attacks against encrypted databases, con-

current to our work.

Gui et al. [29] consider a setting similar to prior work [27, 36],

where the adversary passively observes many queries over ranges

with bounded size, and then attempts to reconstruct the database

based on the result volumes. Our work, on the other hand, explores

an alternative design point in the space of attacks, with different

assumptions and target. We focus on recovering the content of

individual queries that search for keywords in the database, and

our attacks exploit application-specific behavior such as automatic

query replay and the ability to inject files into the database.

Blackstone et al. [6] also propose a suite of volume-based attacks,

some of which passively analyze the volume of query results based

on some known data (similar to prior work), while two additional

attacks rely on injecting files into the database, similar to ours. In

particular, their file injection attacks are conceptually similar to

our base attack in §3.1. The primary difference is that our attacks

leverage query replay—we study the real behavior of many applica-

tions, and crucially, we find automatic query replay to be a common

property; by leveraging this property, we are able to substantially

improve the efficiency of our attacks. The attacks of Blackstone et

al. do no require queries to be replayed. As a consequence, however,

their attacks rely on an alternate set of assumptions. First, they re-

quire the adversary to know the baseline volumes for all keywords

in the dictionary, before the attack can be launched. Second, for

correctness, their binary search based attack requires the targeted

keyword to have a unique volume in the baseline volumes. Our

attacks do not have such requirements, and our algorithm allows

us to prune the search space faster, thus drastically decreasing the

overall duration of the attack. We also describe multiple extensions

to the attack, including settings where the results are padded (§3.3)

or noisy (§3.4).

6 MITIGATIONS

In this section, we discuss mitigations of our attack. Overall, we

believe it is difficult to eradicate our attack in all settings. Injection

is often fundamental to application functionality, padding is too ex-

pensive, and replay could be a legitimate user or application action,

as discussed in §2.2. Nevertheless, based on our evaluation in §4,

we believe that the mitigations proposed below could significantly

reduce the extent of the attack by limiting the attacker’s abilities

(§2.2) or making the attack too expensive to mount. We emphasize

that with enough resources, it is possible for the attacker to defeat

some of these through the attack extensions described in §3.

File Injection. File injection is arguably the most difficult to

defend against, since it is often a part of the target application’s

functionality. For example, an email inbox search feature is not

much use if it could only search from emails that were sent by the

user, not to the user. Thus, we believe that the main defense here

is rate-limiting and detection. In the email application (§2.1), this

would require the server to actively filter out suspicious emails.

As we found in §4.5, applications such as Gmail already rate-limit

emails; however, this was not enough to defeat the attack.

File Measurement. Reducing the attacker’s ability to measure

the number of files contained in a response is far more effective. We

12

have already shown in §4.4 that padding query responses, while ef-

fective in hiding the response size, leads to unacceptable bandwidth

overheads for the application. We believe that to varying degrees,

this is a property of all padding schemes.

A more effective way to hinder the attacker is to inject some

noise in the responses. This requires little overhead in server-client

bandwidth compared to the attacker’s overhead: an additive factor

of k per query compared to a multiplicative factor of k per attack.

This countermeasure is also simple to implement: add a random

number of dummy files to every response and have the client filter

them out. Note that while this increases the attacker’s overhead, it

does not wholly preclude the attack, as we described in §3.4.

Another method is to limit the number of results that can be

fetched at a time. The user must explicitly request further results if

needed. This lowers the feasible dictionary size for the attack, at

the cost of user convenience.

Query Replay. The most effective way to prevent the base attack

is to block query replays. Query replays are a feature of applications

such as Gmail that produce the illusion of a seamless connection

during limited network connectivity (§4.5). A possible countermea-

sure is to include a unique query ID for each request, so that the

server can detect and filter out duplicate requests.

The main disadvantage of such an approach is that the server

would then have to record and replay past responses in order to both

prevent the attack and keep the application available. Long-running

user sessions would have to be garbage-collected, potentially sacri-

ficing correctness. More crucially, web servers are often replicated

for performance and fault tolerance. Ensuring consistency for du-

plicate queries in such settings is well-known to be expensive, if

even possible [24]. Finally, this countermeasure does not prevent

against the single-round attack described in §3.2.

