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Abstract. We recall a series of physical cryptography solutions and
provide the reader with relevant security analyses. We mostly turn our
attention to describing attack scenarios against schemes solving Yao’s
millionaires’ problem, protocols for comparing information without re-
vealing it and public key cryptosystems based on physical properties of
systems.
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1 Introduction
In our paper we present a security analysis to a series of problems that can be
seen as abstract games. Our main motivation for studying such protocols is their
teaching utility. Note that we are not aware of any real-world application of
any sort, as these problems fall in the category of “recreational cryptography”.
Although recreational, these protocols can provide interesting insight and tech-
niques that can be useful for understanding the concepts on which the underlying
problems are based.

Physical cryptography [4, 11, 17, 20] makes use of physical properties of sys-
tems for encrypting and/or exchanging information (i.e. without using one-way
functions). Although a very interesting teaching tool, it can be shown that some
of the proposed methods are not safe in practice. Thus, our aim is to attack such
physical protocols using methods similar to classical side channel techniques.

Besides the obvious cryptographic teaching utility of physical cryptography
schemes, we believe that some of the schemes tackled in the current paper may
be successfully used for introducing concepts corresponding to other domains.
We provide the reader with such examples in the following sections.

Although some authors acknowledge that their proposed protocols are only
useful for playing with children or introducing new concepts to non-technical
audiences, the authors of [9–11, 21] claim that their schemes can be securely
implemented in real-life scenarios. In [6], Courtois attacks one of the protocols
proposed in [10], but the authors contest his results in [11]. We independently con-
ducted a simulation of the attack and our results acknowledge Courtois’ claim.
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Structure of the Paper. In Section 2 we describe various schemes proposed
in [9–11, 21] which aim at solving Yao’s millionaires’ problem and provide the
reader with their corresponding security analyses. In Section 3 we present a set
of protocols which act as solutions for comparing information without revealing
it and discuss their security. In Section 4 we describe a public key cryptosystem
constructed by means of an electrical scheme and tackle its security. We conclude
and discuss future work ideas in Section 5. Due to the page number restriction,
we recall various physical cryptographic solutions which appeared in the litera-
ture in Appendix A. Also, in Appendix B we present a generic physical public
key encryption scheme useful for introducing students to different properties of
physical systems.

Notations. We denote by U and V the private spaces of Alice and, respec-
tively, Bob. By “impenetrable” we further refer to an object that can not be
broken or looked into no matter the means employed by an adversary. Note
that, in practice, “impenetrable” objects do not exist, but we use this concept
for presenting the philosophical aspects of different cryptographic problems.

2 Yao’s Millionaires’ Problem

In [24] Yao introduced “Two Millionaires’ Problem”. The problem can be defined
as follows. Alice has a private number a and Bob has a private number b. The
goal of the two parties is solving the inequality a ď b without revealing the
actual values. We further assume that a, b P r0, ns are integers.

In [9–11, 21] the authors present a number of solutions for the previously
mentioned problem based on physical principles. In this section we focus on
describing their proposed protocols together with our security analyses.

According to the original security model, during the following we consider
Alice and Bob as being honest but curious users, i.e. they can observe, measure
and compute whatever they like and try to get a hold on the other party’s private
numbers while following the protocol’s steps.

2.1 “Elevator” Solution.

Description. To recall the scheme we follow the descriptions given in [9, 11].
We start by assuming that we have at our disposal a building with at least
n floors. Moreover, we consider that the chosen building is equipped with an
elevator. Alice positions herself on floor number a while Bob goes to floor number
b. Then, Bob takes an elevator (from Bob’s private space V ) going down and
stopping at every floor. Alice watches the elevator doors on her floor, making
sure that Bob does not see her if the elevator doors open (here is Alice’s private
space U). If she sees the elevator doors open, she knows that Bob’s number is
larger. If not, then his number is smaller. Using such a protocol, Bob will not
know the result of the comparison until Alice shares it with him.



Security Analysis. The only security considerations of [9, 11] are that Bob
can lock the stairs and disable all elevators except one. This may prevent Alice
from cheating by running between different floors to get a better estimate of
Bob’s number.

During our analysis we found other various attack scenarios. We consider the
steps of the protocol as being sequential (i.e. first Alice gets to floor a and then
Bob gets to floor b).

