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Abstract. The cube attack is one of the most powerful techniques in
cryptanalysis of symmetric cryptographic primitives. The basic idea of
cube attack is to determine the value of a polynomial in key bits by
summing over a cube (a subset of public variables, e.g., plaintext bits or
IV bits). If the degree of the polynomial is relatively low, then we can
obtain a low-degree equation in key bits, thus may contribute to reducing
the complexity of key recovery.
In this paper, we use cube cryptanalysis to analyze the authenticated
stream cipher ACORN (one of the 6 algorithms in the final portfolio
of the CAESAR competition), and give some new results in both
distinguishing attacks and key recovery attacks. Firstly, we give a new
method of finding cube testers, which is based on the greedy algorithm
of finding cubes, and the numeric mapping method for estimating the
algebraic degree of NFSR-based cryptosystems. We apply it to ACORN,
and obtain the best practical distinguishing attacks for its 690-round
variant using a cube of size 38, and its 706-round variant using a cube of
size 46. Then we theoretically analyze the security bound of ACORN via
the division property based cube attack. By exploiting the embedded
property, we find some new distinguishers for ACORN, so the zero-
sum property of the output of its 775-round variant can be observed
with a complexity of 2127. Finally, we propose a key recovery attack
on ACORN reduced to 772 rounds. The time complexity to recover the
linear superpoly of the 123-dimensional cube is 2127.46. As far as we know,
this is the best key recovery attack on round-reduced ACORN. It is also
worth noting that this work does not threaten the security of ACORN.
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1 Introduction

In modern cryptographic primitives, nonlinear feedback shift register (NFSR)
plays an important role in the applications with constrained environments, like
the radio-frequency identification devices (RFID) and sensor networks. Based
on the structure of NFSR, many symmetric ciphers have been proposed, such as
the stream ciphers Trivium [6] and Grain [12], the authenticated stream cipher
ACORN [25], the lightweight block cipher family KATAN/KTANTAN [7], and
the hash function family QUARK [3,4,5]. All these algorithms possess an efficient
hardware implementation and a high level security at the same time.

Cube attack was first proposed by Dinur and Shamir [8] at EUROCRYPT
2009. This attack views a cryptosystem as a black-box polynomial f . The basic
idea of this attack is that the symbolic sum of all the derived polynomials
obtained from the function f by assigning all the possible values to the cube
variables (a subset of public variables) is exactly the superpoly (the coefficient)
of the term with maximum degree over the cube. Cube attacks work by finding
a number of linear superpolys in secret variables and then recovering the
secret information by solving the system of linear equations. At FSE 2009,
Aumasson et al. [2] proposed the notion of cube testers. The main idea of
cube testers is similar to cube attacks, however, it aims to find some superpolys
which have the distinguishable properties (e.g., the superpoly is equal to a zero
constant, which is most commonly used).

For cube attacks and cube testers, the key to success is to search good cubes
and their superpolys. Traditional approaches [1,9,17,13,15] of finding cube testers
are experimental and very limited to the current computing power. For a given
cube c, to verify the balance property of this cube, we need to compute the
cubesum on this cube for a number of random keys, and the complexity of this
process is r ·2|c|, where r is the amount of keys. When |c| is large (e.g., |c| > 50),
it is difficult to verify the cube since the complexity is exponential to |c|.

However, this headache has been solved gradually in recent years. At
CRYPTO 2017, Liu [14] proposed a new technique, called numeric mapping,
to iteratively estimate the upper bound on the algebraic degree of the internal
states of an NFSR-based cryptosystem. For Trivium-like ciphers, some cube
testers of sizes greater than 50 were presented for the first time. Simultaneously,
at CRYPTO 2017, Todo et al. [20] proposed the division property based cube
attack to analyze the ANF of the superpoly. Based on the propagation of the
bit-based division property [19,22] of stream ciphers, they gave a proposition
to decide which key bits do not exist in the superpoly. This technique led
to the possible key recovery attack of 704-round ACORN. Later at CRYPTO
2018, Wang et al. [24,23] proposed some new techniques (flag technique, degree
evaluation, and term enumeration) to improve the division property based cube
attack. In the end, they presented a new possible key recovery attack on 750-
round ACORN with a cube of size 101, which is also the best known key recovery
attack on round-reduced ACORN.



1.1 Our Contributions

In this paper, we evaluate the security of authenticated stream cipher
ACORN [25] (one of the 6 algorithms in the final portfolio of the CAESAR
competition) from the aspect of cube cryptanalysis, and propose some new
distinguishing attacks and a new possible key recovery attack. All of our attacks
are currently the best attacks in terms of the number of attacked rounds or the
feasibility of attack.

Firstly, we give a new method of finding cube testers with a much shorter
time. Our method is based on the greedy algorithm of finding cubes [17,13], and
the numeric mapping method for estimating the algebraic degree of NFSR-based
cryptosystems [14]. With this new method, we can efficiently search cube testers
in a much larger space. We apply it to ACORN, and obtain the best practical
distinguishing attacks for its 690-round variant using a cube of size 38, and its
706-round variant using a cube of size 46.

Then we theoretically analyze the security bound of ACORN via the division
property based cube attack. We demonstrate that the embedded property [18]
proposed at ASIACRYPT 2017 can also be applied to the search of zero-sum
cube testers. Based on the embedded property for cube tester, we propose several
algorithms to find the zero-sum cube testers efficiently. This leads us to find some
distinguishers for ACORN, so the zero-sum property of the output of its 775-
round variant can be observed with a complexity of 2127.