7 CONCLUSION

Wedemonstrated a novel generic attack on encrypted databases that

only leverages result size leakage. We showed that our attack can

reconstruct queries with 100% confidence for a range of realistic

settings, jeopardizing the security guarantees of these systems.

Our attack resists a set of mitigations, by reconstructing sensitive

information even in a situation with result size padding, result size

noise, or no ability to replay queries. We showed the effectiveness of

our attack via both theoretical bounds and an empirical evaluation,

including a demonstration on the Gmail web application.

REFERENCES

[1] Signal. https://signal.org.

[2] M. A. Abdelraheem, T. Andersson, and C. Gehrmann. Inference and

Record-Injection Attacks on Searchable Encrypted Relational Databases.

Cryptology ePrint Archive, Report 2017/024, 2017.

http://eprint.iacr.org/2017/024.

[3] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and

R. Venkatesan. A secure coprocessor for database applications. In FPL, 2013.

[4] D. Asonov. Querying Databases Privately. In ISBN 3-540-22441-6 Springer-Verlag

Berlin Heidelberg, 2003.

[5] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practicing

Oblivious Access on Cloud Storage: The Gap, the Fallacy, and the New Way

Forward. In Proceedings of the 22nd ACM Conference on Computer and

Communications Security (CCS), Denver, CO, 2015.

[6] L. Blackstone, S. Kamara, and T. Moataz. Revisiting Leakage Abuse Attacks.

Cryptology ePrint Archive, Report 2019/1175, 2019.

https://eprint.iacr.org/2019/1175.

[7] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-Preserving Symmetric

Encryption. In Proceedings of the 28th Annual International Conference on the

Theory and Applications of Cryptographic Techniques (Eurocrypt), Cologne,

Germany, 2009.

[8] A. Boldyreva, N. Chenette, and A. O’Neill. Order-Preserving Encryption

Revisited: Improved Security Analysis and Alternative Solutions. In Proceedings

of the 31st International Cryptology Conference (CRYPTO), Santa Barbara, CA,

2011.

[9] R. Bost. Σoφoς : Forward Secure Searchable Encryption. In Proceedings of the

23rd ACM Conference on Computer and Communications Security (CCS), Vienna,

Austria, 2016.

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks Against

Searchable Encryption. In Proceedings of the 22nd ACM Conference on Computer

and Communications Security (CCS), Denver, CO, 2015.

[11] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.

Dynamic Searchable Encryption in Very-Large Databases: Data Structures and

Implementation. In Proceedings of the 21st Network and Distributed System

Security Symposium (NDSS), San Diego, CA, 2014.

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.

Highly-Scalable Searchable Symmetric Encryption with Support for Boolean

Queries. In Proceedings of the 33rd International Cryptology Conference

(CRYPTO), Santa Barbara, CA, 2013.

[13] Center for Disease Control and Prevention (CDC): Diseases and Conditions A-Z

Index, 2017. https://www.cdc.gov/DiseasesConditions.

[14] CipherCloud: Cloud Data Protection Solution, 2017.

http://www.ciphercloud.com.

[15] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. In Proceedings of

the 13th ACM Conference on Computer and Communications Security (CCS),

Alexandria, VA, 2006.

[16] J. L. Dautrich, Jr. and C. V. Ravishankar. Compromising Privacy in Precise Query

Protocols. In International Conference on Extending Database Technology, 2013.

[17] English keywords dataset, 2017. https://github.com/dwyl/english-words.

[18] Enron email dataset, 2017. https://www.cs.cmu.edu/~./enron/.

[19] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich

Queries on Encrypted Data: Beyond Exact Matches. In Proceedings of the 20th

European Symposium on Research in Computer Security (ESORICS), Vienna,

Austria, 2015.

[20] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing. RFC 7230, 2014.

[21] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,

J. D. Mitchell, and R. K. Cunningham. SoK: Cryptographically Protected

Database Search. In Proceedings of the 38th IEEE Symposium on Security and

Privacy (IEEE S&P), 2017.