1. If Alice uses the same elevator as Bob she can simply conceal a small camera3

while ascending to floor a. Thus, she can recover b as soon as Bob ascends
to his designated floor. In order to mitigate such an attack, Bob must be
ensured that Alice uses a different elevator or the stairs (i.e. making sure
that Bob’s elevator remains somewhat protected).

2. If the floor doors of Bob’s elevator are not secured then Alice can open one
of the doors and attach a motion sensor to the elevator. By analyzing the
elevator’s movement Alice can deduce b. Hence, Bob must be ensured that
all the floor doors are secured against unauthorized access.

3. If Alice has access only to the stairs then she can install cameras on each of
the n floors4. If Bob limits Alice’s access to only one floor (a) for security
reasons, then he can always check the access readers installed on each floor
and find a. These attacks can also be mounted by Alice if Bob takes the
stairs. As a result, the only viable solution would be for Alice and Bob to
use separate elevators.

4. Once Alice reaches a then she can use a microphone to detect the sound made
by the elevator’s movement. By counting the number of times the elevator’s
engine starts or the doors open Alice can deduce b. Hence, to prevent such
an attack, Bob can use a device for generating noise in order to mask the
other relevant sounds. This attack can also be mounted by Bob for deducing
a.

When Alice and Bob simultaneously ascend to their designated floors, the
attack scenarios Items 3 and 4 are still feasible.

We do not claim that the protocol is feasible in practice (the doors must
be “impenetrable” and the noise source must perfectly mask the sound of the
elevator’s movement). We only claim that the example can be practically used
to introduce Yao’s problem to non-specialized audiences and also to make people
think of different methods of attacking the system.

2.2 “Race Track” Solution.

Description. For recalling the scheme we follow the description from [11]. Let
us consider that Alice and Bob have at their disposal a race track of length n.
Then, the two parties run toward each other from the opposite ends of the race
3 We can also consider all types of small devices which incorporate cameras.
4 If the building already has security cameras, a simpler solution is bribing the security

guard and watching the security footage to obtain b.



track, maintaining the speeds of a m{s (Alice), respectively b m{s (Bob). The
party which reaches first the midpoint of the track leaves a mark there and runs
back, knowing that he/she was faster5. When the other party gets to the mid-
point, he/she will know that he/she was slower6. In order to create their private
spaces in this scenario, Alice and Bob have to construct an “impenetrable” fence
across the track at the midpoint.

The authors of [11] state that the “race track” idea can be implemented on a
computer if two different programs are allowed to work with the same file at the
same time. Thus, consider that the shared file is a bit string of length n, with all
bits initially equal to 1. Alice provides a program that goes over this bit string
left to right, replacing the current 1 symbol by 0 at the speed of one symbol
per a time units. Bob provides a similar program going over the same bit string
right to left, at the speed of one symbol per b time units. When either of the two
programs replaces n{2 symbols, it replaces the current symbol by X and stops.
In such a way, the two parties will know that whose program stops first has the
bigger number. Both programs will have to use the computer’s internal clock.

Security Analysis. In [11] the authors mention that the “race track” solution
only works if both parties are honest and provide the reader with an attack
scenario otherwise. More precisely, the party who reaches the fence first does
not run back but just waits to see when the other party arrives, thus figuring
out the other party’s speed.

During our analysis we found that another restriction must hold. If Alice and
Bob run on a circular track when they are “close enough”7 to the midpoint they
will be able to see each other. Thus, even if the parties are honest, the previous
attack is still valid. To avoid such a scenario, a possible solution would be to put
an “impenetrable”8 fence such that both private spaces are isolated one from
the other and also from the outside world9.

The digital variant of the “race track” idea on a computer is, unfortunately,
flawed. In order for the protocol to be valid both users need read/write access
to the file. This implies that any of the parties can choose two positions of the
other parties’ half of the file, continuously read the symbols corresponding to
these positions and record the time needed for the symbols to change. This can be
easily extended to monitoring multiple positions. Thus, each user can compute
the other party’s value.

Teaching Utility. Although the digital variant is not secure, it can be used by
teachers as an implementation task. Thus, students can implement two programs
that race each other and also a third program that monitors the speed of either
Alice and/or Bob.
5 without knowing the actual speed of the other party
6 again, without knowing the actual speed of the other party
7 The precise difference between a and b depends on the race track’s radius.
8 from both a visual and acoustic point of view
9 If, for example, we isolate the two areas using only a wall, one of the parties can use

a drone for spying the other.



