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Abstract

We studied the applicability of di�erential cryptanalysis to cryptosystems based
on operation of addition modulo 2n. We obtained an estimate (accurate up to an
additive constant) of expected value of entropy Hn in rows of DDT of corresponding
mapping. Moreover, the k-th moments of 2Hn are explored. In particular, asymptotic
inequalities that describe the behavior of values E2Hn and D2Hn as n Ñ 8 were
obtained. A simple analytical formula for the size of any given equivalence class was
obtained. This formula helped to e�ectively compute the entropy distribution.
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1 Introduction

A number of cryptographic schemes use the operation of addition modulo 2n for
some n ¡ 1. Denote ZN the ring modulo N . The �rst function under consideration is
f : Z2

2n Ñ Z2n de�ned by fpx, yq � x `n y, where `n denotes addition in ring Z2n , i.e.
modulo 2n, and ` is bitwise exclusive-OR. We are interested in study of the function
Pnp∆x,∆fq : Z2

2n Ñ N0:

Pnp∆x,∆fq � 1

22n

���tpx, yq P Z2
2n : ∆f � fpx`∆x, yq ` fpx, yqu

���.
(it is analogous to a special case of the di�erential probability of addition modulo 2n

studied in [1]).
In this work we study the properties of this operation through the concept of entropy.

The article [2] investigated the function 2n �Pnp∆x,∆fq, but all the results are similar in
these two cases, therefore we will brie�y describe what is already known.

The table of values of the function Pnp∆x,∆fq is called a di�erence distribution
table (DDT). The rows of this table are indexed by ∆x and columns by ∆f . In [2] it
has been shown that this table has a special form: the table for addition modulo 2n�1 is
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naturally expressed through a similar table for addition modulo 2n. That is, if the matrix
for Pnp∆x,∆fq has the form

Pn �
�
A B
C D

�
then matrix Pn�1 has form

Pn�1 � 1

2

����
2A B 0 B
C D C D
0 B 2A B
C D C D

����
It was also shown that A � D and B � C. This led to the following recurrent

representation for the matrix Pn:

Pn �
�
An Bn

Bn An

�
, (1)

where

An � 1

2

�
2An�1 Bn�1

Bn�1 An�1

�
, Bn � 1

2

�
0 Bn�1

Bn�1 An�1

�
. (2)

Rows of Pn with the same but maybe permuted elements are called equivalent (obvi-
ously, equivalent rows have the same entropy). It was shown in [2] that one can associate
a polynomial of degree not greater than 2n with each of equivalence classes. These poly-
nomials can be constructed from the parameters of the corresponding equivalence class.
So one can enumerate all the distinct distributions in time proportional to their number,
that is

eπ
?

2n
3

2
?

2π
?
n
� O

�
23,7007

?
n
	

as nÑ 8.

When considering Pnp∆x,∆fq as a part of a cryptosystem from the point of view
of di�erential cryptanalysis the following problem arises: for a given (or randomly cho-
sen) ∆x it is necessary to determine the minimum cardinality Kc of the set of numbers
t∆f1, . . . ,∆fKcu such that

Kç

i�1

Pnp∆x,∆fiq ¥ c,

where c, 0   c ¤ 1, is some �xed constant. The value of Kc corresponds to the �degree of
branching�, that is, the coe�cient by which the number of considered variants is multiplied
when moving to the next round of the cryptosystem. In practice, it was found that for the
distributions in DDT rows the described value K 1

2
does not exceed 2H , where H is the

entropy of this distribution (this is not true in the general case, for arbitrary distributions,
it is enough to consider an example distribution t1

4
, 1
2n
, . . . , 1

2n
u for su�ciently large n).

In this article we obtained an estimate (accurate up to an additive constant) of ex-
pected value of entropy Hn in rows of DDT and asymptotic inequalities describing the
behavior of values E2qHn and D2qHn as n Ñ 8 (for q P N). We also implemented the
equivalence class enumeration algorithm and justi�ed (for some practical values of n) our
assumption concerning closeness of 2Hn and K1{2. The theoretically estimated values of
moments of 2Hn also turned out to be close to the real ones.

We also introduced a simple analytical formula for the size of any given equivalence
class was obtained and used it, in particular, to e�ectively compute the entropy distribu-
tion.
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2 Properties of DDT row entropy

By de�nition the entropy in the i-th row of matrix Pn may be found according to the
formula

H i
n � �

2n�1̧

j�0

Pnpi, jq log2 Pnpi, jq, i � 0, . . . , 2n � 1.