We also propose an algorithm to find suitable cubes for key recovery attacks.
The basic idea is that a cube which leads to an r-round cube tester might lead
to an (r + 1)-round cube attack as well. In the process of cube searching, we
try to maximize the number of attacked arounds. Meanwhile, we keep the cube
dimension and the complexity to recover the superpoly be reasonable. Finally,
we find a key recovery attack on ACORN reduced to 772 rounds. The time
complexity to recover the linear superpoly of the 123-dimensional cube is 2127.46.
As far as we know, this is the best key recovery attack on round-reduced ACORN.

Our results for ACORN are summarized in Table 1, and the comparisions
with previous attacks on ACORN are also included.

Organization. The rest of the paper is organized as follows. In Section 2 we
introduce some basic definitions and theories. In Section 3 we briefly describe the
ACORN cipher. Section 4 shows our new method to search good cube testers,
and its applications to ACORN. In Section 5, we propose several algorithms to
search zero-sum cube testers and suitable cubes for key recovery attacks in the
division property based cube attack. Then we use these algorithms to analyze
the security of ACORN. Section 6 concludes the paper.



Table 1. Summary of the distinguishing attacks and key recovery attacks on ACORN.

Attack types #Rounds Cube size Complexity † Ref.

distinguishing attacks

676 - ≈ 240.6 [10]

690 38 238 Section 4.3

706 46 246 Section 4.3

715 54 254 Section 4.3

775 127 2127 Section 5.3

key recovery attacks

503 5 practical [16]

704 64 2122 ‡ [20,21]

750 101 2120.92 ‡ [24,23]

772 123 2127.46 ‡ Section 5.3

†For distinguishing attacks, it refers to the data complexity. For key recovery attacks,
it refers to the complexity to recover one superpoly.
‡All these three attacks are derived by the division property based cube attack, and
the real superpolys can not be obtained due to the impractical complexity, so we can
recover at most 1 bit key information respectively.

2 Preliminaries

2.1 Cube Attacks and Cube Testers

Almost any cryptosystem can be described as a Boolean function f(x1, · · · , xn).
Given a term tI containing variables from an index subset I ( {1, · · · , n} that
are multiplied together, the function can be written as the sum of terms which
are supersets of I and terms that miss at least one variable from I,

f(x1, · · · , xn) = pS(I) · tI + q(x1, · · · , xn),

where pS(I) is called the superpoly of I in f . The basic idea of cube attacks [8] is
that the symbolic sum of all the derived polynomials obtained from the function
f by assigning all the possible values to the subset of variables in the term tI
is exactly pS(I). Cube attacks work by finding a number of linear superpolys
in secret variables and then recovering the secret information by solving the
system of linear equations. While cube testers [2] work by evaluating superpolys
of carefully selected terms tI ’s, and trying to distinguish them from a random
function. Especially, the superpoly pS(I) is equal to a zero constant, if the
algebraic degree of f in the variables from I is smaller than the size of I.

2.2 Numeric Mapping

Let f(x) =
⊕

u=(u1,··· ,um)∈Fm2
afu
∏m
i=1 x

ui
i be a Boolean function on m variables.

Denote by Bm the set of all m-variable Boolean functions. The numeric mapping
[14], denoted by DEG, is defined as

DEG : Bm × Zm → Z,



(f,D) 7→ max
afu 6=0
{
m∑
i=1

uidi},

where D = (d1, d2, · · · , dm) and afu’s are coefficients of the ANF of f . Let
gi (1 ≤ i ≤ m) be Boolean functions on n variables, and denote deg(G) =
(deg(g1),deg(g2), · · · ,deg(gm)) for G = (g1, g2, · · · , gm). The numeric degree of
the composite function h = f ◦G is defined as DEG(f, deg(G)), denoted by DEG(h)
for short. We call DEG(f,D) a super numeric degree of h if di ≥ deg(gi) for all
1 ≤ i ≤ m, where D = (d1, d2, · · · , dm). We can check that the algebraic degree
of h is always less than or equal to the numeric degree of h, i.e.,

deg(h) = deg(f(g1, g2, · · · , gm)) ≤ DEG(h) = max
afu 6=0
{
m∑
i=1

ui deg(gi)}.

Based on numeric mapping, Liu [14] developed an algorithm for estimating the
algebraic degree of NFSR-based cryptosystems. We refer to [14] for more details.

2.3 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) is an optimization or feasibility
program. A MILP model M takes an objective function M.obj and a system
of linear constraints M.con where variables M.var are restricted to integers. A
MILP solver aims to search for an optimal solution which not only satisfies all the
constraints but also minimizes/maximizes the objective function. Moreover, if
there is no objective function, the MILP solver only returns whether the model is
feasible or not. In this paper, we use Gurobi Optimizer [11] for our experiments.

2.4 Bit-Based Division Property and MILP Representation

The division property, proposed at EUROCRYPT 2015 [19], is a generalization
of the integral property for the detection of better integral characteristics for
word-oriented cryptographic primitives. Later, the bit-based division property
was proposed in [22] to describe the propagation of integral characteristics more
precisely. The bit-based division property is defined as follows.