2.3 “Communicating Vessels” Solution.

Description. To recall the scheme we follow the description from [11]. We start
by assuming that Alice has a communicating vessel CA in her private space U ,
while Bob has a communicating vessel CB in his private space V . CA and CB are
connected by a horizontal pipe attached to their bottoms and, thus, a working
system is constructed. The shapes of the vessels are part of the parties’ private
keys. In the beginning the system is “almost” filled with water. Then, Alice
starts pumping the water out of her vessel at the speed of a gallons10 per second,
while Bob starts pumping the water in his vessel at the speed of b gallons per
second. The parties are simply watching whether the level of water is decreasing
or increasing. If it is decreasing, then a ą b; if it is increasing, then a ă b.

Security Analysis. According to the authors of [21] the final level of water
in the system depends not only on a and b, but also on the shapes of both
vessels. Also, the relation between a and quantities that can be measured outside
of Alice’s vessel depends on the shape of Alice’s vessel, which is unknown to
anybody except Alice herself.

During our analysis we observed two main issues of the proposed protocol.
First of all, if the participants pump water in and out of the system the shapes of
their communicating vessels become irrelevant. In such a case, the authors might
have thought about pouring water instead of pumping it while constructing their
scheme. Secondly, the shapes of the vessels must be considered in such a way that
the two parties can precisely measure fluctuations in their corresponding vessels.
To explain this type of phenomena we can consider the following exaggerated
example: the shapes of Alice and Bob’s vessels correspond to those of two small
artificial lakes and they pump water in and out with negligible speeds (e.g. a
milliliter per hour). Then, they can not accurately detect which speed is greater
than the other.

The scheme enhanced with our previous comments becomes equivalent with:
Alice and Bob have two cylinder shaped vessels such that they can accurately
measure fluctuations of the system. To detect Alice’s value, Bob can use a grad-
uated cylinder and measure the volume’s fluctuation. Then, using his own speed
value b he can compute a. Hence, the scheme is insecure for solving Yao’s problem
but it can be used as a public key encryption scheme (see Appendix B).

Teaching Utility. Communicating vessels are a common example in physics
teaching (see for example [12]). More precisely, the scheme provides a good
opportunity for a teacher to introduce students to the dynamics of (ideal) fluids.

2.4 “Rope” Solution.

Description. For recalling the scheme we follow the description given in [10].
Alice and Bob privately select c ă 0 and, respectively, d ą 0. We position Alice
and Bob in a plane, Alice at point A “ pa, cq and Bob at point B “ pb, dq. Also,
10 or whatever units



we give them both long pieces of rope. We assume that the scaling is such that
Alice and Bob cannot see each other’s point.

First, Alice fixes one end of her rope at point A and selects as her private
space U a neighborhood of point A that cannot be seen by Bob. Bob, too, selects
V as a neighborhood of his point B. Then, Alice fixes the other end of her rope to
a random point C in the plane, far enough so that her neighborhood U can not
be seen from C. After fixing the rope, she positions the part of the rope inside U
so that this part is not a straight line. She then communicates the coordinates
of point C to Bob.

Bob walks to point C, ties one end of his rope to Alice’s rope, then walks
back to his point B, while unwinding (not pulling) his rope along the way. When
Bob reaches his B, he starts pulling the rope until Alice tells him to stop, which
is as soon as Alice sees that the part of the rope inside her neighborhood U
is a straight line. To make sure that it is not by accident that the part of the
rope inside her neighborhood U is a straight line, Alice asks Bob whether or
not the part of the rope inside his neighborhood V is a straight line. If it is not,
then Alice starts pulling her end of the rope toward her point A until Bob tells
her to stop, which is as soon as Bob sees that the part of the rope inside his
neighborhood V is a straight line.

When the parts of the rope inside both neighborhoods U and V are straight,
Alice and Bob assume that their points A and B are connected by a straight
rope, and they find the slope s of the corresponding straight line by selecting
any two points on the parts of the line inside their private neighborhoods. Then,
a ă b if and only if s ą 0.