For convenience we denote

αin �
2n�1�1¸
j�0

Anpi, jq, βin �
2n�1�1¸
j�0

Bnpi, jq

and

αn �
2n�1�1¸
i�0

αin, βn �
2n�1�1¸
i�0

βin.

Lemma 1.

H i
n�1 �

#
H imod2n

n � 1, if i P r2n�1, 2n � 1s Y r3 � 2n�1, 2n�1 � 1s,
H imod2n

n � βimod2n

n , if i P r0, 2n�1 � 1s Y r2n, 3 � 2n�1 � 1s.
Proof. From (1) and (2) it is clear that for i P r2n�1, 2n � 1s Y r3 � 2n�1, 2n�1 � 1s the i-th
row has the form 1

2

�
a b a b

�
and thus the entropy can be written as

H i
n�1 � �2 �

2n�1̧

j�0

Pnpi, jq
2

log2

Pnpi, jq
2

� �
2n�1̧

j�0

Pnpi, jqi,j log2

Pnpi, jq
2

�

� �
2n�1̧

j�0

Pnpi, jq log2 Pnpi, jq �
2n�1̧

j�0

Pnpi, jq log2 2 � H imod2n

n � 1.

On the other hand, for i P r0, 2n�1 � 1s Y r2n, 3 � 2n�1 � 1s we have the row of form
1
2

�
2a b 0 b

�
and thus

H i
n�1 � �

2n�1�1¸
j�0

Pnpi, jq log2 Pnpi, jq � 2 �
2n�1̧

j�2n�1

Pnpi, jq
2

log2

Pnpi, jq
2

�

� �
2n�1�1¸
j�0

Pnpi, jq log2 Pnpi, jq �
2n�1̧

j�2n�1

Pnpi, jq log2 Pnpi, jq �
2n�1̧

j�2n�1

Pnpi, jq �

� H imod2n

n � βimod 2n

n .

Lemma 2. For every n ¥ 1 holds EHn�1 � n
2
� βn

2n
� � � � � β3

8
� β2

4
.

Proof. Taking into account the previous lemma, we can write:

EHn�1 � 1

2n�1

2n�1�1¸
i�0

H i
n�1 �

1

2n

2n�1�1¸
i�0

pH i
n � βinq �

1

2n

2n�1̧

i�2n�1

pH i
n � 1q �

� 1

2n

2n�1̧

i�0

H i
n �

1

2n

2n�1�1¸
i�0

βjn �
1

2
� EHn � βn

2n
� 1

2
.

It remains to �unroll� this equality and note that H1 � 0 and β1 � 0.
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Lemma 3. For every n ¥ 1 holds βn � 1
3
� 2n�1p1� 41�nq.

Proof. Obviously, αin � βin � 1, so αn � βn � 2n�1. From (2) it follows that

βn�1 � βn � αn
2
.

From the last two equalities it follows that

βn�1 � 2n�2 � βn
2
.

Unrolling this equality we come to

βn�1 � 2n�2 � βn
2
� 2n�2 � 1

2

�
βn�1 � αn�1

2

	
� 2n�2 � 2n�4 � βn�1

4
�

� 2n�2 � 2n�4 � � � � � 2�n � 2n�2
�
1� �

2�2
�n�

1� 2�2
� 1

3
� 2np1� 4�nq.

Theorem 1. EHn � 2
3
n�Op1q as nÑ 8.

Proof. Let us substitute values obtained in Lemma 3 into the representation of EHn�1

obtained in Lemma 2:

EHn�1 � n

2
� 1

6
p1� 41�nq � � � � � 1

6
p1� 4�1q � n

2
� n

6
� 1

3
p1� 41�nq � 2

3
n�Op1q.

So EHn � 2
3
pn� 1q �Op1q � 2

3
n�Op1q.

Now we will consider the q-th moment of a random variable 2Hn :

E
�
2Hn

�q � E2qHn � 1

2n

2n�1̧

i�0

2qen,i � 1

2n

2n�1̧

i�0

Qen,i ,

where en,i is the entropy in i-th row of matrix Pn and Q denotes 2q. To avoid multilevel
exponentiation we will use the notation Qpxq � Qx.