Definition 1 ((Bit-Based) Division Property [22]). Let X be a multiset
whose elements take a value of Fn2 . Let K be a set whose elements take an n-
dimensional bit vector. When the multiset X has the division property D1n

K , it
fulfills the following conditions:⊕

x∈X
xu =

{
unknown if there exist k ∈ K s.t. u � k,
0 otherwise,

where u � k if ui ≥ ki for all i, and xu =
∏n
i=1 xi

ui .

In [19,22], the propagation rules copy, xor, and are provided when the bitwise
operations COPY, XOR, AND are applied to the elements in X.



Represent the Propagation of Division Property using MILP. At
ASIACRYPT 2016, Xiang et al. [26] first introduced a new concept division trail
to describe the propagation of the division property, and showed that the basic
propagation rules copy, xor, and of the division property can be translated as
some variables and constraints of an MILP model. With this method, all possible
division trails can be covered with an MILP modelM and the division property
of some output bit can be known according to the solutions of M.

2.5 Bit-Based Division Property and Cube Attack

In cube attack, we want to recover the superpoly pS(I) for a cube I. Let
x0, x1, . . . , xn−1 be all key bits. If the initialization is not enough for thorough
diffusion, the superpoly may only be related to a part of key bits J (
{0, 1, · · · , n− 1}. At CRYPTO 2017, Todo et al. [20] proposed an algorithm for
determining such a set J by using the bit-based division property. This algorithm
is based on the following proposition.

Proposition 1 (Determining the involved key bits in the super-
poly [20]). Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{0, 1, . . . ,m − 1}, let CI be a set of 2|I| values where the variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be an

m-dimensional bit vector such that vkI = tI = vi1vi2 . . . vi|I| , i.e. ki = 1 if i ∈ I

and ki = 0 otherwise. Assuming there is no division trail such that (eλ,kI)
f→ 1,

xλ is not involved in the superpoly of the cube CI .

Later at CRYPTO 2018, Wang et al. [24,23] proposed some techniques to
improve the division property based cube attack. The main contribution of [23]
can be summarized as follows.

Flag Technique. In previous MILP modeling of the basic bitwise operations
(COPY, XOR, AND), each intermediate state bit b is assigned a binary value
b.val to represent its bit-based division property value. In [23], Wang et al. added
a ‘flag’ value for each state bit. The flag value b.F can be 0c, 1c or δ to indicate
whether the state bit is constant 0, constant 1 or variable. This change mainly
affects the MILP model for AND. If the flag value b.F of state bit b is 0c, then
we add a constraint b.val = 0, thus may improve the accuracy of MILP model
description of the division property propagation.

Degree Evaluation and Term Enumeration. To recover the superpoly more
efficiently, Wang et al. [23] proposed another two algorithms to compute the
algebraic degree and enumerate all possible terms of the superpoly, respectively.
The two algorithms are based on the following proposition, which is actually a
generalization of Proposition 1.



Proposition 2 (Degree evaluation and term enumeration of the
superpoly [23]). Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{0, 1, . . . ,m − 1}, let CI be a set of 2|I| values where the variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be

an m-dimensional bit vector such that vkI = tI = vi1vi2 . . . vi|I| . Let kΛ
be an n-dimensional bit vector. Assuming there is no division trail such that

(kΛ||kI)
f→ 1, the term xkΛ is not involved in the superpoly of the cube CI .

For convenience, in the rest of this paper, we denote the algorithm [23] of the
degree evaluation of the superpoly, and the term enumeration of the superpoly
by Algorithm A, and Algorithm B respectively.

3 A Brief Description of ACORN

ACORN [25] is an authenticated encryption stream cipher, and it has been
selected as one of the 6 algorithms in the final portfolio of the CAESAR
competition. ACORN has a 128-bit key and a 128-bit initialization vector. As
an authenticated encryption scheme, ACORN has 4 procedures: initialization,
processing the associated data, encryption, and finalization. In this paper, we
only focus on the process of initialization, because the number of rounds we
can attack is smaller than the 1792 initialization rounds. For more details about
ACORN, we refer to [25].

Denote the internal state (at step t) of ACORN by St = (st, st+1, . . . , st+292),
where t ∈ {0, . . . , 1791}. The initial state S0 = (s0, s1, . . . , s292) is set to
(0, . . . , 0). Denote the key and initialization vector by K and IV respectively.
Let

mt =


Kt for t = 0 to 127,
IVt−128 for t = 128 to 255,
K0 ⊕ 1 for t = 256,
Kt mod 128 for t = 257 to 1791.

At each step t, where t ∈ {0, . . . , 1791}, the state is updated as follows.

1. update using six LFSRs.
st+289 = st+289 ⊕ st+235 ⊕ st+230;
st+230 = st+230 ⊕ st+196 ⊕ st+193;
st+193 = st+193 ⊕ st+160 ⊕ st+154;
st+154 = st+154 ⊕ st+111 ⊕ st+107;
st+107 = st+107 ⊕ st+66 ⊕ st+61;
st+61 = st+61 ⊕ st+23 ⊕ st;

2. generate the keystream bit.
kst = st+12⊕st+154⊕st+235st+61⊕st+235st+193⊕st+61st+193⊕st+230st+111⊕
st+230st+66 ⊕ st+66;



3. generate the nonlinear feedback bit.
ft = st⊕ st+107⊕ 1⊕ st+244st+23⊕ st+244st+160⊕ st+23st+160⊕ st+196⊕kst;

4. update with the feedback bit ft.
st+293 = ft ⊕mt;

4 A New Method to Search Good Cube Testers

During the process of cube attack, searching good cubes is the most important
and time-consuming part. In this section, we will give a new method to find good
cube testers more efficiently. The search algorithm is inspired by the work of
Stankovski [17] and Karlsson et al. [13]. We first introduce the greedy algorithm
of finding cube testers, then we give our new method to accelerate the process
of searching, finally we apply this method to ACORN.