Security Analysis. Some parts of the scheme described in [10] may seem
redundant according to the authors. As pointed out by them, if both parties
are honest the protocol can be simplified. To mitigate dishonest parties attacks,
e.g. Alice must tell Bob to stop as soon as she sees that the part of the rope
inside her neighborhood U is a straight line. Otherwise, Bob could triangulate
Alice’s point A by straightening the rope between A and two different points of
his choice.

Since we do not consider the honest but curious attack model for this precise
protocol, another simple attack can be mounted. Bob can walk along Alice’s rope
until he is able to determine the coordinates of point A. To prevent Alice from
seeing Bob while he tries to find A, he can use, for example, either a small drone
or a powerful telescopic sight. To avoid such a vulnerability of the protocol, the
neighborhood U must be covered by an “impenetrable” material and, also, to
contain a large number of points such that it is impossible for Bob to determine
the exact position of A. When selecting the number of points in U we also need to
take into account the following scenario. After determining the precise position
of U in the plane Bob gets back to point C and follows the initial protocol for
determining s. Then, Bob can narrow down the number of possibilities for A.

Teaching Utility. A variation of this protocol for key exchange may be the
following. Ted, a trusted third party, takes an infinite rope and fixes one end of



it at Alice’s point A. Similarly, Ted fixes another rope at Bob’s point B. After
fixing the ropes, Ted walks to a random point T such that the distance to A and
B is equal and then cuts the ropes at point T . In the last step of the protocol
Ted returns the ropes to Alice and, respectively, Bob. The common key is the
length of the two ropes.

Besides a good reason for a discussion about analytic geometry, this variations
of the protocol can be the starting point for describing the secure key exchange
protocol for the Internet of Things networks introduced in [18].

2.5 “Laboratory Scale” Solution.

Description. To recall the scheme we follow the description from [9]. We as-
sume that Alice and Bob have access to a laboratory scale11. Each of the two
parties manufacture a weight corresponding to their private number (e.g. in
grams). We also assume that they have identical boxes12 where each of them
can put their corresponding weight. Alice enters the room where the scale is
positioned and puts her box on one of the plates. Then, Bob enters and puts
his box on the other plate. If his plate goes down, then his number is larger;
otherwise, it is Alice’s number that is larger.

Security Analysis. The authors argue in [9] that Alice and Bob do not have
to be in the same place at the same time to perform the comparison, but they
still have to be in the same place at some point, which may be inconvenient. In
fact, if, say, Alice is worried about Bob cheating (by putting different weights
on his plate to zoom in on Alice’s weight), then she would have to stay in the
room and watch what Bob is doing.

Note that when we analyzed the solution we assume that the box is “impen-
etrable”. Compared to the “rope” solution where Bob needs to cheat in order to
detect the dimensions of U , here Bob knows the precise size of the covering box.
This gives him an upper limit of the weight’s volume. If he knows the material
of the weight, then he has an upper limit of the value a. This could be easily
mitigated by keeping the weight’s material secret.

3 Comparing Information Without Revealing It

The initial problem from which the study in [8] started is the following. Charlie
complains to one of his managers, Alice, about a sensitive matter and asks her
to keep it secret. A few months later, another manager, Bob, tells Alice that
someone complained to him, also with a confidentiality request, about the same
matter. Alice and Bob need a way to determine if the same person complained
to them without revealing the identity of the complainer. The authors of [8]
describe a series of complex protocols that try to accomplish this task. But, the
11 a simple mechanism with two plates that are in balance when no weight is placed

on either of them
12 which, in this case, are considered their private spaces



simplest solution was actually provided by the 13 year old son of the first author:
”Why not just ask Charlie whether he complained to Bob?”. This proves that
sometimes experts try to find too complicated solutions for simple things.

We further present a few solutions that can still work when implemented
using our current technology. A legacy example may be considered the “airline
reservation” solution. While Bob is not in the same room Alice calls a specific
airline and makes a particular reservation in the name of her complainer. Then,
Bob tries to cancel the reservation in his complainer’s name. Finally, Alice cancels
or tries to cancel the reservation she made. It is obvious that nowadays such a
version of the protocol can not be functional anymore, due to the fact that in
order to cancel a reservation one needs to have extra pieces of information (e.g.
the reservation code).

For uniformity, we consider, as in Section 2, that Alice and Bob are honest
but curious.