Corollary 1. E2qHn � Ω
�
Q

2
3
n
	
.

Proof. It is su�cient to use the inequality of arithmetic and geometric means and the
result of Theorem 1:

E2qHn � 1

2n

2n�1̧

i�0

2qen,i ¥ 2n

gffe 2n¹
k�1

2qen,i � 2EpqHnq � 2
2
3
qn � Ωp1q � Ω

�
Q

2
3
n
	
.

Lemma 4. For i � 0, . . . , 2n�1 � 1

βin �
#

0, if i � 0,

2�pn�1�tlog2 iuq, otherwise.
(3)
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Proof. Let us prove by induction. For n � 1 the proposition is obvious as B1 �
�

0
�
.

Now let's suppose that it is also true for βin�1, i � 0, . . . , 2n�2 � 1 and let us prove it for
βin.

For 2n�2 ¤ i ¤ 2n�1 � 1 from (2) we get βin � 1
2
as the sum in any row of matrix�

Bn�1 An�1

�
is 1. This agrees with (3) as tlog2 iu � n� 2.

For 0 ¤ i ¤ 2n�2 � 1 from (2) we have

βin �
1

2
βin�1.

and by the inductive hypothesis we come to (3).

Remark. The vector of values βin has the following form:�
0,

1

2n�1loomoon
1

,
1

2n�2
,

1

2n�2looooomooooon
2

, . . . ,
1

8
, . . . ,

1

8looomooon
2n�4

,
1

4
, . . . ,

1

4looomooon
2n�3

,
1

2
, . . . ,

1

2looomooon
2n�2

�
.

For convenience we extend the de�nition (3) for 2n�1 ¤ i ¤ 2n � 1. Then according
to Lemma 1,

en,i � βi mod 2n�1

n�1 � βi mod 2n�2

n�2 � � � � � βi mod 4
2 .

Moreover, obviously, e1,0 � e1,1 � 0. For k P t0, . . . , n� 2u let us introduce sets
Zk �

 
i P Z : 2n�k�1 ¤ i ¤ 2n�k � 1

(
.

The set Zk consists of integers which binary representation has the form 0 . . . 0loomoon
k

1 � � � � �loomoon
n�k�1

.

Let us denote ωn �
°2n�1
i�0 Qpen,iq. Then

ωn �
2n�1̧

i�0

Qpen,iq �
n�1̧

k�0

¸
i1PZk

Q

�
ķ

c�1

βi
1 mod 2n�c

n�c � en�k,i1

�
� 1 �

�
n�1̧

k�0

¸
i1PZk

Q

�
ķ

c�1

βi
1 mod 2n�c

n�c

�
Qpen�k,i1q � 1 �

�
n�1̧

k�0

Q

�
k�1̧

c�0

2�c
� ¸

i1PZk

Qpen�k,i1q � 1 �
n�1̧

k�0

Q
�
2� 2�k�1

� ωn�k
2

� 1.

Obviously,

E
�
2Hn

�q � ωn
2n
. (4)

Thus we need to investigate the following recurrence relation:

f 1pnq �
n�1̧

`�1

f 1p`q �Qp2� 2�n�`�1q � 2, (5)

First, we compare it with the similar relation:

fpnq �
n�1̧

`�1

fp`q �Qp2� 2�n�`�1q, n ¥ 2

fp1q � 2.

(6)

Let us denote ∆pnq � f 1pnq � fpnq.
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Lemma 5. ∆pnq ¤ fpnq.
Proof. Let us prove by induction. Obviously,

0 � ∆p1q ¤ fp1q � 2.

Suppose the proposition is true for all ` ¤ n (i.e. ∆p`q ¤ fp`q) and write down

fpn� 1q �
ņ

`�2

fp`q �Qp2� 2�n�`�1qfp1q,

∆pn� 1q �
ņ

`�2

∆p`q �Qp2� 2�n�`�1q∆p1q � 2.

For n ¥ 2 we have Qp2� 2�n�3q ¥ 1, from which and the inductive hypothesis follows:

∆pn� 1q ¤
ņ

`�2

fp`q �Qp2� 2�n�`�1q∆p1q � 2 ¤

¤
ņ

`�2

fp`q � 0� 2 ¤
ņ

`�2

fp`q �Qp2� 2�n�`�1qfp1q � fpn� 1q,

and it is the required inequality.