4.1 Greedy Algorithm for Finding Cube Testers

In 2010, Stankovski [17] utilized the greedy algorithm for finding a practical (e.g.,
the size of the bitset is no more than 40) bitset S as a cube which leads to a
distinguisher or nonrandomness detector. The main procedure of this algorithm
can be described as follows:

1. Choose an optimal starting bitset of a small size s0 (which can be zero).
2. Add n bits into the bitset and select the best bitset of size s1 = s0 + n

which leads to a distinguisher or a nonrandomness detector with the largest
number of rounds.

3. Repeat step 2, until a cube of expected size si = s0 + in is derived.

In 2017, Karlsson et al. [13] improved the greedy nonrandomness detectors with
a more general solution. Their main idea is to extend the naive greedy algorithm
by examining more possible paths. The main procedure is described as follows:

1. Consider a set of candidates from a previous iteration, or from an optimal
starting set.

2. For each candidate in the list, add the ki best bitsets (each bitset has ni new
bits) and store them in a new list. Now, we have one such new list for each
candidate in the original list.

3. Merge all lists, sorting by the number of distinguishable rounds. This gives
a list of ki

∏i−1
t=0 ktαt items.

4. Finally, reduce the size of this list with the factor αi(0 < αi ≤ 1.0), limiting

the size of the combined list to
∏i
t=0 ktαt items.

5. Repeat steps 1 ∼ 4, until a bitset of the expected size has been found.

4.2 Accelerating the Greedy Algorithm via Numeric Mapping

From the previous subsection, the greedy algorithm can surely find a good
cube of a practical size, however, when the size increases, this searching



process becomes extremely time-consuming. While using the numeric mapping
method [14], one can estimate the algebraic degree of the output bit of NFSR-
based cryptosystems. Regardless of the size of the cube, this estimation can
give an upper bound of real algebraic degree of the output bit in a linear time
complexity. If the estimated degree of the output bit is smaller than the size of
cube, then we obtain a zero-sum distinguisher.

We give the accelerated greedy algorithm in Algorithm 1 and Algorithm 2.
When we compute the number of distinguishable rounds of a cube, we do not
need to compute the cubesum on this cube and repeat this calculation on enough
random keys to observe the bias of the cubesum. Instead, we use the degree
estimation method to compute the lower bound of the maximum number of
distinguishable rounds of this cube. The degree estimation algorithm usually
costs a complexity of about O(N), where N is the number of initialization
rounds. While the traditional approach needs a complexity of O(r · 2|c|), where
r is the number of random keys, and |c| is the size of the cube.

Algorithm 1: Accelerated Greedy Algorithm

Input : Key K, IV V , bit space B, the number of iterations: m, vector k,
vector n, vector α.

Output: Bitset Sm.

1: S0 = {∅};
/* The set S0 contains a single empty bitset */

2: for each i ∈ {0, . . . ,m− 1} do
3: for each c ∈ Si do
4: Lc = FastFindBest (K,V,B, c, ki, ni);
5: end for
6: Si+1 = concatenate (all Lc from above);
7: sort Si+1;
8: reduce the number of elements in Si+1 by a factor αi;
9: end for

10: return Sm;

4.3 Applications to ACORN

We apply our new method to ACORN cipher. Based on our observations on
the updated functions of ACORN, we first construct a linear-time algorithm for
determining the upper bound on the algebraic degree of the cipher. Then, we
apply our accelerated greedy algorithm to finding good cube testers of ACORN.

The Algorithm of Degree Estimation of ACORN. We present an
algorithm for ACORN to compute the upper bound of the algebraic degree
of the output for a given cube. The algorithm is depicted in Algorithm 3.



Algorithm 2: FastFindBest

Input : Key K, IV V , bit space B, current bitset c, the number of best
bitsets to retain: k, the number of bits to add: n.

Output: k bitsets each of size |c|+ n.

/* let comb(S, k) denote the set of all k-combinations of a set S */

1: S = ∅;
2: for each n-tuple {b1, . . . , bn} ∈ comb(B \ c, n) do
3: using numeric mapping method, compute the lower bound z of the

maximum number of distinguishable rounds for the bitset
c ∪ {b1, . . . , bn};

4: if z is among the k highest values then
5: add c ∪ {b1, . . . , bn} to S;
6: reduce S to k elements by removing element with lowest z;
7: end if
8: end for
9: return S;

In this algorithm, d(t) (where t ∈ {0, . . . , N+292}) are global variables. Each
d(t) gives the estimated (real when t ≤ 292) algebraic degree of the internal
state bit st. We first initialize the degree of st (where t ∈ {0, . . . , 292}) by −∞,
since the initial state is set to {0, . . . , 0}. At each step, we need to compute the
estimated degrees of six updated bits and the keystream bit. Two subfunctions
KSG128(t) and FBK128(t) (see Appendix A) are used to compute the estimated
degree of the keystream bit and the feedback bit separately. In lines 7 ∼ 14,
d(t+293) is updated by the feedback function st+293 = ft ⊕ mt. The algebraic
degrees of cube variables are equal to 1. We set other non-cube IV variables to
0, so their degrees are −∞. The degrees of key bits are equal to 0, since they
are constants with respect to cube variables in X. Lines 16 ∼ 21 are justified by
the rule of update using six LFSRs. Finally, the algorithm returns ks(N) as the
estimated degree of the first keystream bit after N initialization rounds.