3.1 Message for Bob

Description. We assume that Alice and Bob associate each candidate with a
random telephone number. Alice dials the number13 assigned to the person who
complained to her (Charlie) and asks to leave a message for Bob. It is clear that
the one answering the phone does not know who Bob is. A while after, Bob dials
the number of the person who complained to him and asks if anyone has left
him a message.

Security Analysis. The authors of [8] provide a short security analysis. More
precisely: 1 if Alice does not supervise Bob, then Bob might try several candi-
dates and 2 Dave might deny that a message was left for Bob.

The protocol was designed in a period of time in which telephones were only
analog. But, nowadays, we also have digital and mobile phones. Thus, we further
consider all the three cases when analyzing the security of the scheme. If Alice
and Bob use the same phone to run the protocol, then, in the digital and mobile
cases, Bob can check the call history of the phone to find out the identity of the
complainer. Thus, to prevent such an attack, Alice must delete the call history.
Even if she does this, there is a small probability that Dave will call back and,
if Bob, is near the phone at that particular time, he can see the phone number
and deduce the identity of the complainer. This problem can be easily rectified
if Alice hides her number. Note that the previously mentioned problems do not
happen in the analog case.

If Alice and Bob use different analog phones and Bob is nearby, he can redial
the last number and ask Dave which is his phone number. Thus, in the analog
case Alice needs to call another number afterwards14. In the digital case, Alice
simply has to delete the call history to avoid the redialing attack. If the protocol
is run using mobile phones, such an attack is even harder because Bob has to
13 We denote the owner by Dave.
14 to overwrite the call history



physically take Alice’s phone. Even if he manages to snatch Alice’s phone, the
device might be locked.

We conclude that in the analog case either version is secure (i.e. with one
or two phones) as long as Alice overwrites the call logs, while in the digital case
it is better to use two phones. We believe that the protocol is secure as long as
the initial scenario is valid15 and our proposed countermeasures are taken into
account.

3.2 Password

Description. We assume that Alice chooses to change her password in accor-
dance with Charlie’s name. Next, Bob tries to log in as Alice. In order to do so,
Bob uses the name of the person who complained to him as a password.

Security Analysis. As in Section 3.1, Bob might try several candidates [8].
Additional to the initial security analysis, there is always the possibility that
Alice installs either a key logger on the computer or a video camera inside the
room and directly finds out Bob’s password. Thus, the protocol is insecure.

Teaching Utility. In one version of the protocol, the authors of [8] suggest
using the “passwd” Linux command to run the scheme. This provides a good
opportunity for a teacher to introduce students to the Linux terminal basics and
also how passwords are stored in Linux.

3.3 Cups

Description. We start by assuming that we have a small number s of can-
didates. Alice and Bob get s identical containers (e.g. by acquiring disposable
cups), line them up and label them16. Then, Alice puts a folded slip of paper
saying “yes” in the cup of Charlie and a slip saying “no” in the other s ´ 1 cups.
Bob does the same. Next, Alice and Bob remove the labels and shuffle the cups.
To complete the protocol, both the parties look inside the cups to see whether
one of them contains two slips saying “yes”.

Security Analysis. If Alice and Bob use the suggested containers, Bob can
always check which cup contains the slip saying “yes”. Thus, it is better to use
secure containers, for example ballot boxes which are tamper-evident. Hence,
even if Bob manages to break into all the secure containers, Alice can detect
that Bob cheated.

Teaching Utility. The secure version of the protocol may be seen as a toy
version of the voting process. Thus, it can be used as an introduction to elections
and electoral fraud.
15 A powerful enough Bob can always eavesdrop the landline or ask the operator for

Alice’s call history.
16 one for each candidate



4 Public Key Encryption

Several public key cryptosystems based on different laws of physics17 can be
found in [11]18. Although these solutions are hard to implement in the real
world19, they provide a very good teaching tool. More precisely, a teacher can
interactively transition from these toy protocols to precise explanations of the
underlying physical laws.

Given the attack possibilities we observed while analyzing the schemes in [11],
we chose to only discuss the “capacitors” solution during the following.

4.1 “Capacitors” Solution.