With the use of Lemma 5 we estimate f 1pnq as

fpnq ¤ f 1pnq � fpnq �∆pnq ¤ 2fpnq,

and will work with homogeneous equation (6).
Let us note that coe�cients Qp2� 2�n�`�1q � Q2�2�n�`�1

are bounded from above by
the number Qp2q. Then let us consider the next family of recurrence relations:

pfkpnq � n�1̧

`�n�k
Qp2� 2�n�`�1q pfkp`q �Qp2q

n�k�1¸
`�1

pfkp`q,
pfkp1q � 2,

solutions to which bound fpnq from above. Denote

pFkpnq � n�1̧

`�1

pfkp`q. (7)

Then

pFkpnq � pFkpn� 1q �
n�1̧

`�n�k
Qp2� 2�n�`�1q� pFkp`q � pFkp`� 1q��Qp2q pFkpn� k � 1q,

pFkp1q � 2.

(8)

Note that this recurrence relation has constant �length� and can be solved using well-
known methods. Let us �rst �nd the form of the characteristic polynomial corresponding
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to this relation:

λk�1 � λk �
n�1̧

`�n�k
pλ`�n�k�1 � λ`�n�kqQp2� 2�n�`�1q �Qp2q �

�
n�1̧

`�n�k
λ`�n�k�1Qp2� 2�n�`�1q �

n�1̧

`�n�k
λ`�n�kQp2� 2�n�`�1q �Qp2q �

�
n�1̧

`�n�k
λ`�n�k�1Qp2� 2�n�`�1q �

n�2̧

`�n�k�1

λ`�n�k�1Qp2� 2�n�`�2q �Qp2q �

� Qp1qλk�1�1 �Qp2� 2�k�1�2q�

�
n�2̧

`�n�k
λ`�n�k�1

�
Qp2� 2�n�`�1q �Qp2� 2�n�`�2q��Qp2q.

Thus the �nal form of the characteristic polynomial is

pHkpλq � λk�1 � p1�Qp1qqλk �
k�2̧

`�0

Qp2q �Qp�2�k�`�1q �Qp�2�k�`�2q�λ`�1�

�Qp2q �1�Qp�2�k�1q� .
We will denote pϕs the coe�cient of λs. Let y1, . . . , yk�1 be the roots of this polynomial.
It is known [3] that the solution to the equation (8) has form

pFkpnq � pγ1yn1 � � � � � pγk�1y
n
k�1 (9)

for some constant pγi.
On the other hand, coe�cients Qp2 � 2�n�`�1q decrease with growth of ` and reach

the minimum value on the interval ` P r1, n� k� 1s at the point ` � n� k� 1, where the
coe�cient is Qp2� 2�kq. From this considerations we obtain a new family of recurrences
limiting the original one from below :

qfkpnq � n�1̧

`�n�k
Qp2� 2�n�`�1q qfkp`q �Qp2� 2�kq

n�k�1¸
`�1

qfkp`q,
qfkp1q � 2.

Just as it was done above we introduce

qFkpnq � n�1̧

`�1

qfkp`q. (10)

Thus

qFkpnq � qFkpn� 1q �
n�1̧

`�n�k
Qp2� 2�n�`�1q� qFkp`q � qFkp`� 1q��Qp2� 2�kq qFkpn� k � 1q,

qFkp1q � 2.

(11)
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In this case the characteristic polynomial has the following form:

qHkpλq � λk�1 � p1�Qp1qqλk �
k�2̧

`�0

Qp2q �Qp�2�k�`�1q �Qp�2�k�`�2q�λ`�1� (12)

�Qp2q �Qp�2�kq �Qp�2�k�1q� . (13)

We will denote qϕs the coe�cient of λs. The solution to the equation (11) has the following
form: qFkpnq � qγ1yn1 � � � � � qγk�1y

n
k�1, (14)

where y1, . . . , yk�1 are the roots of qHkpλq and qγi are some constants.
Consider the following family of polynomials (t P r0, 1s):

putpλq � λk�1 � p1�Qqλk � t � pϕk�1λ
k�1 � � � � � t � pϕ0 (15)

and the similar one for qϕi (denote it qutpλq). We will prove the following lemmas describing
these families (note that qϕi � pϕi for i ¥ 1).