[22] W. Gasarch. A survey on private information retrieval. In The Computational

Complexity Column, 2007.

[23] M. Giaruad, A. Anzala-Yamajako, O. Bernard, and P. Lafourcase. Practical

Passive Leakage-Abuse Attacks Against Symmetric Searchable Encryption.

Cryptology ePrint Archive, Report 2017/046, 2017.

http://eprint.iacr.org/2017/046.

[24] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, 2002.

[25] Gmail size limits, 2017. https://support.google.com/mail/answer/6584.

[26] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious

RAMs. J. ACM, pages 431–473, 1996.

[27] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson. Pump up the volume:

Practical database reconstruction from volume leakage on range queries. In

Proceedings of the 25th ACM Conference on Computer and Communications

Security (CCS), 2018.

[28] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov. Breaking

Web Applications Built On Top of Encrypted Data. In Proceedings of the 23rd

ACM Conference on Computer and Communications Security (CCS), Vienna,

Austria, 2016.

[29] Z. Gui, O. Johnson, and B. Warinschi. Encrypted databases: New volume attacks

against range queries. In Proceedings of the 26th ACM Conference on Computer

and Communications Security (CCS), 2019.

[30] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song. ShadowCrypt: Encrypted Web

Applications for Everyone. In Proceedings of the 21st ACM Conference on

Computer and Communications Security (CCS), Scottsdale, AZ, 2014.

[31] K. K. Holmes et al. Sexually Transmitted Diseases. McGraw Hill Medical, 4th Ed.,

NY, 2008.

[32] iQrypt: Encrypt and query your database, 2017. http://iqrypt.com/.

[33] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access Pattern Disclosure on

Searchable Encryption: Ramification, Attack and Mitigation. In Proceedings of

the 19th Network and Distributed System Security Symposium (NDSS), San Diego,

CA, 2012.

[34] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference Attack Against Encrypted

Range Queries on Outsourced Databases. In Proceedings of the 4th ACM

13

https://signal.org
http://eprint.iacr.org/2017/024
https://eprint.iacr.org/2019/1175
https://www.cdc.gov/DiseasesConditions
http://www.ciphercloud.com
https://github.com/dwyl/english-words
https://www.cs.cmu.edu/~./enron/
http://eprint.iacr.org/2017/046
https://support.google.com/mail/answer/6584
http://iqrypt.com/

Conference on Data and Application Security and Privacy, San Antonio, TX, 2014.

[35] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic Searchable Symmetric

Encryption. In Proceedings of the 19th ACM Conference on Computer and

Communications Security (CCS), Raleigh, NC, 2012.

[36] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic Attacks on Secure

Outsourced Databases. In Proceedings of the 23rd ACM Conference on Computer

and Communications Security (CCS), Vienna, Austria, 2016.

[37] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Accessing Data while

Preserving Privacy. 2017. http://arxiv.org/abs/1706.01552.

[38] F. Kerschbaum and A. Schröpfer. Optimal Average-Complexity Ideal-Security

Order-Preserving Encryption. In Proceedings of the 21st ACM Conference on

Computer and Communications Security (CCS), Scottsdale, AZ, 2014.

[39] K. Kurosawa. Garbled searchable symmetric encryption. In Proceedings of the

18th International Conference on Financial Cryptography, 2014.

[40] M. Kuzu, M. S. Islam, and M. Kantarcioglu. Efficient Privacy-aware Search over

Encrypted Databases. In Proceedings of the 4th ACM Conference on Data and

Application Security and Privacy, San Antonio, TX, 2014.

[41] M.-S. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction attacks

on encrypted data using range query leakage. In Proceedings of the 39th IEEE

Symposium on Security and Privacy (IEEE S&P), 2018.

[42] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva. Mimesis Aegis: A

Mimicry Privacy Shield - A System’s Approach to Data Privacy on Public Cloud.

In Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, 2014.

