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Abstract

This paper provides proofs of the results of Laisant - Beaujeux: (1) If an integer of the form

n = 4k + 1, k > 0 is prime, then
✓

n� 1
m

◆
⌘ 1(modn),m = n�1

2 , and (2) If an integer of the

form n = 4k+3, k � 0 is prime, then
✓

n� 1
m

◆
⌘ �1(modn),m = n�1

2 . In addition, the author

proposes important conjectures based on the converse of the above theorems which aim to establish
primality of n. These conjectures are scrutinized by the given combinatorial primality test algorithm
which can also distinguish patterns of prime n whether it is of the form 4k + 1 or 4k + 3.

1 Introduction

A positive integer n is to be called a prime if it has only divisor of 1 and itself, otherwise n is called a
composite. There are, by Euclid’s theorem (about 350BC) infinitely many primes. Primes are mainly
categorized into three patterns of the form 4k + 1, 4k + 2 and 4k + 3. The integer 2 is only the even
prime that is of the form 4k + 2. Primes of the form 4k + 1 are 5, 13, 17, 29, 37, 41, ...etc., and of
the form 4k + 3 are 3, 7, 11, 19, 23, 31, 43, ...etc. There are also many other patterns of primes which
are listed on the Online Encyclopedia Integer Sequence (OEIS). Readers are referred to search for any
prime pattern on the OEIS [9]. Primes are building blocks for any composite. A composite is composed
by primes in some order. For instance, 143 is composed by primes, 11 and 13. It is clear that one
can easily compose any composite by multiplication of primes but decomposition of the composite is a
challenging computational problem, so called the integer factorization problem. The RSA cryptosystem
[11] was constructed based on the integer factorization problem. This is an NP-intermediate problem on
a classical computer. However, this problem can be reduced to a polynomial time problem on a quantum
computer due to Shor’s algorithm [12].

In 1808, a French mathematician, Christian Kramp introduced the notation ! for factorials. The
factorial of n is the product of all positive integers less than or equal to n. In Kramp’s notation, n! =
n(n � 1)(n � 2)...3.2.1.0! . By convention, one defines 0! = 1! = 1. Suppose that a set S contains
n distinct objects. Then, one obtains that there are exactly n! permutations of S. If there are r objects

chosen from the set S that contains n objects, this is equal to
✓

n

r

◆
= n!

(n�r)!r! . We now recall the

Wilson’s theorem [6, Theorem 80] which is based on factorials.

Theorem 1. (Wilson’s Theorem) An integer n is prime if and only if (n� 1)! ⌘ �1(modn).
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The Wilson’s theorem is not helpful to employ in practice, since the Wilson’s primality test requires
O(n) operations to compute it. Later, a variant of the Wilson’s theorem was discovered in 1961 [8]
which is stated as follows:

Lemma 1. Let n = 4k + 1 be a prime. Then (n�1
2 )! ⌘ (�1)v(modn), where v is the number of

quadratic non-residue less than 1
2n.

We recall the Fermat’s Little Theorem and Fermat-Euler Theorem [3] which are used to prove the
main theorems in the next section.

Theorem 2. (Fermat’s Little Theorem) Let n be a prime and integer a is a primitive such that gcd(a, n) =
1. Then, an�1 ⌘ 1(modn).

The Fermat’s Little Theorem is a probablistic primality test. The origin of Carmichael numbers is
based on the cases where the Fermat’s Little Theorem fails [2]. However, the Fermat’s Little Theorem
became a basis to establish many primality tests.

There is a special case of the Fermat’s Little Theorem which is given as follows:

Theorem 3. (Fermat-Euler Theorem) If gcd(a, n) = 1, then a
�(n) ⌘ 1(modn).

Remark 1. For n is a prime, we have �(n) = n� 1.
The purpose of the paper is to provide proofs of the results of Laisant-Beaujeux [4, page 277]:

(1) If an integer of the form n = 4k + 1, k > 0 is prime, then
✓

n� 1
m

◆
⌘ 1(modn),m = n�1

2 .

(2) If an integer of the form n = 4k + 3, k � 0 is prime, then
✓

n� 1
m

◆
⌘ �1(modn),m = n�1

2 .

Furthermore, this paper conjectures statements based on the converse of the above theorems, and
also presents an algorithm for combinatorial primality test. This test requires O(2

(n�1)
2 ) operations for

its primality.

2 Main Results

This section presents proofs of the results of Laisant - Beaujeux [4, page 277].

Theorem 4. If an integer of the form n = 4k + 1, k > 0 is prime, then
✓

n� 1
m

◆
⌘ 1(modn),m =

n�1
2 .