Theorem 1. Algorithm 3 gives an upper bound on the algebraic degree of the
first keystream bit of N -round ACORN cipher with X as cube variables.

We give our proof of Theorem 1 in Appendix B. Both KSG128(t) and FBK128(t)
can be executed in constant time, thus Algorithm 3 has a time complexity of
O(N). It requires a memory of O(N).

Experimental Results. In Algorithm 1, we need to specify the number of
iterations m, vector k, vector n, and vector α. We set the maximum size of
cube to 66. The number of iterations m is 16. At each iteration, we retain 100
best cubes of the current size. At the first iteration, we exhaust all possible cubes
of size 6. After that, we add 4 new bits at each iteration.

We list part of output of our program in Table 2 in Appendix C. Our
experiments show that, with the new method of finding cubes, we can surely



Algorithm 3: Degree Estimation of ACORN Cipher

Require: Given the initialization rounds N , and the set X of cube variables.

1: for t from 0 to 292 do
2: d(t) ← −∞;
3: end for
4: for t from 0 to N − 1 do
5: ks(t) ← KSG128(t);
6: f (t) ← FBK128(t);
7: if 128 ≤ t ≤ 255 then
8: if IVt−128 ∈ X then
9: d(t+293) ← max{f (t), 1};

10: else
11: d(t+293) ← f (t);
12: end if
13: else
14: d(t+293) ← max{f (t), 0};
15: end if
16: d(t+289) ← max{d(t+289), d(t+235), d(t+230)};
17: d(t+230) ← max{d(t+230), d(t+196), d(t+193)};
18: d(t+193) ← max{d(t+193), d(t+160), d(t+154)};
19: d(t+154) ← max{d(t+154), d(t+111), d(t+107)};
20: d(t+107) ← max{d(t+107), d(t+66), d(t+61)};
21: d(t+61) ← max{d(t+61), d(t+23), d(t)};
22: end for
23: ks(N) ← KSG128(N);
24: return ks(N);

obtain better cryptanalytic results with a much shorter time. For example, we
have found a cube tester when the cube size increases to 54, and the number of
rounds we can attack is 715.

Moreover, we have also obtained a cube of a practical size 38, which can
lead to a 690-round zero-sum distinguisher. We randomly select 64 different
keys, and then compute the 64 different cubesums of the first 64 keystream bits
produced by 690-round ACORN. The results show that the cubesums of the first
keystream bit are always equal to zero. The cubesums of other keystream bits
are all non-zero. This result further justifies the 690-round zero-sum cube tester.

5 Searching Cubes in Division Property Based Cube
Attack

In this section, we propose a method to find zero-sum cube testers for an iterated
cipher via the division property based cube attack. We apply this method to
ACORN, and obtain the best distinguishing attack for 775-round ACORN.
Based on the embedded property for cube tester, we also propose an algorithm



to find suitable cubes for key recovery attacks. In the end, we find the best key
recovery attack for 772-round ACORN.

5.1 Finding Cube Testers via Division Property Based Cube Attack

In [18], Sun et al. proposed the algorithms to find optimal integral distinguishers
for ARX ciphers by exploiting the embedded property (see Appendix D). Next,
we will show that, the embedded property can apply to the search of cube testers
as well. We first introduce the following lemma which was proposed in [23].

Lemma 1 ([23]). If k � k′ and there is division trail k
f→ l, then there is also

division trail k′
f→ l′ s.t. l � l′.

Based on this lemma, we propose the following proposition.

Proposition 3. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{0, 1, . . . ,m − 1}, let kI be an m-dimensional bit vector such that vkI = tI =
vi1vi2 . . . vi|I| . Let kΛ be an n-dimensional bit vector. For a given set of indices

IS ( I, if there is no division trail such that (kΛ||kIS )
f→ 1 for any kΛ ∈ Fn2 ,

then there is also no division trail such that (kΛ||kI)
f→ 1 for any kΛ ∈ Fn2 .

Proof. From Lemma 1, if k � k′ and there is division trail k
f→ 1, then there is

also division trail k′
f→ 1. Suppose there is a division trail such that (k∗Λ||kI)

f→ 1

for a fixed k∗Λ ∈ Fn2 , then there is also a division trail such that (k∗Λ||kIS )
f→ 1

(since (k∗Λ||kI) � (k∗Λ||kIS )), which leads to a contradiction. ut

Denote the superpoly of cube I by pS(I). From the above Proposition and
Proposition 2 in Section 2, we know that,

Proposition 4 (Embedded Property for Cube Tester). For an r-round
iterated cipher, if IS is a subset of cube I, and there is no monomials in
pS(IS) ( i.e., deg(pS(IS)) = 0), then there is also no monomials in pS(I) ( i.e.,
deg(pS(I)) = 0). Likewise, if deg(pS(I)) 6= 0, then deg(pS(IS)) 6= 0.