Description. Assume that Alice wishes to send a secret positive number qa to
Bob. Let us consider that Alice has a capacitor C1 of the capacitance cA (denot-
ing her public key) and charge qA (denoting her secret message) in U . Similarly,
Bob has a capacitor C2 of the capacitance cB (denoting his long-term private
key) and a randomly chosen charge qB (denoting his session private key) in V .
Note that the private key is selected by Bob randomly before each transmission
from Alice. The capacitors are connected in such a way that the plates holding
the positive charges are connected by one wire, and the plates holding the neg-
ative charges are connected by another wire (see Figure 1). Alice has a switch
that keeps the circuit disconnected until the actual transmission begins. Also,
Alice has an ammeter to monitor the electric current in the circuit. Bob has a
rheostat included in the circuit in V . This allows him to randomly change the
resistance of the whole circuit, and therefore also to change parameters of the
electric current during transmission.

According to the authors, Alice uses her switch to connect the circuit, starting
the redistribution of the electric charges between the two capacitors. When this
process is complete, she disconnects the circuit. After redistribution of charges,
both Alice and Bob, have new charges: QA and QB . Now, all that Bob has to do
in order to compute the secret of Alice is to apply the following mathematical
expression: qA “ QB ¨ p1 ` cA

cB
q ´ qB .

Security Analysis. To promote an idea which might be relevant in practice,
some experimental results should be presented. In this case, the authors gave
an example of a system used for information transmission based on physical
properties of passive components. Although the authors are theoretically right,
Courtois contested the strength of their model in [6]. In our analysis, we propose
a complete, yet simple way to demonstrate both theories. The proposed scheme
is represented in Figure 2. In order to do so, we extended the electrical circuit
proposed in [10] so that we could prove its functionality by simulating it. Based
on the fact that the authors gave no technical specifications regarding the circuit,
we analyzed several scenarios. The first one concerns the type of capacitors used
17 We refer the reader to Appendix B.
18 A similar solution for Yao’s problem is described in [9].
19 The authors assume that only Alice and Bob interferes with the system.
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Fig. 2: Proposed “Capacitors” Solution

in the circuit. We tested the scheme using polarized and non-polarized capacitors
with specific given input values and concluded that, in simulation, the differences
are not significant. Nevertheless, in practice, the type of capacitor used is very
important in order to avoid damaging the circuit.

To ease description, in order to validate the functionality of the “capacitors”
solution we randomly choose a set of parameters for the scheme. Our example
can directly be used in class to experimentally show that the solution is a viable
one.

For obtaining a functional “capacitors” solution, we propose adding a power
supply and 3 more switches (see Figure 2). The voltage generated by the power
supply is 1 V . We use a 10 µF capacitance for Alice’s capacitor and a 1 µF
capacitance for Bob’s capacitor. The rheostat is set at R1 “ 431 Ω and R1 “

569 Ω. The simulation is done using the electronic circuit simulator hosted by [1].
The first step of the simulation consists of charging the capacitors, in order to
obtain the initial values for the electric charges. For charging the capacitors,
switches S1, S2 and S4 must be connected. After this step, the power supply is
disconnected and the circuit is closed, meaning that switches S1 and S2 must
be disconnected and switch S3 must be connected. Switch S4 is Alice’s switch.
Based on the values that were set as input, we measured the voltage drop Vd

on each capacitor and obtained the initial electric charges qA “ 899.09 nC
(VdA

“ 89.909 mV ) and qB “ 910.091 nC (VdB
“ 910.091 mV ). After re-

distributing charges (i.e. when Alice connects the circuit) the charges become
QA “ 10 nC (VdA

“ 1 mV ) and QB “ 1 nC (VdB
“ 1 mV ). In the final step of

the protocol, Bob computes Alice’s electric charge:

qA “ QB ¨ p1 `
cA

cB
q ´ qB

“ 10 ¨ 10´9 ¨ p1 `
10 ¨ 10´6

10´6 q ´ 910.091 ¨ 10´9

“ ´899.091 ¨ 10´9 C

In [6], Courtois presents a rather intrusive attack in which Eve inserts a
switch between Alice and Bob and measures the voltage (see Figure 3). In this
case, switches S1 and S2 are disconnected. Switch S3 is connected, Alice’s switch



T PC1
´ `

C2

´ `

RBptq

S1

S2

S3

S4

S5

Alice

Bob

Fig. 3: Attack scenario “Capacitors” Solution

is S4 and Eve’s switch is S5. S4 and S5 are disconnected. Eve measures the volt-
age between Alice and Bob, right after Alice connects her switch. After the mea-
surement, Eve connects her switch too. This is a very simple way to determine
VdA

. Since Alice’s capacitance is a public parameter, Eve just computes:

qA “ cA ¨ VdA

“ 10 ¨ 10´6 ¨ 89.909 ¨ 10´3

“ 899.09 ¨ 10´9 C

After running the simulation, we observed that the attack scenario is a plausi-
ble one. Note that the detection of Eve’s attack depends on the quality of the
equipment that she possesses.