Lemma 6. For every t P r0, 1s the polynomials putpλq and qutpλq:
(a) have no root in the annulus 1   |λ| ¤ 2, if Q � 2;

(b) have no root λ such that |λ| � Q
2
� 1, if Q ¡ 2.

Proof. We prove the case (a) by contradiction. Assume that putpλq has a root λ such that
1   |λ| ¤ 2. Then taking absolute values in both parts in the equality

λk�1 � t � pϕk�1λ
k�1 � � � � � t � pϕ0 � 3λk

and applying the triangle inequality, we get

|λ|k�1 � t � pϕk�1|λ|k�1 � � � � � t � pϕ0 ¥ 3|λ|k.
Then

|λ|k�1
�|λ|2 � 3|λ| � t � pϕk�1

� ¥ �t � pϕk�2|λ|k�2 � � � � � t � pϕ0.

Since the branches of the parabola yp|λ|q � |λ|2 � 3|λ| � t � pϕk�1 are directed upwards, it
reaches its maximum on one of the boundaries of the considered segment. In our case

yp1q � yp2q � �2� t � pϕk�1.

That is,
|λ|k�1p�2� t � pϕk�1q ¥ �t � pϕk�2|λ|k�2 � � � � � t � pϕ0.

Dividing by |λ|k�1 we get

�2 ¥ �t � pϕk�1 � t � pϕk�2|λ|�1 � � � � � t � pϕ0|λ|�k�1.

Noting that simultaneously t ¤ 1 by premise and |λ|�1   1 in the considered annulus, we
arrive at:

2   pϕk�1 � pϕk�2 � � � � � pϕ0. (16)

At the same time it is easy to prove that for Q � 2

pϕk�1 � pϕk�2 � � � � � pϕ0 � 2,
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so we have come the contradiction with (16). The same line of reasoning works for qutpλq
except that instead of the last equality we get strict inequality.

We turn to the case (b): Q ¥ 4. If under this condition there is a root such that
|λ| � Q

2
� 1, then�
Q

2
� 1


k�1

�
�
Q

2
� 1


k�1

� t � pϕk�1 � � � � � t � pϕ0 ¥ pQ� 1q �
�
Q

2
� 1


k

.

As far as max
i

pϕi � pϕk�1 � Q
3
2 �Q and t ¤ 1 then�

Q

2
� 1


k�1

� pQ� 1q
�
Q

2
� 1


k

� 2

Q

�
Q

3
2 �Q

	�Q
2
� 1


k

¡ 0

or
p
a
Q� 2q2   0,

which contradicts Q ¥ 4. Absolutely the same arguments work for qutpλq.
Lemma 7. None of the derivatives of putpλq and qutpλq have a root λ such that |λ| � Q

2
�1.

Proof. We �rstly note that polynomials putpλq and qutpλq di�er only in the constant term,
which implies equality of derivatives

pupsqt pλq � qupsqt pλq for all s ¥ 1. (17)

So we will prove the lemma only for putpλq.
Suppose that there exists λ, |λ| � Q

2
� 1, such that pupsqt pλq � 0. Then similarly to

Lemma 6 we get:

pk � 1qs �
�
Q

2
� 1


k�1�s
� pk � 1qs �

�
Q

2
� 1


k�1�s
� tpϕk�1 � � � � �

� 0s �
�
Q

2
� 1


�s
� tpϕ0 ¥ pQ� 1qks �

�
Q

2
� 1


k�s

(here xs denotes xpx� 1q . . . px� s� 1q). As noted above, max
i

pϕi � Q
3
2 �Q, so

pk � 1qspQ 3
2 �Qq � 2

Q

�
Q

2
� 1


k�s
¥ pQ� 1qks �

�
Q

2
� 1


k�s
� pk � 1qs �

�
Q

2
� 1


k�1�s
,

therefore,

pk � sqpk � s� 1qpQ 3
2 �Qq � 2

Q
¥ kpk � s� 1qpQ� 1q � kpk � 1q

�
Q

2
� 1



.

This inequality can be viewed as

apQ, sqk2 � bpQ, sqk � cpQ, sq ¥ 0.

But #
apQ, sq   0, if Q � 4,

apQ, sq � 0, otherwise.

Moreover, in the case of Q � 4, it is true that bpQ, sq   0. Thus, there exists a certain
number k starting from which this inequality will not be satis�ed.
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Lemma 8. The polynomials putpλq and qutpλq have exactly one root λ such that |λ| ¡ Q
2
�1.