This simple property helps to search cube testers efficiently in the division
property based cube attack scenario. In the following, we propose Algorithm 4,
5, and 6 to efficiently reduce the complexity of searching. Algorithm 4 is used
to determine the maximum number of distinguishable rounds rm for a given
cube indices I. Algorithm 4 can be seen as a subfunction of Algorithm 5. In
Algorithm 5, we determine the maximum number of distinguishable rounds for
a specific cipher, and restrict the search scope. In Algorithm 6, we use the output
of Algorithm 5 as input, and returns a set of zero-sum cube testers.

The basic idea of Algorithm 4 is binary search, which can reduce the
complexity of searching. In Algorithm 4, we set two variables rh and rl to indicate
the upper bound and lower bound of the maximum number of distinguishable



Algorithm 4: Determining the Maximum Number of Distinguishable
Rounds for a Given Cube
Input : Iterated cipher f with R initialzation rounds, cube indices I.
Output: The maximum number of distinguishable rounds rm for cube I.

1: rh = R, rl = 0, rm = 0, r = 0, f lag = 0;
2: while rh − rl > 1 do
3: r = b(rh + rl)/2c
4: use Algorithm A to evaluate the degree d of the superpoly of cube I for f

reduced to r rounds;
5: if d == 0 then
6: rl = r, flag = 0;
7: else
8: rh = r, flag = 1;
9: end if

10: end while
11: if flag == 0 then
12: rm = r;
13: else
14: rm = r − 1;
15: end if
16: return rm;

rounds rm for a specific cipher. For a cipher f with R initialzation rounds, we
first use Algorithm A to evaluate the degree d of the superpoly of cube I for f
reduced to b(rh + rl)/2c = bR/2c rounds. If d == 0, then rm is at least bR/2c,
so we set rl = r. Otherwise, we set rh = r. We iteratively repeat this process,
so the distance between rh and rl can be reduced quickly. In the end, we can
determine the value of rm with at most dlog2Re iterations.

In Algorithm 5, we first check all cubes of dimension m − 1, where m is
the number of public variables. For each (m − 1)-dimensional cube I, we use
Algorithm 4 to compute its maximum number of distinguishable rounds as cube
testers. Among all m cubes, we select those cubes which can lead to the longest
(rmax-round) cube tester, and store their missing index i of public variables in S.
We claim that the elements in the complementary set S̄ = {0, 1, . . . ,m−1}\S of S
are ‘necessary’ bit indices to obtain an rmax-round cube tester. By Proposition 4,
if any index which belongs to S̄ is not in cube indices I, then this cube will not
lead to an rmax-round cube tester. In the following, we call S̄ the necessary set,
whose elements must be in the cube indices, while S is called the sufficient set,
and the elements in S are called sufficient indices.

In Algorithm 6, we first test whether the cube I = {0, 1, . . . ,m− 1} \ S will
lead to the rmax-round cube tester. If not, we gradually increase the dimension
of cubes by reducing the value of t where we pick t indices from S, and check
whether the cube tester exists or not. After t is fixed (Line 14 in Algorithm 6),
there exists at least one cube which will lead to the rmax-round cube tester, so
Algorithm 6 returns a set of zero-sum cube testers.



Algorithm 5: Determining the Maximum Number of Distinguishable
Rounds & Restricting the Search Scope

Input : Iterated cipher f with m public variables (v0, . . . , vm−1).
Output: The maximum number of distinguishable rounds rmax of cube

testers, and the index set S.

1: rmax = 0, S = ∅;
2: for i = 0; i < m do
3: let cube indices Ii = {0, 1, . . . ,m− 1} \ {i};
4: use Algorithm 4 to compute the maximum number of distinguishable rounds ri

for cube Ii, and store (Ii, ri);
5: if rmax < ri then
6: rmax = ri;
7: end if
8: end for
9: for i = 0; i < m do

10: if ri == rmax then
11: S = S ∪ {i};
12: end if
13: end for
14: return rmax, S;

5.2 Finding Cubes for Key Recovery Attacks

In this subsection, we give an algorithm (see Algorithm 7) to search a suitable
cube which might lead to a key recovery attack for an iterated cipher f reduced
to r-rounds.

The basic idea of Algorithm 7 is that a cube which leads to an r-round
cube tester might lead to an (r + 1)-round cube attack as well, as long as the
cube dimension and the complexity to recover the superpoly is reasonable. The
complexity to recover the superpoly is 2|I| × (1 +

∑d
t=1 |Jt|) [23], where I is the

cube indices, d is the algebraic degree of the superpoly, and Jt is all possible terms
of degree t. Suppose the length of key is n bits. To recover secret information,
the superpoly should contain at least 1 key bit. To make the attack meaningful,
we also have 2|I|× (1 +

∑d
t=1 |Jt|) < 2n. Thus we need to restrict |I|+ 1 < n. In

other words, the dimension of cube can not exceed n− 2.