Initially, for protecting the circuit we thought of adding a plus of security
by connecting each capacitor to a different power supply. It turned out this is
not enough, since Eve can measure the circuit in any point which surrounds
each Alice’s and Bob’s private space. Thus, we dropped the idea and choose the
simpler version of the two.

5 Conclusions

We recalled various physical cryptographic solutions and discussed their security
in the “honest but curious” model. Thus, we provided the reader with different
attacks scenarios against a set of schemes solving Yao’s millionaires’ problem, a
number of protocols for comparing information without revealing it as well as a
a public key cryptosystem based on physical properties of systems.
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A Recreational Cryptographic Problems

The interest of the cryptographic community regarding various recreational cryp-
tography problems has grown in time. We further recall a series of physical
cryptographic solutions which appeared in the literature. Note that our list of
recreational cryptographic problems is, by no means, extensive.

“Finding Waldo” Solution. The authors of [17] provide an insight on how
to convince people about knowing Waldo’s location without revealing it. We
initially assume that Alice and Bob have a large piece of cardboard20. As a first
step, Alice cuts a Waldo shaped hole in the middle of the cardboard. To prove
that she knows where Waldo is, Alice puts the shape precisely on top of Waldo
while Bob is not looking and then calls Bob to check. Given the previous steps
of the protocol, Bob learns nothing about the location of Waldo. Next, Alice
must prove that she has the correct Waldo picture. Therefore, she must pull the
book beneath the cardboard in front of Bob’s eyes without revealing information
about the place from which she is pulling the book21.

“Ali Baba Cave” Solution. A well known story for explaining the intuition
behind zero knowledge protocols is presented in [19]. The story is about a magical
cave shaped like a ring with an entrance on one side as well as a magical door
blocking the opposite side. We assume that Alice discovers the secret magical
word that opens the door and wants to prove to Bob that she knows the secret
without revealing it. Thus, they agree to label the left and right paths from the
entrance head and tail. The protocol proceeds as follows. Bob waits outside the
cave as Alice goes in. Then, Alice flips a coin to determine the path she follows.
Note that Bob is not allowed to see which path she takes. Bob enters the cave,
flips a coin and shouts the outcome. If Alice knows the magical word she opens
the door, if necessary, and returns along the path chosen by Bob. If she lied about
knowing it, then she has a 50% chance of returning through the correct path
(i.e. by guessing Bob’s outcome). If they repeat this protocol multiple times, the
chance of Alice tricking Bob decreases. Thus, if Alice always exits through the
right path, Bob can conclude that Alice really knows the secret word.

20 at least twice as large as the picture in each dimension
21 At least the hole should be covered while the book is pulled out.



“Locked Boxes” Solution. A classical method for explaining symmetric en-
cryption is through the use of “impenetrable” locked boxes (see [4, 5]). More
precisely, Alice and Bob both have a copy of the key that opens a chest. To ex-
change messages, Alice simply puts her letter in the box, locks it and sends it to
Bob. Since Bob has an identical copy of the key, he opens the chest and reads the
letter. Another protocol that can be explained using locked boxes is Shamir’s
three-pass protocol [14]. First, Alice puts her message in a box, locks it with
her private padlock and sends it to Bob. Then, Bob places his private padlock
on the box and sends it back to Alice. Once she receives the box, she removes
her padlock and sends the box to Bob. Finally, Bob removes his padlock and
reads Alice’s message. In order to popularize cryptography to non-specialized
audiences, the authors of [4] used a toolbox or a loose chain to implement the
previous physical example of Shamir’s protocol. The authors point out it is easy
to prove22 to audiences that a persistent code-breaker could always dismantle a
padlock, or X-ray it, and hence crack the code (i.e. knowing the inside of the lock
is isomorphic to knowing the key). Thus, we have to employ other techniques
than the secrecy of the encryption method.