Proof. For the considered polynomials it is known [4] that their roots are continuous
functions of variable t. As

pu0pλq � qu0pλq � λk�1 � p1�Qqλk,

these two polynomials have 0 as a root of multiplicity k and p1�Qq as a root of multiplicity
one.

By Lemma 6, putpλq and qutpλq do not have roots in the annulus 1   |λ| ¤ 2 (for
Q � 2) or the circle |λ| � Q

2
� 1 (for Q ¥ 4). Thus, all curves corresponding to the �rst

k roots do not leave the circle |λ| ¤ 1 (for Q � 2) and the circle |λ|   Q
2
� 1 (for Q ¥ 4).

The curve corresponding to the last root does not leave the sets |λ| ¡ 2 and |λ| ¡ Q
2
� 1

respectively.

Note that pHkpQ� 1q   0 since

pHkpQ� 1q � pQ� 1qk�1 � pQ� 1q � pQ� 1qk � pϕk�1 � pQ� 1qk�1 � � � � � pϕ0,

and pϕi ¡ 0, i P r0, k � 1s. On the other hand, pϕi   Q
3
2 �Q for i P r0, k � 1s, so

pHkp3Qq � p3Qqk�1 � pQ� 1qp3Qqk � pϕk�1 � p3Qqk�1 � � � � � pϕ0 ¡

¡ p3Qqk�1 � pQ� 1qp3Qqk � pQ 3
2 �Qq p3Qq

k

3Q� 1
¡

¡ p3Qqk
3Q� 1

�
6Q2 �Q

3
2 � 4Q� 1

	
¡ p3Qqk

3Q� 1
p5Q2 � 4Q� 1q ¡ 0,

for Q ¥ 2. Absolutely similar statements are true for qHkpQ� 1q and qHkp3Qq.
Hence by the intermediate value theorem both functions pHkpλq and qHkpλq have a real

root on the segment rQ� 1, 3Qs which can be found by halving the segment. In this case,
for n steps the root can be found with an accuracy Op2�nq.

Then equalities (9) and (14) take form:

pFkpnq � pγkpynk � pρkpnq, (18)

qFkpnq � qγkqynk � qρkpnq, (19)

where pyk, qyk are maximum (by the absolute value) roots of polynomials pHkpλq and qHkpλq
respectively (they are real, positive and lie inside rQ� 1, 3Qs as we have proved). pγk andqγk are some real positive constants. Next, we note that if Q � 2 then pρkpnq � Op1q andqρkpnq � Op1q as nÑ 8. If Q ¥ 4 then

pρkpnq � O

��
Q

2
� 1


n

, qρkpnq � O

��
Q

2
� 1


n

The case Q � 2 is illustrated on Fig. 1.

Lemma 9. The di�erence pyk � qyk tends to zero as k Ñ 8.
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Figure 1: Trajectories traversed by roots of pH5pλq with t from 0 to 1; the round mark
corresponds to t � 0, the square mark corresponds to t � 1

Proof. Using Lemma 7, similarly to the proof of Lemma 8, it can be shown that the �rst

Figure 2: The plot of the function pH5pλq

11



and second derivatives of the functions pHkpλq and qHkpλq have exactly one root, whose
module exceeds Q

2
� 1. We denote them by y1k and y2k respectively (by (17) these values

are the same for pHk and qHk).

Since the function qHkpλq can take negative values, min qHkpλq   0 and

arg min qHkpλq   qyk. At the same time arg min qHkpλq � y1k. Thus y
1
k   qyk.

Carrying out similar reasoning, but considering qH 1
kpλq instead of qHkpλq, it is easy to

show that y2k   y1k. Then starting with some number k the following inequalities are held
(see Fig. 2 for Q � 2):

Q

2
� 1 ¤ y2k   y1k   qyk   pyk ¤ 3Q.

Therefore functions pHkpλq and qHkpλq are convex functions on ry1k, pyks, so for any
δ P r0, 1s holds the convexity inequality:

pHk

�
δy1k � p1� δqpyk� ¤ δ pHkpy1kq � p1� δq pHkppykq.