Suppose there are m public variables. In Algorithm 7, we first find the
sufficient set S for (r − 1)-round cube tester. Then we gradually test cubes of
dimensions range from m−2 to m−|S|. For (m−k)-dimensional cube, there are(|S|
k

)
different choices. If a cube I can lead to the (r− 1)-round cube tester, then

we test whether this cube would lead to the key recovery attack of the r-round
cipher. For all tested cubes of dimension (m − k + 1), if none of them can lead
to the (r−1)-round cube tester, then by the embedded property for cube tester,
we do not need to test cubes of dimension (m− k), we just quit the while loop
and return an emptyset.



Algorithm 6: Finding the Zero-Sum Cube Testers

Input : Iterated cipher f with m public variables (v0, . . . , vm−1), the
maximum number of distinguishable rounds rmax of cube testers,
and the sufficient set S.

Output: A set Res containing the zero-sum cube testers.

1: Res = ∅, f lag = 0;
2: t = |S|;
3: while flag == 0 do
4: for every t-tuple (i0, i1, . . . , it−1) of S do
5: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
6: use Algorithm A to evaluate the degree d of the superpoly of cube I for f

reduced to rmax rounds;
7: if d == 0 then
8: flag = 1;
9: break;

10: end if
11: end for
12: t = t− 1;
13: end while
14: t = t+ 1;
15: for every t-tuple (i0, i1, . . . , it−1) of S do
16: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
17: use Algorithm A to evaluate the degree d of the superpoly of cube I for f

reduced to rmax rounds;
18: if d == 0 then
19: Res = Res ∪ {I};
20: end if
21: end for
22: return Res;

5.3 Applications to ACORN

In this part, we apply our methods of finding cubes for cube testers and key
recovery attacks to ACORN. Our experiments are based on the MILP model of
division property for ACORN, Algorithm A, and Algorithm B given in [23]. We
use Gurobi Optimizer [11] with Python interface to solve the MILP problems.

Cube Testers of 775-round ACORN. Using Algorithm 6, we find 6 cubes of
dimension 127, all of which can lead to the cube tester for 775-round ACORN.
The cube indices are as follows.

I1 = {0, 1, . . . , 127} \ {1}, I2 = {0, 1, . . . , 127} \ {2}, I3 = {0, 1, . . . , 127} \ {11},
I4 = {0, 1, . . . , 127} \ {18}, I5 = {0, 1, . . . , 127} \ {26}, I6 = {0, 1, . . . , 127} \ {27}.

A Key Recovery Attack of 772-round ACORN. Using Algorithm 7, we
find a cube of dimension 123 which can lead to a key recovery attack for 772-



Algorithm 7: Finding Cube for Key Recovery Attack

Input : Iterated cipher f reduced to r-rounds, with m public variables
(v0, . . . , vm−1) and n secret variables (x0, . . . , xn−1).

Output: Cube indices I for key recovery attack of f reduced to r-rounds.

1: rD = r − 1, f lag = 1;
2: similar to Algorithm 5, find the sufficient set S for f reduced to rD rounds;
3: if |S| ≤ 1 then
4: return ∅;
5: end if
6: t = 2;
7: while flag == 1 do
8: flag = 0;
9: for every t-tuple (i0, i1, . . . , it−1) of S do

10: let cube indices I = {0, 1, . . . ,m− 1} \ {i0, i1, . . . , it−1};
11: use Algorithm A to compute the degree dD of the superpoly of cube I for f

reduced to rD rounds;
12: if dD == 0 then
13: flag = 1;
14: use Algorithm A and Algorithm B to compute the degree d and the

involved monomials J1, . . . , Jd of the superpoly of cube I for f reduced to
r rounds, where Jk is all possible terms of degree k;

15: if 2|I| × (1 +
∑d

k=1 |Jk|) < 2n then
16: return I;
17: end if
18: end if
19: end for
20: if t == |S| then
21: break;
22: end if
23: t = t+ 1;
24: end while
25: return ∅;

round ACORN. The cube indices is as follows,

I = {0, 1, . . . , 127} \ {1, 2, 11, 26, 27}.

By running Algorithm A, we know the degree of the superpoly of this cube is 1.
Using Algorithm B, we know only the following 21 key bits might exist in the
superpoly,

key indices := {0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 19, 24, 31, 33, 35, 39, 41, 44, 45, 78}.

Thus, the complexity to recover the linear superpoly is 2123× (1 + 21) ≈ 2127.46.
In online phase, we can sum over this cube with a complexity of 2123, then we
obtain one bit secret information, and the remaining 127 bits can be recovered
by brute force.



6 Conclusions

In this paper, we analyzed the security of the authenticated stream cipher
ACORN with cube cryptanalysis. Firstly, we gave a new method of finding cube
testers. We applied it to ACORN, and obtained the best practical distinguishing
attacks. Then we proposed several algorithms to search zero-sum cube testers
and suitable cubes for key recovery in the division property based cube attack.
We found some new distinguishers for 775-round ACORN. We also found a key
recovery attack on ACORN reduced to 772 rounds.

Acknowledgements. We are grateful to the anonymous reviewers of ISC 2019.