Proof. Suppose that n is prime of the form 4k + 1. Then, n has a primitive root. Let a be a
primitive root modulo n. Then the integers 1, a, a2, ...., an�2 are congruence modulo n, to some order,
1, 2, 3, ..., n�1. Hence, we have (n�1)! ⌘ 1·a·a2 · · · an�2(modn) ⌘ a

(n�2)(n�1)
2 (modn). Consequently,

we have m! ⌘ a
(n�1)(n+1)

8 (modn).
And, ✓

n� 1
m

◆
⌘ (n� 1)!

[(n�1
2 )!]2

⌘ a
(n�2)(n�1)

2

a
(n�1)(n+1)

4

⌘ a
(n�1)(n�5)

4 (modn).

To analyze further the expression, we employ n = 4k + 1, where k is a natural number. As k <

4k = n � 1, then a
k���⌘ 1(modn). However, a4k ⌘ a

n�1 ⌘ 1(modn), by Fermat’s Little Theorem. As
(ak)4 ⌘ a

4k ⌘ 1(modn), then a
2k ⌘ ±1(modn), So a

k ⌘ �1(modn).
Hence,

✓
n� 1
m

◆
⌘ a

(n�1)(n�5)
4 ⌘ a

(4k+1�1)(4k+1�5)
4 ⌘ (ak)4k�4 ⌘ (�1)4(k�1) ⌘ 1(modn).
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Example 1. For prime n = 17,
✓

16
8

◆
⌘ 1(mod 17) and for composite n = 27,

✓
26
13

◆
⌘

11⇢⇢⌘1(mod 27).

Theorem 5. If an integer of the form n = 4k+ 3, k � 0 is prime, then
✓

n� 1
m

◆
⌘ �1(modn),m =

n�1
2 .

Proof. Extracting from the above proof,
✓

n� 1
m

◆
⌘ a

(n�1)(n�5)
4 (modn)

also holds for this case. To analyze the expression, we use n = 4k + 3, where k is a natural number. As
k < 2(2k+1) = n� 1, then a

k���⌘ 1(modn). However, a2(2k+1) ⌘ a
n�1 ⌘ 1(modn), by Fermat’s Little

Theorem. As a4k+2 ⌘ a
(n�1) ⌘ 1(modn), then a

2k+1 ⌘ �1(modn).
Hence, ✓

n� 1
m

◆
⌘ a

(n�2)(n�1)
4 ⌘ a

(4k+3�1)(4k+3�5)
4 ⌘ a

(4k+2)(4k�2)
4

⌘ a
(2k+1)(2k�1) ⌘ (�1)(2k�1) ⌘ �1(modn).

Example 2. For n = 31,
✓

30
15

◆
⌘ �1(mod 31) .

Remark 2. Algorithm 1 checks the validity of the converse of the theorem 4 and 5. Thus, the author
proposes Conjectures 1 and 2.

Conjecture 1. If
✓

n� 1
m

◆
⌘ 1(modn),m = n�1

2 , then n = 4k + 1 is a prime.

Conjecture 2. If
✓

n� 1
m

◆
⌘ �1(modn),m = n�1

2 , then n = 4k+3 is a prime, except for n = 5907.

Remark 3. It was found that the Conjecture 2 fails at n = 5907. Note that the composite numbers
that satisfy the Conjecture 2 are Laisant - Beaujeux pseudoprimes. These numbers could be rarer than
Carmichael numbers.

3 Combinatorial Primality Test

An important challenge in number theory is to efficiently determine whether an integer n is prime or
composite. Miller-Rabin Primality Test [7,10] and Elliptic Curve Primality Test [5] are well known effi-
cient primality tests. However, these are probabilistic primality tests. In 2002, Agrawal et al., discovered
an unconditional deterministic primality test [1] which requires O((log n)6+✏) steps on a classical com-
puter. The Wilson’s primality test is also a deterministic test but it is not computationally efficient. In
the algorithm 1, we provide a primality test based on combinatorics which requires O(2

(n�1)
2 ) steps in

order to test whether n is prime or composite.
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Algorithm 1 Algorithm for Combinatorial Primality Test
Input : An integer n
Runtime : O(2

(n�1)
2 ) operations

Procedure :

1: Compute
✓

n� 1
m

◆
⌘ r(modn),m = n�1

2

2 : if r = 1, then

3: Declare n is prime of the form 4k + 1
4: else if r = �1, then

5: Declare n is prime of the form 4k + 3
6: else

7: Declare n is composite.
8: end if

9:end if

Output : Declare whether the integer n is prime or composite

4 Conclusion

This paper has provided proofs of the results of Laisant - Beaujeux on primality and proposed cor-
responding conjectures based on their converse statements. Furthermore, the paper has presented an
algorithm for combinatorial primality test which checks the validity of the conjectures. The test re-
quires O(2

(n�1)
2 ) operations to test whether n is prime or composite. It is also noted that this test could

also distinguish patterns of prime whether it is of the form 4k + 1 or 4k + 3.
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