Note that qyk � δy1k � p1� δqpyk for δ � pyk � qykpyk � y1k
,

therefore, �nally we get the following chain of inequalities:

pHkpqykq ¤ δ pHpy1kq � p1 � δq pHppykqloomoon
�0

� pyk � qykpyk � y1k
pHkpy1kq ¤ pyk � qyk

5Q
2
� 1

pHk

�
Q

2
� 1



,

where at the last inequality we used the fact that pHkpy1kq is the minimum value of functionpHk on the ray
�
Q
2
� 1,�8�

and also that pyk � y1k ¤ 5Q
2
� 1. For function νk introduced in

Lemma 7 the equality pHkpqykq � �νk obviously holds. Then we �nally get:

pyk � qyk ¤ p�5Q
2
� 1qνkpHkpQ2 � 1q

.

It remains to show that the right part of the last inequality tends to zero at k Ñ 8.
This follows from the tendency of νk to zero and also from the fact that

pHk

�
Q

2
� 1



�
�
Q

2
� 1


k�1

� p1�Qq
�
Q

2
� 1


k

� ϕk�1

�
Q

2
� 1


k

� � � � � ϕ0 �

� �Q
2

�
Q

2
� 1


k

� ϕk�1

�
Q

2
� 1


k

� � � � � ϕ0 Ñ �8 as k Ñ 8.

Now we can estimate the value of E2Hn .

Theorem 2. For all ε ¡ 0 and all q P N there exist real positive numbers pz, qz, c1 and c2
such that |pz � qz| ¤ ε and

c1qzn À E2qHn À c2pzn as nÑ 8.
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Proof. According to Lemma 8 polynomials pHkpλq and qHkpλq have exactly one root greater
than

�
Q
2
� 1

�
. From (7) and (18)

�
also (10) and (19)

�
it follows that

pfkpnq � pFkpnq � pFkpn� 1q � pγkppyk � 1qpyn�1
k � pγ1kpynk ,qfkpnq � qFkpnq � qFkpn� 1q � qγkpqyk � 1qqyn�1
k � qγ1kqynk .

At the same time, qfkpnq ¤ fpnq ¤ pfkpnq,
so qγ1kqynk À fpnq À pγ1kpynk ,qγ1kqynk À f 1pnq À 2pγ1kpynk � pγ2kpynk .
Finally,

c1qzn � qγ1k � qynk2n
À E2qHn À pγ2k � pynk2n

� c2pzn,
moreover, Lemma 9 guarantees that pz and qz can be made arbitrarily close.

Let us use the result of Theorem 2. Chose ε � 10�20, Then such pyk and qyk exist that
|pyk � qyk|   ε, that is they are both equal to ry with the speci�ed accuracy. This value will
correspond to rz � ry

2
. Moreover, value log2 ry � 1 is interesting as

c12
n�plog2 ry�1�εq À E2qHn À c2 � 2n�plog2 ry�1�εq.

Q ry rz log2 ry � 1
2 3.30921306134212177240 1.65460653067106088620 0.72648818154049951037
4 5.80027271324371478340 2.90013635662185739172 1.53612073348070167305
8 10.53733221939675028493 5.26866610969837514246 2.39743775493525848727
16 19.61999911051941379160 9.80999955525970689580 3.29425307103935297681
32 37.19179236569642652549 18.59589618284821326274 4.21691237160283720288
64 71.45569997172021204310 35.72784998586010602155 5.15897719358341460680
128 138.69767829225482267831 69.34883914612741133915 6.11579982787398693748
256 271.32073664755570805747 135.66036832377785402874 7.08385550468282259524
512 533.89365096936984102274 266.94682548468492051137 8.06040858243800754807

Table 1: Approximate values associated with EQHn for di�erent values of Q

Now we can evaluate the variance of the value 2Hn :

D2Hn � E
�
2Hn

�2 � �
E2Hn

�2 � E22Hn � �
E2Hn

�2
.

It is easy to observe from this table that
�
E2Hn

�2 � o
�
E22Hn

�
. Thus, the variance

D2Hn can be estimated by the second moment:

c11 � 2p1.5361�εqn À D2Hn À c12 � 2p1.5361�εqn.

Finally we estimate the probability of deviating from the expectation E2Hn . We use
Chebyshev's inequality:

P
���2Hn � E2Hn | ¥ a

	
¤ D2Hn

a2
.
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Choose a � vn
?
D2Hn , v ¡ 1 then

P
���2Hn � E2Hn | ¥ vn

?
D2Hn

	
¤ 1

v2n
Ñ 0 as nÑ 8.