By relaxing the security requirements from an “impenetrable” box to a
tamper-evident box (i.e. the receiver can detect if someone managed to open
the box) the authors of [15,16] devise a series of secure protocols.

Ciphers Based on a Deck of Cards. Schneier designed the “Solitaire” ci-
pher [20] for the book “Cryptonomicon” [23]23. Solitaire was intended to be the
first truly secure “pen and paper” cipher. It requires only a pack of cards both
for encryption and decryption. A similar example is the “Mirdek” cipher [7].

“PEZ Dispenser” Solution. In [3] the authors present a solution for voting
using a PEZ dispenser. Consider a group of kids wishing to vote between two
candidates without revealing anything except the final outcome. Assume that
they have a PEZ dispenser, which may be previously loaded with some publicly
known sequence of red and yellow candies. The kids take turns. Each one decides
how many candies to pop out of the dispenser according to his vote. Note that no
other kid can see the number or the colors of these candies. Also, it is forbidden
for the participants to weight the dispenser and, thus, deduce the number of
remaining candies. When this process ends, the color of the candy on top has to
correspond to the correct majority vote. The voting process is completed when
one of the kids pops an additional candy and announces its color.

“Phonebook” Solution. Khovanova recalls on her blog [13] that, for explain-
ing one-way functions, Micali used the following example of encryption. We start
by assuming that Alice and Bob obtain the same edition of the white pages book
for a particular town. For each letter Alice wants to encrypt, she finds a person
in the book whose last name starts with this letter and uses his/her phone num-
ber as the encrypted version of that letter. To decrypt the message Bob has to
22 e.g. by showing a sawn up padlock
23 entitled “Pontifex” in the book



read through the whole book to find all the numbers. The decryption will take a
lot more time than the encryption. Unfortunately, the technology changes and
the example is not up to date anymore: reverse look-up is always possible in a
digital world. Furthermore, regarding the security of the scheme, an 8th grader
said: “If I were Bob, I would just call all the phone numbers and ask their last
names.” A similar example may be found in [4]. Such examples are very good for
teaching one-way functions to non-mathematicians.

“Colors” Solution. The Diffie-Hellman protocol can be depicted using colors
as further presented. An illustration using common paint may be found in [2].
The idea, first proposed by Simon Singh [22], relies on two properties of colors:
1 it is easy to mix two colors and 2 given a color that was obtained by mixing

two other colors, it is difficult to reverse the process24. As a specific example, we
may assume that yellow ‚ is a public color. Let us further consider that Alice’s
secret color is blue ‚ and that Bob’s secret color is red ‚. The parties wish to
agree on a new shared secret color. In the first step, Alice sends green ‚ to Bob
(i.e. the result of yellow ‚ mixed with blue ‚). Then, Bob sends orange ‚ to Alice
(i.e. the result of yellow ‚ mixed with red ‚). By mixing the received color with
the secret color, each party obtains the common secret brown ‚ (i.e. Alice mixes
orange ‚ with her blue ‚ and Bob mixes green ‚ with red ‚).

Although insecure25, the digital version of the above protocol is a good teach-
ing tool e.g. when trying to explain beginners how to use colors in the case of
programming languages used in web development.

B Physical Public Key Encryption

We further present a generic protocol based on the protocols described in [11].
Alice and Bob have access to a physical medium characterized by a parameter
pptq, such that pptq has two components p “ paptq ˝ pbptq, where ˝ is a group law
and paptq, pbptq can randomly be changed by varying t. In her private spaces U
and V , Alice and Bob secretly vary paptq and, respectively, pbptq. Note that Eve
only has access to pptq. First Alice and Bob randomly vary paptq and pbptq. When
they agree to synchronize26, Alice and Bob stabilize their parameters papt1q “ a
and pbpt1q “ b. Bob can measure ppt1q “ a˝b and deduce Alice’s value a. Similarly,
Alice can compute b.

Example. We consider the setup from Section 2.3. Thus, the components that
Alice and Bob vary are their corresponding speeds values a and b. Once the sys-
tem is stabilized Bob can deduce a using the attack we described in Section 2.3,
but Eve can only deduce b ´ a.

24 and obtain the initial colors
25 When mixing two colors which can be described in the RGB (Red-Green-Blue) color

model one can revert the process due to the uniqueness of each color. Note that such
a phenomenon does not happen when working with paint.

26 through the use of an authenticated channel
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