[43] K. Lewi and D. J. Wu. Order-Revealing Encryption: New Constructions,

Applications, and Lower Bounds. In Proceedings of the 23rd ACM Conference on

Computer and Communications Security (CCS), Vienna, Austria, 2016.

[44] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leakage in searchable

encryption: Attacks and new construction. Inf. Sci., 265:176–188, 2014.

[45] M. Marlinspike. Technology preview: Private contact discovery for signal.

https://signal.org/blog/private-contact-discovery/, 2017.

[46] Microsoft SQL Server: Always Encrypted Database Engine, 2017.

https://msdn.microsoft.com/en-us/library/mt163865.aspx.

[47] MITM Proxy, 2018. http://mitmproxy.org/.

[48] M. Naveed. The Fallacy of Composition of Oblivious RAM and Searchable

Encryption. Cryptology ePrint Archive, Report 2015/668, 2015.

http://eprint.iacr.org/2015/668.

[49] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic Searchable Encryption

via Blind Storage. In Proceedings of the 35th IEEE Symposium on Security and

Privacy (IEEE S&P), 2014.

[50] W. Ogata, K. Koiwa, A. Kanaoka, and S. Matsuo. Toward Practical Searchable

Symmetric Encryption. In Proceedings of the 8th International Workshop on

Security, 2013.

[51] F. Olumofin and I. Goldberg. Privacy-preserving queries over relational

databases. In Proceedings of the 10th Privacy Enhancing Technologies Symposium

(PETS), Berlin, Germany, 2010.

[52] R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-Security Protocol for

Order-Preserving Encoding. In Proceedings of the 34th IEEE Symposium on

Security and Privacy (IEEE S&P), San Francisco, CA, 2013.

[53] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:

Protecting Confidentiality with Encrypted Query Processing. In Proceedings of

the 23rd ACM Symposium on Operating Systems Principles (SOSP), Cascais,

Portugal, 2011.

[54] M. F. Porter. An Algorithm for Suffix Stripping. Readings in Information

Retrieval, pages 313–316, 1997.

[55] D. Pouliot and C. V. Wright. The Shadow Nemesis: Inference Attacks on

Efficiently Deployable, Efficiently Searchable Encryption. In Proceedings of the

23rd ACM Conference on Computer and Communications Security (CCS), Vienna,

Austria, 2016.

[56] Cloud Threat Intelligence, Skyhigh Cloud Security labs, Skyhigh Networks, 2017.

https://www.skyhighnetworks.com/.

[57] D. S. Roche, A. J. Aviv, and S. G. Choi. A Practical Oblivious Map Data Structure

with Secure Deletion and History Independence. In Proceedings of the 37th IEEE

Symposium on Security and Privacy (IEEE S&P), 2016.

[58] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro. TaoStore: Overcoming

Asynchronicity in Oblivious Data Storage. In Proceedings of the 37th IEEE

Symposium on Security and Privacy (IEEE S&P), 2016.

[59] N. P. Smart (Editor). Future Directions in Computing on Encrypted Data. In

ECRYPT report, 2015.

[60] D. X. Song, D. Wagner, and A. Perrig. Practical Techniques for Searches on

Encrypted Data. In Proceedings of the 21st IEEE Symposium on Security and

Privacy (IEEE S&P), Oakland, CA, 2000.

[61] E. Stefanov, C. Papamanthou, and E. Shi. Practical Dynamic Searchable

Encryption with Small Leakage. In Proceedings of the 21st Network and

Distributed System Security Symposium (NDSS), San Diego, CA, 2014.

[62] E. Stefanov and E. Shi. ObliviStore: High Performance Oblivious Cloud Storage.

In Proceedings of the 36th IEEE Symposium on Security and Privacy (IEEE S&P),

2015.

[63] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas.

Path ORAM: an extremely simple oblivious RAM protocol. In Proceedings of the

20th ACM Conference on Computer and Communications Security (CCS), Berlin,

German, 2013.

[64] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing Analytical

Queries over Encrypted Data. In Proceedings of the 39th International Conference

on Very Large Data Bases (VLDB), Riva del Garda, Italy, 2013.