Thus with probability tending to one

2Hn ¤ E2Hn � vn
?
D2Hn

or, for example,
2Hn � o

�
20.76807n

�
as nÑ 8.

Figure 3: Distribution of 2H32{K 1
2
and 2H64{K 1

2
.

For n � 64 theoretical expectation E2Hn is approximately 9, 92 � 1013 and computed
one is 5, 38 �1013. So real value is only 1,8 times smaller than calculated one. On Fig. 3 one
can see that K 1

2
piq ¤ 2H

i
n for n � 32 and n � 64. So at least in these cases our hypothesis

is true. Besides, the relation 2H
i
n{K 1

2
piq is small.

3 Equivalence classes' sizes

It turns out that there is a simple analytical formula for the size of any given equiv-
alence class.

Let n-bit number i � pαn�1αn�2, αn�3, . . . , α0q be the number of p2n � 2nq - matrix
row and i1 � pαn�2, αn�3, . . . , α0q.
Theorem 1. For each number i1 the row of DDT-matrix with this number belongs to the
equivalence class of size

ρi � 2 � Cs�1
K Cc1

s�1C
c2
s�1�c1 . . . C

cr�1

s�1�c1�����cr�2
,

where

(a) K is the number of 1's in binary representation of i1,

(b) s is the number of groups of 0's and 1's in i1,

(c) c1, c2, . . . is the number of 0's of size 1, 2, . . . .
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Proof. Row distributions of the second half of the DDT-matrix fully duplicate distribu-
tions of the �rst half, so it is enough to compose a formula for the �rst part and multiply
it by two.

Since the last group of 0's is �xed, we need to position n�1�K� `s 0's. In addition,
before the last group of 0's we strictly have to put at least one 1, in order to separate it.
So we need to �nd place for only K � 1 1's.

Let us consider a model problem. We associate with each 1 a white ball

1 1

k-1

and each group `1, . . . , `s�1 a black one.

s-1

`1

0

`s�1

0

0

0

00

0

0 0 0

0

0

00

0

0

It is required to �nd the number of variants to locate K � 1 white ball and s � 1 black
ball so that between two black ones there is at least one white.

Let us imagine that the goal is to place s� 1 partition in a box with K � 1 elements.
We can put a partition on one of K places (between elements and on the sides), but in
the way the elements are always separated from each other. So the number of variants is
Cs�1
K .

Now let us note that in fact black balls are multicolour balls where each colour
corresponds to a speci�c length of a group of 0's:

ci � colori �
��t`j | `j � i, j � 1, . . . , s� 1u��, i � 1, . . . , r.

Thus, in order to get all possible distribution of balls, that is, all possible row numbers
included in one equivalence class, it remains to calculate the number of representations
of s� 1 black ball through colored ones, provided that a set of colored balls is given.

It can be proved by induction that the number of representations of black balls through
colored ones is:

Cc1
s�1C

c2
s�1�c1 . . . C

cr�1

s�1�c1�����cr�2
.

You can split black balls into balls of the same color in a unique way. Now let the
formula be true for black balls partitioning into balls of r � 1 colours. Let us consider
that the number of balls of colours 1, . . . , r � 1 equals respectively c11, . . . , c

1
r�1. Then the

number of variants is
C
c11
s�1C

c12
s�1�c11 . . . C

c1r�2

s�1�c11�����c1r�3
.

Now let pr�1q-th colour be actually a union of pr�1q-th and r-th colour. In other words,
c11 � c1, c

1
2 � c2, . . . , c

1
r�2 � cr�2, c

1
r�1 � cr�1�cr. Then the number of variants to partition

s� 1� c1 � � � � � cr�2 in two colour is C
cr�1

s�1�c1�����cr�2
.
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Figure 4: Distribution of H32 and H64

Usually one needs Ωp23nq operations to calculate Hn (to get the DDT-table and
then consistently by de�nition calculate entropy). For example, for n � 32 it is 296 bit
operations or approximately 6.4 � 1019 seconds and for n � 64 it is 2192 operations or
4 � 1048 seconds. But using our short representation of an equivalence class and the ability
to enumerate all classes in time proportional to their number the problem can be solved
on a laptop in 0.1 and 62 seconds for n � 32 and n � 64 respectively. Distributions for
these cases are shown on Fig. 4.
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