A KSG128(t) and FBK128(t)

Algorithm 8: KSG128(t)

1: d1 ← max{d(t+12), d(t+154), d(t+111)};
2: d2 ← max{d(t+61), d(t+23), d(t)};
3: d3 ← max{d(t+193), d(t+160), d(t+154)};
4: d4 ← max{d(t+230), d(t+196), d(t+193)};
5: d← max{d1, d(t+107), d(t+235) + max{d2, d3},
d2 + d3, max{d(t+111), d(t+66)}+ d4, d

(t+66)};
6: return d;

Algorithm 9: FBK128(t)

1: d1 ← max{d(t+12), d(t+154), d(t+111)};
2: d2 ← max{d(t+61), d(t+23), d(t)};
3: d3 ← max{d(t+193), d(t+160), d(t+154)};
4: d4 ← max{d(t+230), d(t+196), d(t+193)};
5: d← max{d(t), d(t+61), 0, d(t+244) + max{d(t+23), d(t+160)}, d(t+196), d1,
d(t+235) + max{d2, d3}, d(t+61) + d3, max{d(t+193), d(t+154)}+ d(t+23),
d(t) + d3, max{d(t+111), d(t+66)}+ d4};

6: return d;



B Proof of Theorem 1

Proof. It is sufficient to justify Algorithm 8 and Algorithm 9. By the rule of
state update of ACORN, we have

kst = st+12 ⊕ (st+154 ⊕ st+111 ⊕ st+107)⊕ st+235(st+61 ⊕ st+23 ⊕ st)⊕ st+235

(st+193 ⊕ st+160 ⊕ st+154)⊕ (st+61 ⊕ st+23 ⊕ st)(st+193 ⊕ st+160 ⊕ st+154)

⊕ (st+230 ⊕ st+196 ⊕ st+193)(st+111 ⊕ st+66)⊕ st+66

= (st+12 ⊕ st+154 ⊕ st+111)⊕ st+107 ⊕ st+235((st+61 ⊕ st+23 ⊕ st)⊕ (st+193

⊕st+160 ⊕ st+154))⊕ (st+61 ⊕ st+23 ⊕ st)(st+193 ⊕ st+160 ⊕ st+154)

⊕ (st+230 ⊕ st+196 ⊕ st+193)(st+111 ⊕ st+66)⊕ st+66,

and

ft = st ⊕ (st+107 ⊕ st+66 ⊕ st+61)⊕ 1⊕ st+244st+23 ⊕ st+244st+160 ⊕ st+23st+160

⊕ st+196 ⊕ st+12 ⊕ (st+154 ⊕ st+111 ⊕ st+107)⊕ st+235(st+61 ⊕ st+23 ⊕ st)⊕
st+235(st+193 ⊕ st+160 ⊕ st+154)⊕ (st+61 ⊕ st+23 ⊕ st)(st+193 ⊕ st+160⊕
st+154)⊕ (st+230 ⊕ st+196 ⊕ st+193)(st+111 ⊕ st+66)⊕ st+66

= st ⊕ st+61 ⊕ 1⊕ st+244(st+23 ⊕ st+160)⊕ st+196 ⊕ (st+12 ⊕ st+154 ⊕ st+111)

⊕ st+235((st+61 ⊕ st+23 ⊕ st)⊕ (st+193 ⊕ st+160 ⊕ st+154))⊕ st+61(st+193⊕
st+160 ⊕ st+154)⊕ st+23(st+193 ⊕ st+154)⊕ st(st+193 ⊕ st+160 ⊕ st+154)⊕
(st+230 ⊕ st+196 ⊕ st+193)(st+111 ⊕ st+66).

In the above expressions, each underlined term corresponds to an estimated
algebraic degree. For example, we have

deg(st+244(st+23 ⊕ st+160)) ≤ deg(st+244) + max{deg(st+23),deg(st+160)}
≤ d(t+244) + max{d(t+23), d(t+160)}.

Hence, the super numeric degree of st+244(st+23 ⊕ st+160) is d(t+244) +
max{d(t+23), d(t+160)}, which can be found at line 5 in Algorithm 9. One can
check that the degrees of all underlined terms are evaluated. Thus, our algorithms
of degree estimation of ACORN are correct. ut

C Cube Testers of Different Dimensions

Table 2: Some cubes found by the accelerated greedy algorithm. The sizes of these
cubes range from 38 to 54.

Cube Size #Rounds Cube Indexes

38 690
52, 53, 58, 62, 63, 77, 82, 84, 86, 87, 88, 91, 92, 93, 96, 97, 101, 102,
106, 107, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127



Table 2: Some cubes found by the accelerated greedy algorithm. The sizes of these
cubes range from 38 to 54.

Cube Size #Rounds Cube Indexes

42 697
52, 53, 58, 60, 63, 77, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 96, 97, 101,
102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118,

119, 120, 121, 122, 123, 124, 125, 126, 127

46 706
52, 53, 57, 58, 60, 62, 63, 69, 77, 78, 82, 84, 85, 86, 87, 89, 90, 91, 92,
93, 96, 97, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 115,

116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127

50 706
44, 48, 49, 52, 53, 58, 60, 61, 63, 69, 77, 81, 82, 83, 84, 85, 86, 87, 89,
91, 92, 93, 96, 97, 99, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111,
112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127

54 715

48, 52, 53, 58, 60, 62, 63, 67, 69, 70, 77, 78, 81, 82, 83, 84, 85, 86, 87,
88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 107, 108,
109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,

124, 125, 126, 127

D Embedded Property

The embedded property [18] says that, for different initial division properties k0
and k1 s.t. k0 � k1, there is no need to test k1, if the output multi-set under
k0 does not have integral property, likewise, it is not necessary to test k0, if the
output multi-set under k1 has integral property.
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