[65] S. Wang, D. Agrawal, and A. E. Abbadi. Generalizing PIR for Practical Private

Retrieval of Public Data. In Lecture Notes in Computer Science, volume 6166, 2010.

[66] Y. Zhang, J. Katz, and C. Papamanthou. All Your Queries Are Belong to Us: The

Power of File-Injection Attacks on Searchable Encryption. In Proceedings of the

25th USENIX Security Symposium, Austin, TX, 2016.

A EXTENSIONS FOR CONJUNCTIVE QUERIES

In this section, we describe extensions to our base attack for identi-

fying keywords in conjunctive queries. The extensions are based

on attacks described by Zhang et al. [66]. Zhang et al. consider pow-

erful attackers who can observe file access patterns and thereby

uniquely identify documents in the result set. Instead, we adapt

the attacks for our setting in which the attacker observes nothing

more than the size of the result set. We present two attacks—the

first optimizes the number of required replays while the second

reduces the number of files injected.

A.1 Reducing the number of required replays

Zhang et al. [66] present a general attack for conjunctive queries

with d keywords. The attacker injects n files into the database, each

containing L randomly chosen keywords from the dictionary D.
They claim that for properly chosen n and L, the intersection of the

returned files will contain exactly the d queried keywords and no

others with a very large probability. The authors prove the claim

for L = 1

2

1/d
|D |, and n = (2 + ϵ)d log |D | (where ϵ > 0) and show

that the probability of success in this case is e(−1/ |D |)
ϵ/4

.

We extend the above attack as follows. The attacker creates the n
files as before, but injects 2

i
copies of the i-th file into the database

(for i ∈ [0,n − 1]). The number of files returned is thus sufficient

to uniquely identify the exact subset of files whose copies were

returned in the result.

The attack only requires a single replay of the query, but the

total number of files injected by the attacker in this case is equal

to 2
0 + 21 + . . . + 2n−1 ≈ 2

n = |D |(2+ϵ)d . The attack is thus more

suited for situations with small dictionaries.

A.2 Reducing the number of files injected

Zhang et al. also present an adaptive attack for conjunctive queries

with d keywords, which reduces the number of files the attacker

needs to inject. The core idea is to first perform a binary search

in order to identify the lexicographically largest keywordw in the

query. Oncew is identified, the attacker performs another binary

search to identify the next keyword in the query, but withw present

in all the injected files. The attacker proceeds in this manner until

all the keywords are identified.

Specifically, the attacker orders all keywords in the dictionary

lexicographically, and then injects a single file containing the first

|D |/2 keywords. If the size of the result set increases by one (i.e.,

the response includes the injected file), then he repeats the attack

by injecting another file containing the first |D |/4 keywords; on the

other hand, if the response does not include the file, then he injects

14

http://arxiv.org/abs/1706.01552
https://signal.org/blog/private-contact-discovery/
https://msdn.microsoft.com/en-us/library/mt163865.aspx
http://mitmproxy.org/
http://eprint.iacr.org/2015/668
https://www.skyhighnetworks.com/

a file containing the first 3|D |/4 keywords instead. The attacker

repeats the process log |D | times, until the first (lexicographically

largest) keyword is identified. The attack applies straightforwardly

in our setting.

For this variant of the attack, both the number of required re-

plays and the total number of files injected are equal to d log |D |.
Compared to the attack in previous section, this variant drasti-

cally reduces the number of files that need to be injected, but also

increases the number of required replays.

15

	Abstract
	1 Introduction
	1.1 Techniques and contributions

	2 Attack model
	2.1 System Model
	2.2 Application model

	3 Attacks
	3.1 Base Attack
	3.2 Single-round Attack
	3.3 Attack Against File Padding
	3.4 Attack with Noisy Data

	4 Evaluation
	4.1 Setup
	4.2 Base Attack
	4.3 Single-round Attack
	4.4 Attack Against File Padding
	4.5 Case Study: Gmail Inbox Search

	5 Related Work
	6 Mitigations
	7 Conclusion
	References
	A Extensions for conjunctive queries
	A.1 Reducing the number of required replays
	A.2 Reducing the number of files injected

